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ABSTRACT

While current high-resolution depth estimation methods achieve strong results,
they often suffer from computational inefficiencies due to reliance on heavyweight
models and multiple inference steps, increasing inference time. To address this,
we introduce PatchRefiner V2 (PRV2), which replaces heavy refiner models with
lightweight encoders. This reduces model size and inference time but introduces
noisy features. To overcome this, we propose a Coarse-to-Fine (C2F) module
with a Guided Denoising Unit for refining and denoising the refiner features and
a Noisy Pretraining strategy to pretrain the refiner branch to fully exploit the po-
tential of the lightweight refiner branch. Additionally, we propose to adopt the
Scale-and-Shift Invariant Gradient Matching (SSIGM) loss within local windows
to enhance synthetic-to-real domain transfer. PRV2 outperforms state-of-the-art
depth estimation methods on UnrealStereo4K in both accuracy and speed, using
fewer parameters and faster inference. It also shows improved depth boundary de-
lineation on real-world datasets like CityScapes, demonstrating its effectiveness.

1 INTRODUCTION

Accurate high-resolution depth estimation from a single image is critical for advancements in fields
such as autonomous driving, augmented reality, and 3D reconstruction Eigen et al. (2014); Zhang
et al. (2023); Bhat et al. (2023); Li et al. (2024c). Current state-of-the-art depth estimation models
typically operate at relatively low resolutions (e.g., 0.3 megapixels). High memory requirements,
especially at 4K resolution, pose a significant challenge for training depth estimation models that
can natively support high-resolution inputs. Recent 4K depth estimation approaches like PatchRe-
finer Li et al. (2024b) (PRV1) use a tile-based strategy where the high-resolution image is divided
into patches. The patch-level depth predictions (fine, local outputs) are then fused with the depth
prediction of a downsampled version of the input image (coarse, global output) to obtain a single,
consistent, high-resolution output.

Despite its success, the PatchRefiner framework faces critical computational efficiency and scalabil-
ity challenges for real-world applications. It employs the same architecture (a pre-trained base depth
model) to extract both global and patch-level features. This amounts to at least 16 forward passes of
the base model for a single high-resolution input. As the base model used Bhat et al. (2023); Yang
et al. (2024); Yang et al. is often large, this results in two major issues: 1) High inference time
of more than a second per image, and more importantly 2) High memory requirement, making
the end-to-end training infeasible. Therefore, the PRV1 framework has to adopt stage-wise train-
ing, where global and local branches are trained sequentially, leading to a long training time and
suboptimal results.

To alleviate these issues, we propose to substitute the large foundational models, such as
ZoeDepth Bhat et al. (2023) or DepthAnything Yang et al. (2024); Yang et al., used in the refiner
branch Li et al. (2024b) with lightweight encoders like MobileNet Howard et al. (2019); Qin et al.
(2024) and EfficientNet Tan & Le (2019). This change significantly reduces the number of param-
eters and memory usage, decreases inference time, and enables end-to-end training without bells
and whistles. However, this modification introduces a trade-off: the model capacity is reduced, and
the refiner branch now lacks the depth-aligned feature representation otherwise provided by the pre-
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RMSE #params T
PF† 1.064 432.7M 3.44s
PRV1† 0.941 369.0M 1.45s
PRV2M 1.003 47.0M 0.32s
PRV2E 0.948 72.1M 0.57s
PRV2C 0.884 245.8M 0.62s
†Aligned Version

(a) Comparison on UnrealStereo4K.
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Figure 1: PatchRefiner V2 (PRV2) significantly outperforms previous high-resolution frameworks.
PF and PRV1 are short for PatchFusion Li et al. (2024a) and PatchRefiner Li et al. (2024b), re-
spectively. We adopt a lightweight encoder for the refiner branch, which alleviates the inference
speed bottleneck, reduces the number of parameters for high-resolution estimation, and facilitates
end-to-end training. A novel coarse-to-fine (C2F) module is proposed to denoise features from the
lite model and further boost performance.

viously used pre-trained depth estimation base models. While end-to-end training alleviates some
of this limitation, the lack of depth-aligned feature representation remains a concern. Indeed, we
observe that the features generated by these lightweight encoders tend to be ‘noisy’ (see Fig. 2) even
after ImageNet initialization Deng et al. (2009) and end-to-end training. This causes the original
Fine-to-Coarse module (F2C) used in PRV1 to struggle to inject rich, high-resolution information
for the final depth prediction.

We propose two components to improve the feature representation in the refiner branch: 1) The
Coarse-to-fine module (C2F), which incorporates novel Guided Denoising Units (GDUs) in a
bottom-to-top manner Lin et al. (2017); Xian et al. (2018); Ranftl et al. (2021). GDUs utilize coarse
depth features as guidance to denoise and enhance the high-resolution refiner features. Together
with the original Fine-to-Coarse module (F2C), this establishes a bidirectional fusion process: C2F
initially denoises and refines high-resolution features using coarse features, followed by F2C’s en-
hancement of the predicted coarse depth map via residual prediction. 2) Noisy Pre-training.1 Given
that the C2F and F2C modules require initialization from scratch, we propose a simple pre-training
strategy for the entire refiner branch — including the encoder, C2F, and F2C modules — to en-
hance feature representation and accelerate learning. During Noisy Pre-training, we replace the
input coarse depth features for GDUs with random noise, essentially forcing the refiner branch to
learn to extract depth-relevant features from the high-resolution input.

Finally, the PRV1 framework Li et al. (2024b) employs the Detail and Scale Disentangling (DSD)
training strategy to adapt the high-resolution depth estimation framework to real-domain datasets,
which enables learning ‘detail’ from synthetic data and ‘scale’ from the real domain. To isolate the
scale from the synthetic data, the DSD strategy uses a ranking loss and Scale-and-Shift Invariant
(SSI) loss Ranftl et al. (2022). To further improve the transfer of high-frequency knowledge, we
introduce a gradient-level loss Li & Snavely (2018); Ranftl et al. (2022) applied after scale-and-
shift alignment within local windows Bhat et al. (2022); Wang et al. (2025), which we term the
local Scale-and-Shift Invariant Gradient Matching (local SSIGM) loss. While the formulation of the
gradient loss follows Li & Snavely (2018); Ranftl et al. (2022), our method differs in two key aspects:
(1) supervision is derived from pseudo labels generated by a teacher model trained on a synthetic
dataset, and (2) the loss is computed within local windows rather than across the entire depth map.
These modifications are designed to mitigate potential distortions in accurate scale estimation and
to encourage the model to focus on fine-grained local structures.

1We use the term ‘pre-training’ loosely, as this process occurs prior to the final training phase.
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w/o C2F w/ C2F

(a) Input, Prediction (b) Coarse Feature (c) Refiner Feature (w/o C2F) (d) Refiner Feature (w/ C2F)

Figure 2: Visualization of F2C Input Feature Maps. We showcase the first 16 channels of the F2C
input features. (c) Without the C2F module (setting ③ in Tab. 2a), the refiner features are ‘noisy’ and
hard to interpret. (d) The C2F module helps denoise the refiner features, leading to clear boundaries
and better results.

Experiments demonstrate that our advanced framework, PatchRefiner V2 (PRV2), performs ef-
fectively across various lightweight architectures. As summarized in Fig. 1a, PRV2 significantly
outperforms other high-resolution metric depth estimation frameworks on the UnrealStereo4K Tosi
et al. (2021) dataset in terms of both quantitative results and inference speed. Additionally, we eval-
uate the effectiveness of our local SSIGM loss on the real-world dataset CityScapes Cordts et al.
(2016). Our method reveals significant improvements in depth boundary delineation (e.g., +25.1%
boundary F1 w.r.t Li et al. (2024b)) while maintaining accurate scale estimation, showcasing its
adaptability and effectiveness.

2 RELATED WORK

2.1 HIGH-RESOLUTION MONOCULAR DEPTH ESTIMATION

Monocular depth estimation (MDE) is a fundamental computer vision task and has recently seen
impressive progress with advanced network design Eigen et al. (2014); Bhat et al. (2021); Li et al.
(2023; 2024c); Bhat et al. (2023); Yang et al. (2021), supervision Lee & Kim (2020); Liu et al.
(2023a); Xian et al. (2020); Ranftl et al. (2022); Godard et al. (2019), formulation Fu et al. (2018);
Diaz & Marathe (2019); Bhat et al. (2021); Xian et al. (2020); Li et al. (2024c); Bhat et al. (2022),
training strategy Petrovai & Nedevschi (2022); Godard et al. (2019); Fan et al. (2023); Ranftl et al.
(2022), public datasets Silberman et al. (2012); Geiger et al. (2013); Dai et al. (2017); Cordts et al.
(2016); Roberts et al. (2021), etc. Recently, most SOTA frameworks Bhat et al. (2023); Yang
et al. (2024); Yang et al.; Ke et al. (2024) build on the top of heavy backbones Bao et al. (2022);
Dosovitskiy et al. (2021); Oquab et al. (2025); Rombach et al. (2022), leading to the limitation of
low-resolution input. For example, Depth Anything V2 Yang et al. uses ViT-L Dosovitskiy et al.
(2021); Oquab et al. (2025) and can only infer 756×994 (about 0.75 megapixels) images on an
NVIDIA V100 32G GPU. Another recent work, DepthPro Bochkovskii et al. (2025), presents a
high-resolution framework whereas the input resolution is fixed at 1536. While another line of re-
search utilizing the generative model for MDE achieves fine-grained results Ke et al. (2024); Pham
et al. (2025); Xu et al. (2025), a similar dilemma exists. For instance, Marigold Ke et al. (2024)
based on Stable Diffusion Rombach et al. (2022) runs with ∼0.33 megapixels as default.

This contrasts with the advancements in modern imaging devices, which increasingly capture images
at higher resolutions, reflecting the growing demand for high-resolution depth estimation Li et al.
(2024a). To relax the constraints, initial efforts utilize Guided Depth Super-Resolution (GDSR) Met-
zger et al. (2023); Hui et al. (2016); Zhong et al. (2023) and Implicit Functions Mildenhall et al.
(2021); Chen et al. (2021). Recent works adopt a tile-based method to segment images into patches
for estimation and then reassemble all predictions into a comprehensive depth map Miangoleh et al.
(2021); Li et al. (2024a;b); Kwon & Kim (2025). Since all these methods adopt the dual-branch
architecture and utilize the same SOTA depth model in both branches, the frameworks are heavy
and slow at inference time. By contrast, we aim to achieve fast, high-resolution metric depth es-
timation using the tile-based method with fewer additional parameters. More specifically, Kwon
& Kim (2025) proposes the grouped patch consistency training and bias-free masking to improve
patch consistency and mitigate dataset-specific biases. Their approach focuses on consistency learn-
ing, which is orthogonal and complementary to our focus on lightweight architectural design for
efficient high-resolution depth estimation.
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Figure 3: Left: Coarse-to-Fine (C2F) module overview. It processes refiner features in a bottom-
to-top manner with N successive C2F layers. Each layer is guided by coarse features with corre-
sponding resolution and outputs denoised features for the Fine-to-Coarse (F2C) module. Center:
C2F layers combine multi-level features with Residual Convolutional Units Lin et al. (2017); Ranftl
et al. (2022) and denoises the features using Guided Denoising Units (GDU). Right: Guidance in-
formation from the coarse branch is introduced through a concatenation followed by a convolutional
block and then converted to a weight map ranging from 0 to 1 through the sigmoid operator. We
then adopt an elementwise multiplication to denoise the shortcut feature.

2.2 SYNTHETIC-TO-REAL TRANSFER FOR MDE

The challenge of obtaining high-quality, real-domain data for training high-resolution depth mod-
els has led recent efforts to utilize synthetic datasets, thereby encountering significant domain gaps
during real-world inference Rajpal et al. (2023); Li et al. (2024a). To address this issue, PatchRe-
finer combines labeled data from both synthetic and real domains, enhancing depth estimation in
real-world, high-resolution settings Li et al. (2024b). Inspired by the successes of semi-supervised
learning Van Engelen & Hoos (2020); Yang et al. (2024); Kirillov et al. (2023), it employs a pseudo-
labeling approach Pseudo-Label (2013); Saito et al. (2017); Chen et al. (2019a); Pastore et al. (2021);
Shin et al. (2022) along with the Detail and Scale Disentangling (DSD) loss. This strategy facili-
tates the transfer of fine-grained knowledge from synthetic to real domains. In our work, we extend
this concept by incorporating supervision in the gradient space and within local windows, thereby
significantly enhancing the effectiveness of knowledge transfer.

3 METHOD

3.1 REVISITING PATCHREFINER

We first revisit the PatchRefiner framework Li et al. (2024b) (named as PRV1). The PRV1 frame-
work adopts a tile-based approach to address the high memory and computational demands of high-
resolution depth estimation Li et al. (2024a); Miangoleh et al. (2021). It utilizes a two-step process:
(i) Coarse Depth Estimation and (ii) Fine-Grained Depth Refinement, as shown in Fig. 1b.

(i) Coarse Depth Estimation: This step involves a coarse depth estimation network, Nc, which pro-
cesses downsampled inputs to generate a global depth map, Dc. This map captures the overall scene
structure and provides a baseline for further refinement. Notably, Nc can be any depth estimation
model and is kept fixed after this stage.

(ii) Fine-Grained Depth Refinement: PRV1 introduces a unified refinement network, Nr, in place
of separate fine depth networks and fusion mechanisms Li et al. (2024a); Poucin et al. (2021). This
network refines the coarse depth map by recovering details and enhancing depth precision at a patch
level.

The refinement process begins with the cropped input image I , processed by a base depth model Nd,
which shares the same architecture as Nc. Multi-scale features from both Nd and Nc are collected
as Fd = {f i

d}Li=1 and F̃c = {f̃ i
c}Li=1. Following Li et al. (2024a), the roi He et al. (2017) operation

extracts features from the cropped area as f̃ i
c = roi(f i

c).
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These features are then aggregated by a lightweight decoder through concatenation and convolu-
tional blocks, referred to as the Fine-to-Coarse (F2C) module in this paper, which injects fine-
grained information into the coarse refinement process. The F2C module constructs the resid-
ual depth map Dr at the input resolution, and the final patch-wise depth map is computed as
D = roi(Dc) +Dr.

As the second contribution, PRV1 introduces a teacher-student framework to transfer the fine-
grained knowledge learned from the synthetic data to the real domain. The Detail and Scale Disen-
tangling (DSD) loss is designed to help the model balance detail enhancement with scale accuracy
by integrating both the scale-consistent ground truth supervision and the detail-focused pseudo la-
bels. Both ranking loss Xian et al. (2020) and the scale-and-shift invariant loss Ranftl et al. (2022)
can be adopted for pseudo-label supervision.

Limitations of PRV1. Similar to other tile-based methods Poucin et al. (2021); Li et al. (2024a),
the PRV1 framework encounters significant challenges with the computational efficiency and
scalability for real-world applications due to the shared usage of the base depth model (e.g.,
ZoeDepth Bhat et al. (2023), Depth Anything Yang et al. (2024); Yang et al.) across both the coarse
and refiner branches. For a given input image, while the coarse branch processes the downsampled
image once to gather global information, the refiner branch requires multiple inferences (at least
16 in PRV1’s default mode) for the patches. Since both branches share the same architecture, the
refiner branch becomes the primary efficiency bottleneck. Our goal is to alleviate this bottleneck as
much as possible.

Moreover, a heavy framework makes end-to-end training infeasible due to GPU memory limita-
tions. The PRV1 framework has to adopt two stages for training the framework, where global and
local branches are trained sequentially. This results in a long training time and suboptimal perfor-
mance. While the authors claim that multiple-stage training could potentially lead to stage-wise
local optima Li et al. (2024b), our goal is to pursue end-to-end training.

3.2 PATCHREFINER V2 FRAMEWORK

3.2.1 LITE FRAMEWORK FOR FASTER INFERENCE AND END-TO-END TRAINING

We propose a simple solution to address PRV1’s limitations: a lightweight architecture for the refiner
branch. Given that the coarse branch already provides a reliable base depth estimation Dc, using
the same heavy model for the refiner might be unnecessary. This substitution significantly increases
inference speed, reduces the model size, and enables end-to-end training. However, it also results
in a noticeable decline in refinement quality compared to previous methods Li et al. (2024a;b). We
attribute this decline to the lack of depth-aligned feature representation in the refiner branch, as
shown in Fig. 2.

To compensate for the loss in model capacity and depth-pretraining by the proposed substitution,
we introduce a better architecture design, a Coarse-to-Fine (C2F) Module, and a fast and simple
pre-training strategy, Noisy Pretraining (NP).

3.2.2 COARSE-TO-FINE MODULE

Since the refiner branch no longer includes a pretrained depth model, we propose utilizing informa-
tion from the global coarse branch to guide the selection of relevant details from the fine, patch-level
features.

The proposed Coarse-to-Fine (C2F) module shown in Fig. 3 processes the multi-scale features
extracted from the lightweight encoder through N successive C2F layers in a bottom-to-up man-
ner Ronneberger et al. (2015); Lin et al. (2017), mirroring the design of the Fine-to-Coarse (F2C)
module Li et al. (2024b). Each C2F layer is designed to progressively enhance and denoise the
refiner features with the help of coarse feature representations.

Each layer in the C2F module consists of two components: our proposed Guided Denoising Unit
(GDU) and the Residual Convolutional Unit Lin et al. (2017); Ranftl et al. (2022). The GDU intro-
duces coarse feature maps fc at each stage to refine and denoise the refiner features. Specifically,
the coarse features serve as guidance, which are incorporated via the concatenation operation (Cat)

5
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ZoeDepth PatchRefiner PRV2C GT, Input

Figure 4: Qualitative Comparison on UnrealStereo4K. We show the depth prediction and corre-
sponding error map, respectively. The qualitative comparisons showcased here indicate our PRV2C
outperforms counterparts Bhat et al. (2023); Li et al. (2024b) with sharper edges and lower error
around boundaries while achieving faster inference. We show individual patches in all images to
emphasize details near depth boundaries.

followed by the convolutional block (CB). The output of these blocks is passed through a sigmoid
activation function (σ) to obtain a weight map Mw, which ranges from 0 to 1. This weight map is
then applied to the shortcut features fs through elemental multiplication ⊗, effectively denoising the
shortcut features. This process can be formulated as

Mw = σ(CB(Cat(fc, fs))), (1)

fd = Mw ⊗ fs, (2)

where the fd indicates the denoised feature. Associated with the Residual Convolutional Unit, it al-
lows the model to filter out irrelevant noise and enhance the quality of the refined features iteratively
across the network layers. After that, we utilize the F2C module to inject the denoised fine-grained
information for coarse features, leading to a more effective and better refinement process.

3.2.3 NOISY PRETRAINING

In PRV1, the framework’s efficacy largely depends on the comprehensive pretraining of the base
models in both the coarse and refiner branches Li et al. (2024b). During the subsequent high-
resolution training stage, only the Fine-to-Coarse (F2C) module is trained from scratch, representing
a minor portion of the overall refiner branch (24.0M vs. 369.0M parameters). In other words, a
significant portion (∼94%) of the refiner branch is pretrained for depth estimation.

By our substitution, this pretraining is also lost. While the lightweight encoder used can be pre-
trained on a large-scale dataset with complex strategies, it now constitutes only a small part of the
refiner branch (1.3M vs. 47.0M parameters for PRV2M ) and lacks the depth-aligned feature rep-
resentation. In other words, even if we pre-train the encoder, a significant portion (∼98%) of the
refiner branch must still be trained from scratch.

To address this issue, we propose a novel approach called Noisy Pretraining (NP). Prior to the
high-resolution training, we pretrain the lightweight encoder along with the C2F and F2C modules.
However, a critical aspect of our framework is that both the C2F and F2C modules rely on features
from the base model in the coarse branch. These features, however, are challenging to omit during
the pretraining process. We propose a straightforward yet effective solution: we randomly generate
the coarse features using a normal distribution N(0, 1) as inputs. This forces the refiner branch to
learn depth-relevant features without guidance from the coarse branch.
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Table 1: Quantitative Comparison on UnrealStereo4K. Best results are marked bold. PF, PRV1
and PRV2 are short for PatchFusion Li et al. (2024a), PatchRefiner Li et al. (2024b) and PatchRe-
finer V2, respectively. We report the P = 16 mode for these high-resolution depth estimation
frameworks Li et al. (2024a). Gray lines present numbers from the original paper with vanilla
pretraining settings. †: indicates the pretraining aligned version, where we remove the non-public
Midas pretraining stage Ranftl et al. (2022) adopted for the fine or refiner branch in PRV1 and PF to
make fair comparisons with our PRV2. The coarse branch is NOT modified. #param. and T denote
the number of additional parameters adopted for high resolution estimation and the inference time
of the fine or refiner branch for one input image. Best results are in bold. SharpDepth Pham et al.
(2025) is not involved in this benchmark as different training and evaluation protocols.

Method δ1(%)↑ REL↓ RMSE↓ SiLog↓ SEE↓ #param↓ T↓ Reference

iDisc Piccinelli et al. (2023) 96.940 0.053 1.404 8.502 1.070

- -

ICCV 2023
SMD-Net Tosi et al. (2021) 97.774 0.044 1.282 7.389 0.883 CVPR 2021
Graph-GDSR De Lutio et al. (2022) 97.932 0.044 1.264 7.469 0.872 CVPR 2022
Boosting Miangoleh et al. (2021) 98.104 0.044 1.123 6.662 0.939 CVPR 2021

ZoeDepth Bhat et al. (2023) 97.717 0.046 1.289 7.448 0.914 - - -

ZoeDepth+PF Li et al. (2024a) 98.419 0.040 1.088 6.212 0.838 432.7M 3.44s CVPR 2024
ZoeDepth+PF† Li et al. (2024a) 98.369 0.039 1.064 6.342 0.855

ZoeDepth+PRV1 Li et al. (2024b) 98.821 0.033 0.892 5.417 0.750 369.0M 1.45s ECCV 2024
ZoeDepth+PRV1† Li et al. (2024b) 98.680 0.034 0.941 5.614 0.771

ZoeDepth+PRV2M 98.610 0.034 1.003 5.760 0.832 47.0M 0.32s
OursZoeDepth+PRV2E 98.728 0.034 0.948 5.579 0.816 72.1M 0.57s

ZoeDepth+PRV2C 98.863 0.032 0.884 5.281 0.787 245.8M 0.62s

Unlike other strategies Liu et al. (2023b); Ozguroglu et al. (2024); Brooks et al. (2023), which often
require careful selection and modification of convolutional layers and their corresponding parame-
ters, our NP method avoids altering the framework’s architecture. As a result, the pretraining and
subsequent training stages proceed seamlessly, preserving the integrity of the overall model struc-
ture while ensuring that all components of the refiner branch are well-prepared for high-resolution
training.

3.3 LOCAL SCALE-AND-SHIFT INVARIANT GRADIENT MATCHING

In the synthetic-to-real transfer stage, PRV1 employs the scale-and-shift invariant (SSI) loss LSSI
as the pseudo-label supervision within the Detail and Scale Disentangling (DSD) loss. To better
transfer high-frequency information, we extend the supervision to the gradient domain and compute
it locally.

Let d be the predicted depth and d̂ the pseudo label generated by a teacher trained on synthetic data.
For each training patch, we randomly sample N square windows {Ωk}Nk=1 of side length ℓ. For each
window we estimate a local scale–shift pair (sk, tk) by least-squares alignment Ranftl et al. (2022):

(sk, tk) = argmin
s,t

∑
p∈Ωk

(
sd(p) + t− d̂(p)

)2
. (3)

Our local Scale-and-Shift Invariant Gradient Matching (local SSIGM) can be formulated as

Llocal-SSIGM =
1

N

N∑
k=1

1

|Ωk|
∑
p∈Ωk

(
|∇xrk(p)|+ |∇yrk(p)|

)
, (4)

where ∇x and ∇y are finite-difference gradients as in Li & Snavely (2018). Here, rk(p) is the
residual of aligned prediction and ground-truth depth, calculated by rk(p) = skd(p)+tk−d̂(p), p ∈
Ωk. The loss is combined with a weight λ to control the strength of pseudo-label supervision, as in
PRV1 Li et al. (2024b).

By aligning and matching gradients within windows rather than over the entire map, local SSIGM
reduces the influence of global scale biases and forces the model to focus on fine-grained structures
(e.g., boundaries and thin objects) during high-frequency knowledge transfer. Note that setting N=1
and Ω1 to the full image recovers the original (global) SSIGM.
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4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets: We evaluate the effectiveness of our proposed framework on the UnrealStereo4K
dataset Tosi et al. (2021) (Synthetic), which offers synthetic stereo images at a 4K resolution
(2160×3840), each paired with accurate, boundary-complete pixel-wise ground truth. Adhering
to the dataset splits in Tosi et al. (2021); Li et al. (2024a;b), we employ a default patch size of
540×960 for compatibility with Li et al. (2024a;b). In terms of the synthetic-to-real transfer part,
we use the Cityscapes Cordts et al. (2016) dataset following PRV1 Li et al. (2024b). It offers a
comprehensive suite of urban images, segmentation masks, and disparity maps at a relatively high
resolution. The inference time benchmarks are performed on a single NVIDIA A100 GPU.

Metrics: Following Li et al. (2024a;b), we adopt standard depth evaluation metrics from Eigen et al.
(2014); Piccinelli et al. (2023); Bhat et al. (2023) and the Soft Edge Error (SEE) from Tosi et al.
(2021); Chen et al. (2019b); Li et al. (2024a) for scale evaluation. As for the boundary evaluation on
the real-domain datasets (Cityscapes), we adopt the standard protocol introduced in Li et al. (2024b)
and utilize the F1 score to evaluate the boundary quality.

4.2 IMPLEMENTATION DETAILS

PRV2 on Synthetic Dataset: For training on the synthetic dataset, we employ the scale-invariant
log loss Lsilog, as introduced in Eigen et al. (2014); Bhat et al. (2021); Lee et al. (2019). We initialize
the coarse network Nc with pretrained weights from the NYU-v2 dataset Silberman et al. (2012),
adhering to the approach in Li et al. (2024a;b) for a fair comparison. As for the refiner branch, we
employ the MobileNetV4-Small Qin et al. (2024), EfficientNet-B5 Tan & Le (2019), and Convnext-
Large for PRV2M , PRV2E , and PRV2C , respectively. We perform the noisy pretraining for the
refiner branch for 96 epochs. The Nc is independently trained for 24 epochs and fine-tuned with the
refiner branch in a fully end-to-end manner for another 48 epochs on the synthetic dataset. During
inference, we use the Consistency-Aware Inference, as described in Li et al. (2024a), to optimize
performance.

Learning on Real-Domain Dataset: Following Li et al. (2024b), we first train the full PRV2E

framework on the target real-domain dataset with the same setting as the synthetic dataset. During
this stage, we perform an ablation on the NP strategy by toggling it on and off and reporting its
impact on the final results. After that, we fine-tune the model with the Detail and Scale Disentangling
loss for three epochs to refine depth estimations. The weight of the DSD loss is empirically set as
0.8.

4.3 EXPERIMENTAL RESULTS AND DISCUSSION

Main Results: As shown in Tab. 1, our most lightweight model, PRV2M , not only improves RMSE
by 22.2% compared to the base depth model but is also 9.2x smaller and 10.7x faster than PatchFu-
sion (PF) in terms of parameter count and inference speed, respectively. Our middleweight model,
PRV2E , achieves comparable RMSE to the previous SoTA PRV1 while being 2.5x faster and 5.1x
smaller, offering an excellent balance between performance and efficiency. With ConvNext as the
backbone, PRV2C sets a new SoTA with an RMSE of 0.884, while being 2.3x faster than PR. Qual-
itative results in Fig. 4 demonstrate PRV2C’s superior boundary delineation.

We ablate and discuss the contributions of individual components proposed for PRV2. We employ
the MobileNet in the refiner branch for experiments on the synthetic dataset and EfficientNet on the
real-domain dataset. By default, we adopt P = 16 patches for clarity and ease of comparison.

Framework Design: As shown in Tab. 2a, we start with a baseline framework (①) in which we only
substitute the base depth model in the refiner branch in PR with the lightweight encoder. While the
inference time and model size are drastically reduced, quality is also degraded by a large margin.
Simply adding more parameters to scale up the F2C cannot improve the performance, as shown in
②. Adopting an end-to-end training strategy can help improve the model performance (③). With
the help of our proposed C2F that denoises the refiner features effectively, as shown in Fig. 2, the
model’s RMSE is reduced by 12.2% while only introducing a satisfactory overhead (③, ④). We
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Table 2: Ablation Study of Design Choice. F2C and C2F denote the fine-to-coarse and coarse-to-
fine module in the bi-directional fusion module, respectively. E2E, NP, GM, and wins. are short for
end-to-end training, noisy pretraining, gradient matching, and local windows, respectively. Time:
average inference time of the refiner branch for one image. ranking and SSI are the major contribu-
tions from PRV1 Li et al. (2024b).

(a) Ablation Study on UnrealStereo4K.

Method RMSE #param. T(s)

Coarse Baseline 1.289 - -

F2C E2E C2F NP

① ✓ 1.201 27.5M 0.08s
② ✓ 1.214 70.2M 0.38s
③ ✓ ✓ 1.184 27.5M 0.08s
④ ✓ ✓ ✓ 1.041 47.0M 0.32s
★ ✓ ✓ ✓ ✓ 1.003 47.0M 0.32s

⑥ w/o GDU 1.137 34.5M 0.19s
⑦ replace GDU with PatchRefiner fusion 1.202 47.0M 0.32s

⑧ NP, only load encoder 1.029 47.0M 0.32s
⑨ w/o ImageNet pretraining 1.059 47.0M 0.32s

(b) Ablation Study on Cityscapes.

Method RMSE F1
coarse baseline 9.097 19.15

F2C E2E C2F

✓ 8.890 22.27
✓ ✓ 8.849 22.87
✓ ✓ ✓ 8.513 27.98

NP DSD Loss
ranking SSI GM wins.

① 8.513 27.98
② ✓ 8.533 28.27
③ ✓ 8.533 29.22
④ ✓ ✓ 9.022 33.47
⑤ ✓ ✓ ✓ 8.534 35.32
★ ✓ ✓ ✓ ✓ 8.527 36.54

Table 3: Ablation Study of Local SSIGM on Cityscpaes. When varying window size, the number
of windows is fixed to the best setting, and vice versa.

wins. size 5 11 23 47 95 191

Variants RMSE / F1 8.528 / 34.28 8.523 / 36.04 8.527 / 36.54 8.525 / 36.06 8.532 / 35.79 8.538 / 35.65

# of wins. 0 20 50 100 200 300

Variants RMSE / F1 8.534 / 35.32 8.523 / 36.43 8.532 / 36.52 8.527 / 36.54 8.529 / 36.51 8.529 / 36.49

also adopt different variants for C2F to evaluate the effectiveness. Firstly, we remove the GDU so
that the C2F degrades to a simple bottom-to-top aggregation module (⑥). While it can still improve
the model performance, there is a large margin compared with the complete C2F module. Then,
we replace the GDU with the fusion module used in F2C (⑦). This results in a significant drop
in performance. We argue this is due to the coarse features dominating the fusion process. The
high-frequency information cannot be preserved correctly, leading to a performance on par with ①.

Noisy Pretraining: When equipped with NP (★), our model achieves the best performance with
22.2% improvement over the coarse baseline in terms of RMSE. To prove our claim in the method
section, we conduct the experiment by only loading the encoder part parameters after the NP process
(⑧). The discrepancy in performance indicates that the pretraining of C2F and F2C modules is also
crucial for the model performance, which is often ignored in the current depth estimation commu-
nity. Then, we discard the ImageNet Deng et al. (2009) pretrained parameters for the lightweight
encoder and train the entire refiner branch from scratch (⑨). The result validates our assumption
that pretraining is crucial for the refiner. Moreover, as shown in Tab. 2b, the NP also plays a crucial
role for training a real-domain high-resolution model (④, ⑤).

Local SSIGM for Real-Domain Dataset: Tab. 2b illustrates the performance gains achieved with
our proposed local SSIGM loss. While maintaining a comparable scale RMSE to the ranking and
SSI losses used in Li et al. (2024b), local SSIGM significantly improves boundary F1 scores, with
gains of 25.1%. The detailed ablation study demonstrates the effectiveness of both applying the
gradient matching after scale-and-shift alignment and the local window strategy (⑤, ★). We also
conducted experiments with an increasing number of local windows, and all settings achieved sim-
ilar results. As shown in Tab. 3, we further vary the window width ℓ and observe an optimum
at ℓ=23: larger windows weaken the locality and boundary precision, whereas smaller windows
(ℓ < 23) lack sufficient context and also degrade performance. In addition, we ablate the number
of local windows. Using too few windows provides insufficient supervision, leading to worse re-
sults. Once the number of windows exceeds 100, the performance plateaus and remains comparable
across settings, indicating that additional windows bring little benefit. We therefore adopt 100 as the
default choice. We also notice that the alignment overhead remains negligible during training.
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5 CONCLUSION

We presented PatchRefiner V2, an enhanced and efficient framework for high-resolution monocu-
lar metric depth estimation. Building on the strengths of the original PatchRefiner, PRV2 introduces
a lightweight refiner branch, dramatically improving inference speed and reducing model size. With
the novel Coarse-to-Fine (C2F) module and Noisy Pretraining strategy, our framework successfully
mitigates the challenges posed by noisy features and the lack of pre-training of the refiner branch.
Furthermore, we introduced the local Scale-and-Shift Invariant Gradient Matching (local SSIGM)
loss to enhance boundary accuracy and improve synthetic-to-real transfer. Our framework signif-
icantly outperforms previous methods on the UnrealStereo4K dataset, achieving up to 9.2x fewer
parameters and 10.7x faster inference. PRV2 also demonstrates considerable improvements in depth
boundary delineation on real-world datasets.
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A DATASET

UnrealStereo4K (Synthetic, 4K): The UnrealStereo4K dataset Tosi et al. (2021) consists of syn-
thetic stereo images with a resolution of 2160×3840 pixels, each paired with precise, boundary-
complete pixel-wise ground truth. Images with labeling inaccuracies are excluded based on the
Structural Similarity Index (SSIM) Wang et al. (2004), a process adapted from Li et al. (2024a;b).
Ground truth depth maps are computed from the provided disparity maps using specific camera
parameters. Consistent with the splits suggested in Tosi et al. (2021); Li et al. (2024a;b), the experi-
ments utilize a patch size of 540×960 pixels for fair comparison.

CityScapes (Real): The CityScapes dataset Cordts et al. (2016) provides a diverse collection of
urban scene images, segmentation masks, and disparity maps at a resolution of 1024×2048 pixels.
This dataset surpasses many in its domain in terms of image density, volume, and resolution Sil-
berman et al. (2012); Song et al. (2015); Schops et al. (2017); Scharstein et al. (2014). For our
experiments, we use a standard patch size of 256×512 pixels, primarily focusing on this dataset for
testing our models following Li et al. (2024b).

B QUALITATIVE COMPARISON WITH PRV1

We present the qualitative comparison with PRV1 in Fig. 5. Though our PRV2M is 7.6x smaller and
4.5x faster than RRV1, it achieves satisfactory and comparable results.

C ABLATION STUDY

Framework Design: We present more ablation studies about framework design based on PRV2E
and PRV2C as shown in Tab. 4 and Tab. 5, respectively. we start with a baseline framework (①)
in which we only substitute the base depth model in the refiner branch in PR with the lightweight
encoder. While the inference time and model size are drastically reduced, quality is also degraded.
Simply adding more parameters to scale up the F2C cannot improve the performance, as shown in
②. Adopting an end-to-end training strategy can help improve the model performance (③). With the
help of our proposed C2F that denoises the refiner features effectively, the model’s RMSE is reduced
while only introducing a satisfactory overhead (③, ④). When equipped with the NP (★), our model
achieves the best performance.

PRV2 with Stronger Base Model: We fine-tuned DepthPro Bochkovskii et al. (2025) separately on
UnrealStereo4K and CityScapes using the same training protocol as PRV2. Integrating our PRV2
refinement module (e.g., PRV2M ) on top of DepthPro as the coarse branch yields notable gains on
both trained domain and zero-shot context (see Tab. 6), demonstrating that our approach is comple-
mentary to existing SOTA coarse models under a fair resource setting.

We believe our method is extensible toward improving its zero-shot capability. Specifically: 1) It can
be scaled up using stronger coarse backbones, leading to better generalization ability. 2) It can be
trained jointly across multiple real domains, benefiting from our lightweight design and the effective

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Input Zoe+PRV1 Zoe+PRV2M

Figure 5: Qualitative Comparison with PRV1. Images are from the internet. Though our PRV2M
is 7.6x smaller and 4.5x faster than RRV1, it achieves satisfactory and comparable results. Zoom in
to better perceive details near boundaries.

Table 4: Ablation study of PRV2E on UnrealStereo4K. F2C and C2F denote the fine-to-coarse
and coarse-to-fine module in the bi-directional fusion module, respectively. E2E and NP are short
for end-to-end training and noisy pretraining. Time: average inference time of the refiner branch for
one image.

Method RMSE #param. T(s)

Coarse Baseline 1.289 - -

F2C E2E C2F NP

① ✓ 1.118 51.7M 0.29s
② ✓ 1.185 95.6M 0.47s
③ ✓ ✓ 1.100 51.7M 0.29s
④ ✓ ✓ ✓ 0.985 72.1M 0.57s
★ ✓ ✓ ✓ ✓ 0.947 72.1M 0.57s

local SSIGM loss. We regard this as a promising path for future work toward high-resolution zero-
shot depth estimation. (3) Tab. 6b also suggests that our method has the potential to improve the
zero-shot ability of DepthPro with the same training data.

Weaker Base Model: We adopt DenseDepth Alhashim & Wonka (2018) as the coarse model and
train our PRV2M . As shown in Tab. 7, our framework can consistently boost the model performance
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Table 5: Ablation study of PRV2C on UnrealStereo4K.

Method RMSE #param. T(s)

Coarse Baseline 1.289 - -

F2C E2E C2F NP

① ✓ 1.095 226.9M 0.38s
② ✓ 1.151 270.9M 0.61s
③ ✓ ✓ 1.089 226.9M 0.38s
④ ✓ ✓ ✓ 0.946 245.8M 0.62s
★ ✓ ✓ ✓ ✓ 0.883 245.8M 0.62s

Table 6: PRV2 with DepthPro as Base Model.

(a) Cityscapes.

Metric RMSE↓ Boundary F1↑
DepthPro 7.341 29.46
DepthPro + Ours 7.257 37.51

(b) UnrealStere4K and ETH3D.

Method u4k ETH3D
RMSE↓ SEE↓ δ ↑ AbsRel↓

DepthPro 1.285 0.872 93.61 0.086
DepthPro + PRV2M 0.824 0.692 94.12 0.077

Table 7: Framework Performance with a Weaker Base Model on UnrealStereo4K. Our frame-
work can consistently boost the model performance for high-resolution depth estimation.

Method RMSE↓ SEE↓
DenseDepth Alhashim & Wonka (2018) 2.552 1.842
DenseDepth + PRV2M 1.898 1.436

Table 8: NP v.s., Metric3D Pretrained Weights on UnrealStereo4K. It indicates the effectiveness
of our NP strategy.

Method RMSE↓ SEE↓
Metric3D Pretrained Hu et al. (2024) 0.931 0.798
ours (with NP) 0.883 0.787

for high-resolution depth estimation, indicating the effectiveness of PRV2 even based on a weaker
coarse estimator.

NP v.s., Other Depth Pretrained Weights: In this experiment, we adopt the Metric3D Hu et al.
(2024) pretrained ConvNext Liu et al. (2022) as the refiner encoder. As shown in Tab. 8, our NP
demonstrates its effectiveness with a 5.1% lower RMSE. Note that the Metric3D pretrained Con-
vNext is able to provide satisfactory depth-related features. Hence, such a discrepancy may indicate
the importance of including the F2C and C2F modules in the pretraining stage, which is a core part
of our NP strategy.

D LLM USAGE

We use ChatGPT to polish the paper writing.
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