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ABSTRACT

Latent manifolds of autoencoders provide low-dimensional representations of
data, which can be studied from a geometric perspective. We propose to describe
these latent manifolds as implicit submanifolds of some ambient latent space.
Based on this, we develop tools for a discrete Riemannian calculus approximating
classical geometric operators. These tools are robust against inaccuracies of the
implicit representation often occurring in practical examples. To obtain a suitable
implicit representation, we propose to learn an approximate projection onto the
latent manifold by minimizing a denoising objective. This approach is indepen-
dent of the underlying autoencoder and supports the use of different Riemannian
geometries on the latent manifolds. The framework in particular enables the com-
putation of geodesic paths connecting given end points and shooting geodesics via
the Riemannian exponential maps on latent manifolds. We evaluate our approach
on various autoencoders trained on synthetic and real data.

1 INTRODUCTION

In machine learning, extracting low-dimensional data representations is a classical problem, moti-
vated by the manifold hypothesis that many high-dimensional datasets, such as images, lie on or near
low-dimensional submanifolds. Approaches range from classical manifold learning methods, such
as Isomap (Tenenbaum et al., 2000) and Diffusion Maps (Coifman et al., 2005), to neural network-
based methods, including autoencoders, their probabilistic variants (e.g., variational autoencoders,
VAE) (Kingma & Welling, 2013), and Generative Adversarial Networks (Goodfellow et al., 2014).

These ideas remain central in modern machine learning, for instance, in word embeddings for large
language models (Devlin et al., 2019) or autoencoders in diffusion models (Rombach et al., 2022).
Low-dimensional representations of the data manifold are crucial for high-performing generative
models, yet their rich information (e.g., intrinsic dimension, topology, or point proximity) is rarely
used explicitly. Instead, they are primarily considered an intermediate compression step.

In contrast, shape analysis extensively exploits manifold representations of geometric data. Rieman-
nian manifolds—manifolds with a local measure of length—are a standard tool for modeling collec-
tions of shapes called shape spaces. Derived geometric operators are central for celebrated methods
like LDDMM (Beg et al., 2005), enabling applied tasks to be phrased in terms of Riemannian calcu-
lus, e.g., shape interpolation via computing interpolating geodesics and shape extrapolation via the
exponential map.

Yet, evaluating Riemannian operations on shape spaces is often computationally expensive, partly
due to high dimensionality. Autoencoders could efficiently parametrize low-dimensional shape sub-
manifolds, but their latent spaces typically lack explicit geometric structure. This highlights an open
challenge in manifold learning: equipping latent spaces with geometric structure and practically
usable geometric operators.

Previous work has focused on learning underlying structures, e.g., manifold representations (Arvan-
itidis et al., 2018) or Riemannian metrics (Gruffaz & Sassen, 2025). However, practical computation
of geodesic interpolation between given endpoints or geodesic extrapolation remains challenging.
We address this by making the latent manifold’s geometry accessible via an implicit representation
based on a learned projection that minimizes a denoising objective. We further introduce a time-
discrete variational geodesic calculus suitable for imperfect implicit representations, along with
practical computational algorithms. Figure 1 shows an illustrative example for both components.
Building on time discretizations proven effective for Riemannian shape spaces (Rumpf & Wirth,
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Figure 1: Training an autoencoder (φ, ψ) with data X lying on a manifold M yields a low-
dimensional latent manifold Z . Using a denoising objective, we learn an implicit representation
ζ of this manifold (color-coding on the 2D slice from blue to yellow indicates |ζ|) based on a pro-
jection Π onto Z (white arrows, rescaled). Furthermore, we introduce a practical geodesic calculus
on this representation, enabling, e.g., shape interpolation using latent manifolds (green dots and
shapes).

2015), we hope to open up new ways of using latent representations in machine learning in general
and enable new reduced-order methods for shape spaces in particular.

Contributions. In summary, we make the following contributions:

◦ We introduce a time-discrete geodesic calculus for imperfect representations of implicit latent
manifolds and provide algorithms for geodesic interpolation and extrapolation.
◦ We suggest minimizing a denoising objective to learn an approximate projection on latent man-

ifolds with unknown codimension.
◦ We evaluate our approach on various autoencoders trained on synthetic and real data.
◦ We provide code in an easy-to-use fashion for different metrics and implicit representations.

[Link will be provided in final version]

1.1 RELATED WORK

Latent Space Geometry. Their widespread use has made the latent space of autoencoders a
prime object of study, and equipping them with an appropriate notion of geometry is a major goal.
Shao et al. (2018) compute interpolations and other geometric operations on the data manifold by
parametrizing it via the decoder, which is equivalent to pulling back the Euclidean metric from the
data space to the latent space. However, they disregard any non-Euclidean geometric structure of
the latent space. Chen et al. (2018) pursue a similar idea for VAEs, where they additionally mod-
ify the pulled-back metric to generate high cost away from the data manifold. This underlying
idea was concurrently pursued by Arvanitidis et al. (2018) based on previous work by Tosi et al.
(2014) on Gaussian process latent variable models. They further extended this idea to pulling back
non-Euclidean metrics (Arvanitidis et al., 2021), to pulling back the Fisher–Rao metric on densities
(Arvanitidis et al., 2022; Lobashev et al., 2025), and to using Finsler metrics on latent spaces (Pou-
plin et al., 2023). In contrast to these works, we propose to encode the latent manifold as an implicit
submanifold and derive a discrete geodesic calculus from this description. Sun et al. (2025) also
learn an implicit representation of the latent manifold, however, they use it to modify the metric on
the latent space and pull this modified metric back to the data space via the encoder. We will perform
all optimizations directly on the latent manifold to maintain the advantages of its low dimensionality.

Discrete Geodesic Calculus. One of the most fundamental tasks in Riemannian geometry is the
computation of geodesic paths, either solving the system of geodesic differential equations via nu-
merical integration techniques for given initial data, as in (Beg et al., 2005), or minimizing the
so-called path energy over paths with prescribed endpoints. The latter variant is based on a suitable
discretization of the path energy depending on the type of Riemannian space. In section 3 we will
follow this time discretization paradigm. By (Rumpf & Wirth, 2015) it was developed into a com-
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prehensive time-discrete geodesic calculus on shape spaces (including a corresponding convergence
analysis for vanishing time steps), and it was applied in different contexts such as curves (Bauer
et al., 2017), discrete surfaces (Heeren et al., 2014), or images (Berkels et al., 2015).

Neural Implicits. Implicit representations of geometric objects using neural networks have
emerged as a new paradigm in computer graphics and computer vision, sparking broad research
(Essakine et al., 2025). In particular, neural signed distance functions are often used to describe sur-
faces in three dimensions (Schirmer et al., 2024). Most work in this direction exclusively focuses on
representing objects in three-dimensional space. However, we want to represent implicit submani-
folds of arbitrary dimension and codimension. For this, signed distance functions are not a suitable
implicit representation, and we will explore learning approximate projections instead in section 4.

2 BACKGROUND: RIEMANNIAN GEOMETRY

In this paper, we consider an autoencoder for data X ⊂ M ⊂ Rn on a hidden manifoldM con-
sisting of an encoder φ : Rn → Rl and decoder ψ : Rl → Rn. We will describe the corresponding
latent manifold Z := φ(M) as an implicit submanifold with a Riemannian metric and develop
suitable numerical schemes for geodesic interpolation and extrapolation. Let us shortly recap the
basics of the required Riemannian geometry: We consider the manifold Z ⊂ Rl as an implicit,
m-dimensional submanifold, i.e. we have Z :=

{
z ∈ Rl | ζ(z) = 0

}
for a smooth map ζ. In our

case, ζ : Rl → Rl; ζ(z) := z −Π(z), where Π: Rl → Rl is the projection from the latent space Rl
to the nearest point on the latent manifold Z . The tangent space TzZ at a point z ∈ Z is the vector
space of all velocities of paths passing through z. For implicit submanifolds, TzZ = kerDζ(z). A
Riemannian metric is an inner product gz(·, ·) on TzZ smoothly depending on z. This inner product
allows to measure lengths of tangent vectors and angles between them. The simplest choice would
be the Euclidean inner product inherited from Rl, but it may be useful to apply other inner products
that better represent the geometric structure of the original data.

The length of a path z : [0, 1] → Z with velocity ż is defined as L(z) =
∫ 1

0

√
gz(t)(ż(t), ż(t)) dt,

and the Riemannian distance dist(z0, z1) between two points z0, z1 ∈ Z is the infimum over all
paths with endpoints z(0) = z0, z(1) = z1. A minimizing path is called a geodesic. A torus Z is
shown as a toy example for l = 3 in fig. 2. A geodesic connecting z0 and z1 can equivalently be
found by minimizing the path energy

E(z) =

∫ 1

0

gz(t)(ż(t), ż(t)) dt (1)

over curves (z(t))t∈[0,1] in Rl, subject to z(0) = z0, z(1) = z1 and ζ(z) = 0. Physically, geodesics
have vanishing acceleration within the manifold, i.e. they always go straight at constant speed, nei-
ther changing direction nor velocity. Of course, viewed from the outside, a geodesic path on a
curved manifold no longer looks straight. For the Euclidean inner product inherited from the ambi-
ent Rl as metric, the corresponding geodesic equation (the Euler–Lagrange equation associated with
the minimization of E) expresses the lack of acceleration within the manifold, z̈(t) ⊥ Tz(t)Z . For
implicit submanifolds, this reads as Dζ(z(t))ż(t) = 0 and z̈(t) · w = 0 for all Dζ(z(t))w = 0.
For other Riemannian metrics, this geodesic ODE defining a geodesic for initial data z(0) = z and
ż(0) = v ∈ TzZ becomes more complicated. Mapping v to the arrival point y = z(1) at time 1
yields the Riemannian exponential map expz : TzZ → Z : expz v = y.

3 DISCRETE GEODESIC CALCULUS

We introduce a time-discrete geodesic calculus suitable for (imperfect) implicit manifold represen-
tations. A central ingredient is a local approximation W(·, ·) of the squared Riemannian distance
used to define the discrete path energy

EK(z0, . . . , zK) = K
∑

k=1,...,K

W(zk−1, zk) (2)

of a discrete path z = (z0, . . . , zK) as a discrete counterpart of (1). Consequently, a discrete
geodesic for given endpoints z0, zK ∈ Z is a minimizer of (2) subject to the constraint ζ(zk) = 0
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for k = 0, . . . ,K. Rumpf & Wirth (2015, Corollary 4.10) have shown that ifZ is smooth, z 7→ gz is
Lipschitz continuous, andW(z0, z1) approximates dist(z0, z1)2 up to an error O( dist(z0, z1)−3),
then the piecewise affine interpolations of minimizers of the discrete path energies EK converge
uniformly to minimizers of the continuous path energy E . One can interpretW(zk−1, zk) physically
as the energy of a spring connecting zk−1 and zk. Then, EK(z0, . . . , zK) is the total elastic energy
of a chain of K springs, which we relax under the constraint that all nodes lie on Z . Depending on
the application and the underlying configuration of the data manifold, one can distinguish different
Riemannian metrics on Z and corresponding functionalsW , for instance,

◦ the Euclidean inner product gz(v, w) = v · w inherited from the ambient space Rl leads to

WE(z0, z1) := |z1 − z0|2, (3)

◦ the pullback metric gz(v, w) = gMψ(z)(Dψ(z)v,Dψ(z)w) pulling back the metric
gMx : TxM× TxM→ R ofM results in

WM(z, z̃) = dist2
M(ψ(z), ψ(z̃)), (4)

◦ ifM is equipped with the Euclidean inner product inherited from Rn,WM simplifies to

WPB(z, z̃) = |ψ(z)− ψ(z̃)|2. (5)

We discuss this further in appendix A.1.

Computing discrete geodesics. The Lagrangian for the constrained optimization problem of min-
imizing (2) subject to ζ(z) = 0 reads L(z,Λ) = EK(z) − Λ : ζ(z), where z ∈ Rl,K+1 and
Λ ∈ Rl,K−1 denotes the matrix of the components of the Lagrange multiplier and Λ : ζ(z) :=∑l
i=1

∑K−1
k=1 Λikζi(zk). The optimality conditions for the constrained optimization can be ex-

pressed as the saddle point condition

0 = ∂zkL(z,Λ) = K (∂zkW(zk−1, zk) + ∂zkW(zk, zk+1))−
∑

i=1,...,l

Λik∇ζi(zk), (6)

0 = ∂ΛikL(z,Λ) = ζi(zk) (7)

for k = 1, . . . ,K − 1 and i = 1, . . . , l.

We propose to use an augmented Lagrangian method to compute solutions of the constrained opti-
mization problem. In detail, for the augmented Lagrangian

La(zj ,Λj , µj) = L(zj ,Λj) +
µj
2 |ζ(zj)|2 = E(zj)− Λj : ζ(zj) +

µj
2 |ζ(zj)|2 (8)

we iterate the update rules

zj+1 = arg min
z∈Rl(K−1)

La(z,Λj , µj), (9)

Λj+1 = Λj − µjζ(zj+1), µj+1 = αµj (10)

for given initial data (z0,Λ0, µ0) and some α > 1. The update of the multiplier Λ ensures that
the Euler–Lagrange equation ∂zLa = 0 coincides with the first saddle point condition (6). The
third term of La is a penalty ensuring closeness of zj to Z and thus reflects the second saddle point
condition (7).

The augmented Lagrangian approach is not harmed by the fact that the Lagrange multiplier in (6)-(7)
is underdetermined (and thus nonunique) due to rank Dζ(z) = l−m. Moreover, it is also applicable
with inexact constraints (Frick et al., 2011; Jin, 2017), which is important since in practice we
replace ζ with ζσ = id−Πσ for a learned approximate projection Πσ (cf. section 4). The augmented
Lagrangian method allows this approximation as long as ζσ points approximately in normal direction
to Z . Furthermore, the penalty term enforces small values of ζσ(zk) = zk − Πσ(zk) even though
ζσ is not expected to vanish. Overall, we observe that the augmented Lagrangian method works for
an inexact implicit function ζσ as long as (ζσ, Dζσ) approximate (ζ,Dζ) sufficiently well (see, e.g.,
fig. 2). We give details on the implementation and the parameters for the augmented Lagrangian
approach in appendix A.2.
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Figure 2: Discrete geodesics for different values of K computed on a torus with learned implicit
manifold representation ζσ (green points) and highly resolved geodesic computed with ground truth
representation ζ (black line).

Figure 3: Comparison between computed exponentials with learned implicit manifold representation
ζσ (green points) and ground truth representation ζ (black line). As in any dynamical system, slight
numerical inaccuracies lead to an exponentially growing divergence (which is known to be more
pronounced in regions of negative curvature as in the right-most example).

Computing a discrete exponential. To derive a discrete counterpart of geodesic extrapolation via
the exponential map, we interpret the first saddle point condition

0 = K(∂zkW(zk−1, zk) + ∂zkW(zk, zk+1))−∇ζ(zk)λk

from the discrete geodesic interpolation (cf. (6)) as a (nonlinear) equation in the unknowns zk+1 and
λk for given zk−1, zk. Furthermore, we implement the constraint ζ(zk) = 0 from the second saddle
point condition (7) as a penalty. This, leads to the minimization of the functional F : Rl ×Rl → R,

F(zk+1, λk) := |K(∂zkW(zk−1, zk) + ∂zkW(zk, zk+1))−∇ζ(zk)λk|2 + µ
2 |ζ(zk+1)|2, (11)

where µ > 0 is some penalty parameter. As in the context of the discrete geodesic interpolation, this
minimization remains reasonable if ζ is replaced by an approximation ζσ . Now, given the first two
points z0 and z1 and thus a corresponding discrete initial velocity v0 = K(z1 − z0), we iteratively
minimize F(zk+1, λk) for k = 1, . . . ,K − 1 in both zk+1 and λk with a BFGS method. We define
by ExpKz0(v0) := zK the discrete exponential map as the final point of the extrapolated discrete
geodesic (z0, . . . , zK) (cf. fig. 3). Following Rumpf & Wirth (2015, Theorem 5.1), the discrete
exponential map converges to the continuous one as K →∞.

4 PROJECTION AS IMPLICIT REPRESENTATION OF LATENT MANIFOLDS

In section 2, we defined the implicit function ζ(z) = z − Π(z) based on a projection Π from the
latent space to the latent manifold. In section 3, we considered a yet unspecified approximation
ζσ(z) = z − Πσ(z). In this section, we will detail the concrete choice of ζσ or rather of the
approximate projection Πσ as the minimizer of a suitable objective and discuss how to train its
network representation.

Projection as minimizer of a loss functional. Let us suppose a density measure dz is given on the
latent manifold Z reflecting the sampling on the data manifold. In applications, this is typically the
empirical measure of the data samples or rather of their images under encoder φ. The projection as a
neural network is learned based on this possibly noisy point cloud representing the latent manifold.

Following the approach to learn a projection from denoising autoencoders proposed by Alain &
Bengio (2014), we define the projection Πσ as the minimizer of the loss functional

Q(Π) =

∫
Rl

∫
Z
|z −Π(y)|2fσ(z − y) dz dy (12)
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over maps Π : Rl → Rl. Here, fσ(y) is the normal distribution with mean 0 and standard deviation
σ. The functional Q is a coercive quadratic form. Hence, the condition that ∂ΠQ(Πσ) vanishes
uniquely classifies the minimizer Πσ and leads to 0 = 2

∫
Rl
∫
Z(Πσ(y)− z)ϑ(y)fσ(z− y) dz dy for

all ϑ ∈ C∞c . Thus, one obtains the approximate projection

Πσ(y) =

(∫
Z
fσ(y − z) dz

)−1 ∫
Z
zfσ(y − z) dz

of y in the neighborhood of Z as a Gaussian-weighted Z–barycenter (cf. Alain & Bengio (2014)).
For Z being an affine subspace of Rl, Πσ is indeed the orthogonal projection on Z . In general,
id − Πσ does not necessarily vanish on Z but comes with a defect of order O(σ2) in the relative
interior of smooth latent manifolds and O(σ) close to the boundary.

Learning the projection on encoded samples. To practically minimize the objective (12), we
parameterize Πσ by a fully connected neural network with ELU activation functions (Clevert et al.,
2015). We minimize the objective (12) using the Adam optimizer (Kingma & Ba, 2014).

In appendix A.3, we study the properties of the denoising loss and the resulting Πσ on a low-
dimensional toy model and show experimentally that the approximation error decreases for increas-
ing point cloud size, increasing network architectures, and decreasing noise levels.

In applications, we have an approximation of the latent manifold Z by a point cloud φ(X ) of en-
coded data samples X . These point clouds can be sparse and noisy depending on the distribution
of the data and the regularization of the autoencoder. Suitable values of σ depend on the sampling.
For data with low noise level and high point cloud density, small values of σ are preferable as long
as the convolution with the Gaussian fσ sufficiently regularizes the data distribution. On the other
hand, a reliable projection further away from Z can only be expected for sufficiently large σ. In our
experiments below, we could choose the same σ for similar point cloud densities.

5 RESULTS

In the following examples, we demonstrate the performance of the method across different types of
data and latent manifolds obtained from different autoencoders.

5.1 DISCRETE SHELLS / ISOMETRIC AUTOENCODER

We compute interpolations and extrapolations on a submanifold of the space of discrete shells (Grin-
spun et al., 2003), i.e., the space of all possible immersions of a fixed triangle mesh, and equip this
space with the Riemannian metric proposed by Heeren et al. (2014). First, we train an isomet-
ric autoencoder to approximate this submanifold and then the projection operator as described in
section 4, allowing us to perform the geodesic calculus on the latent manifold.

The submanifold is designed to approximate a dataset of shapes, such as different poses of a hu-
manoid model. Because many datasets provide only a limited number of examples, we first apply a
classical Riemannian construction to obtain the submanifold and its parametrization, which is com-
putationally demanding. We then use this parametrization to create a denser training set for our
autoencoder. We discard any pairs where at least one shape exhibits self-intersections to preserve
physical plausibility. See appendix A.4, for details on the data generation and the autoencoder train-
ing. In this way, the autoencoder learns a low-dimensional latent manifold approximating the shape
space submanifold, enabling us to perform discrete geodesic operations in reduced dimensions.
Figure 1 illustrates the overall procedure of our approach for an example of a two-dimensional sub-
manifold of the manifold of discrete shells.

Geodesic calculus on the latent manifold. As described in section 4, we use the trained projection
operator Πσ to construct an approximate implicit representation of the latent manifold. For the
geodesic calculus, we use the Euclidean metric, as this agrees with the shell distance due to the
autoencoder’s isometry. In fig. 4, we show a result of applying this approach to the SCAPE dataset
(Anguelov et al., 2005) of human character poses and compare linear interpolation in latent space
with geodesics on the latent manifold computed using our approach. Our geodesics avoid self-
intersections more effectively than linear interpolation, thanks to the rejection of intersecting shapes
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Figure 4: Interpolations on a learned submanifold of the shape space of discrete shells. Comparison
between linear interpolation in latent space (red) and geodesic interpolation using a learned implicit
representation (green) of the latent manifold Z .

during training. Since our learned projection Πσ is only accurate up to the filter width σ, slight
self-intersections may remain. We show additional examples in appendix A.4.

5.2 MOTION CAPTURE DATA / SPHERICAL VARIATIONAL AUTOENCODER

We consider a latent manifold resulting from training a spherical variational autoencoder (SVAE)
Davidson et al. (2018) on motion capture data from the CMU Graphics Lab. A suitable represen-
tation for the data was described by Tournier et al. (2009): A pose is defined as an element of
SO(3)m, where m = 30 is the number of joints in the skeleton. The vector of rotations specifies
the rotations of the joints. Given the connectivity and lengths of the skeletal segments, the full pose
can be reconstructed. Hence, our input data X lies on a hidden manifoldM ⊂ SO(3)m. Arvan-
itidis et al. (2022) used an SVAE autoencoder to take the hyperspherical nature of this data into
account. Unlike standard VAEs, which assume a Gaussian prior in the latent space, the SVAE uses
von Mises–Fisher (vMF) distributions for regularization, which indeed enforces a hyperspherical
latent geometry. Details on the employed data and training are provided in appendix A.5. We use
l = 10 latent dimensions. In the case of (S)VAEs, the encoder and decoder maps are not deter-
ministic but parameterize distributions. We sample the latent manifold Z by sampling from the
encoder distribution and obtain decoded points by sampling from the decoder. For simplicity, when
learning Πσ and calculating discrete geodesics on Z , we ignore the nondeterministic nature of the
encoder and decoder and, by a slight abuse of notation, denote by ψ(z) ∈ SO(3)m a sample of the
decoding of z. Another approach would be to follow Arvanitidis et al. (2022) and incorporate the
Kullback–Leibler divergence, see (14) in appendix A.1.

In figs. 5 and 6 (left), we show a projection of the sampled latent manifold (from which we learn
Πσ) onto the three most relevant dimensions obtained from a PCA.

Geodesic calculus on the latent manifold. The encoder embedding is not close to isometric.
Hence, it is appropriate to equip the latent manifold with the pulled-back spherical distance

WM(z, z̃) = dist2
SO(3)(ψ(z), ψ(z̃)) =

m∑
i=1

|arccos(ψ(z)i · ψ(z̃)i)|2 . (13)

In fig. 5 (right), we compare geodesic interpolation based onWM (green) to geodesic interpolation
with the Euclidean metricWE(z, z̃) = |z− z̃|2 (yellow) as well as linear interpolation in latent space
(red). The results show that geodesic interpolation with the pullback metric yields realistic decoded
paths, whereas linear interpolation in latent space leads to poses not lying on the data manifoldM,
as indicated by unnatural contractions of shoulders and hips and by self-intersecting limbs. Figure 6
shows a pose extrapolation using the exponential map on the latent manifold. Different from linear
extrapolation, the extrapolated path follows the geometry of the latent manifold and, after decoding,
leads to realistic poses.
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Figure 5: Left: Visualization of sample points in latent space (projected from R10 into R3 based
on a PCA) and linear interpolation (red), geodesic interpolation with WE (yellow), and geodesic
interpolation withWM (green). Right: Corresponding decoded sequences.

Figure 6: Left: Visualization of sample points in latent space (projected from R10 into R3 based on
a PCA) and, starting from a fixed point in a fixed direction, linear extrapolation (red) and geodesic
extrapolation withWM (green). Right: Corresponding decoded sequences.

5.3 IMAGE DATA / LOW BENDING, LOW DISTORTION AUTOENCODER

Next, we consider image data of a rotating three-dimensional object as proposed as an example by
Braunsmann et al. (2024). We use their regularized autoencoder, minimizing a loss function that
promotes the embedding to be as isometric and as flat as possible. The data X ⊂M ⊂ R128×128×3

consists of RGB images showing a toy cow model (Crane et al., 2013) from varying viewpoints.
Training the regularized autoencoder requires computing distances and averages between dataset
samples. Each image x corresponds to a specific rotation rx ∈ SO(3) which allows to define
these distances and averages. We use the publicly available pretrained autoencoder with l = 16-
dimensional latent space, for details on other parameters and settings see appendix A.6. A PCA
projection on three dimensions of the resulting latent manifold is visualized in fig. 7 (left), where
the PCA analysis shows that the encoder uses six dimensions for the embedding.

Geodesic calculus on the latent manifold. As the encoder is regularized to be near-isometric, we
useWE(z, z̃) = |z− z̃|2 in our geodesic calculus. In fig. 7, linear and geodesic interpolation as well
as extrapolation in latent space are shown.

5.4 EXTENSION TO DISTANCE FUNCTION AS IMPLICIT REPRESENTATION

Finally, our discrete geodesic interpolation can be performed even if the latent manifold Z is merely
represented by a distance function d : Rl → R with Z = {z ∈ Rl | d(z) = 0}. However, d is non-
differentiable on Z . Hence, instead of the augmented Lagrange algorithm (9)-(10) we use the classi-
cal penalty method to minimize the discrete path energy EK(z) subject to the constraints d(zk) = 0.
Computing the exponential map is not possible with missing normal information, though.

For example, Pose-NDF (Tiwari et al., 2022) provides a neural distance function to a manifold of
plausible human poses. They use a quaternion representation of the SMPL body model by Loper
et al. (2015), resulting in l = 84 dimensions. Comparisons with linear interpolation in these coordi-
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Figure 7: Left: Sample points in latent space (projected into R3; they represent an immersion of
SO(3) which is topologically equivalent to the Klein bottle and thus has to self-intersect in three
dimensions) and computed linear (red) and geodesic (green) interpolation (A, B) as well as linear
(red) and geodesic (purple) extrapolation (C). Right: Corresponding decoded sequences.

Figure 8: Linear interpolation in a quaternion representation of the SMPL body model (red) and
geodesic interpolation on the manifold of plausible poses using the learned distance function pro-
vided by Tiwari et al. (2022) (green).

nates show that our approach computes geodesics on the manifold of plausible poses, whereas linear
interpolation produces self-intersecting poses that lie off the manifold, see fig. 8. An additional
example is provided in appendix A.7.

6 CONCLUSION

Our results demonstrate that geometric operations on a latent manifold Z are indeed feasible. Cen-
tral to our approach is a learned projection Πσ onto Z . Achieving efficiency, however, requires
either fast distance evaluation in the data manifold or an embedding of Z that is (near-)isometric.

Several directions emerge for future work. A natural step is to connect the projection-based repre-
sentation via Πσ with distance-based representations d, for instance by deriving Πσ directly from d.
From a numerical perspective, key open questions include how the accuracy of Πσ (and of the result-
ing geometric operators) depends on the sampling density and the scale parameter σ, how to enhance
imperfect projections (e.g., using multiple or adaptive σ or exploiting the property Πσ ≈ Πσ ◦Πσ),
and how to improve augmented Lagrangian techniques for inexact constraints.

Conceptually, the next step lies in moving from latent manifolds to latent distributions, particularly
in the context of VAEs and related generative models. Along these lines, an interesting possibility
is to replace our projection operator with conditional denoisers, as used in diffusion models. Fi-
nally, extending the calculus to support detail transfer via discrete parallel transport and curvature
approximation would open further applications.
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A APPENDIX

A.1 METRIC AND DISTANCE APPROXIMATION

We further discuss choices of the Riemannian metric and the corresponding functionals W to be
used in our discrete geodesic calculus framework described in section 3.

◦ The simplest choice for a metric on the latent manifold Z (though not particularly suitable for
many applications) is the Euclidean inner product gz(v, w) = v ·w inherited from the ambient
space Rl. In this case,

WE(z0, z1) := |z1 − z0|2

is the obvious choice fulfilling the requirements onW . Physically, this choice corresponds to
the energy of a single Hookean spring.

◦ If the data manifold M is embedded in Rn and equipped with the inherited Euclidean inner
product, tangent vectors v ∈ TzZ ⊂ Rl correspond by the chain rule to embedded tangent
vectors Dψ(z)v ∈ Rn after decoding. Hence the pullback metric (which gives tangent vectors
to Z the same length as their counterparts onM) is given by gz(v, w) = Dψ(z)v ·Dψ(z)w.
In this case, the squared Euclidean distance between the decoded points

WPB(z, z̃) = |ψ(z)− ψ(z̃)|2

is an admissible approximationW of the squared Riemannian distance.
◦ Frequently, the data manifoldM is equipped with a metric gMx : TxM× TxM→ R. Again,

pulling this metric back to Z yields

gz(v, w) = gMψ(z)(Dψ(z)v,Dψ(z)w) = Dψ(z)TGMψ(z)Dψ(z)v · w,

whereGMx is the matrix representation of the metric gMx . In applications where the Riemannian
distance on (M, gM) can be explicitly computed, one is naturally led to

WM(z, z̃) = dist2
M(ψ(z), ψ(z̃))

as a proper choice forW , measuring the squared Riemannian distance of decoded points ψ(z)
and ψ(z̃).

◦ In the case of non-deterministic decoders, ψ(z) lies in a space of distributions. One can pull
back the Fisher–Rao metric from the space of decoder distributions on the latent manifold. The
Kullback–Leibler (KL)-divergence can then be used as a second-order distance approximation

WKL(z, z̃) = KL(ψ(z), ψ(z̃)) . (14)

For a Gaussian decoder with fixed variances, where ψ(z) = N (µ(z), I) is a normal distribution
with mean µ(z), the KL-divergence reduces to the squared Euclidean distance of the means,

KL(ψ(z), ψ(z̃)) = 1
2 |µ(z)− µ(z̃)|2.

We refer to Arvanitidis et al. (2022) for details on this information geometry perspective.

A.2 DETAILS ON THE AUGMENTED LAGRANGIAN METHOD

In practice, we use a slightly more advanced version of the Augmented Lagrangian method following
the algorithm described by Nocedal & Wright (2006, Chapter 17), which we adapt to our setting in
algorithm 1. Compared to the simplified version in the main text, we do not update the Lagrange
multiplier and the penalty parameter in every iteration, but only depending on how well the constraint
is already fulfilled. For the inner optimization problem, we use the BFGS method from SciPy
(Virtanen et al., 2020). As the initial path we choose the path z0 =

(
z0 = z0, . . . , zbK/2c =

z0, zbK/2c+1 = zK , . . . , zK = zK
)

that remains constant and jumps directly from the given starting
point z0 to the endpoint zK at the middle time point. We set the initial Lagrange multiplier Λi0 = 0
for i = 1, . . . ,K and α = 2. The final tolerance η∗ for the constraint is problem-dependent and
depends on the minimum values of ζσ . In practice, a good rule-of-thumb is to choose η∗ as K times
the mean value on the embedded data samples η∗ ≈ K

|X | |ζσ(φ(X ))|.
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Algorithm 1 Augmented Lagrangian Method (Nocedal & Wright, 2006, Algorithm 17.4)
1: Choose initial point z0, multiplier Λ0, penalty µ0, and α
2: Choose final tolerances η∗ for constraint, ω∗ for gradient, and maximum penalty µmax
3: Set ω0 ← 1/µ0, η0 ← 1/µ0.1

0
4: for j = 0, 1, 2, . . . do
5: find approximate solution zj+1 of

arg min
z∈Rl(K−1)

La(z,Λj , µj)

6: such that |∇zj+1
La(zj+1,Λj , µj)| ≤ ωk

7: if |ζ(zj+1)| ≤ ηk then
8: if |ζ(zj+1)| ≤ η∗ and |∇zj+1L

a(zj+1,Λj , µj)| ≤ ω∗ then
9: return zj+1 . final accuracy reached

10: end if
11: update multiplier

Λj+1 = Λj − µjζ(z)

12: update tolerances

µj+1 = µj , ηj+1 = ηj/µ
0.9
j+1, ωj+1 = ωj/µj+1

13: else
14: increase penalty parameter

µj+1 ← αµj

15: update tolerances

Λj+1 = Λj , ηj+1 ← 1/µ0.1
j+1, ωj+1 ← 1/µj+1

16:
17: if µj+1 > µmax then
18: return zj+1 . max penalty reached
19: end if
20: end if
21: end for

A.3 DETAILS: LEARNING THE PROJECTION ON ENCODED SAMPLES.

We provide additional details on the learned projection (section 4) used to construct an implicit
representation of the latent manifolds.

Optimization parameters. We train a fully connected neural network with ELU activations (Clev-
ert et al., 2015) by minimizing the loss functional (12) using the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 10−3 and a weight decay of 10−5. The layer dimensions depend on the
examples. The batch size to evaluate the integral over Z is 128 in all our examples. To approximate
the inner integral, we sample a single point yz from fσ for each data sample z and optimization step.

Parameter study. To analyze the denoising loss and the resulting approximate projection Πσ for
different parameters, we use the toy torus model to allow comparison with a ground truth projection
and keep the evaluation visually tractable. In practice, only approximations of the latent manifold
Z are available. To study the denoising property, we generate a noisy torus surface and train a
projection with different values for σ, treating the noisy surface as Z . We then visualize the image
Πσ(Z) under the projections. As expected, a larger value of σ leads to a stronger smoothing effect,
see fig. 9.

For a point cloud without noise, a small parameter σ leads to a higher accuracy of Πσ close to the
surface but larger errors at certain distances, as those points are rarely seen in training, see fig. 10
(left). We further evaluate in fig. 10 the stability of the optimization, showing that the approximation
error decreases for increasing point cloud size, increasing network architectures, and decreasing
noise levels.
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σ = 0.02noisy manifold σ = 0.01 σ = 0.04

Figure 9: Visualization of the denoising effect for different choices of σ. Left: Noisy surface of
unit diameter taken as Z . Second left to right: Image Πσ(Z) under learned projections for different
values of σ ∈ {0.01, 0.02, 0.04}. A larger choice of σ leads to a projection onto a smoother surface.
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Figure 10: Error evaluation of learned torus projections versus distance to torus surface (which has
unit outer radius). Left: Error for different sample sizes of torus and different values of σ; smaller σ
leads to a higher accuracy close to the surface and larger errors at certain distance. Middle: Error for
different number of layers (L) and parameters per layer (P). Right: Error for training the projection
on a torus surface with added Gaussian noise.

A.4 DETAILS: DISCRETE SHELLS / ISOMETRIC AUTOENCODER

We provide additional details on how we learn a latent manifold representing a submanifold of the
shape space of discrete shells for the results given in section 5.1.

Data. In this example, we use the SCAPE dataset (Anguelov et al., 2005) consisting of 71 immer-
sions of a triangle mesh with 12500 vertices. To speed up the numerical algorithms used to create the
samples for our autoencoder training, we reduced the resolution of the mesh using an iterative edge
collapse approach to 1250 vertices. For visualization, we prolongated our results from the coarse
to the fine mesh using a representation of the fine mesh vertices in terms of intrinsic positions and
normal displacement with respect to the coarse mesh.

Constructing the submanifoldM. We begin by performing Principal Geodesic Analysis (PGA;
Fletcher et al. (2004)) on the input dataset. This involves three steps: (i) computing the Riemannian
center of mass (the mean shape), (ii) mapping each input shape to the tangent space at the mean via
the discrete Riemannian logarithm, and (iii) applying Principal Component Analysis (PCA) to the
resulting tangent vectors to obtain a low-dimensional linear subspace. The nonlinear submanifold is
then recovered by applying the exponential map to this linear subspace.

All computations in this stage follow established numerical algorithms: For the Riemannian center
of mass, the logarithms, and the exponential map, we use the methods introduced by Heeren et al.
(2014) with time resolution K = 8. For the tangent PCA, we use the representation using edge
lengths and dihedral angles as described by Sassen et al. (2020). We used the first two components
for the example in fig. 1 and the first ten components for the example in figs. 4 and 11. To this end,
we employed their publicly available C++ implementation (Heeren & Sassen, 2020).

Learning the submanifold. The training objective combines the reconstruction loss with the
isometry loss introduced by Braunsmann et al. (2021) (see below). To generate training samples
X , we proceed as follows: First, we uniformly sample points within a hyperball of the linear tangent
subspace. The size of the hyperball was chosen based on the norms of the projections of the input
Riemannian logarithms onto the subspace. Second, for each such point, we sample a nearby point
using a normal distribution with small variance centered on the first point. Finally, we apply the
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Figure 11: Two comparisons between linear interpolation (red) and geodesic interpolation using a
learned projection on the embedded submanifold of discrete shells (green).

discrete exponential map to the two points to obtain a pair of points on the submanifold. We discard
any pairs where at least one shape exhibits self-intersections to preserve physical plausibility. For
the isometry loss, we compute the distance between the two shapes in a pair by computing discrete
geodesics and taking their length. For the example in fig. 1, we drew 10000 pairs this way, and, for
the example in figs. 4 and 11, we drew 100000 pairs. All these computations were performed with
the same setup as described above.

The autoencoder architecture is a fully connected network with ELU activations. The encoder and
decoder each have five layers, with the encoder reducing the input dimension from 3750 (three times
the number of vertices) to a latent dimension of 24 and the decoder expanding it back accordingly.

Projection learning. We learn the projection on the embedded samples using σ = 0.05, six fully
connected layers with 128 intermediate dimensions, and ELU activations.

In fig. 11, we provide additional comparisons between linear interpolation in the latent space and
geodesic interpolation using our learned implicit representation.

A.5 DETAILS: MOTION CAPTURE DATA / SPHERICAL VARIATIONAL AUTOENCODER

We provide additional details for the motion capture experiment described in section 5.2.

Data. We use the sequences of subject 86 trial 1-6 from the CMU Graphics Lab Motion Capture
Database (CMU Graphics Lab). These are approximately 52000 frames. We define a pose as an
element of SO(3)m as described in the main text and transform the data to this representation using
an AMC parser (Zhou). We take 80 % as training data and 20 % for testing.

SVAE network. We use the pythae framework (Chadebec et al., 2022) for implementing an SVAE
network with a decoder that decodes to vMF distributions without fixed variances. We use l = 10
latent dimensions. We optimize with AdamW (Loshchilov & Hutter, 2017) using a batch size of
100, an initial learning rate of 10−3, and an adaptive learning rate scheduler with a patience of 10
and reduce by a factor of 0.05. We use two fully connected layers to learn the embedding with
dimensions (90, 30, 10) and a separate second layer (30, 1) for the variance. For the decoder, we
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Figure 12: Same as fig. 5 for a different pair of endpoints. Left: Visualization of sample points
in latent space (projected from R10 into R3) and computed paths between two points via linear
interpolation (red), geodesic interpolation withWE (yellow), unconstrained interpolation withWM
(blue), and geodesic interpolation withWM (green). Right: Corresponding decoded sequences.

have dimension (10, 30, 90) followed by one layer (90, 90) for the decoded mean and one layer (90,
30) for the decoded variances.

Projection learning. We train the projection on the embedded samples by embedding the full set
of training data and sampling one point per resulting vMF distribution. We use a fully connected
network with layers (10, 64, 64, 64, 10) and choose σ = 0.05.

In fig. 12, we provide an additional example of geodesic interpolation. Moreover, as further variant,
in this figure we also show a path computed using the pullback metric WM but without using the
implicit representation ζσ as constraint.

A.6 DETAILS: IMAGE DATA / LOW BENDING, LOW DISTORTION AUTOENCODER

We provide additional details for the experiment described in section 5.3.

Data. We use the code provided by Braunsmann et al. (2024) to generate 30000 colored images
with resolution 128× 128 showing random rotations of the cow model.

Low bending and low distortion autoencoder. Each image x corresponds to a specific rotation
rx ∈ SO(3). Hence, a distance between the images can be defined as distM(x, y) = arccos(rx ·ry)
and geodesic averages avM(x, y) as renderings of the object with the mean rotation between rx and
ry . The autoencoder is trained with tuples of nearby points (x, y) ∈ Xε, where Xε ⊂ {(x, y) ∈
M×M | distM(x, y) ≤ ε}. The regularization loss Jreg for the encoder is given by

Jreg(φ) =
1

|Xε|
∑

x,y∈Xε

γ

(
|φ(x)− φ(y)|
distM(x, y)

)
+ λ
|φ(avM(x, y))− avRl(φ(x), φ(y))|2

distM(x, y)4
,

where γ(s) = |s|2+|s|−2−2, avRl(a, b) = (a+b)/2 denotes the linear average, and λ > 0. The first
term promotes an isometric embedding, encouraging |φ(x)−φ(y)| = distM(x, y). The second term
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Figure 13: Linear interpolation in a quaternion representation of the SMPL body model (red) and
geodesic interpolation using the neural distance function Pose-NDF to a manifold of plausible poses
(green).

penalizes the deviation between the embedding of the manifold average and the Euclidean average
of the embedded points, favoring a flat embedding. For details, we refer to Braunsmann et al. (2024).

We use the publicly available pretrained model for flatness weight λ = 10 and l = 16 latent dimen-
sions.

Projection learning. We learn the projection on the embedded samples using σ = 0.005, eight
fully connected layers with 128 intermediate dimensions, and ELU activation functions.

A.7 DETAILS: POSE-NDF

Figure 13 shows an additional example using the neural distance function Pose-NDF (Tiwari et al.,
2022) as manifold representation, see section 5.4. We compare linear interpolation in the quaternion
representation of the SMPL body model used in Tiwari et al. (2022) and geodesic interpolation on
the manifold corresponding to the approximate zero-level set.
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