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Abstract

The discovery and identification of molecules in biological and environmental
samples is crucial for advancing biomedical and chemical sciences. Tandem mass
spectrometry (MS/MS) is the leading technique for high-throughput elucidation
of molecular structures. However, decoding a molecular structure from its mass
spectrum is exceptionally challenging, even when performed by human experts. As
a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby
limiting our understanding of the underlying (bio)chemical processes. Despite
decades of progress in machine learning applications for predicting molecular
structures from MS/MS spectra, the development of new methods is severely
hindered by the lack of standard datasets and evaluation protocols. To address
this problem, we propose MassSpecGym – the first comprehensive benchmark
for the discovery and identification of molecules from MS/MS data. Our bench-
mark comprises the largest publicly available collection of high-quality labeled
MS/MS spectra and defines three MS/MS annotation challenges: de novo molecu-
lar structure generation, molecule retrieval, and spectrum simulation. It includes
new evaluation metrics and a generalization-demanding data split, therefore stan-
dardizing the MS/MS annotation tasks and rendering the problem accessible to
the broad machine learning community. MassSpecGym is publicly available at
https://github.com/pluskal-lab/MassSpecGym.
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Figure 1: MassSpecGym provides three challenges for benchmarking the discovery and identifi-
cation of new molecules from MS/MS spectra. The provided challenges abstract the process of
scientific discovery from biological and environmental samples into well-defined machine learning
problems.

1 Introduction

The discovery and identification of small molecules profoundly influence numerous scientific fields,
including organic chemistry [1], molecular biology [2], drug development [3], disease diagnosis [4],
environmental analysis [5], and space exploration [6]. Despite significant progress, it is estimated
that only a small fraction of molecules across the kingdoms of life have been discovered [7]. Tandem
mass spectrometry (MS/MS) is the most widely used technique for elucidating molecular structures
from biological and environmental samples, supporting a wide range of applications in biotechnology
and medicine [8]. In drug development, MS/MS is crucial for identifying novel bioactive compounds
[9], such as those targeting cancer and infectious diseases [7]. MS/MS also plays a key role in
clinical settings for determining appropriate drug dosages and assessing potential side effects [10].
In environmental analysis, it enables the detection of pollutants at trace levels, which is vital for
monitoring and preserving environmental health [11]. Moreover, MS/MS addresses various challenges
in structural biology, including the discovery of ligands that bind to target proteins [12] and the
elucidation of metabolic pathways [13].

When analyzing a sample, a mass spectrometer typically generates thousands of tandem mass spectra,
each characterizing a specific molecule present in the sample. While the annotation of mass spectra
with molecular structures is inherent to mass spectrometry, it remains a significant challenge. From
typical samples of interest, typically less than 10% of MS/MS spectra are annotated using state-of-
the-art methods [14, 15]. As a result, the natural chemical space remains largely unexplored, thereby
hindering scientific advancements.

To generate an MS/MS spectrum, a mass spectrometer follows an intricate multi-step procedure. First,
the instrument ionizes the molecule using methods such as electrospray ionization (ESI). During
this process, the molecule gains additional atoms, known as the ionization adduct. Subsequently,
the ionized molecule (often referred to as precursor ion) is fragmented using collision-induced
dissociation (CID), higher energy collisional dissociation (HCD), or other fragmentation method [16].
Finally, for each individual fragment ion, the instrument records its (i) mass-to-charge ratio (m/z
value; the charge is typically equal to one for small molecules) and (ii) its corresponding abundance
(signal intensity). The collection of these two-dimensional data points, characterizing the molecule
as a distribution of fragment masses, is referred to as a tandem mass spectrum, MS/MS spectrum, or
MS2 spectrum.

The most notable progress in MS/MS annotation has been achieved by machine learning meth-
ods augmented with combinatorial optimization and domain expertise [17, 18]. However, these
methods have not seen significant improvements in recent years due to their lack of scalability and
small return of increased human knowledge. In contrast, recent years have witnessed numerous
purely data-driven deep learning models performing competitively or even surpassing the classic ap-
proaches [19, 20, 21, 22, 23, 24, 25, 26, 27]. Nevertheless, the development of this new generation of
modern machine learning methods for MS/MS spectrum annotation is currently hindered by multiple
factors. These factors include the heterogeneity of data acquired under different mass spectrometry
settings, the scarcity of high-quality annotated spectra, variations in data pre-processing techniques,
inconsistencies in data splitting methods resulting in data leakage, differences in approaches to
MS/MS annotation, varying evaluation metrics, and the proprietary nature of many datasets. As a
result, developing a machine learning algorithm for mass spectrum annotation currently necessitates
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mass spectrometry domain expertise, rigorous data preparation, and the reevaluation of existing
methods for benchmarking purposes.

At the same time, dataset collection and benchmarking efforts have been one of the key drivers
responsible for breakthrough progress in machine-learning-driven fields, for example: ImageNet [28],
SQuAD [29], Gym [30], ProteinGym [31, 32], and OGB [33]. Inspired by these efforts, we propose
MassSpecGym – a new public dataset of MS/MS spectra and a unified benchmarking protocol
for MS/MS spectrum annotation (Figure 1). Our dataset provides a standardized collection of 231
thousand high-quality mass spectra representing 29 thousand unique molecular structures, making it
the largest publicly available dataset. 10 thousand molecules (33%) present in the dataset are derived
from our newly measured in-house data (i.e., MSnLib library presented in [34]). Additionally, we
provide a curated selection of large unlabeled datasets of mass spectra and molecules allowing for
the combination of supervised and unsupervised methods [20, 35]. Importantly, we develop a new
splitting procedure based on the edit distance of molecular structures and divide our dataset into non-
leaking train-validation-test folds. The MassSpecGym benchmark defines three MS/MS annotation
challenges: de novo molecular structure generation, molecule retrieval, and spectrum simulation. We
make each of the challenges easily accessible to the broad machine learning community by providing
MassSpecGym through a user-friendly interface leveraging PyTorch Lightning and Hugging Face
platforms1. Users can build new models on top of the prepared components and submit their results
to the Papers With Code leaderboard. We anticipate that our unified benchmark will have a significant
impact on the community by enabling reproducible research and accelerating the development of
new MS/MS spectrum annotation methods.

2 Related work

Table 1: MassSpecGym is the largest publicly avail-
able dataset of high-quality labeled MS/MS spec-
tra. Our quality assessment workflow eliminates noisy
or corrupted spectra and ensures reliable molecular
labels and metadata (Section 3.3). The “Split” col-
umn highlights that, unlike other large-scale datasets,
MassSpecGym provides a pre-defined data split.

Dataset Spectra High-quality Molecules Split
spectra

GNPS [36] 322K 104K 16K ✗

MoNA [37] 98K 62K 10K ✗

MassBank [38] 62K 58K 4K ✗

MIST CANOPUS [19] 11K ≤ 11K ≤ 9K ✓

MassSpecGym (ours) 231K 231K 29K ✓

Labeled MS/MS data. The creation of
spectral libraries is driven by the desire to
facilitate the annotation of a measured query
spectrum [39, 40]. A spectral library cata-
logues a molecule and one or more of its
spectra that are measured under different
mass spectrometry instrument conditions.
There are in-house private spectral libraries,
commercial libraries, and openly accessi-
ble crowd-sourced libraries. MassBank [38],
MassBank of North America (MoNA) [37]
and GNPS [36] are the three largest crowd-
sourced libraries comprising tens of thou-
sands of molecules in total. The National In-
stitute of Standards and Technology (NIST)
provides a variety of for-purchase spectral
libraries comprising up to 52 thousand compounds. However, NIST libraries are not available for
machine learning due to licensing restrictions. A similar situation exists with mzCloud [41], which
provides MS/MS spectra for 32 thousand compounds but cannot be downloaded and used outside its
native web interface.

The availability of spectral libraries has provided labeled datasets for supervised machine learning,
but there are many challenges. These libraries are relatively small, covering only thousands to
tens of thousands of molecules. Consequently, many annotation tools combine data from various
libraries, including proprietary sources, limiting reproducibility and introducing biases. Public crowd-
sourced datasets often contain low-quality, noisy mass spectra or invalid metadata, necessitating
custom pre-processing and filtering techniques. While these techniques aim to improve dataset
quality, they often limit the applicability and reproducibility of the corresponding machine learning
methods. Additionally, the heterogeneity and non-standardization of mass spectrometry instruments
and parameters challenge effective learning from spectral libraries. Our MassSpecGym dataset offers
the first carefully curated and standardized collection of MS/MS spectra, maintaining high quality
and surpassing existing datasets in size (Table 1).

1https://github.com/pluskal-lab/MassSpecGym
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Figure 2: Our MCES-based data split
resolves the data-leakage issue abun-
dant in prior work. The standard ap-
proach separates molecules with iden-
tical planar structures (2D InChIKeys)
into different folds, disregarding minor
molecular modifications. This leads to
near-duplicate test molecules (with Tan-
imoto similarity > 0.85) being leaked
from the training data (red), as shown
in the example below. In contrast, our
approach minimizes molecular edit dis-
tance (MCES) between training and test
sets, ensuring distinct data folds (green).

Train-validation-test splitting of MS/MS data. Most
of the previous studies split labeled MS/MS data such that
molecules with identical planar structures do not appear
in different training, validation, and test sets [17, 35, 24,
19, 21]. This is achieved by using distinct 2D InChiKey
hash descriptions of molecules for each data fold. How-
ever, this method can be compromised by minor structural
modifications often found in spectral libraries as a result
of, for example, click chemistry [42]. Our MassSpecGym
benchmark has undergone extensive vetting in terms of
data splitting. In this work, to prevent data leakage and to
accurately assess model generalization to novel molecules,
we develop a data splitting strategy that guarantees that
there are no leaks with the chemical bond edit distance
(i.e., MCES distance [43]) less than 10 (Figure 2).

Benchmarking MS/MS annotation. Currently, there are
no comprehensive and standardized datasets available for
the development and evaluation of models predicting spec-
tra or molecular structures. One recently utilized dataset
for benchmarking is MIST CANOPUS [19, 35], which was
curated to ensure an even distribution of chemical classes
[44]. However, this dataset is relatively small, compris-
ing only 9 thousand molecules and 11 thousand spectra,
and employs a data split based on 2D InChIKey, a method
resulting in data leakage (Figure 2).

The Critical Assessment of Small Molecule Identification
(CASMI) series [45] is another example of a recent bench-
marking initiative. However, the CASMI challenge is held
only once every two years at best, limiting opportunities for
continuous evaluation and benchmarking. Additionally, the
CASMI datasets are relatively small, comprising several
hundred spectra representing challenging test cases. Par-
ticipation in the challenge also demands significant mass
spectrometry domain expertise for preprocessing the data
into the format suitable for machine learning. In contrast,
our proposed MassSpecGym is based on the new largest
publicly available dataset (Table 1) and is designed to be
machine learning-ready, thereby addressing the limitations inherent in the MIST CANOPUS and
CASMI benchmarks.

3 MassSpecGym benchmark

This section describes the construction of the MassSpecGym benchmark. First, we define three
challenges of mass spectrum annotation along with the corresponding evaluation metrics (Section 3.2).
Then, we describe the collection and processing of the underlying dataset of mass spectra and analyze
its composition (Section 3.3). Finally, we outline our procedure for splitting the dataset into train-
validation-test folds and demonstrate its generalization-demanding nature (Section 3.4). Please see
the details on the construction of MassSpecGym in Supplementary Information.

3.1 Motivation for the challenges

De novo molecule generation. The first challenge is the de novo prediction of a molecular graph
from an MS/MS mass spectrum. This challenge can be compared to the goal of AlphaFold [46]
but instead of predicting protein structures from their sequences, the task here is to predict small
molecule structures from their MS/MS spectra. As such, this task represents a grand challenge in
computational mass spectrometry, given its potential to drive the discovery of novel natural products,
drug metabolites, environmental transformation products, and other crucial molecules [14]. A model
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that can accurately predict molecular structures from MS/MS spectra could significantly advance our
understanding of biology by enabling the annotation of metabolomes of uncharacterized organisms
[7].

Molecule retrieval. The second challenge focuses on retrieving a molecular graph from a molecular
database given a mass spectrum, rather than generating a completely new molecule. This scenario is
common in practice when determining if a sample contains specific compounds, such as pesticides,
environmental pollutants, or other known substances [11]. This approach is also relevant in drug
design, particularly in affinity selection–mass spectrometry, where protein binders are identified from
combinatorial libraries of ligands [12].

Spectrum simulation. The third challenge, called spectrum simulation, is the inverse problem of
predicting a mass spectrum from a molecular graph. This task has two main motivations. First, it
enhances the understanding of MS/MS fragmentation mechanisms in organic chemistry, leading to
more precise predictions of how molecules will behave under various conditions. This insight can aid
in the design of novel compounds and the optimization of synthetic pathways [47]. Second, it allows
for pseudolabeling, expanding training datasets for machine learning models by generating synthetic
spectra, which can improve model performance when experimental data is limited [48].

3.2 Definition of the challenges

De novo molecule generation. The task of de novo molecular generation is to generate a molecular
structure from a mass spectrum. Formally, the input is a mass spectrum X ⊂ R+ × (0, 1], consisting
of a set of two-dimensional points (referred to as signals or peaks) representing m/z (mass-to-charge)
values and their corresponding intensities, which are normalized by dividing each by the maximum
intensity. Intuitively, these points describe the abundance of molecular fragments with different
masses. The goal is to generate a molecular graph Ĝ = (V,E), where vertices V ∈ VN , |V| = 118
is a set of N atoms from the vocabulary of 118 chemical elements (or, for example, 10 most common
ones [24]) characterized by the periodic table, and E ∈ EM , |E| = 4 is a set of M edges from the
vocabulary of 4 chemical bonds between atoms: single, double, triple, and aromatic [33]. Note that
we do not model the 3D coordinates of chemical graphs, as the information in MS/MS spectra is
typically insufficient for predicting exact molecular conformations [49].

Given the complexity of de novo generation, we propose an additional, simpler, challenge where
chemical formulae are provided as input, meaning the set of vertices V is known. In practice,
chemical formulae can be derived with high accuracy by utilizing MS1 mass spectra, an orthogonal
data source to MS/MS [50, 51]. Since working with MS1 data is typically based on combinatorial
optimization rather than machine learning [52], our benchmark directly provides chemical formulae
instead of MS1 spectra, imitating the output of the MS1 spectra processing pipelines. However, we
present this scenario as a bonus challenge because chemical formula prediction remains a partially
unsolved problem. For example, elements such as fluorine, which have only one stable isotope,
cannot be derived from MS1 data alone and still pose challenges with MS/MS data [20].

While each mass spectrum is a measurement on a specific compound, the spectrum may not contain
all the necessary information to fully reconstruct the molecular structure as the spectrum is a partial
view of the measured compound. Therefore, our approach acknowledges this complexity and permits
multiple plausible molecular structures corresponding to a given spectrum. To this end, we formulate
the problem as predicting a set of k graphs Ĝk = {Ĝ1, . . . , Ĝk} rather than a single solution Ĝ. These
graphs can be sampled randomly from a model or selected as the top-k predictions from a larger set,
if a scoring function is available. This approach reflects the inherent uncertainty and challenges of
accurately predicting the correct molecular graph from spectral data.

We evaluate the correspondence between the generated molecular graphs Ĝk and the ground-truth
graph G using three metrics. Ideally, the set of predictions includes the ground-truth graph, which we
assess by measuring

Top-k accuracy: 1{G ∈ Ĝk}, (1)

averaged across all test examples. In the equation, 1 is the indicator function returning 1 if the
condition is true and 0 otherwise. The top-k accuracy varies between 0 and 1, where 0 corresponds to
none of the test samples having the ground truth graph among the top-k prediction and 1 corresponds

5



to all test samples having the ground truth graph among the top-k predictions. Given the difficulty
of predicting the exact graph, we also assess the similarity between predicted molecules and the
true molecule using two molecular similarity measures. First, we use the maximum common edge
subgraph (MCES) metric [43], which is an edit distance on molecular graphs. Specifically, we
evaluate how close the most similar prediction is to the true molecule in terms of the MCES distance
across top-k predictions (we evaluate k ∈ {1, 10}):

Top-k MCES: min
Ĝ∈Ĝk

MCES(Ĝ,G), (2)

averaged across test examples. The MCES distance is 0 when two graphs are identical, and increasing
values correspond to decreasing similarity. We also use the Tanimoto similarity (or Jaccard coefficient)
on the Morgan fingerprints of molecules [53], which measures how well a generative model recognizes
true molecular fragments:

Top-k Tanimoto: max
Ĝ∈Ĝk

Tanimoto(Ĝ,G). (3)

The Tanimoto similarity between two molecules ranges from 0 to 1, where a value of 1 indicates
identical molecules.

Molecule retrieval. In practice, de novo molecule generation is often infeasible due to the combi-
natorial complexity of the solution space. An alternative and practically relevant problem is molecule
retrieval, which is to rank candidate molecular graphs (from a chemical database) for a given input
spectrum. Formally, given a mass spectrum X ⊂ R+ × (0, 1], the task is to order a set of candidate
graphs C = {G1, . . . , Gn} such that the correct molecular graph G ∈ C has the lowest index.

Chemical databases may contain millions of molecules, e.g., the PubChem database has over 118
million molecules [54], making it impractical to sort the entire set. However, since the mass of
the true molecule can be derived from an MS/MS spectrum, the candidate set C can be constructed
to include only molecules with same masses as the true one (within an acceptable experimental
error range). To standardize the task across examples, we limit |C| ≤ 256 candidates per spectrum,
sampled randomly if more molecules with the same mass are available. Additionally, similar to the
de novo generation task, we define a bonus challenge where the set V is known via the molecular
formula, allowing further pruning of C to include only graphs with the given nodes V .

We evaluate molecule retrieval using standard information retrieval metrics, as well as the molecular
similarity of the top hit with the true molecule. Specifically, we measure:

Hit rate @ k: 1{G ∈ Ck}, (4)

averaged across all test examples, where Ck ⊂ C is the set of top-k hits sorted by the model and 1 is
the indicator function. The hit rate @ k ranges from 0 to 1, with 1 indicating perfect performance,
meaning all true molecules were correctly retrieved among the top k candidates. Additionally, we
evaluate the average similarity of the top-1 hit G1 ∈ C with the ground truth molecule G by measuring
the maximum common edge subgraph (MCES) distance [43]:

MCES @ 1: MCES(G1, G). (5)

The MCES @ 1 value is 0 if the top-1 retrieved candidate is exactly the true molecule, with higher
positive values indicating lower similarity between the molecules.

Spectrum simulation. In contrast to the above spectrum-to-molecule tasks, spectrum simulation is
the inverse problem of predicting an MS/MS spectrum. The input is a molecular graph G = (V,E)
and the measurement parameters I ∈ {I1, I2, ..., In}, A ∈ {A1, A2, ..., Am}, and C ∈ R+, where I
represents the type of instrument used, A represents the adduct associated with the precursor ion, and
C is the amount of energy used during fragmentation (the collision energy, measured in electronvolts
or eV). The output is a predicted mass spectrum X̂ ⊂ R+ × (0, 1]. To limit complexity from extra
parameters tangential to the issue, we restrict the task to spectra with the most abundant adduct
(A = [M+H]+) and simplify the instrument types to the two principal technologies (I ∈ {QTOF,
Orbitrap}).

Typically, X̂ and the true spectrum X have binned representations x, x̂ ∈ Rd, where d is the number
of bins. Instead of listing exact locations of m/z peaks and their intensities, they discretize the space
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Figure 3: MassSpecGym provides a diverse and highly-standardized dataset of MS/MS spectra.
The histogram of precursor m/z values (a) and a TMAP [58] projection of precursor molecules (e)
demonstrate a rich coverage of molecular masses and chemical classes [44] in MassSpecGym. Unlike
other spectral libraries, our dataset is highly standardized in terms of mass spectrometry metadata.
Each spectrum has an associated ionization adduct, either [M+H]+ or [M+Na]+, and nearly all spectra
(98%) are linked to MS instruments, either Orbitrap or QTOF (b, c). Approximately half of the
dataset entries (53%) contain normalized collision energies (b, d).

into a series of m/z bins to store peaks in their approximate positions [55, 56, 57]. The selection of
bin size, and by extension d, requires consideration: in this benchmark, we choose a bin size of 0.01
Da and a maximum m/z of 1005 Da, resulting in d = 100500. These values are precise enough to
retain important information about peak accuracy without becoming overly sensitive to measurement
error. Additionally, we exclude potential precursor signals from both ground truths and predictions in
the benchmark since there is a tendency for strong precursor signals to inflate model performance.

An evaluation metric for the quality of the prediction is the cosine similarity between the predicted
binned spectrum x̂ and the ground truth x (Equation 6), averaged across all graph-spectra pairs:

Cosine similarity:
x̂Tx

∥x̂∥∥x∥
. (6)

Cosine similarity between two spectra ranges from 0 to 1, where 1 corresponds to a perfect prediction.
A key application of accurately predicting spectra from molecules is in molecular retrieval [55, 21, 23].
Accurate and scalable models enable the automatic annotation of molecular databases, bolstering the
coverage of existing spectral libraries. Therefore, we can additionally use an analagous setup as a
downstream task to evaluate spectrum predictions. Similarly to the molecule retrieval task defined
previously, for a molecule-spectrum pair (G,X), the set of candidates C comprises of G and the set
of molecules from a chemical database most similar to G. For each molecule Gi ∈ C, we predict a
spectrum x̂i and rank all candidates by decreasing cosine similarity between x̂i and x. We evaluate
the model by the rate at which G is ranked in the top-k hits in the sorted C, using the same hit rate @
k metrics as defined in the previous section.

3.3 Dataset collection

To construct the MassSpecGym dataset, we first exhaustively collected MS/MS spectra from the
largest publicly available spectral libraries: MoNA [37], MassBank [38], and GNPS [36] (downloaded
from the official websites on May 27, 2024), as well as from our in-house data [34]. We then
deduplicated and cleaned the spectra by applying a series of matchms filtering criteria [59]. These
criteria are mainly based on the protocol described in [60] and involve additional filters to better
standardize the dataset, such as keeping only spectra of molecules with m/z < 1000 or spectra
with fewer than 1000 signals. To ensure the high quality of the dataset, we applied additional
criteria, such as removing all spectra where more than 50% of the total intensity cannot be explained
by combinatorially decomposing molecular mass into plausible chemical subformulae [61]. We
preprocessed the mass spectra by removing signals estimated to be instrument noise. Finally, we
standardized both molecular structures and mass spectra, and harmonized metadata entries, inferring
missing or incorrect values where possible [62, 60]. Figure 3 shows that our resultant dataset is rich
in terms of molecular structures and highly standardized in terms of mass spectrometry metadata.
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Additionally, we provide curated unlabeled datasets of mass spectra and molecules. For the mass
spectra, we provide the GeMS-A10 dataset, a deduplicated collection of 24 million high-quality
mass spectra mined from the MassIVE repository [20]. For the molecules, we provide (i) 1 million
molecules of biological and environmental origin, including collections of natural products, pesticides,
industrial chemicals, food additives, and other compounds [43], (ii) 4 million molecules spanning
a diverse range of chemical classes [35], and (iii) all 118 million molecules from PubChem [63]
(downloaded from the official website on May 31, 2024).

First, we utilize these three molecular datasets to construct retrieval candidates C for the molecule
retrieval and spectrum simulation tasks (Section 3.2). For each spectrum-molecule pair, we iteratively
sample molecules with the same mass as the query molecule from (i), followed by (ii) and (iii)
until the maximum number of candidates |C| = 256 is reached. The sequence of the datasets used
for sampling reflects the relevance of their composition for mass spectrometry applications. A
similar procedure is applied for the bonus challenge, where candidates are selected based on identical
molecular formulae.

Second, when developing new methods that leverage unlabeled data, we anticipate that users will
rely solely on the following two datasets: the GeMS-A10 dataset of unlabeled MS/MS spectra and a
refined subset of the unlabeled 4 million-molecule dataset. The molecular dataset has been refined by
excluding any molecules with an MCES distance of less than two from any molecule in the test fold
of MassSpecGym. This refinement is intended to reduce the potential for data leakage, particularly
when used in the context of the de novo generation challenge.

3.4 Dataset splitting

We split our dataset using MCES distances between molecular graphs corresponding to mass spectra.
Specifically, we group all 29 thousand unique molecules into training, validation, and test folds using
agglomerative clustering with MCES as the metric and the minimum distance as the linkage criterion.
By setting the linkage distance threshold to 10, our approach ensures that no molecules have an edge
edit distance of less than 10 between different data folds. Figure 2 shows that our method significantly
surpasses the commonly applied 2D InChIKey disjoint approach, used in nearly all related works, in
terms of preventing data leakage. Additionally, we stratify the spectra by instrument types, collision
energies, ionization adducts, and the frequency of the molecules in the entire dataset, resulting in
balanced folds with respect to metadata. A more detailed description of the splitting and additional
analysis is available in the Supplementary Information.

4 Experiments

4.1 Baseline models

To establish reference performance across the tasks, we evaluate an initial set of representative
baseline methods summarized in this section. Please see Supplementary Information for details.

De novo molecule generation. For the de novo molecule generation challenge, we begin by
implementing a baseline model based on prior chemical knowledge, referred to as Random chemical
generation, which produces random chemically valid molecules given specific molecular masses
or formulae. This baseline uses combinatorial and graph theory algorithms, drawing from statistics
derived from the training data. To complement this domain-knowledge baseline, we also implement
two Transformer models [64]. These models encode two-dimensional continuous tokens, representing
m/z–intensity value pairs of MS/MS spectra, and decode string representations of molecular graphs.
The first model, SMILES Transformer, decodes molecules as byte-pair-encoded [65] SMILES
strings [66]. The second model, SELFIES Transformer, decodes molecules as SELFIES strings
[67], offering the advantage of always producing valid chemical structures. We do not include any
published state-of-the-art baselines because, to the best of our knowledge, all are either not publicly
available or leverage proprietary data for training [24, 68, 69, 70].

Molecule retrieval. The simplest baseline method for molecule retrieval, Random, sorts the
candidate molecules C randomly. The second method, Fingerprint FFN, employs a feedforward
neural network to predict the Morgan fingerprint of the target molecule. The candidates are then
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Table 2: Baseline results for the de novo molecule generation challenge. The values in brackets
indicate 99.9% confidence intervals upon bootstrapping (20,000 resamples).

Top-1 Top-10

Accuracy ↑ MCES ↓ Tanimoto ↑ Accuracy ↑ MCES ↓ Tanimoto ↑

Random chemical generation 0.00 28.59 (28.33-28.84) 0.07 (0.07 - 0.07) 0.00 25.72 (25.49-25.95) 0.10 (0.10 - 0.10)
SMILES Transformer 0.00 53.80 (52.95-54.61) 0.07 (0.07 - 0.08) 0.00 21.97 (21.79-22.16) 0.17 (0.17 - 0.17)
SELFIES Transformer 0.00 33.28 (33.00-33.57) 0.10 (0.10 - 0.10) 0.00 21.84 (21.67-22.00) 0.15 (0.15 - 0.15)

Bonus chemical formulae challenge

SMILES Transformer 0.00 79.39 (78.64-80.08) 0.03 (0.03 - 0.04) 0.00 52.13 (51.45-52.81) 0.10 (0.09 - 0.10)
SELFIES Transformer 0.00 38.88 (38.57-39.20) 0.08 (0.08 - 0.08) 0.00 26.87 (26.66-27.11) 0.13 (0.13 - 0.13)
Random chemical generation 0.00 21.11 (20.97-21.26) 0.08 (0.08 - 0.08) 0.00 18.25 (18.14-18.35) 0.11 (0.11 - 0.11)

Table 3: Baseline results for the molecule retrieval challenge. The values in brackets indicate
99.9% confidence intervals upon bootstrapping (20,000 resamples).

Hit rate @ 1 ↑ Hit rate @ 5 ↑ Hit rate @ 20 ↑ MCES @ 1 ↓

Random 0.37 (0.24-0.54) 2.01 (1.68-2.39) 8.22 (7.53-8.89) 30.81 (30.40-31.21)
DeepSets 1.47 (1.18-1.77) 6.21 (5.64-6.82) 19.23 (18.24-20.26) 25.11 (24.84-25.39)
Fingerprint FFN 2.54 (2.17-2.99) 7.59 (6.96-8.28) 20.00 (19.01-20.98) 24.66 (24.38-24.94)
DeepSets + Fourier features 5.24 (4.71-5.83) 12.58 (11.80-13.42) 28.21 (27.10-29.36) 22.13 (21.85-22.43)
MIST 14.64 (13.82-15.54) 34.87 (33.69-36.10) 59.15 (57.89-60.39) 15.37 (15.12-15.62)

Bonus chemical formulae challenge

Random 3.06 (2.64-3.52) 11.35 (10.60-12.12) 27.74 (26.52-28.84) 13.87 (13.70-14.03)
DeepSets 4.42 (3.92-4.97) 14.46 (13.58-15.36) 30.76 (29.67-31.93) 15.04 (14.89-15.19)
Fingerprint FFN 5.09 (4.57-5.66) 14.69 (13.83-15.56) 31.97 (30.86-33.10) 14.94 (14.79-15.09)
DeepSets + Fourier features 6.56 (5.95-7.16) 16.46 (15.58-17.35) 33.46 (32.39-34.59) 14.14 (13.98-14.31)
MIST 9.57 (8.88-10.30) 22.11 (21.10-23.13) 41.12 (39.98-42.34) 12.75 (12.59-12.91)

Table 4: Baseline results for the spectrum simulation challenge. The values in brackets indicate
99.9% confidence intervals upon bootstrapping (20,000 resamples).

Cosine Similarity ↑ Jensen-Shannon Similarity ↑ Hit Rate @ 1 ↑ Hit Rate @ 5 ↑ Hit Rate @ 20 ↑

Precursor m/z 0.15 (0.14-0.17) 0.41 (0.40-0.42) 0.38 (0.21-0.62) 1.72 (1.32-2.18) 7.17 (6.32-8.04)
FFN Fingerprint 0.25 (0.24-0.26) 0.48 (0.47-0.48) 8.44 (7.56-9.34) 21.43 (20.10-22.79) 38.57 (36.99-40.23)
GNN 0.19 (0.18-0.20) 0.44 (0.44-0.45) 3.95 (3.37-4.62) 11.92 (10.87-13.00) 26.27 (24.83-27.82)
FraGNNet 0.52 (0.51-0.53) 0.63 (0.63-0.64) 46.64 (44.98-48.26) 72.56 (71.18-74.00) 83.58 (82.34-84.75)

Bonus chemical formulae challenge

Precursor m/z - - 2.09 (1.66-2.59) 8.52 (7.65-9.53) 22.65 (21.26-24.01)
FFN Fingerprint - - 7.62 (6.77-8.54) 22.70 (21.32-24.12) 44.12 (42.51-45.75)
GNN - - 3.63 (3.05-4.29) 13.55 (12.46-14.68) 33.77 (32.26-35.37)
FraGNNet - - 31.93 (30.40-33.50) 63.20 (61.64-64.76) 82.70 (81.45-83.93)

sorted based on their cosine similarity to the predicted fingerprint. Next, we evaluate MIST, a
state-of-the-art deep learning approach, also based on fingerprint prediction. MIST assigns chemical
subformulae to spectral peaks via energy-based modeling [22], then predicts a molecular fingerprint
via a chemical formula-based transformer, and finally ranks the candidates by cosine similarity
between the fingerprints [19]. Finally, we evaluate DeepSets [71]. The model processes spectra as
sets of raw 2D peak representations, providing a complementary approach to FingerprintFFN and
the state-of-the-art MIST which are based on fingerprint prediction. DeepSets + Fourier features
enhances DeepSets by using Fourier features enabling more accurate modeling of m/z values [20].

Spectrum simulation. We include three deep learning baseline models for the spectrum simulation
task. The molecular fingerprint (FFN Fingerprint) model consists of a simple feedforward
network on top of a fingerprint representation of the input molecule, inspired by [55]. The graph
neural network (GNN) model, inspired by [56, 72], uses a variant of Graph Isomorphism Network
augmented with edge features [73, 74] to process a 2D graph representation of the input molecule.
Finally, state-of-the-art FraGNNet [23] uses combinatorial fragmentation and GNNs to parametrize
a probability distribution over fragments of the input molecule and their associated chemical formulae.
The precise formula masses are used to map the distribution over formulae to a high resolution mass
spectrum, without requiring binning. In addition, we include a trivial baseline Precursor m/z that
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simply predicts a single-peak spectrum by calculating the precursor m/z from the masses of the input
molecule and the ionization adduct.

4.2 Baseline performance

We train and validate the performance of baseline methods on MassSpecGym. For the challenge
of de novo generation (Table 2), we find that none of the baselines achieve an accuracy above
zero, emphasizing the need for new method development. Additionally, our SMILES Transformer
baseline does not outperform random generation of chemically valid graphs, highlighting the in-
sufficiency of simplistic learning approaches in our generalization-demanding setup. For molecule
retrieval (Table 3), the advanced MIST model significantly outperforms the simpler Fingerprint
FFN and DeepSets baselines, suggesting strong gains from algorithmic development, which we
posit as a driving force for MS/MS annotation with our benchmark. The same holds true for the
spectrum simulation challenge (Table 4), where the advanced FraGNNet model demonstrates superior
performance over simpler baselines. Nevertheless, the absolute metric scores still leave a substantial
gap for future improvements.

5 Conclusions

In this work, we developed MassSpecGym, the first comprehensive and standardized benchmark
for the discovery and identification of molecules from MS/MS spectra. MassSpecGym is based on
our newly created largest open-source dataset of labeled tandem mass spectra and a standardization
pipeline ensuring high data quality. We split the dataset using our novel generalization-demanding
splitting technique, enabling robust evaluation of molecular identification and discovery. We evaluated
a series of baseline methods and demonstrated that the annotation of MS/MS spectra remains a highly
unsolved problem. To address this, we provide MassSpecGym as a public resource with a user-
friendly interface requiring minimal domain expertise for the submission and evaluation of new
machine learning models.

Our future work has two main directions. First, we plan to continuously update MassSpecGym
with new public and in-house MS/MS data, potentially incorporating simulated spectra or additional
data modalities, such as EI spectra. We also aim to expand the scope of challenges to include
tasks such as molecular networking, a prominent technique in the field that focuses on clustering
spectra of structurally related molecules rather than predicting individual molecules. Second, by
progressively enhancing the MassSpecGym ecosystem with more advanced methods, we intend to
transform it into a hub for state-of-the-art models in MS/MS spectra annotation. This will empower
machine learning researchers to make rapid progress in developing innovative models, a particularly
crucial focus given the historically limited collaboration between mass spectrometry experts and AI
specialists. As a consequence, many well-established machine learning paradigms, such as generating
molecular graphs via diffusion models or applying domain adaptation techniques across different
mass spectrometry systems, remain largely unexplored. Furthermore, by providing a user-friendly
interface to run these models, we aim to make cutting-edge algorithms readily accessible to life
scientists interested in annotating their mass spectra. We believe that MassSpecGym will play a
pivotal role in fostering the development of next-generation machine learning methods, ultimately
driving significant progress across the biomedical and chemical sciences.
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