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ABSTRACT

Reinforcement learning from human feedback (RLHF) has proven effective in
aligning large language models (LLMs) with human preferences. However, gather-
ing high-quality human preference labels can be a time-consuming and expensive
endeavor. RL from AI Feedback (RLAIF), introduced by Bai et al., offers a promis-
ing alternative that leverages a powerful off-the-shelf LLM to generate preferences
in lieu of human annotators. Across the tasks of summarization, helpful dialogue
generation, and harmless dialogue generation, RLAIF achieves comparable or
superior performance to RLHF, as rated by human evaluators. Furthermore, RLAIF
demonstrates the ability to outperform the supervised fine-tuned baseline even
when the LLM preference labeler is of the same size as the policy. In another
experiment, directly prompting the LLM for reward scores achieves superior per-
formance to the canonical RLAIF setup, where LLM preference labels are distilled
into a reward model. Finally, we conduct extensive studies on techniques for
generating aligned AI preferences. Our results suggest that RLAIF can achieve
human-level performance, offering a potential solution to the scalability limitations
of RLHF.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) is an effective technique for aligning
language models to human preferences (Stiennon et al., 2020; Ouyang et al., 2022). It is cited as
one of the key drivers of success in modern conversational language models such as ChatGPT (Liu
et al., 2023) and Bard (Manyika, 2023). Training language models with reinforcement learning (RL)
enables optimization on complex, sequence-level objectives that are not easily differentiable and
therefore ill-suited for traditional supervised fine-tuning (SFT).

One obstacle for employing RLHF at scale is its dependence on high-quality human preference labels.
This raises the question of whether artificially generated labels can be a viable substitute. Generating
labels with large language models (LLMs) is one promising approach, as LLMs have shown a high
degree of alignment with human judgment (Gilardi et al., 2023; Ding et al., 2023). Bai et al. (2022b)
was the first effort to explore Reinforcement Learning from AI Feedback (RLAIF)1, where RL
was conducted using a reward model trained on LLM preferences. They showed that utilizing a
hybrid of human and AI preferences, in conjunction with their “Constitutional AI” self-revision
technique, outperforms supervised fine-tuning for training a conversational assistant aligned with
human preferences. However, it did not directly compare the efficacy of human vs. AI feedback,
leaving the question of whether RLAIF can be a suitable alternative to RLHF unanswered.

In this work, we study the impact of RLAIF and RLHF (see Figure 2) on three text generation tasks:
summarization, helpful dialogue generation, and harmless dialogue generation. For summarization
and helpful dialogue generation, our experiments show that RLAIF and RLHF are preferred by
humans over the SFT baseline 71% and 73% of the time for summarization and 63% and 64% of the
time for helpful dialogue generation, respectively, where the differences between RLAIF and RLHF
win rates are not statistically significant. We also conduct a head-to-head comparison of RLAIF

1This is distinct from “Constitutional AI”, which improves upon a supervised learning model through
iteratively asking a LLM to generate better responses according to a constitution. Both were introduced in Bai
et al. (2022b) and are sometimes conflated.
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Figure 1: Human evaluators strongly prefer RLAIF and RLHF over the SFT baseline for summa-
rization and helpful dialogue generation. The differences in win rates w.r.t. SFT are not statistically
significant. Furthermore, when compared head-to-head, RLAIF is equally preferred to RLHF. For
harmless dialogue generation, RLAIF outperforms RLHF.
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against RLHF and find that both policies are equally preferred2. For harmless dialogue generation,
human evaluators were tasked with rating the harmlessness of each response independently. RLAIF
scored a higher harmless rate than RLHF, and both outperformed the SFT baseline (88%, 76%, and
64%, respectively). These results suggest that RLAIF is a viable alternative to RLHF that does not
depend on human annotation while offering appealing scaling properties.

Additionally, we investigate two related questions. First, we explore whether RLAIF can improve
upon a SFT policy when the LLM labeler has the same number of parameters as policy. Our results
show that even in this scenario, RLAIF improves over the SFT baseline, achieving a win rate of 68%.
Second, we conduct an experiment where the off-the-shelf LLM is directly prompted for reward
scores during RL, bypassing the step of distilling LLM preference labels into a separate reward model.
This method achieves an even higher win rate over SFT than the canonical distillation method.

Finally, we study techniques to maximize the alignment of AI-generated preferences to human
preferences. We find that soliciting chain-of-thought reasoning (Wei et al., 2022) consistently
improves alignment, while the benefits of using a detailed preamble and few-shot prompting are
task-specific. We also conduct scaling experiments to examine the trade-offs between the size of the
LLM labeler and alignment with human preferences.

Our main contributions are as follows:

1. We demonstrate that RLAIF achieves comparable or superior performance to RLHF on the
tasks of summarization, helpful dialogue generation, and harmless dialogue generation.

2. We show that RLAIF can improve upon a SFT policy even when the LLM labeler is the
same size as the policy.

3. We find that directly prompting the LLM for reward scores during RL can outperform the
canonical setup where a reward model is trained on LLM preferences.

4. We compare various techniques for generating AI labels and identify optimal settings for
RLAIF practitioners.

2 METHODOLOGY

In this section, we describe the techniques used to generate preference labels with a LLM, how we
conduct RL, and evaluation metrics. Preliminaries on RLHF are provided in Appendix A.

2.1 PREFERENCE LABELING WITH LLMS

We annotate preferences among pairs of candidates with an “off-the-shelf” LLM - a model pre-trained
or instruction-tuned (Wei et al., 2021) for general usage but not fine-tuned for a specific downstream

2The win rate for one policy vs. the other is not statistically significantly different from 50%
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Figure 2: A diagram depicting RLAIF (top) vs. RLHF (bottom)

task. Given a piece of text and two candidate responses, the LLM is asked to rate which response is
preferred. The prompt is structured as follows (examples in Tables 14 and 20):

1. Preamble - Introduction and instructions describing the task at hand
2. Few-shot exemplars (optional) - An example input context, a pair of responses, a chain-of-

thought rationale (if applicable), and a preference label
3. Sample to annotate - An input context and a pair of responses to be labeled
4. Ending - Ending text to prompt the LLM (e.g. “Preferred Response=”)

After the prompt is given to the LLM, we extract the log-probabilities of generating the tokens “1”
and “2” and compute the softmax to obtain a preference distribution.

There are numerous alternatives to obtain preference labels from LLMs, such as decoding a free-form
response from the model and extracting the preference heuristically (e.g. “The first response is
better”), or representing the preference distribution as a one-hot representation. However, we choose
to use the log-probabilities of generating “1” and “2” because it is straightforward to implement and
conveys more information than a one-hot representation through distributed preference distributions.

We experiment with two styles of preambles: “Base”, which essentially asks “which response is
better?”, and “Detailed”, which resembles detailed rating instructions that would be given to the
human preference annotators (see Table 15 for preambles used for the summarization task). We also
experiment with in-context learning, where exemplars were hand-selected to be high-quality and to
cover different topics.

2.1.1 ADDRESSING POSITION BIAS

The order in which candidates are shown to the LLM can bias which candidate it prefers (Pezeshkpour
and Hruschka, 2023; Wang et al., 2023). We find evidence of position bias, which is more pronounced
with smaller sizes of LLM labelers (see Appendix B).

To mitigate position bias in preference labeling, we make two inferences for every pair of candidates,
where the order in which candidates are presented to the LLM is reversed for the second inference.
The results from both inferences are then averaged to obtain the final preference distribution.

2.1.2 CHAIN-OF-THOUGHT REASONING

We experiment with eliciting chain-of-thought (CoT) reasoning from our AI labelers to improve
alignment with human preferences (Wei et al., 2022). We replace the Ending of the standard prompt
(e.g. “Preferred Summary=”) with a sentence asking for thoughts and explanation (e.g. “Consider
the coherence, accuracy, coverage, and overall quality of each summary and explain which one is
better. Rationale:”) and then decode a response from the LLM. Finally, we concatenate the original
prompt, the response, and the original Ending string together, and follow the scoring procedure in
Section 2.1 to obtain a preference distribution. See Figure 3 for an illustration.
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Figure 3: An illustration of the process of obtaining AI-generated labels for summarization prefer-
ences. The LLM is first prompted to explain its thoughts on the quality of the two candidates (blue).
The LLM’s response is then appended to the original prompt (orange) and fed to the LLM a second
time to generate a preference distribution over “1” vs. “2” based on their log-probabilities (green).

In zero-shot prompts, the LLM is not given an example of what reasoning should look like. In
few-shot prompts, we provide examples of CoT reasoning for the model to follow. See Tables 16 and
17 for examples.

2.2 REINFORCEMENT LEARNING FROM AI FEEDBACK

After labeling preferences with a LLM, a reward model (RM) is trained to predict preferences. Since
our approach produces soft labels (e.g. [0.6, 0.4]), we apply a cross-entropy loss to the softmax of the
reward scores generated by the RM. The softmax is used to convert the unbounded scores from the
RM into a probability distribution.

We note that training a RM on a dataset of AI labels can be viewed as a form of model distillation.
We also explore an alternative approach where AI feedback is used directly as the reward signal in
RL (see Section 4.2). The latter is much more computationally expensive than the former when the
AI labeler is larger than the RM.

Finally, we conduct reinforcement learning to train the RLAIF policy model, using the trained RM to
score generations and assign rewards.

2.3 EVALUATION

We evaluate our results with three metrics - AI Labeler Alignment, Win Rate, and Harmless Rate.

AI Labeler Alignment measures the accuracy of AI-labeled preferences with respect to human prefer-
ences. For a single example, a soft AI-labeled preference is first converted to a binary representation
(e.g. [0.6, 0.4] → [1, 0]). Then, it receives a 1 if the label agrees with the human preference and 0
otherwise. The alignment accuracy zacc can be expressed as follows:

zacc =
1

D

D∑
i=1

1[argmax
j

PAIi,j = pHi ],

where D is the preference dataset size, PAI ∈ RD×2 is the matrix of soft AI preferences, and
phuman ∈ RD is the corresponding vector of human preferences, containing elements 0 or 1 to
denote whether the first or second response is preferred, respectively.

Win Rate evaluates the end-to-end quality of two policies by measuring how often one policy is
preferred by humans over another. Given an input and two generations, human annotators select
which generation they prefer according to given guidelines. The percentage of instances where policy

4



Under review as a conference paper at ICLR 2024

A is preferred over policy B is referred to as the “Win Rate of A vs. B”. A 50% Win Rate indicates
that A and B are equally preferred.

Harmless Rate measures the percentage of responses that are considered harmless or safe by human
evaluators. We evaluate the harmless dialogue generation task with this metric instead of Win Rate,
because we find that many responses are equally safe, making it difficult to assign relative rankings.

3 EXPERIMENTAL DETAILS

3.1 DATASETS

We use the following datasets for our experiments:

• Reddit TL;DR (Stiennon et al., 2020) - posts from Reddit3 accompanied by summaries of
the posts.
• OpenAI’s Human Preferences (Stiennon et al., 2020) - a dataset created from a subset of

Reddit TL;DR. Each example comprises a post, two candidate summaries, and a rating from
a human annotator indicating which summary is preferred.
• Anthropic Helpful and Harmless Human Preferences (Bai et al., 2022a) - conversations

between a human and an AI assistant, where each conversation has two possible AI assistant
responses - one preferred and the other non-preferred according to a human annotator.
Preference is based on which response is more informative and honest for the helpful task,
and which response is safer for the harmless task.

We also experimented with the Stanford Human Preferences dataset (Ethayarajh et al., 2022), but
we found that both RLHF and RLAIF policies did not show meaningful improvements over the SFT
baseline after correcting for length biases, using the procedure in Appendix J. More dataset details
can be found in Appendix C.

3.2 LLM LABELING

To enable faster experiment iteration when evaluating AI labeling techniques, we randomly sampled
a subset from the training split of each preference dataset, yielding roughly 3-4k examples for
each task4. For summarization, we further filtered the data to include only examples where human
annotators preferred one summary over the other with high confidence5.

We use PaLM 2 (Google et al., 2023) as our LLM for labeling preferences. The versions we use are
instruction-tuned but not previously trained with RL. Unless otherwise specified, we generate AI
labels using PaLM 2 Large (L) with the best-performing prompt in Section 4.4. For more details on
LLM labeling, see Appendix D.

3.3 MODEL TRAINING

All SFT models are initialized from PaLM 2 Extra-Small (XS). For summarization, we fine-tune on
the Reddit TL;DR dataset. For all other tasks, we utilize an instruction-tuned variant of PaLM 2 in
lieu of task-specific fine-tuning.

RMs are also derived from PaLM 2 XS. RMs are fine-tuned on the full training split of the corre-
sponding preference dataset, where the label is the AI labeled preference for AI feedback RMs and
the original human preference label in the dataset for human feedback RMs. We report RM accuracies
in Appendix G.

In the RL phase, we train the policy with a modified version of REINFORCE (Williams, 1992) adapted
to the language modeling domain. While many recent works use Proximal Policy Optimization

3www.reddit.com
4We sample 15%, 10%, and 10% of the training splits for summarization, helpful dialogue generation, and

harmless dialogue generation, respectively.
5This follows the evaluation procedure in Stiennon et al. (2020). Examples with confidence scores of 1,

2, 8, and 9 were considered to be “high-confidence”
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(PPO) (Schulman et al., 2017) - a related method that adds a few techniques to make training more
conservative and stable (e.g. clipping the objective function), we use REINFORCE with a baseline
given that it is simpler yet still effective for the problem at hand. Both policy and value models are
initialized from the SFT model. For summarization, we roll out our policy on the training split of the
Reddit TL;DR dataset. For the helpful and harmless tasks, we use the training splits of the preference
datasets as our initial states. For summarization, we perform simple post-processing on responses
generated by post-RL policies as described in Appendix E.

For additional details, see Appendix F for the RL formulation and Appendix G for model training.

3.4 HUMAN EVALUATION

For experiments evaluated by win rates, evaluators were presented with an input context and multiple
responses generated from different policies (e.g. RLAIF, RLHF, and SFT). They were then asked to
rank responses in order of quality without ties, as seen in Figure 4. Input contexts were drawn from
test splits of datasets, which were not used for training or any other evaluation6. Rankings were used
to calculate win rates with respect to pairs of policies. For harmless dialogue generation, evaluators
were instead asked to independently rate each response as harmless or harmful.

For more details on human evaluation, see Appendix I.

4 RESULTS

4.1 RLAIF VS. RLHF

RLAIF achieves performance gains on par with or better than RLHF on all three tasks (see Figure 1).
RLAIF and RLHF are preferred by human evaluators over the baseline SFT policy 71% and 73% of
the time for summarization7 and 63% and 64% for helpful dialogue generation, respectively. The
difference in win rates between RLAIF vs. SFT and RLHF vs. SFT are not statistically significant8.
When directly comparing RLAIF against RLHF, they are equally preferred - i.e. the win rate is not
statistically significantly different from 50%9. For harmless dialogue generation, RLAIF achieves a
harmless rate of 88%, outperforming both RLHF and SFT - 76% and 64%, respectively10.

We share an example of SFT, RLAIF, and RLHF summaries in Figure 5. To better understand
how RLAIF compares to RLHF, we qualitatively compare responses generated by both policies for
summarization in Section 5.

As observed in Stiennon et al. (2020), RLAIF and RLHF policies tend to generate longer responses
than the SFT policy, which may be partially responsible for their higher win rates. We conduct
post-hoc analysis to control for length and find that both RLAIF and RLHF policies still outperform
the SFT policy, and by similar margins to one another. See Appendix J for details.

One natural question that arises is whether there is value in combining human and AI feedback. We
experimented with combining both types of feedback but did not see an improvement beyond using
human feedback alone. However, we believe that there are several alternative training setups that
could demonstrate value in combining both forms of feedback. See Appendix K for details.

These results suggest that RLAIF is a viable alternative to RLHF that does not depend on human
annotation. In addition to expediting labeling time and reducing dependence on annotation services,
another key benefit of AI labeling is cost reduction. We estimate the cost of labeling with a LLM to
be more than 10x cheaper than human annotation. See Appendix L for detailed calculations.

6For summarization, we used the test split of Reddit TL;DR. For helpful and harmless dialogue generation,
we used test splits from the preference datasets, detailed in Appendix C.

7Additionally, RLAIF and RLHF are preferred over the reference summaries in Reddit TL;DR 79% and 80%
of the time, respectively.

8For a two-sample t-test, p-value = 0.25 and 0.65 for summarization and helpful dialogue generation,
respectively.

9The win rate of RLAIF vs. RLHF is 50% for summarization and 52% for helpful dialogue generation.
10RLAIF achieves a statistically significant improvement over RLHF and SFT, according to a two-sample

t-test.
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4.2 TOWARDS SELF-IMPROVEMENT

In Section 4.1, the LLM used to label preferences is much larger than the policy LLM (PaLM 2 L vs.
PaLM 2 XS). Going one step further, one might wonder if self-improvement is possible - that is, to
use the same language model as both the AI labeler and the starting policy. To this end, we set up an
experiment on the summarization task where the AI labeler, the RM, and the policy all have the same
number of parameters. We then carry out RLAIF as previously described and refer to this setup as
“same-size RLAIF”.

Human annotators prefer responses from same-size RLAIF 68% of the time over SFT responses. For
comparison, our original RLAIF experiment using an AI labeler larger than the policy achieves 71%
win rate over SFT. The difference between win rates of same-size “RLAIF vs. SFT” and “RLAIF vs.
SFT” is not statistically significant11. This result demonstrates that RLAIF can yield improvements
even when the AI labeler is the same size as the policy LLM.

In this experiment, the AI labeler and initial policy are not the exact same model. The AI labeler
is the instruction-tuned PaLM 2 XS, while the initial policy is PaLM 2 XS fine-tuned on Reddit
TL;DR summarization. Additionally, the responses rated by the AI labeler are not generated by
other policies created by the original dataset curators. For this reason, this experiment is not strictly
“self-improvement”. However, we believe that these results show great promise for proper self-
improvement.

4.3 DIRECT RLAIF

In previous experiments, AI feedback was distilled into a RM. On the summarization task, we
experiment with bypassing RM training by using an off-the-shelf LLM to directly provide rewards
during RL. Since using a large AI labeler in RL can be costly and slow, we use the smaller instruction-
tuned PaLM 2 XS as the off-the-shelf LLM. We refer to this method as “direct RLAIF”.

To get direct feedback, we prompt the AI labeler to rate the quality of the current generation between
1 and 10, adding high-level details on the structure of its input and what define a good generation
(such as factuality or conciseness for example). We then compute the likelihood of each score token,
that is all integers between 1 and 10, normalize the likelihoods to a probability distribution, and
calculate a weighted score s(x|c) =

∑10
i=1 iP (i|x, c), that is then re-normalize to [−1, 1]. We give

additional details on the prompting method in the Appendix D.

Human annotators prefer responses from direct RLAIF 74% of the time over SFT responses. This
result is directly comparable to the same-size RLAIF policy from Section 4.2, which uses the exact
same AI labeler and starting policy. Direct RLAIF outperforms same-size RLAIF, which achieves a
significantly lower win rate of 68% when compared to SFT. Furthermore, when shown responses
side-by-side, raters prefer direct RLAIF over same-size RLAIF 60% of the time. Direct RLAIF
outperforms the comparable distilled RLAIF technique, which may be a result of bypassing the
distillation step and conveying information directly to the policy.

4.4 PROMPTING TECHNIQUES

We experiment with three types of prompting variations - preamble specificity, chain-of-thought
reasoning, and few-shot in-context learning (see Table 1). We observe that eliciting chain-of-thought
reasoning generally improves AI labeler alignment across all tasks, while the impacts of preamble
specificity and in-context learning vary across tasks. The best prompts outperform the base prompts
(“Base 0-shot”) by +1.9%, +1.3%, and +1.7% for summarization, helpfulness, and harmlessness,
respectively.

Preamble specificity consistently improves alignment for summarization (e.g. +1.3% for “Base 0-shot”
vs. “Detailed 0-shot”), while giving mixed results helpful and harmless dialogue generation. We
hypothesize that summarization benefits more from preamble specificity due to the high complexity
of this task. On the other hand, rating helpfulness and harmlessness are more intuitive to grasp, and
therefore may benefit less from detailed instructions.

11The two-sample t-test p-value = 0.07. At alpha = 0.05, this difference is not statistically significant.
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Table 1: We observe that eliciting chain-of-thought reasoning tends to improve AI labeler alignment,
while few-shot prompting and detailed premables have mixed effects across tasks. H1 refers to
helpfulness, H2 to harmlessness.

AI Labeler Alignment
Prompt Summary H1 H2
Base 0-shot 76.1% 67.8% 69.4%
Base 1-shot 76.0% 67.1% 71.7%
Base 2-shot 75.7% 66.8% 72.1%
Base + CoT 0-shot 77.5% 69.1% 70.6%
Detailed 0-shot 77.4% 67.6% 70.1%
Detailed 1-shot 76.2% 67.6% 71.5%
Detailed 2-shot 76.3% 67.3% 71.6%
Detailed 8-shot 69.8% – –
Detailed + CoT 0-shot 78.0% 67.8% 70.1%
Detailed + CoT 1-shot 77.4% 67.4% 69.9%
Detailed + CoT 2-shot 76.8% 67.4% 69.2%

Chain-of-thought reasoning improves alignment consistently for summarization. For helpful and
harmless dialogue generation, CoT only improves alignment when paired with the “Base” preamble.

Surprisingly, we observe that few-shot in-context learning only improves alignment for harmless
dialogue generation12. For summarization and helpfulness, alignment monotonically decreases as
the number of exemplars increases. We do not believe this decrease is due to low-quality exemplars,
which we carefully handpicked high to be representative of each preference task. Furthermore, we
conducted 10 trials for “Base 1-shot” on summarization, where we used a different random exemplar
for each trial. The maximum AI labeler alignment from these trials was 76.1%, which still did
not surpass the “Base 0-shot” alignment. One hypothesis for why exemplars do not help is the
summarization and helpful dialogue generation tasks may already be sufficiently well-understood by
the powerful AI labeler model, rendering the exemplars useless or even distracting. We also note that
in-context learning is still an important research area that is not fully understood (Min et al., 2022;
Wang et al., 2022a).

For summarization, we compare against human inter-annotator agreement to get a sense of how well
our LLM labeler performs in absolute terms. Stiennon et al. (2020) estimated that agreement rate for
the OpenAI human preference dataset was 73-77%, suggesting that the off-the-shelf LLM achieving
78% alignment performs well in absolute terms.

We also conduct experiments with self-consistency. In this technique, multiple chain-of-thought
rationales are sampled with temperature T > 0, and their resulting preference distributions are
averaged together. We find that self-consistency strictly degrades AI labeler alignment (see Appendix
M).

We expect that higher AI labeler alignment in theory should lead to improvements in RLAIF policies.
To this end, we conduct an experiment on the end-to-end sensitivity to AI labeler alignment. We train
two RLAIF policies that only differed in the alignment scores of AI labels. We observe that the policy
trained with more aligned AI labels achieves a significantly higher win rate. However, this study only
compares two policies, and rigorous experimentation is required to draw certain conclusions. See
Appendix N for details.

4.5 SIZE OF LLM LABELER

Table 2: AI labeler alignment increases as the size of the LLM labeler increases.

Model Size AI Labeler Alignment
PaLM 2 XS 62.7%
PaLM 2 S 73.8%
PaLM 2 L 78.0%

12We verified that all examples used in this experiment fit within our AI labeler’s context length.
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Large model sizes are not widely accessible and can be slow and expensive to run. On the task
of summarization, we experiment with labeling preferences with varying LLM sizes and observe
a strong relationship between size and alignment. Alignment decreases -4.2% when moving from
PaLM 2 Large (L) to PaLM 2 Small (S), and it decreases another -11.1% when moving down to
PaLM 2 XS - a trend consistent with scaling behaviors observed in other work (Kaplan et al., 2020).
In addition to being less powerful models, another contributing factor to the decline in performance
could be the increase in position bias in smaller LLMs (see Appendix B).

On the other end of this trend, these results also suggest that scaling up the AI labeler size may
produce even higher quality preference labels. Since the AI labeler is only used to generate preference
examples once and is not called during RL, using an even larger AI labeler is not necessarily
prohibitively expensive.

5 QUALITATIVE OBSERVATIONS

To better understand how RLAIF compares to RLHF, we inspected responses generated by both poli-
cies for the summarization task. In many cases, the two policies produced similar summaries, which
is reflected in their similar win rates. However, we identified two patterns where they occasionally
diverged.

The first pattern we observed is that sometimes RLAIF hallucinates less than RLHF. The hallucinations
in RLHF summaries were plausible but inconsistent with the original text. For instance, in Example
#1 of Table 22, the RLHF summary states that the author is 20 years old, but this is not mentioned or
implied by the original text. The second pattern we observed is that RLAIF sometimes produced less
coherent or grammatical summaries than RLHF. For instance, in Example #1 of Table 23, the RLAIF
summary produces run-on sentences.

More systematic analysis is required to identify if these patterns exist at scale. We leave this to future
work.

6 RELATED WORK

LLMs have shown impressive performance over a wide range of NLP tasks (Brown et al., 2020;
Thoppilan et al., 2022; Chowdhery et al., 2022; Google et al., 2023; OpenAI, 2023a). For several of
these tasks, RL has emerged as an effective optimization technique. While initial applications of RL
on tasks such as translation (Wu et al., 2016; 2018) and summarization (Gao et al., 2019; Wu and Hu,
2018) used automatic evaluation metrics as rewards, such simplified formulations of rewards did not
fully align with human notions of quality.

Reinforcement learning from human feedback (Christiano et al., 2017) has been used as a technique
to directly align LLMs with human preferences (Ziegler et al., 2019) through training a reward
model on pairwise comparisons of natural language responses. It has been successfully applied for
summarization (Stiennon et al., 2020), generalized instruction following (Ouyang et al., 2022; Lai
et al., 2023), dialogue (Gilardi et al., 2023; Manyika, 2023; Glaese et al., 2022; Bai et al., 2022a) and
question answering (Nakano et al., 2021).

LLMs have also been extensively used for data generation (Wang et al., 2021b; Meng et al., 2023),
augmentation (Feng et al., 2021) and in self-training setups (Wang et al., 2022b; Madaan et al., 2023).
Bai et al. (2022b) introduced the idea of RLAIF, which used LLM labeled preferences in conjunction
with human labeled preferences to jointly optimize for the two conflicting objectives of helpfulness
and harmlessness. Recent works have also explored related techniques for generating rewards from
LLMs (Roit et al., 2023; Kwon et al., 2022; Yang et al., 2023). These works demonstrate that LLMs
can generate useful signals for RL fine-tuning, which inspired this work’s investigation into whether
LLMs can serve as a viable alternative to humans in collecting preference labels for RL.

7 CONCLUSION

In this work, we show that RLAIF achieves comparable improvements to RLHF. Our experiments
show that RLAIF greatly improves upon a SFT baseline, and the margin of improvement is on par
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with that of RLHF. Furthermore, in head-to-head comparisons, RLAIF and RLHF are preferred at
similar rates by humans. Additionally, we show that RLAIF is effective even when the LLM labeler is
the same size as the policy, and directly prompting the LLM labeler for rewards at RL can outperform
the canonical RLAIF setup that distills preferences into a separate RM. Finally, we study the impact
of AI labeling techniques on alignment to human preferences.

While this work highlights the potential of RLAIF, there remain many fascinating open questions,
such as whether conducting RLAIF iteratively can bring additional gains (i.e. use the RLAIF policy
to generate new response pairs, conduct RLAIF, and repeat), how RLAIF can be adapted to a model-
based RL setting where both human and assistant are modeled by LLMs, and how AI feedback can
be leveraged for more specific credit assignment. We leave these questions for future work.

ETHICS

In conducting our research, we have adhered to strict ethical principles to ensure the integrity and
responsibility of our work. Prior to participating in the preference rating task, all human raters
provided informed consent. Additionally, we compensated the human participants fairly for their
time and contributions.

A primary ethical consideration concerns the utilization of AI-generated feedback as a source for
model alignment. There exists a potential risk of inheriting biases from the pre-trained off-the-shelf
LLM into the generated labels. This in turn may result in models which amplify the biases from
pre-trained data. We must exercise extreme caution especially when deploying these models in high-
stakes domains such as medicine, law, and employment, where they have the potential to significantly
impact human lives in adverse ways.

Furthermore, reducing the barriers to aligning LLMs also carries the risk of facilitating their misuse
for malicious purposes. For instance, they could be employed to generate convincing misinformation
or produce hateful and abusive content.

REPRODUCIBILITY

To promote reproducibility of our work, we list the open-source datasets used in Section 3.1, the
LLM labeling details in Section D, model training hyper-parameters in Appendix G, RL algorithms
in Appendix F, and prompts used in Appendix Tables (e.g. Tables 15 and 16). PaLM 2 models are
available through Google Cloud’s Vertex API, and the experiments in this work may also be repeated
with other publicly available LLMs.
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A RLHF PRELIMINARIES

We review the RLHF pipeline introduced in Stiennon et al. (2020); Ouyang et al. (2022), which
consists of 3 phases: supervised fine-tuning, reward model training, and reinforcement learning-based
fine-tuning.

A.1 SUPERVISED FINE-TUNING

A pre-trained LLM is fine-tuned on a high quality labeled dataset for a downstream task (e.g. given
an input document, generate a summary) using token-level supervision to produce a supervised
fine-tuned (SFT) model πSFT .

A.2 REWARD MODELING

Given an input x, we sample a pair of responses (y1, y2) ∼ π from one or more models, where
oftentimes π is the SFT model. The input and responses are sent to human annotators to rate
which response is better according to some criteria. These annotations form a dataset of triplets
D = {(x, yw, yl)}, where yw and yl are the preferred and non-preferred responses, respectively. A
reward model (RM) rφ is trained by minimizing the following loss:

Lr(φ) = −E
(x,yw,yl)∼D

[
log σ

(
rφ(x, yw)− rφ(x, yl)

)]
,

where σ is the sigmoid function.

A.3 REINFORCEMENT LEARNING

A policy πRLθ is initialized from the SFT model weights and then optimized with reinforcement
learning to maximize the reward given by the RM, which serves as a proxy for human preferences.
Optionally, a Kullback-Leibler (KL) divergence term DKL is added to the objective to penalize
πRLθ for deviating from the original SFT policy πSFT , controlled by the hyperparameter β (Fox
et al., 2015; Geist et al., 2019). The KL loss helps prevent πRLθ from drifting into a region where
it generates language that is highly rewarded by the RM yet consists of low-quality or unnatural
language - a phenomenon known as “reward hacking” (Everitt and Hutter, 2016; Amodei et al., 2016).
The optimization objective is described by the equation below:

J(θ) = E
y∼πθ(·|x)

[
(1− β)rφ(y|x)

− βDKL

(
πRLθ (y|x) ||πSFT (y|x)

)]
.

B POSITION BIAS IN LLM LABELERS

Table 3: Position bias is more prevalent in smaller model sizes, measured by the percentage of
examples where the LLM prefers the same position even after swapping the order of candidates (“%
Same Position Preferred”). Analysis is conducted using the “Detailed + CoT 0-shot” prompt.

Model Size % Same Position Preferred
PaLM 2 L 18%
PaLM 2 S 21%
PaLM 2 XS 56%

Our analysis on the summarization task suggests that the LLMs used for preference labeling are
biased by the order in which candidates are shown. For each example in our AI labeling evaluation
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set, we query the LLM preferences for the pair of candidates, swap the order in which candidates are
presented, and then query the LLM preferences again.

We consider a LLM to be more biased if it prefers the same position on both the original and reversed
inferences. For example, let candidates A and B be in positions 1 and 2 for the first inference and
in positions 2 and 1 for the second, respectively. If the LLM prefers the same position on both
inferences, we consider the LLM to be position-biased. We measure position bias by computing “%
Same Position Preferred” - the percentage of inference pairs where this occurs, and a higher metric
value indicates a more biased LLM.

We find that PaLM 2 L, S, and XS prefer the same position 18%, 21%, and 56% of the time,
respectively (see Table 3), suggesting that position bias is inversely correlated with model size. One
hypothesis is that larger models are more capable and therefore more faithfully judge preferences
based on the content of the candidates rather than their positions, which are supposed to be immaterial.

We also observe that for PaLM 2 L, of the 18% of cases where it prefers the same position on both
inferences, 94% of the time it prefers the first candidate shown. On the other hand, PaLM 2 S and XS
show affinity for the second candidate shown, preferring it 91% and 99% of the time, respectively,
when the same position is preferred on both inferences. These biases are statistically significant under
a two-sided binomial test at α = 0.05.

C DATASET DETAILS

For summarization, we use the filtered Reddit TL;DR dataset (Stiennon et al., 2020), containing posts
from Reddit13 that have been filtered to ensure high quality. The dataset contains 123k posts, and
∼5% is held out as a validation set.

Additionally, we use OpenAI’s human preference dataset created from the filtered TL;DR dataset.
For a given post, two candidate summaries were generated from different policies, and human
labelers were asked to rate which summary they preferred. The total dataset comprises 92k pairwise
comparisons.

For helpful and harmless dialogue generation, we use Anthropic’s Helpful and Harmless preference
datasets14 (Bai et al., 2022a), which consists of conversation history between a human and an AI
assistant and a preferred and non-preferred response from the AI assistant. Preference is based on
which response is more helpful and honest for the helpful task, and which response is safer and
less harmful for the harmless task. Each dataset comprises over 40k training examples and 2k test
examples. We further split the test sets into validation and test sets by randomly assigning two-thirds
of examples to validation and one-third to test.

D LLM LABELING DETAILS

For LLM labeling, we set a maximum input context length of 4096 tokens. For chain-of-thought
generation, we set a maximum decoding length of 512 tokens and sample with temperature T = 0.0
(i.e. greedy decoding). For self-consistency experiments, we use temperatures varying from T = 0.3
to T = 1.0 with top-K sampling (Fan et al., 2018), where K = 40.

In Section 4.3, we used the AI labeler to compute a score that we leverage as direct reward in the
RLAIF procedure. We use the following prompt: “You are an expert summary rater. Given a TEXT
(completed with a SUBREDDIT and a TITLE) and a SUMMARY, your role is to provide a SCORE
from 1 to 10 that rates the quality of the SUMMARY given the TEXT, with 1 being awful and 10 being
a perfect SUMMARY.”, followed by the input Reddit post, then the summary to score preceded by

“SUMMARY: ”, and a final “SCORE: ”.

PaLM 2 models are publicly available through Google Cloud’s Vertex AI15, though we cannot
guarantee full reproducibility as the models accessible through Google Cloud are subject to change.

13www.reddit.com
14We use the helpful-base and harmless-base datasets from https://huggingface.co/

datasets/Anthropic/hh-rlhf.
15https://cloud.google.com/vertex-ai/docs/generative-ai/learn/models
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E POST-RL RESPONSE FORMATTING

Post-RL (both RLHF and RLAIF) models have a tendency to “hack” the reward by adding superfluous
symbols like periods or spaces at the end of the response. As these extra tokens do not have any
meaningful content, we remove trailing superfluous spaces or periods without altering the content.
This makes human judgement easier and fairer, as the judgement is not biased by formatting unrelated
to the content of the response.

F REINFORCE FOR LANGUAGE MODELS

Consider a deterministic, finite-horizon MDP M = (X ,A, R, P, γ) (Howard, 1960). At each
step t, given the current state Xt ∈ X and the next action At ∈ A, the model receives a reward
Rt = R(Xt, At) and transitions to the next state Xt+1 = P (Xt, At).

In the context of language models, Xt is the concatenation of the input text and all text the policy has
generated up to time t. Action At is the token decoded at time t by the stochastic policy πθ(·|Xt)
from the considered vocabulary, where θ represents the policy parameters. Finally, the reward Rt
is given by the RM. The RM is only evaluated when the language model response has been fully
generated; therefore all rewards prior to the last token are set to be 0, while the reward corresponding
to the final token is set to be RT .

The cumulative sum of rewards received when following the policy πθ from a time-step t is called
the return. Generally, it is defined as Zt =

∑T
s=t γ

s−tRs. However, since only the terminal reward
is non-zero and we set γ = 1, the return can be simplified to Zt = RT .

Given a trajectory (Xt, At, Rt)
T
t=0 generated under πθ, the policy gradient loss from REINFORCE

is then defined as follows:

LPG(θ) = −
∑
t

log πθ(At|Xt)
(
Zt − V πψ (Xt)

)
,

where the bar notation denotes that no gradient is passed through the advantage term during back-
propagation.

The baseline value function V πψ (x) estimates the return-to-go Zt when following the policy πθ and is
parameterized by ψ (Williams, 1992; Sutton et al., 1999). It is trained with the following loss:

LV (ψ) =
∑
t

(Zt − V πψ (Xt))
2.

In practice, given that we optimize for the regularized objective in Sec. A.3, we incorporate the KL
divergence in the policy gradient loss, as commonly done in the literature (Jaques et al., 2017).

G MODEL TRAINING DETAILS

Model training consists of 3 phases, supervised fine-tuning, reward model training and reinforcement
learning. We alter settings of model training as needed for each of the 3 tasks.

We train SFT models for the summarization task on the Reddit TL;DR dataset, with a batch size of
128 for a single epoch. We use the Adafactor (Shazeer and Stern, 2018) optimizer with a learning
rate of 10−5, and we set maximum input and output lengths of 1024 and 128 tokens, respectively.
For helpful and harmless dialogue generation tasks, we treat an instruction-tuned version of PaLM 2
XS as the SFT model.

We train RMs for all tasks until the training loss and accuracy curves plateau, which happens in
2-3 epochs. We use the Adafactor optimizer with a learning rate of 10−5. Batch size is 128 for
summarization RMs and 32 for RMs of other tasks. We train all our RMs with maximum input length
of 1152 tokens, comprising of 1024 tokens for the context and 128 tokens for the response. We report
the pairwise accuracies of the RMs in Table 4.

For summarization, we initialize the AI feedback RM from the SFT model (i.e. PaLM 2 XS fine-tuned
on Reddit TL;DR) and the human feedback RM from PaLM 2 XS. We experimented with initializing
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the human feedback RM from the SFT model but found that it resulted in lower pairwise accuracy on
the held out set of human preferences (see Table 5). For helpful and harmless dialogue generation
tasks, we initialize both the human and AI feedback RMs from the instruction-tuned version of PaLM
2 XS.

For reinforcement learning, we use the SFT model for each task as the initial policy. We sample from
our language model policies for all tasks with a temperature of T = 0.9 to encourage exploration.
We train with a batch size of 128 and learning rate of 10−5 for 8 epochs, resulting in ∼1 million
episodes. We set β = 0.05 for the KL divergence loss.

To select a final checkpoint for each RL policy, we first selected 4 candidate checkpoints from
RL training that scored high rewards on validation prompts. We then prompted an off-the-shelf
LLM to judge the win rate of the RL checkpoint’s summaries vs. the SFT policy’s summaries. We
also conducted manual inspection of a dozen examples. We picked the checkpoint with the best
combination of win rate and quality as judged by manual inspection as our final RL policy.

H REWARD MODEL ACCURACY

Table 4: Pairwise accuracies of human feedback and AI feedback reward models across all tasks.
Metrics are calculated on a held out set of human preference data for each task.

Tasks Human
Feedback

AI
Feedback

Summarization 79.3% 74.2%
Helpful Dialogue 76.0% 67.8%

Harmless Dialogue 72.1% 69.7%

Table 5: Results of initializing the summarization RMs on PaLM 2 XS vs. the SFT model.

Initialization Human
Feedback

AI
Feedback

PaLM 2 XS 79.3% 73.0%
SFT 78.7% 74.2%

Table 6: Accuracy values for variants of RMs trained on AI labels for the task of summarization.

RM Variant AI
Feedback

Trained on “Base 0-shot” labels 77.9%

Pairwise Accuracy for RMs measures how accurate a trained reward model is with respect to a held-
out set of human preferences. Given an input context and pair of candidate responses, the Pairwise
Accuracy is 1 if the RM scores the preferred candidate higher than the non-preferred candidate,
according to the human label. Otherwise the value is 0. This quantity is averaged over multiple
examples to obtain the total pairwise accuracy of the RM.

We report RM pairwise accuracy on a held out set of human preferences for all tasks in Table 4. For
summarization, we also report RM pairwise accuracy when initializing on different checkpoints in
Table 5 and on other RM variants in Table 6.

We observe that RMs trained on human feedback outperform those trained on AI feedback, both of
which are measured against a held out set of human preferences. This pattern seems natural, given that
the human preferences are trained on data drawn from the same distribution as the validation dataset.
However, it is interesting to note that despite the gap in accuracy between AI and human preference
RMs, RLAIF achieves comparable results to RLHF on two tasks and surpasses RLHF on one task.
Additionally, we note that the summarization RMs trained on “Base 0-shot” and “Detailed + CoT
0-shot” (i.e. the default prompting technique) achieve accuracies of 77.9% and 74.2%, respectively,
which is the inverse order of their final performance after RL (see Appendix N). These gaps in RM
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accuracy suggest that RM accuracy, while correlated with RM usefulness, may not be a perfect
reflection of RM effectiveness in RLHF and RLAIF. Ultimately, we believe that the usefulness of
RMs is assessed through conducting RLHF and RLAIF and evaluating the final policies through
human evaluation.

I HUMAN EVALUATION DETAILS

To conduct human evaluation, in total we created ∼2k unique rating instances. Each instance
comprised a single context and three distinct model responses (e.g. responses from SFT, RLAIF,
and RLHF policies), resulting in a total of ∼6k unique (context, response) pairs subjected to human
evaluation. Additionally, each instance was assessed by three independent raters, resulting in ∼18k
(context, response, rating) tuples.

We measure the inter-annotator agreement with Kendall’s Coefficient of Concordance W (Kendall
and Smith, 1939) - a non-parametric statistic for assessing the agreement among multiple raters
ranking multiple items. The values of Kendall’s W range from 0 to 1, where 0 indicates perfect
disagreement and 1 indicates perfect agreement. We conducted multiple human evaluation sessions,
and the W statistic ranged from 0.6-0.7, indicating a reasonable level of agreement.

J CONTROLLING FOR RESPONSE LENGTH

Our RLAIF and RLHF policies generate responses that differ in length from our baselines such as the
SFT policy or human generations. For example, in the summarization task, the summaries produced
by the RLAIF, RLHF, and SFT policies sent to human evaluation have an average character-length of
164, 161, and 132, respectively. For all experiments presented in this paper, we conduct post-hoc
analysis to estimate the win rates of RLAIF and RLHF vs. SFT after controlling for length.

We take an approach similar to Stiennon et al. (2020). For each of our RL policies, we train a logistic
regression model where the input is the ratio of the RL summary length to the SFT summary length
(in characters) and the target is a binary label indicating whether RL was preferred to SFT. After
fitting the model, we estimate a length-controlled win rate by asking the logistic regressor to predict
the win rate given a length ratio of 1.0, which represents the scenario where both the RL and SFT
summaries are of equal length.

After controlling for length, in the summarization task, our estimated win rates for RLAIF and RLHF
vs. SFT are 59% and 61%, respectively (see Table 7). Both RL policies continue to outperform the
SFT policy by a similar margin, supporting our initial conclusion that RLAIF is comparable to RLHF.

We reach similar conclusions for the helpful dialogue generation task (Table 8). Similarly, results
hold for the experiments looking at the end-to-end sensitivity to AI labeler alignment N (Table 10),
also when combining human and AI feedback K (Table 11) and finally also for the experiments
towards self-improvement 4.2 (Table 12).

We note that for the harmless dialogue generation task, the setup is slightly different. Indeed, as
humans provided binary feedback (i.e. harmful or harmless), we compute the harmless rate instead
of the win rate when getting ordering of the outputs of the different models from humans. Here we
used the average generation length from the SFT model as reference to compute, as done before, the
length-controlled harmless rate for RLHF and RLAIF (Table 9).

We note that this post-hoc method of controlling for length is imperfect, as it assumes the logistic
regression model can accurately learn the relationship between summary length and human preference.
A more principled approach would be to have all policies generate summaries of similar length (e.g.
by encouraging policies to generate summaries of a fixed length during optimization).

K COMBINING HUMAN AND AI FEEDBACK

We investigate the effectiveness of combining human feedback and AI feedback. We call this
approach RLHF + RLAIF, and compare it against RLHF. We conduct this preliminary experiment on
the TL;DR summarization task.
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Table 7: Length-controlled win rate for the summarization task.

Models Length
uncorrected

Length
corrected

RLAIF vs SFT 71% 59%
RLHF vs SFT 73% 61%

RLAIF vs RLHF 50% 47%
RLAIF vs Reference 79% 74%
RLHF vs Reference 80% 76%

Table 8: Length-controlled win rate for the helpful dialogue generation task.

Models Length
uncorrected

Length
corrected

RLAIF vs SFT 63% 61%
RLHF vs SFT 64% 61%

RLAIF vs RLHF 52% 50%

To perform RLHF + RLAIF, we start with a model trained via RLHF and a model trained via SFT,
and collect responses from both at a high temperature of 1.0 to increase diversity. We then use our
AI labeler to generate AI feedback and collect preferences for these responses. We now train a new
reward model using both Human and AI preference data, and perform RL fine-tuning with it.

To evaluate the new RLHF + RLAIF model, we show human evaluators SFT responses, RLHF
responses and RLHF + RLAIF responses. We see that combining 2 sources of feedback performs
similar to training only with human feedback, i.e. empirically it brings no incremental advantage.
Human annotators prefer responses from RLHF 74% of the time over SFT responses while they prefer
responses from RLHF + RLAIF 71% of the time over SFT responses. The difference in win-rate is
not statistically significant.16. When shown responses side-by-side, raters prefer them equally. RLHF
+ RLAIF has a win-rate of 48% but not statistically different from 50%.

Our experiment did not show positive results from combining RLAIF and RLHF. However, we believe
that there are many alternative experimental setups which could demonstrate utility in combining AI
and human feedback. One setup could involve first conducting RLAIF, then collecting generations
and human preferences using the RLAIF policy for RLHF. This curriculum learning approach treats
RLAIF as a “warm-up” policy, which could then be refined with RLHF. Another setup could involve
collecting much more AI feedback than human feedback, since it is much less expensive to collect.
We leave this exploration to future work.

L COST OF LLM VS. HUMAN LABELING

Using LLMs as data annotators can be much less costly than hiring human annotators (Wang et al.,
2021a). We estimate AI preference labeling to be over 10x less costly than human preference labeling
using the calculations below.

At the time of writing, GPT-4 charged $0.03 USD and $0.06 USD for every 1,000 tokens to encode
and decode, respectively (OpenAI, 2023b). For labeling TL;DR preferences with a LLM, our average
token lengths were as follows:

1. Input prompt length - 830 tokens (using the “Detailed + CoT 0-shot” prompt (see Table 16)
2. Generated chain-of-thought rationale - 61 tokens
3. “1” and “2” decoded for preference distribution - 2 tokens

Additionally, to debias position, we repeat each labeling procedure after inverting the order in which
a pair of responses are shown. Our estimated AI labeling cost per example is $0.06 USD17.

16We conduct a two-sample t-test and find that, p-value=0.15. So we can reject the null hypothesis here
172 inferences * (830 encoder tokens * $0.03 / 1,000 tokens + (61 + 2) decoder tokens * $0.06 / 1,000 tokens)

= $0.057 ∼ = $0.06
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Table 9: Length-controlled harmless rate for the harmless dialogue generation task. We used the
average generation length from the SFT model as reference length to compute the length-controlled
harmless rate for RLHF and RLAIF.

Models Length
uncorrected

Length
corrected

SFT 64% 64%
RLHF 76% 78%
RLAIF 88% 91%

Table 10: Length-controlled win rate for experiments looking at end-to-end sensitivity to the AI
labeler alignment. Base RLAIF and Detailed RLAIF respectively correspond to Base 0-shot RLAIF
and Detailed CoT 0-shot RLAIF described in N.

Models Length
uncorrected

Length
corrected

Base RLAIF
vs SFT 63% 59%

Detailed RLAIF
vs SFT 67% 63%

Base RLAIF vs
Detailed RLAIF 41% 45%

For human annotation, Google Cloud’s AI Platform Data Labeling Service charged approximately
$0.11 USD / 50 words for classification tasks at the time of writing18 (Google, 2023). We assume
that each classification task only consists of reading a document and two candidate summaries, which
have a combined average word length of 304 words. We estimate the human labeling cost per example
to be $0.67 USD (304 words * $0.11 / 50 words).

We recognize that this cost analysis does not account for all factors, such as the cost of training human
annotators, tasking multiple human annotators to rate the same instance for robustness, the cost of
expert vs. crowd-sourced annotators, or the cost of setting up LLM labeling.

M SELF-CONSISTENCY

For chain-of-thought prompts, we also experiment with self-consistency (Wang et al., 2022b) - a
technique to improve upon chain-of-thought reasoning. In self-consistency, multiple chain-of-thought
rationales are sampled with temperature T > 0, and LLM preference distributions are obtained for
each one. The results are then averaged to obtain the final preference distribution.

On the task of summarization, we experiment with self-consistency using 4 and 16 samples under
decoding temperatures ranging from 0.3 to 1.0 (see Figure 13)19. In all settings, self-consistency
decreases AI labeler alignment versus the baseline without self-consistency. Our experiments show
that alignment decreases as temperature increases, with the largest drop of over -5% at T = 1.0. In
our experiments, using 4 vs. 16 self-consistency samples does not impact AI labeler alignment.

Manually inspecting chain-of-thought rationales did not reveal any common patterns for why self-
consistency might degrade alignment (examples in Table 19). One hypothesis is that using a temper-
ature of T > 0 leads the model to generate lower quality rationales compared to greedy decoding,
ultimately leading to worse accuracy overall.

18Google Cloud charges between $90 and $129 per 1,000 units, where each unit is 50 words for a classification
task. We average the lower and upper bound costs and convert from units to words - ($90 / 1,000 units + $129 /
1,000 units) / 2 * 1 unit / 50 words = $0.1095 USD / 50 words

19Results of using 4 samples are not shown because they only differ from the 16-sample results by ±0.4%.
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Table 11: Length-controlled win rate for experiments combining human and AI feedback.

Models Length
uncorrected

Length
corrected

RLHF + RLAIF
vs SFT 71% 61%

RLHF
vs SFT 74% 67%

RLHF + RLAIF
vs RLHF 48% 46%

Table 12: Length-controlled win rate for experiments towards self-improvement.

Models Length
uncorrected

Length
corrected

Direct RLAIF
vs SFT 74% 65%

Distilled RLAIF
vs SFT 68% 59%

Direct RLAIF vs
Distilled RLAIF 60% 56%

Table 13: Sampling several chain-of-thought rationales with T > 0 results in lower alignment
with human preferences. Note: 1 and 16 samples represent 2 and 32 inferences given our position
debiasing technique (see Section 2.1.1).

Self-Consistency AI Labeler Alignment
1 sample, T=0.0 78.0%
16 samples, T=0.3 76.2%
16 samples, T=0.5 75.1%
16 samples, T=0.7 74.0%
16 samples, T=1.0 72.8%

N END-TO-END SENSITIVITY TO AI LABELER ALIGNMENT

We assess the end-to-end sensitivity of the final RL policies to AI labeler alignment on the task of
summarization. Since human judgement is subjective and prone to noise, we test whether higher
“human alignment” leads to improved downstream performance. We train two RLAIF policies that
only differ in the prompting technique used for AI labeling - “Base 0-shot” and “Detailed CoT
0-shot”, yielding 76.1% and 78.0% AI labeler alignment, respectively.

When compared head-to-head, human evaluators prefer responses from the policy derived from the
more aligned prompting technique 59% of the time20. This result suggests that small gains in AI
labeler alignment may lead to improvements in the final RL policies. However, we acknowledge that
this study is limited, and further experiments are required to draw generalizable conclusions.

We report the accuracy of both RMs in Appendix H.

20Result is statistically significantly different from 50%.
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Table 14: An example of a prompt fed to an off-the-shelf LLM to generate AI preference labels.
“{text}”, “{summary1}”, and “{summary2}” are populated with unlabeled examples, and a preference
distribution is obtained by computing the softmax of the log-probabilities of generating the tokens “1”
vs. “2”.

Preamble A good summary is a shorter piece of text that has
the essence of the original. ... Given a piece of
text and two of its possible summaries, output 1 or 2
to indicate which summary best adheres to coherence,
accuracy, coverage, and overall quality as defined
above.

Exemplar >>>>>>>> Example >>>>>>>>

Text - We were best friends over 4 years ...
Summary 1 - Broke up with best friend, should I wish
her a happy birthday... And what do you think of no
contact?
Summary 2 - should I wish my ex happy birthday, I
broke no contact, I’m trying to be more patient, I’m
too needy, and I don’t want her to think I’ll keep
being that guy.

Preferred Summary=1

>>>>>>>> Follow the instructions and the example(s)
above >>>>>>>>

Sample to Annotate Text - {text}
Summary 1 - {summary1}
Summary 2 - {summary2}

Ending Preferred Summary=

Figure 4: A screenshot of the user interface presented to human evaluators, ultimately used to
calculate win rates. Raters are shown a context and asked to rank the quality of candidate responses.
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Table 15: The “Base” and “Detailed” preambles given to the LLM labeler to obtain preference labels
for the summarization task.

“Base” preamble You are an expert summary rater. Given a piece of
text and two of its possible summaries, output 1 or 2
to indicate which summary is better.

“Detailed” preamble A good summary is a shorter piece of text that has
the essence of the original. It tries to accomplish
the same purpose and conveys the key information from
the original post. Below we define four evaluation
axes for summary quality: coherence, accuracy,
coverage, and overall quality.

Coherence: This axis answers the question \how
coherent is the summary on its own?" A summary is
coherent if it’s easy to understand when read on
its own and free of English errors. A summary is
not coherent if it’s difficult to understand what
the summary is trying to say. Generally, it’s more
important that the summary is understandable than it
being free of grammar errors.

Accuracy: This axis answers the question \does the
factual information in the summary accurately match
the post?" A summary is accurate if it doesn’t say
things that aren’t in the article, it doesn’t mix up
people, and generally is not misleading.

Coverage: This axis answers the question \how well
does the summary cover the important information
in the post?" A summary has good coverage if it
mentions the main information from the post that’s
important to understand the situation described in
the post. A summary has poor coverage if someone
reading only the summary would be missing several
important pieces of information about the situation
in the post. A summary with good coverage should
also match the purpose of the original post (e.g. to
ask for advice).

Overall quality: This axis answers the question
\how good is the summary overall at representing the
post?" This can encompass all of the above axes of
quality, as well as others you feel are important.
If it’s hard to find ways to make the summary better,
the overall quality is good. If there are lots of
different ways the summary can be made better, the
overall quality is bad.

You are an expert summary rater. Given a piece of
text and two of its possible summaries, output 1 or 2
to indicate which summary best adheres to coherence,
accuracy, coverage, and overall quality as defined
above.
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Table 16: The template used for the “Detailed + CoT 0-shot” prompt for summarization. For CoT
prompts, we first decode a response from the LLM and then concatenate it with the original prompt
and the ending “Preferred Summary=” before following the scoring procedure in Section 2.1 to
obtain a preference distribution.

Preamble A good summary is a shorter piece of text that has
the essence of the original. It tries to accomplish
the same purpose and conveys the key information from
the original post. Below we define four evaluation
axes for summary quality: coherence, accuracy,
coverage, and overall quality.

Coherence: This axis answers the question \how
coherent is the summary on its own?" A summary is
coherent if it’s easy to understand when read on
its own and free of English errors. A summary is
not coherent if it’s difficult to understand what
the summary is trying to say. Generally, it’s more
important that the summary is understandable than it
being free of grammar errors.

Accuracy: This axis answers the question \does the
factual information in the summary accurately match
the post?" A summary is accurate if it doesn’t say
things that aren’t in the article, it doesn’t mix up
people, and generally is not misleading.

Coverage: This axis answers the question \how well
does the summary cover the important information
in the post?" A summary has good coverage if it
mentions the main information from the post that’s
important to understand the situation described in
the post. A summary has poor coverage if someone
reading only the summary would be missing several
important pieces of information about the situation
in the post. A summary with good coverage should
also match the purpose of the original post (e.g. to
ask for advice).

Overall quality: This axis answers the question
\how good is the summary overall at representing the
post?" This can encompass all of the above axes of
quality, as well as others you feel are important.
If it’s hard to find ways to make the summary better,
the overall quality is good. If there are lots of
different ways the summary can be made better, the
overall quality is bad.

You are an expert summary rater. Given a piece of
text and two of its possible summaries, explain which
summary best adheres to coherence, accuracy, coverage,
and overall quality as defined above.

Sample to Annotate Text - {text}
Summary 1 - {summary1}
Summary 2 - {summary2}

Ending Consider the coherence, accuracy, coverage, and
overall quality of each summary and explain which
one is better.

Rationale:

25



Under review as a conference paper at ICLR 2024

Table 17: The template used for the “Detailed + CoT 1-shot” prompt for summarization, with some
text removed for brevity.

Preamble A good summary is a shorter piece of text that has
the essence of the original. ... Given a piece of
text and two of its possible summaries, explain which
summary best adheres to coherence, accuracy, coverage,
and overall quality as defined above.

Exemplar >>>>>>>> Example >>>>>>>>

Text - We were best friends over 4 years ...
Summary 1 - Broke up with best friend, should I wish
her a happy birthday... And what do you think of no
contact?
Summary 2 - should I wish my ex happy birthday, I
broke no contact, I’m trying to be more patient, I’m
too needy, and I don’t want her to think I’ll keep
being that guy.

Thoughts on Summary 1 -
Coherence - 7. Rationale: The summary is generally
understandable, though it could be written with
better grammar.
Accuracy - 9. Rationale: The summary doesn’t say
things that aren’t in the original text, and isn’t
misleading.
Coverage - 6. Rationale: The summary covers most of
the important information in the post and conveys the
gist of the original text. However, it places more
emphasis on ‘‘no contact’’ and could have mentioned
the smothering/neediness to be more complete.
Overall Quality - 7. Rationale: The summary
represents the post fairly well with only minor areas
where it could be improved.

Thoughts on Summary 2 -
Coherence - 3. Rationale: The summary is
long-winded and has several grammatical errors.
Accuracy - 4. Rationale: The summary mentions that
the author broke no contact, but this is incorrect.
Otherwise, it is accurate.
Coverage - 8. Rationale: The summary covers the key
points in the original text.
Overall Quality - 4. Rationale: The summary is
somewhat misleading and doesn’t convey the original
text’s key points well.

Preferred Summary=1

>>>>>>>> Follow the instructions and the example(s)
above >>>>>>>>

Sample to Annotate Text - {text}
Summary 1 - {summary1}
Summary 2 - {summary2}

Ending Thoughts on Summary 1 -
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Table 18: An example of the different chain-of-thought rationales produced by the 0-shot (“Detailed
+ CoT 0-shot”) vs. 1-shot (“Detailed + CoT 1-shot”) prompts for summarization. We note that the
CoT 0-shot Rationale is inaccurate, as it mistakenly says that Summary 1 states the girlfriend has
graduated from college.

Sample to Annotate Text - I met my current girlfriend online around 6
months ago when another one of our online friends was
going through some problems. ...

However, I feel incredibly insecure as she has
yet to begin college. I always hear stories
about how people change and their minds change
about relationships or their s/o especially in an
international long distance (Canada/USA). I’m scared
she’ll meet other people and eventually fall in love
with someone else. She reassures me that she won’t,
and I know she’s very mature and serious for her age,
but I still can’t help but feel uneasy.

Summary 1 - I have an amazing relationship with my
girlfriend but feel incredibly insecure with her due
to lack of college graduation and apprehensions about
other people finding her

Summary 2 - I’m very insecure about my current
girlfriend because she hasn’t begun college yet and
I’m worried she’ll meet someone else and fall in love
with someone else. Am I being ridiculous?

CoT 0-shot Ratio-
nale

Rationale: Summary 2 is better.

Summary 1 is not coherent because it’s difficult
to understand what the summary is trying to say.
It’s also not accurate because it says that the
girlfriend has graduated from college, which is
not true. Summary 2 is coherent and accurate. It
also has better coverage because it mentions the
main information from the post that’s important to
understand the situation described in the post.

CoT 1-shot Ratio-
nale

Thoughts on Summary 1 -
Coherence - 7. Rationale: The summary is generally
understandable, but it’s a bit wordy and could be
more concise.
Accuracy - 8. Rationale: The summary is accurate,
but it doesn’t mention that the girlfriend hasn’t
begun college yet.
Coverage - 7. Rationale: The summary covers the
main points of the post, but it doesn’t mention that
the girlfriend hasn’t begun college yet.
Overall Quality - 7. Rationale: The summary is
generally good, but it could be more concise and
it doesn’t mention that the girlfriend hasn’t begun
college yet.

Thoughts on Summary 2 -
Coherence - 9. Rationale: The summary is concise
and easy to understand.
Accuracy - 9. Rationale: The summary is accurate
and mentions that the girlfriend hasn’t begun college
yet.
Coverage - 9. Rationale: The summary covers
the main points of the post and mentions that the
girlfriend hasn’t begun college yet.
Overall Quality - 9. Rationale: The summary is
concise, accurate, and covers the main points of the
post. 27
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Table 19: An example comparing chain-of-thought rationales produced at different temperatures
for self-consistency experiments. Rationale @ T = 1.0 is worse because it mis-attributes the
hallucination about Giardia to Summary 2 instead of Summary 1.

Sample to Annotate Text - I feel that out of principle I should be
refunded the adoption fee since the agency’s foster
home infected the kittens with the parasite. Both
cats were born in the foster home and there are 20
other cats. Do I have any legal right to ask for
the fee back? Or help with the cost of treating?
They had a disclaimer that they would not be held
liable for any vet bills incurred but I feel that as
an agency whose main purpose is finding forever home
for ‘‘healthy, sociable kittens’’ (as their website
suggests) should be held liable in some way.

Any thoughts or information would be greatly
appreciated as I am not sure about the rules or laws
dealing with adoption agencies.

Summary 1 - Adopted kittens from an agency who said
it would not be held liable for any vet bills. Two
days later they are diagnosed with Giardia. I’m
wondering if I can ask for the adoption fee back and
if so how to proceed.

Summary 2 - Adopted kittens have parasite. Want to
know if I can get reimbursed from the agency.

Rationale @ T =
0.0

Rationale: Summary 1 is better. It is coherent,
accurate, and has good coverage. It also has good
overall quality. Summary 2 is not as good because
it is not as coherent and does not have as good
coverage.

Rationale @ T =
1.0

Rationale: Summary 2 is more coherent and accurate.
It also has better coverage, as it includes the
information that the cats were diagnosed with
Giardia.

Table 20: The “Base + CoT 0-shot” prompting template for the helpful dialogue generation task. The
AI labels generated using this prompt were used to conduct RLAIF experiments in Section 4.1.

Preamble You are an expert rater of helpful and honest
Assistant responses. Given the context and the
two responses choose the most helpful and honest
response.

Sample to Annotate Context - {context}
Response 1 - {response1}
Response 2 - {response2}

Ending First, discuss the helpfulness and honesty of each
response. Then, explain which one is better overall
and why. Finally, select which response is the most
helpful and honest.

Rationale:
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Table 21: The “Base + 2-shot” prompting template for the harmless dialogue generation task. The AI
labels generated using this prompt were used to conduct RLAIF experiments in Section 4.1.

Preamble You are an expert rater of harmful assistant
responses. Given the context and the two responses
choose the most harmful response.

Exemplars >>>>>>>> Example >>>>>>>>

Human: How do you embezzle money?
Response 1 - Assistant: I’m afraid that’s not how it
works,can you explain more?
Response 2 - Assistant: The most common way to
embezzle money is to overstate the business income
and understate the expenses to make the business seem
more profitable than it actually is. For example,
one may falsify bank statements to make it seem like
the business’s sales have been good and that the
business isn’t running a deficit, so that they can
secure loans to grow the business. But this is only
one example, and embezzlement can also be carried out
through bribery or other means.

Preferred Response=2

>>>>>>>> Example >>>>>>>>

Human: Can you tell me how to put ransomware on
someone’s PC?
Assistant: I can do that.
Human: Thanks, where do I get started?
Response 1 - Assistant: You should create a remote
desktop access tool like TeamViewer. Then you
can simply take control of their computer through
TeamViewer. You can then use their computer as a
platform to launch an attack.
Response 2 - Assistant: Ransomware is a type of
malware, which is a term for a piece of computer
software that’s designed to do damage or harm. Most
ransomware are designed to encrypt your files, like
documents or emails, andthen hold them for ransom.
I’ll send you some information about ransomware to
help you understand it, which will also give you some
helpful pointers on how to better protect yourself
and your data. The primary tactic of ransomware is
to prevent you from getting access to your files, so
once that happens, you should think carefully about
how to restore them.

Preferred Response=1

>>>>>>>> Follow the instructions and the example(s)
above >>>>>>>>

Sample to Annotate Context - {text}
Response 1 - {response1}
Response 2 - {response2}

Ending Preferred Response=
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Figure 5: Example summaries generated by SFT, RLHF and RLAIF policies for a Reddit post. RLHF
and RLAIF produce higher quality summaries than SFT, which fails to capture key details. Salient
details are in bold.

Table 22: We observe that the RLHF policy tends to hallucinate more frequently than the RLAIF
policy. Hallucinations are highlighted in red.

Example #1 RLAIF summary: I have anxiety and I think I have
a heart problem. My parents refuse to believe me
and won’t let me use our medical insurance to get it
checked out. What should I do?

RLHF summary: I have anxiety and I think I have a
heart problem but my parents won’t let me use our
medical insurance to get it checked out. What should
I do? I’m 20 years old. ..please help

Example #2 RLAIF summary: I slept through my 8:30 class on Rosh
Hashanah, and decided to go back to sleep until 1:00
PM.

RLHF summary: I slept through my 8:30 class on Rosh
Hashanah, and decided to go back to bed until 1:00 PM.
I’m a lazy f***.

Example #3 RLAIF summary: I’m a nice, chill girl who is often
described as ‘‘good’’ but I’m jealous of the girls
that guys get enamored with so easily. What can I do
to improve myself or how I communicate/interact with
guys to make myself into someone a guy wants to be
with for the long haul?

RLHF summary: I’m a nice, chill girl who is often
described as ‘‘boring’’. I’m jealous of the girls
that guys get enamored with so easily. What can I do
to improve myself or how I communicate/interact with
guys to make myself into someone a guy wants to be
with for the long haul?
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Table 23: We observe that that summaries from the RLAIF policy tend to be less coherent and
grammatical than summaries from the RLHF policy. Less coherent phrases are highlighted in red.

Example #1 RLAIF summary: Boyfriend is overly flirtatious
with other girls, I’ve talked to him about it, he
doesn’t seem to care. It’s causing trust issues. Am
I overreacting? What else can I do?

RLHF summary: Boyfriend is overly flirty with other
girls and it makes me uncomfortable. I’ve talked to
him about it multiple times, but he doesn’t seem to
care. What else can I do? Am I overreacting?

Example #2 RLAIF summary: Asked a girl to prom, things were
going great until I asked her. Now our conversations
are awkward and I’m not sure if I should ask her out.
Should I just give up?

RLHF summary: I asked a girl to prom and now our
conversations are awkward. I like her and I’m
wondering if I should ask her out or just give up.
I’m not sure

Example #3 RLAIF summary: Broke up with girl 1, she started
dating my best friend. Dated girl 2, she became
unstable and we broke up. I still feel attached to
both. Why? How do I get over this? Any advice?

RLHF summary: I broke up with a girl I was with
for years, and she started dating my best friend. I
started dating a new girl, and she became depressed
and distant. I still feel attached to both. Why?
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