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ABSTRACT

For deep learning training, learning rate schedules are often picked through trial
and error, or hand-crafted optimization algorithms that focus mostly on main-
taining stability and convergence without systemic incorporation of higher order
derivative information to optimize the convergence slope. In this paper, we con-
sider a stochastic version of Non-negative Matrix Factorization (NMF) where only
a noisy gradient is known, and calculate a theoretical upper bound for SGD learn-
ing rate (LR) schedule that guarantees convergence, thereby providing a clean
example where stability and convergence is not a challenge. We then use a Rein-
forcement Learning agent to demonstrate how efficient LR schedules, superior to
those found by traditional algorithms, can be found for this NMF problem.

1 INTRODUCTION

Current algorithms for optimizing the training of deep neural networks typically rely on using shal-
low gradient information (only first order in most cases) to consistently seek stable trajectories to-
wards good local optima. There are only few exceptions that attempt to infer useful higher order
gradient information to optimize the convergence rate (see (Goodfellow et al., 2016, Chapter 8)) and
even those use a fixed strategy (policy) to do so. In this work, we consider a simple setup where only
the learning rate (LR) schedule is being optimized and stability is not difficult to attain. In particular,
we consider the Non-negative Matrix Factorization (NMF) problem. For a matrix V ∈ Rm×n

+ , NMF
finds two matrices W ∈ Rm×r

+ and H ∈ Rr×n
+ such that V ≈ WH . NMF has been applied to many

applications like recommendation systems Luo et al. (2014); Khan et al. (2020); Li et al. (2009a;b);
Luo et al. (2015), image decomposition Tang et al. (2013); Zhao et al. (2008); Kalayeh et al. (2014);
Padilla et al. (2011); Zhang et al. (2004), and acoustic signals Kameoka et al. (2009); Févotte et al.
(2018); Hennequin et al. (2010); Yoshii et al. (2013).

We consider SGD optimization for a stochastic version of NMF where only noisy information about
the cost gradient is accessible. In particular, the matrix decomposition is found by using gradient
descent to minimize the distance measure ∥V − WH∥2F where ∥·∥F is the Frobenius norm. Each
factor is alternatively updated using the gradient and a learning rate α (or schedule). For example, for
W updates and loss function F , we can find W t+1 ≈ (W t−α∇WF (W t, Ht)). Using the Frobenius
norm above, a commonly used rule to select step length (see Guan et al. (2011) for example) is the
Armijo rule, where the step size α is iteratively calculated as a result of the Armijo line search Zhang
et al. (2006). At each iteration t we aim to find the maximum stable learning rate, e.g., maximum
αt that satisfies (for the W update) F (W t+1, H) ≤ F (W t, H) − c · αt∥∇F (W t, H)∥2. In this
work, we first show that guaranteeing stability is straightforward as long as α is below a certain
threshold. Confined to the stable region, we demonstrate empirically how traditional algorithms
perform slightly better, on average, than randomly selecting α, and that superior performance is
consistently delivered by an RL agent that adjusts its policy in a data-driven fashion to determine
αt in every iteration t. We conjecture that the agent implicitly infers useful second-order derivative
information via this policy adjustment process.

∗
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2 THEORETICAL BOUNDS ON CONVERGENT LR SCHEDULES FOR
STOCHASTIC NMF

We assume iterative SGD with unbiased noisy gradients, and identify theoretical bounds for stable
LR schedules. Theorem A.3 states that the optimal LR schedule (αt) for NMF with SGD is bounded
between 0 < αt < 2

L , where L = ∥W t∥2 when updating W with a fixed H (with symmetry for
the other case). Any LR schedule within this bound will lead to convergence as we demonstrate
empirically below. Detailed assumptions and proofs are included in Appendix A and Appendix B.

3 RESULTS: STOCHASTIC NMF SGD WITH RL SCHEDULE

We ran experiments for NMF with a randomly and sparsely initialized matrix of size 10000× 1000
with a latent dimension of 100 for SGD and several fixed LRs. Figure 1a shows loss curves for
fixed LRs from 1e − 5 to 10. Corresponding theoretical upper bound LRs are calculated based on
Theorem A.3 as the problem converges (shown in Figure 1b). We conducted 25 trials where the
LR for the current epoch is calculated as a random value less than the upper bound for that LR.
Interestingly, we also observe that the loss curves from these random schedules closely follow the
loss curves corresponding to the mean LR (see loss curves in Appendix B).

(a) (b) (c)

Figure 1: a) Fixed LR loss curves b) Corresponding Upper bound (Theorem A.3) c) Learned sched-
ule vs. a fixed upper-bound loss.

We consider an RL agent whose reward reflects improvement over best encountered loss and number
of remaining epochs (details in Appendix C). We trained the agent using Proximal Policy Optimiza-
tion (PPO) Schulman et al. (2017) to find LR schedules within bounds of [0, 1] for NMF with SGD
with observations of the current loss value, epoch number, and gradient norm1. The agent is penal-
ized with a high artificial loss on divergence and the episode is reset. As we can see in Fig. 1c, the
RL agent finds a schedule with a very high convergence rate, and is seen resetting and converging
thrice (can be handled in practice via early stopping mechanisms) within the 1000 epoch run, com-
pared to the run with theoretical upper bound loss curve (more experiments and action histories are
in Appendix C).

4 CONCLUSION

We identifed theoretical upper bound for LR schedules for stochastic NMF convergence with SGD,
and ran experiments with fixed, random and learned RL1 agent schedules; showing that it is possi-
ble to learn efficient problem-specific schedules for typical gradient-based learning problems. Our
follow-up empirical work with more complex deep learning problems also show promising results
with the same method presented here.

1The upper bound of 1 used here is 10 times the theoretical upper bound shown in Fig 1b. However in
practice we see the optimal agent suggesting low values of LR.
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A APPENDIX A - THEORETICAL BOUNDS ON OPTIMAL LR SCHEDULES

First, we show that F is convex with respect to (w.r.t.) W or H alone. Since F is symmetric and the
order of updates does not matter, we can show that

Lemma A.1. F (W t, H) is convex w.r.t. W when H is fixed, and convex w.r.t. H when W is fixed.

Proof. For three matrices H1, H2 and Hλ ∈ Rr×n
+ , and a positive number λ ∈ (0, 1), let:

Hλ = λH1 + (1− λ)H2,

then we have the following,

F (W t, Hλ) = F (W t, λH1 + (1− λ)H2)

=
1

2
∥V −W t(λH1 + (1− λ)H2)∥2F

=
1

2
tr
(
V −W t(λH1 + (1− λ)H2)

)⊤ (
V −W t(λH1 + (1− λ)H2)

)
=

1

2

∑
ij

(
Vij −W t

ij (λH1,ij + (1− λ)H2,ij)
)2

=
1

2

∑
ij

(
Vij − λW t

ijH1,ij − (1− λ)W t
ijH2,ij

)2
=

1

2

∑
ij

(
Vij + λVij − λW t

ijH1,ij − (1− λ)W t
ijH2,ij − λVij

)2
(Adding and subtracting λVij)

=
1

2

∑
ij

(
λ
(
Vij −W tH1,ij

)
+ (1− λ)

(
Vij −W tH2,ij

))2
≤ λ

2

∑
ij

(
Vij −W tH1,ij

)2
+

(1− λ)

2

∑
ij

(
Vij −W tH2,ij

)2
≤ λ · F (W t, H1) + (1− λ) · F (W t, H2).

Therefore, F is convex when updating Ht. Similarly we can prove that it is convex when updating
W t.

Lemma A.2. The gradient of F (W t, H) is Lipschitz continuous when updating W t while fixing H
with a Lipschitz constant of L = ∥(W t)⊤W t∥, and is Lipschitz continuous when updating Ht when
W is fixed with a Lipschitz constant of ∥L = (Ht)⊤Ht ∥.

Proof. Because of symmetry, we only prove the first part of the statement. We know that the gradient
of F

∇F (W t, H) = (W t)⊤(W tH − V ).

Therefore,

∥∇F (W t, H)−∇F (W t+1, H)∥ = ∥(W t)⊤W t(W t −Wt+1)∥
≤ L∥(W t −Wt+1)∥,

where L = ∥(W t)⊤W t∥.

We now provide precise statements for the considered assumptions and then the main theorem state-
ment and its proof.
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Assumption A.1. In the stochastic NMF setting, assume that we only have access to noisy gradient
estimates and not the actual gradient, and that E[∇Fi(W

t, H)] = ∇F (W t, H) ∀ samples i.
Assumption A.2. Assume that the simplest form of Stochastic Gradient Descent (SGD) is used to
find subsequent iterates of W and H . Focusing on W , we have the following update formula:

W t+1 = W t − αt · ∇F (W t, H)

where t is the iteration counter.

Typically, step size selection is through heuristics or experimentation. The most common way to
select step size is to use a constant throughout the training process, i.e.:

αt = α0.

For NMF problems, another typical way to select the step size is through Armijo line search. At
each iteration t we aim to find an αt that satisfies:

F (W t+1, H) ≤ F (W t, H)− c · αt∥∇F (W t, H)∥2. (1)

That is, at each iteration t, we start with a large αmax and successively try step sizes with diminishing
multiplicative factor until we find the largest α that satisfies the above equation. Additionally, by
definition, 1 satisfies the Polyak-Lojasiewicz (PL) inequality at convergence, where for µ > 0 and
function F :

1

2
∥∇F (W t, H)∥2 ≥ µ(F (W t, H)− F ∗).

From 1, we can expect a sequence of µt where µt = 1
2cαt . We can therefore expect that F decreases

towards its optimal value F ∗ with the appropriate selection of α. This leads us to the following
theorem:
Theorem A.3. For SGD to converge for the NMF problem, we select αt such that 0 < αt < 2

L

where L = ∥W t∥2 when updating W t while fixing H , and L = ∥Ht∥2 when updating Ht and
fixing W . As a consequence, Armijo line search leads to convergence for any constant 0 < c < 1.

Proof. From Lemma 1.1 and 1.2, we know that F is convex and ∇F is Lipschitz continuous w.r.t.
each of the two parameters when the other is fixed.

Focusing just on the W t update step, and dropping H notation in F while using the Lipschitz
condition and SGD update rule, we have:

F (W t+1) ≤ F (W t) +
(
∇F (W t)

)⊤
(W t+1 −W t) +

L

2
∥W t+1 −W t∥2

≤ F (W t) +
(
∇F (W t)

)⊤
(−αt∇F (W t)) +

L

2
∥−αt∇F (W t)∥2

≤ F (W t)− ∥F (W t)∥2
(
αt − αt2 L

2

)
=⇒ F (W t) ≥ F (W t+1) + ∥F (W t)∥2

(
αt − αt2 L

2

)
For F to decrease towards F ∗ = minW,H F (W,H), we need:

αt − αt2 L

2
> 0

=⇒ αt(2− αtL) > 0

=⇒ 0 < αt <
2

L
,
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where L = ∥(W t)⊤W t∥.

Lastly, when using Armijo line search in 1, we can see that :

cαt ≤ αt − αt2 L

2

=⇒ c ≤ 1− αtL

2

=⇒ αt ≤ 2(1− c)

L
.

With 0 < αt < 2
L , we have:

0 < c < 1. (2)

B APPENDIX B - LOSS CURVES FOR RANDOM LR SCHEDULES WITHIN
STABLE REGION

Figure 2: Loss histories corresponding to fixed LRs for NMF with SGD.

(a) (b)

Figure 3: a) Example random walk LR schedule under the upper bound LR, b) Mean loss curve with
variance corresponding to 25 experiment trials, and compared to the the upper bound loss curve.
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(a) (b)

Figure 4: a) Example random walk LR schedule around the upper bound LR, where magnitude is
+/ − 50% of the value on the upper bound curve, b) Mean loss curve with variance corresponding
to 25 experiment trials, and compared to the the upper bound loss curve.

C APPENDIX C - RL FOR EFFICIENT LR SCHEDULES: TRAINING DETAILS
AND RESULTS

For the NMF problem, we set the reward as the sum of

1. Percentage decrease over the best loss so far,

2. Epochs remaining, assuming a fixed computational budget for training captured a number
of allowed epochs.

The agent is therefore incentivized to both reduce over the best loss so far as well as converge faster.
We see that the policy converges to several local optima based on the number of RL iterations. We
set the episode to end when a divergence is detected, or if loss is ¡10; this is a low enough value after
which no LR changes affect the low converge rate close to an optima. This is done since we observe
that even arbitrarily high LRs may slowly converge over 1000 epochs beyond a point. Below, we
include loss curves and action histories of several RL experiments based on different number of RL
learning iterations and RL agent Learning rates. Note that in all cases below, the PPO agent has
its own LR that is fixed to some value; the action history is the LR schedule that is applied to the
underlying learning problem, here - NMF.

Figure 5: RL agent loss curve and action history for a PPO agent LR of 0.01 and 10K iterations. We
see an interesting action history that is not a clean parametric curve, and even though the magnitude
of the action is low overall, convergence rate is higher than much higher fixed LR schedules. The
model converges once, resets the environment (reinitializes the problem) and starts again at around
850 epochs.
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Figure 6: RL agent loss curve and action history for a PPO agent LR of 0.01 and 20K iterations.
The agent converges twice and repeats the same learned schedule.

Figure 7: RL agent loss curve and action history for a PPO agent LR of 0.01 and 50K iterations.
Convergence rate is lower, but looks like standard loss curves.

Figure 8: RL agent loss curve and action history for a PPO agent LR of 0.01 and 100K iterations. It
would be interesting to understand why the agent converged to a policy where the first 500 epochs
includes a fixed, lower bound LR.
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Figure 9: RL agent loss curve and action history for a PPO agent with higher LR of 0.1 and 100K
iterations. It is not obvious that Higher RL learning rate and larger number of iterations may will
always lead to better schedules, which would be interesting to investigate in future work.

What we conclude from these experiments is that:

1. A learned schedule may work better than a set of predetermined schedules even though
the mean value of the LRs applied is lower. This is interesting since most theoretical
justifications for established algorithms suggest the highest convergence rate at the highest
applied LRs.

2. The agent may find several local optima based on the reward function used. So
theoretically-justified reward shaping has potential to find better, more effective schedules,
which we intend to investigate in future work.

3. From Figure 8 and Figure 9, we suspect that more exhaustively trained RL agents (with
larger number of iterations and higher RL learning rates) could lead to sophisticated sched-
ules where an initial phase with low learning rates is performed to adjust the policy’s set-
tings based on local gradient behavior, so that it learns how to infer second-order derivative
information from the first-order observations. Then, rapid progress is attained with a series
of high learning rates.
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