

GRAPH NEURAL DYNAMICS VIA LEARNED ENERGY AND TANGENTIAL FLOWS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 We introduce TANGO – a dynamical systems inspired framework for graph repre-
012 sentation learning that governs node feature evolution through a learned energy
013 landscape and its associated descent dynamics. At the core of our approach is a
014 learnable Lyapunov function over node embeddings, whose gradient defines an
015 energy **non-increasing** direction that guarantees stability. To enhance flexibility
016 while preserving the benefits of energy-based dynamics, we incorporate a novel
017 tangential component, learned via message passing, that evolves features while
018 maintaining the energy value. This decomposition into orthogonal flows of energy
019 gradient descent and tangential evolution yields a flexible form of graph dynamics,
020 and enables effective signal propagation even in flat or ill-conditioned energy re-
021 gions, that often appear in graph learning. Our method **is designed to help alleviate**
022 **oversquashing**, and is compatible with different graph neural network backbones.
023 Empirically, TANGO achieves strong performance across a diverse set of node and
024 graph classification and regression benchmarks, demonstrating the effectiveness of
025 jointly learned energy functions and tangential flows for graph neural networks.
026
027

1 INTRODUCTION

028 Graph Neural Networks (GNNs) have achieved remarkable success in learning representations for
029 graph-structured data (Bronstein et al., 2021), but they face fundamental challenges when scaling
030 depth or modeling long-range interactions, such as vanishing gradients (Arroyo et al., 2025), over-
031 smoothing (Nt & Maehara, 2019; Cai & Wang, 2020; Rusch et al., 2023), and over-squashing (Alon
032 & Yahav, 2021; Topping et al., 2022; Di Giovanni et al., 2023a; Gravina et al., 2023; 2025). To
033 address these issues, recent works have drawn connections between GNNs and dynamical systems or
034 control theory to understand and mitigate these issues (Poli et al., 2019; Chamberlain et al., 2021b;
035 Eliasof et al., 2021; Gravina et al., 2023; Arroyo et al., 2025). For example, treating a GNN as a
036 continuous dynamical system (or *neural ODE*) opens the door to analyzing stability through the lens
037 of diffusion (Chamberlain et al., 2021b), energy conservation (Rusch et al., 2022), antisymmetric
038 dynamics Gravina et al. (2023), and Hamiltonian flows (Heilig et al., 2025). In parallel, physics-
039 informed neural architectures have shown that embedding physical priors such as energy conservation
040 or dissipation into neural models can dramatically improve stability and interpretability (Bhatoo
041 et al., 2022; Gao et al., 2022; Brandstetter et al., 2022). The common theme in the aforementioned
042 works is the reliance on the existence of *some* energy functional that is minimized or preserved by
043 the GNN parameterization, which is often relatively simple, such as the Dirichlet energy (Rusch
044 et al., 2023). **Beyond GNNs, Lyapunov functions and Lyapunov-stable neural ODEs have also**
045 **been used to guarantee stability of general neural networks** (Lawrence et al., 2020; Rodriguez et al.,
046 2022), including models designed for adversarial robustness of image classifiers where the ODE is
047 regularized so that perturbed inputs converge to the same Lyapunov-stable equilibrium point (Kang
048 et al., 2021), which was also studied for graph adversarial robustness in Zhao et al. (2023). In
049 contrast, in TANGO, we focus on proposing a learnable energy that is utilized with a learned gradient
050 and tangential flow steps, and we use Lyapunov theory to derive the design of a downstream graph
learning framework.

051 At the same time, it is well-established in bioinformatics and computational chemistry that different,
052 and more complex, energy functions are necessary to accurately model various natural processes. For
053 instance, in protein folding, the energy landscape is often rugged and multi-funnel-shaped, reflecting
the presence of multiple stable conformations and transition pathways (Wolynes, 2005). Similarly, in

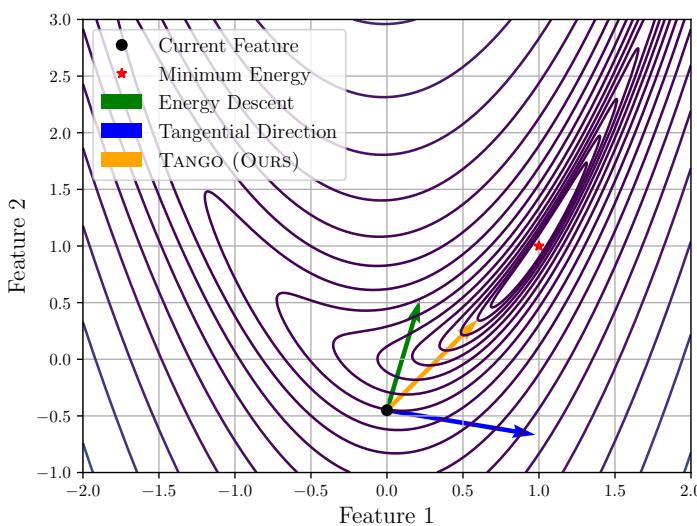


Figure 1: TANGO dynamics in a 2D feature space. We plot the level sets of a learned energy function and visualize the **energy descent direction** (green), the **learned tangential direction** (blue), and their **combined vector** (orange). The tangential component enables movement along level sets, while the descent component reduces energy, allowing an effective navigation of the learned energy landscape.

computational chemistry, modeling complex chemical reactions and molecular interactions requires sophisticated potential energy surfaces (Senn & Thiel, 2009).

Recently, deep learning has seen growing work on *energy-based models* (EBMs), which learn an energy function to model data distributions (e.g., images or molecules), primarily for generative modeling (LeCun et al., 2006; Xie et al., 2016; Du & Mordatch, 2019; Guo et al., 2023). In contrast, we learn a *downstream task-driven energy* whose **parameters are optimized through the loss of a downstream task, such as graph or node classification**, rather than generative modeling **or a dedicated energy loss function**.

These insights motivate a fundamental question: *How can we learn a task-driven energy function, and how can it be effectively leveraged within a GNN architecture to guide representation dynamics?* Unlike energy-based generative models, where the energy function encodes data likelihood, our focus is on learning an energy landscape whose evolution corresponds to solving a downstream task, such as node or graph classification. To address these questions, we propose to decompose feature evolution into two orthogonal components: (i) a *gradient descent* direction that minimizes the learned energy, and (ii) a *tangential direction* that evolves along its level sets, preserving energy. This structured decomposition yields a principled framework that promotes stability, enhances interpretability, and is designed to help alleviate issues such as oversquashing.

Our Approach. We introduce TANGO, a framework for constrained graph dynamics that incorporates a learnable Lyapunov energy function into the message-passing process, where the learned energy governs representation updates through two complementary flows: (1) an *energy descent component*, which drives convergence toward task-relevant solutions, and (2) a *tangential, conservative component*, which preserves energy while retaining flexibility by moving along energy level sets. As illustrated in Figure 1, the descent direction (green) lowers the energy, the tangential direction (blue) moves along level sets, and their combination (orange) defines the full update step, enabling effective information propagation with controlled and stable feature dynamics. TANGO’s Lyapunov-inspired analysis guarantees stability **in the sense of feature evolution throughout layers** rather than claiming state-of-the-art performance, and our empirical studies then assess the impact of the tangential flow.

Main Contributions. Our contributions are as follows:

1. **Lyapunov-inspired Graph Neural Dynamics.** We introduce TANGO, a novel framework for graph representation learning that decomposes feature evolution into energy descent and tangential components, both parameterized by GNNs.

108 2. **Theoretical Characterization of TANGO.** We prove that, under mild assumptions, TANGO
 109 satisfies Lyapunov conditions, ensuring stable dynamics. Additionally, we show that the tangential
 110 component enables expressive yet controlled propagation [and we connect this capacity to its](#)
 111 [ability to mitigate oversquashing empirically via long-range benchmarks.](#)

112 3. **Strong Empirical Performance.** We evaluate TANGO on a range of graph learning benchmarks,
 113 demonstrating performance competitive with or surpassing strong and widely-used baselines.

114

116 2 MATHEMATICAL BACKGROUND

117

119 In this section, we provide a brief overview of Lyapunov stability theory, based on the classical
 120 treatment in Khalil & Grizzle (2002), which underpins the design of our TANGO. This theory
 121 originates from control systems and differential equations, offering a principled way to assess whether
 122 trajectories of a dynamical system remain bounded and converge over time.

123 **Continuous Dynamical Systems.** Let $\mathbf{h}(t) \in \mathbb{R}^d$ denote the state of a dynamical system at time
 124 $t \geq 0$, and consider a first-order ODE:

126
$$\frac{d\mathbf{h}(t)}{dt} = F(\mathbf{h}(t)), \quad (1)$$

127

129 where $F : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a continuous vector field. A point \mathbf{h}^* is called an *equilibrium* if $F(\mathbf{h}^*) = 0$.

130 **Definition 1** (Lyapunov Function). *Let $\mathbf{h}^* \in \mathbb{R}^d$ be an equilibrium of the system in Equation (1). A
 131 continuously differentiable function $V : \mathbb{R}^d \rightarrow \mathbb{R}$ is called a Lyapunov function around \mathbf{h}^* if:*

132

133 1. $V(\mathbf{h}) \geq 0$ for all \mathbf{h} in a neighborhood of \mathbf{h}^* , and $V(\mathbf{h}^*) = 0$;

134

135 2. $\frac{d}{dt} V(\mathbf{h}(t)) = \nabla_{\mathbf{h}} V(\mathbf{h}(t))^{\top} F(\mathbf{h}(t)) \leq 0$ in that neighborhood.

136

137 The first condition ensures that V is lower-bounded by 0, i.e., that value of the Lyapunov function,
 138 sometimes also referred to as *energy* is non-negative, and the second that V does not increase along
 139 trajectories of the system.

140 We now recall a classical (Khalil & Grizzle, 2002) stability criterion for the dynamical system in
 141 Equation (1), based on the definition of a Lyapunov function, which we will later use to characterize
 142 the stability of our approach in Section 4.

144 **Theorem 1** (Lyapunov Stability). *Let \mathbf{h}^* be an equilibrium of Equation (1) and let V be a Lyapunov
 145 function in a neighborhood \mathcal{N} of \mathbf{h}^* . If $\frac{d}{dt} V(\mathbf{h}(t)) \leq 0$ in \mathcal{N} , then \mathbf{h}^* is Lyapunov stable.*

146

147 3 METHOD

148

150 As discussed in Section 1, our goal is to learn a task-driven energy function, and to devise a principled
 151 way to utilize it towards improved downstream performance for graph learning tasks, based on
 152 a combination of TANGential- and Gradient-steps Optimization of node features. We therefore
 153 call our method TANGO. In Section 3.1, we outline the blueprint of TANGO. In Section 3.2, we
 154 discuss implementation details. Later, in Section 4, we discuss the properties of our TANGO, and in
 155 Appendix C we discuss its complexity.

156 **Notations.** We consider a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $n = |\mathcal{V}|$ nodes and $m = |\mathcal{E}|$ edges. Let
 157 $\mathbf{H}(t) = [\mathbf{h}_1(t), \mathbf{h}_2(t), \dots, \mathbf{h}_n(t)]^{\top} \in \mathbb{R}^{n \times d}$ denote the matrix of node features at continuous time
 158 t , where $\mathbf{h}_v(t) \in \mathbb{R}^d$ is the state of node v at time t . Following the literature of GNNs based on
 159 dynamical systems (Eliasof et al., 2021; Gravina et al., 2023; Arroyo et al., 2025), when considering
 160 a discrete architecture with a finite number of layers, we draw an analogy between time t and network
 161 depth ℓ . Henceforth, we will interchangeably use the terms $\mathbf{H}(t)$ and $\mathbf{H}^{(\ell)}$ to denote node features at
 162 a certain time or layer of the network, depending on the context.

162 3.1 OPTIMIZING FEATURES WITH ENERGY TANGENTIAL AND GRADIENT STEPS
163164 Our TANGO concept is based on a dynamical system that, given a graph energy function V_G , considers
165 two steps: (i) *energy gradient descent* and (ii) *tangential direction* flows, that evolve the node features:

166
$$\frac{d\mathbf{H}(t)}{dt} = \underbrace{-\alpha_G(\mathbf{H}(t))\nabla_{\mathbf{H}}V_G(\mathbf{H}(t))}_{\text{Energy Gradient Descent}} + \underbrace{\beta_G(\mathbf{H}(t))T_{V_G}(\mathbf{H}(t))}_{\text{Tangential Direction}}, \quad (2)$$

167
168

169 where α_G, β_G are non-negative scalars that balance the two steps, $\nabla_{\mathbf{H}}V_G(\mathbf{H}(t))$ is the energy gradient
170 with respect to node features $\mathbf{H}(t)$, and $T_{V_G}(\mathbf{H}(t))$ is an update direction that is orthogonal, i.e,
171 tangential to the energy gradient. We note that, while in general, there are many possible directions
172 that are orthogonal to the gradient, in Section 3.2 we specify a procedure for learning this direction.
173 In particular, we note that, by design, the first step decreases the energy, while the second is a
174 tangential flow that preserves energy. Below, we formalize the tangential component and provide
175 implementation details in Section 3.2.
176177 **Tangential Flow.** Setting $\beta_G = 0$ in Equation (2) yields a standard energy gradient flow applied to
178 the features. While it guarantees energy dissipation, it may suffer from slow convergence (Boyd &
179 Vandenberghe, 2004; Nocedal & Wright, 1999) and restricted dynamics during training. As discussed
180 in Section 1, while a gradient flow is commonly used in generative applications, accompanied by
181 hundreds or thousands of steps are, this approach is not suitable for downstream learning, as it renders
182 a neural network with equivalently many effective layers, that is hard to train (Peng et al., 2024)
183 and has high computational costs. To address this, and to accelerate the minimization of the energy
184 function, we introduce a *tangential* flow that evolves tangentially to the gradient of V_G , preserving
185 energy. As we illustrate in Figure 1, and later theoretically discuss in Section 4, while the tangential
186 flow itself maintains the same energy level, its combination with the energy gradient descent step,
187 as shown in Equation (2), can offer a better overall descent direction, thereby accelerating energy
188 convergence.189 In order to obtain a direction that is orthogonal to $\nabla_{\mathbf{H}}V_G(\mathbf{H}(t))$, let $\mathbf{M}(\mathbf{H}(t))$ be a predicted update
190 direction of the node features. We then define the *tangential* node feature update direction as:

191
$$T_{V_G}(\mathbf{H}(t)) = \mathbf{M}(\mathbf{H}(t)) - \langle \mathbf{M}(\mathbf{H}(t)), \hat{\nabla}_{\mathbf{H}}V_G(\mathbf{H}(t)) \rangle \cdot \nabla_{\mathbf{H}}V_G(\mathbf{H}(t)), \quad (3)$$

192

193 where $\hat{\nabla}_{\mathbf{H}}V_G(\mathbf{H}(t))$ is the normalized energy gradient. Unless $\nabla_{\mathbf{H}}V_G(\mathbf{H}(t)) = 0$, where then we
194 define $T_{V_G}(\mathbf{H}(t)) = \mathbf{M}(\mathbf{H}(t))$, the projection in Equation (3) removes shared the component of
195 $\mathbf{M}(\mathbf{H}(t))$ with the energy descent direction, ensuring T_{V_G} is orthogonal to the gradient of the energy
196 function $V_G(\mathbf{H}(t))$.
197

3.2 TANGO GRAPH NEURAL NETWORKS

198 In Section 3.1, we described the concept of TANGO and its underlying continuous dynamical system.
199 To materialize this concept and obtain a GNN, we discretize Equation (2) using the commonly used
200 in GNNs (Gravina et al., 2023; Eliasof et al., 2021; Chamberlain et al., 2021b; Arroyo et al., 2025;
201 Choi et al., 2023) forward Euler approach to obtain the following graph neural layer:
202

203
$$\mathbf{H}^{(\ell+1)} = \mathbf{H}^{(\ell)} + \epsilon \left(-\alpha_G(\mathbf{H}^{(\ell)})\nabla_{\mathbf{H}}V_G(\mathbf{H}^{(\ell)}) + \beta_G(\mathbf{H}^{(\ell)})T_{V_G}(\mathbf{H}^{(\ell)}) \right), \quad (4)$$

204

205 for $\ell = 0, \dots, L-1$, where $\epsilon > 0$ is a hyperparameter step size that stems from the forward Euler
206 discretization that is commonly used in ODE inspired GNNs (Chamberlain et al., 2021b; Eliasof
207 et al., 2021; Gravina et al., 2023), further discussed in Appendix D.1, $\nabla_{\mathbf{H}}V_G(\mathbf{H}^{(\ell)})$ is the gradient of
208 the energy function defined in Equation (7). The coefficients $\alpha_G \geq 0$, β_G are scalars that balance the
209 energy descent and tangential terms, and are also predicted by the respective GNNs shown below.
210211 **Energy Function.** We now describe the implementation of V_G . Given features $\mathbf{H}^{(\ell)}$, we apply:

212
$$\tilde{\mathbf{H}}^{(\ell)} = \sigma \left(\text{ENERGYGNN}(\mathbf{H}^{(\ell)}; \mathcal{G}) \right) \in \mathbb{R}^{n \times d}, \quad (5)$$

213

214 where ENERGYGNN is a graph neural network (e.g., GatedGCN (Bresson & Laurent, 2018),
215 GPS (Rampášek et al., 2022)), and σ is a pointwise nonlinearity. We then compute per-node
216 energy scores using a multilayer perceptron (MLP):
217

218
$$\tilde{V}_G(\tilde{\mathbf{H}}^{(\ell)}) = \text{MLP}_E(\tilde{\mathbf{H}}^{(\ell)}) \in \mathbb{R}^{n \times 1}, \quad (6)$$

219

216 and define the overall graph energy scalar value as:
 217

$$218 \quad 219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad 229 \quad 230 \quad 231 \quad 232 \quad 233 \quad 234 \quad 235 \quad 236 \quad 237 \quad 238 \quad 239 \quad 240 \quad 241 \quad 242 \quad 243 \quad 244 \quad 245 \quad 246 \quad 247 \quad 248 \quad 249 \quad 250 \quad 251 \quad 252 \quad 253 \quad 254 \quad 255 \quad 256 \quad 257 \quad 258 \quad 259 \quad 260 \quad 261 \quad 262 \quad 263 \quad 264 \quad 265 \quad 266 \quad 267 \quad 268 \quad 269$$

$$V_{\mathcal{G}}(\mathbf{H}^{(\ell)}) = \frac{1}{n} \sum_{v \in \mathcal{V}} \tilde{V}_{\mathcal{G}}(\tilde{\mathbf{H}}^{(\ell)})_v^2 \in \mathbb{R}_{\geq 0}. \quad (7)$$

The parameters of ENERGYGNN and the energy MLP are updated through the downstream supervised loss (e.g., cross entropy or regression loss), hence $V_{\mathcal{G}}$ is a task–driven Lyapunov energy function that forms the hidden feature dynamics, where the gradient term in Equation (4) uses this learned energy function to ensure stable dynamics, while the tangential term allows feature updates along its level sets. We also note that the gradient $\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$ in Equation (4) is different from the gradient of the supervised loss with respect to the parameters of ENERGYGNN and TANGENTGNN. Thus, even if $\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$ becomes small at some layer, the parameters still receive gradients through the dependence of $V_{\mathcal{G}}$ and $T_{V_{\mathcal{G}}}$ on their weights, analogous to the outer gradient in bilevel optimization (Dempe, 2002). Empirically, we do not observe vanishing gradients when increasing depth, as shown in Appendix E.2. In addition, we employ a global sum pooling (Xu et al., 2019) to $\tilde{\mathbf{H}}^{(\ell)}$, followed by an MLP and sigmoid activation, to obtain a bounded non-negative scalar $\alpha_{\mathcal{G}}$, as follows:

$$\alpha_{\mathcal{G}}(\mathbf{H}^{(\ell)}) = \text{SIGMOID} \left(\text{MLP}_{\alpha} \left(\text{SUMPOOL}(\tilde{\mathbf{H}}^{(\ell)}) \right) \right) \in [0, 1] \quad (8)$$

We note that non-negativity is required for a valid gradient descent to be obtained in Equation (4), and the bounded value is chosen to maintain stable training.

Tangential Update. To compute the tangential update $T_{V_{\mathcal{G}}}(\mathbf{H}^{(\ell)})$, we learn a dedicated GNN denoted by TANGENTGNN. Specifically, given input features $\mathbf{H}^{(\ell)}$, we predict a node feature update:

$$\mathbf{M}^{(\ell)} = \sigma \left(\text{TANGENTGNN}(\mathbf{H}^{(\ell)}; \mathcal{G}) \right), \quad (9)$$

and define the energy-tangential component via orthogonal projection, as described in Equation (3). Also, we define the scalar $\beta_{\mathcal{G}}$ that scales the tangential term, as follows:

$$\beta_{\mathcal{G}}(\mathbf{H}^{(\ell)}) = \text{MLP}_{\beta} \left(\text{SUMPOOL}(\mathbf{M}^{(\ell)}) \right) \in \mathbb{R}. \quad (10)$$

4 THEORETICAL PROPERTIES OF TANGO

We now analyze the continuous-time dynamics of TANGO as defined in Equation equation 2. Our analysis focuses on three aspects: *energy dissipation*, *feature evolution in flat energy landscapes*, and *the benefit of the tangent direction*. Proofs are provided in Appendix B.

Assumptions and Notations. Throughout this analysis, we assume that: (i) the input graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is connected; (ii) the energy function $V_{\mathcal{G}}(\mathbf{H}(t))$ is twice differentiable and bounded from below. For simplicity of notation, throughout this section we omit the time or layer scripts, and use the term \mathbf{H} to denote node features, when possible.

We start by showing that TANGO is dissipative if $\|\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H})\|^2 > 0$, and $\alpha_{\mathcal{G}} \geq 0$ (obtained by design), corresponding to the Lyapunov stability criterion from Theorem 1.

Proposition 1 (Energy is non-increasing). *Suppose $\alpha_{\mathcal{G}} \geq 0$ and $\|\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H})\|^2 > 0$. Then the energy $V_{\mathcal{G}}(\mathbf{H})$ is non-increasing along trajectories of Equation (2). Specifically,*

$$\begin{aligned} \frac{d}{dt} V_{\mathcal{G}}(\mathbf{H}) &= -\alpha_{\mathcal{G}}(\mathbf{H}) \|\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H})\|^2 + \beta_{\mathcal{G}}(\mathbf{H}) \langle T_{V_{\mathcal{G}}}(\mathbf{H}), \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) \rangle \\ &= -\alpha_{\mathcal{G}}(\mathbf{H}) \|\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H})\|^2 \leq 0. \end{aligned} \quad (11)$$

Proposition 1 establishes a standard Lyapunov property: the energy $V_{\mathcal{G}}(\mathbf{H})$ is non-increasing along trajectories (i.e., layers), and, by construction, is bounded from below. As a result, solutions remain in level sets $\{\mathbf{H} : V_{\mathcal{G}}(\mathbf{H}) \leq V_{\mathcal{G}}(\mathbf{H}^{(0)})\}$, but are not forced to collapse in feature space. In particular, Lyapunov stability obtained through the gradient flow controls the energy values, and the tangential flow component $T_{V_{\mathcal{G}}}(\mathbf{H})$ enables the evolution of node features along level sets of $V_{\mathcal{G}}$, including in regions where the energy gradient is small. We now show that unlike gradient flows, our TANGO admits evolution of node features in flat energy landscapes, a prime challenge in optimization techniques (Nocedal & Wright, 1999; Boyd & Vandenberghe, 2004).

270 **Proposition 2** (TANGO can Evolve Features in Flat Energy Landscapes). *Suppose $\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) = 0$,
271 and $T_{V_{\mathcal{G}}}(\mathbf{H}) \neq 0$, then the TANGO flow in Equation (2) reads:*

$$273 \quad \frac{d\mathbf{H}}{dt} = \beta_{\mathcal{G}}(\mathbf{H}) T_{V_{\mathcal{G}}}(\mathbf{H}). \\ 274$$

275 *This implies that in contrast to gradient flows, the dynamics of TANGO obtained by the tangential
276 term can evolve even in regions where the energy landscape is flat.*

277 **Theoretical Benefits of Using the Tangent Direction.** Our TANGO combines two terms as shown in
278 Equation (2) and its discretization in Equation (4). These are the energy gradient $\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$ and
279 the tangential direction vector $T_{V_{\mathcal{G}}}(\mathbf{H})$. A natural theoretical and practical question is: *under what
280 conditions does the inclusion of the tangential direction improve over simple gradient descent?* To
281 address this question, we first recall a classic convergence result for gradient-based minimization.

282 **Proposition 3** (Convergence of Gradient Descent of a Scalar Function, Nocedal & Wright (1999)).
283 *Let $V_{\mathcal{G}}(\cdot)$ be a scalar function and let $\mathbf{H}^{(\ell+1)} = \mathbf{H}^{(\ell)} - \alpha_{\mathcal{G}}^{(\ell)}(\mathbf{H}^{(\ell)}) \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$ be a gradient-
284 descent iteration of the energy $V_{\mathcal{G}}(\cdot)$. Then, a linear convergence is obtained, with convergence
285 rate:*

$$286 \quad r = \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}, \\ 287$$

288 *where λ_{\max} is the maximal eigenvalue, and in the case of problems that involve the graph Laplacian,
289 λ_{\min} is the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the Hessian of $V_{\mathcal{G}}(\cdot)$.*

290 Proposition 3 shows that gradient descent suffers in ill-conditioned problems, i.e., when the ratio
291 between the λ_{\max} and λ_{\min} is large. This is common in graph-based tasks, where the Hessian may
292 inherit poor conditioning from the graph Laplacian, particularly when oversquashing occurs due to
293 bottlenecks in the graph Topping et al. (2022); Giraldo et al. (2023); Di Giovanni et al. (2023a). As
294 an alternative, consider the effect of adding an orthogonal flow to the gradient descent direction. In
295 this case, the combined update direction is

$$296 \quad \mathbf{D} = \alpha_{\mathcal{G}}(\mathbf{H}^{(\ell)}) \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)}) + \beta_{\mathcal{G}}(\mathbf{H}^{(\ell)}) T_{V_{\mathcal{G}}}(\mathbf{H}^{(\ell)}). \quad (12) \\ 297$$

298 The following proposition demonstrates that it is possible, i.e., *the model has the capacity*, to learn T
299 such that \mathbf{D} becomes a Newton-like direction with quadratic convergence (Nocedal & Wright, 1999).

300 **Proposition 4** (TANGO can learn a Quadratic Convergence Direction). *Assume for simplicity that
301 $\beta_{\mathcal{G}} = 1$, and that the Hessian of $V_{\mathcal{G}}$ is invertible. Let $\mathbf{D} = \alpha_{\mathcal{G}}(\mathbf{H}^{(\ell)}) \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)}) + T_{V_{\mathcal{G}}}(\mathbf{H}^{(\ell)})$ with
302 $\langle T_{V_{\mathcal{G}}}(\mathbf{H}^{(\ell)}), \widehat{\nabla}_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)}) \rangle = 0$. Then, it is possible to learn a direction $T_{V_{\mathcal{G}}}(\mathbf{H}^{(\ell)})$ and a step size
303 $\alpha_{\mathcal{G}}$ such that \mathbf{D} is the Newton direction, $\mathbf{N} = (\nabla^2 V_{\mathcal{G}})^{-1} \nabla V_{\mathcal{G}}$.*

305 In addition to its improved global convergence, Newton's method is notable for its local convergence
306 rate behavior, being independent of the condition number of the Hessian (Nocedal & Wright, 1999;
307 Boyd & Vandenberghe, 2004). This implies that if the tangential flow is learned to approximate
308 Newton direction, TANGO can overcome the slow convergence caused by highly ill-conditioned
309 energy landscapes, as commonly observed in different second order optimization techniques and
310 their approximations, such as conjugate gradients (CG) and LBFGS (Nocedal & Wright, 1999; Boyd
311 & Vandenberghe, 2004). *In the context of graph learning*, Proposition 4 is particularly relevant
312 when considering the oversquashing problem (Alon & Yahav, 2021; Di Giovanni et al., 2023a), *and
313 motivates the utilization of the conceptual blueprint of TANGO from Equation (2) for graph learning*:
314 oversquashing leads to poor conditioning; the graph Laplacian has a smallest eigenvalue of zero (for
315 connected graphs), and the second smallest eigenvalue is also close to zero (Topping et al., 2022;
316 Giraldo et al., 2023; Black et al., 2023; Jamadandi et al., 2024). Under these conditions, gradient
317 flow methods, which are implicitly implemented by common GNN formulations (Di Giovanni
318 et al., 2023b), perform poorly due to their ill-conditioned energy landscape, limiting the ability of
319 propagating information between nodes. By enabling feature updates that can approximate second-
320 order information, i.e., Newton-like directions, our TANGO offers a mechanism that can, in principle
321 alleviate oversquashing. We empirically validate these results in Figure 2, where we compare our
322 method with a Dirichlet energy *gradient flow* process, which is often implemented by baseline
323 GNNs (Rusch et al., 2023; Di Giovanni et al., 2023b), with more details described in *Appendix D.2*,
324 *highlighting the importance of tangential flows in our TANGO*, and further evaluate the effectiveness
325 of our TANGO across oversquashing-related benchmarks in Section 5.

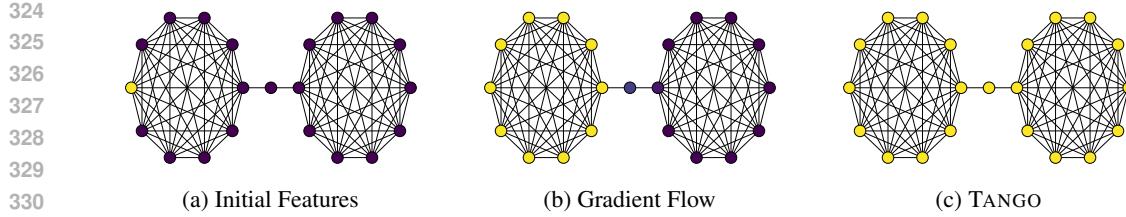


Figure 2: Comparison of propagation behaviors between gradient flow and TANGO with 50 layers. While a **Dirichlet energy** gradient flow struggles propagating information through the bottleneck, our TANGO is effective. **We provide details on this experiment in Appendix D.2**

5 EXPERIMENTS

We evaluate the performance of our TANGO on a suite of benchmarks: (i) synthetic benchmarks that require the exchange of messages with large distances, called graph property prediction from Gravina et al. (2023), in Section 5.1; (ii) the peptides long-range graph benchmark (Dwivedi et al., 2022b) in Section 5.3; (iii) GNN benchmarks from (Dwivedi et al., 2023) including the ZINC-12k, MNIST, CIFAR-10, PATTERN, and CLUSTER datasets; and (iv) the heterophilic node classification datasets from Platonov et al. (2023). Notably, TANGO shows consistent downstream performance improvements over its **four backbone models**: **GCN** (Kipf & Welling, 2016), **GIN** (Xu et al., 2019), **GatedGCN** (Bresson & Laurent, 2018), and **GPS** (Rampášek et al., 2022), highlighting its usefulness. It also offers competitive performance compared with other popular and state-of-the-art methods, such as MPNN-based models, DE-GNNs, higher-order DGNs, and graph transformers. In all experiments, TANGO is trained with the same loss function as other GNN baselines, like the cross-entropy loss. In Appendix D we provide full experimental details on the hyperparameters, benchmark evaluation, and runtimes. Additional results and comparisons, as well as evaluation on heterophilic node classification and **ablation studies that isolate the effect of energy term, the tangential projection, and depth**, are provided in Appendix E.

5.1 GRAPH PROPERTY PREDICTION

Setup. We consider the three graph property prediction tasks from Gravina et al. (2023), evaluating the performance of TANGO in predicting graph diameters, single source shortest paths (SSSP), and node eccentricity on synthetic graphs. To effectively address these tasks, it is essential to propagate information not only from direct neighbors but also from distant nodes within the graph. As a result, strong performance in these tasks mirrors the ability to facilitate long-range interactions.

Results. Table 1 reports the mean test $\log_{10}(\text{MSE})$, comparing our TANGO with various MPNNs, DE-GNNs, and transformer-based models. The results highlight that TANGO, in all variants, consistently achieves the lowest (best) error across all tasks, demonstrating its efficacy compared with existing methods. For example, in the Eccentricity task, $\text{TANGO}_{\text{GPS}}$ reduces the error score by over 1.2

Table 1: Mean test set $\log_{10}(\text{MSE})$ and std averaged on 4 random weight initializations on Graph Property Prediction. Lower is better. **First**, **second**, and **third** best results for each task are color-coded.

Model	Diameter	SSSP	Eccentricity
MPNNs			
GatedGCN (Bresson & Laurent, 2018)	0.1348 ± 0.0397	-3.2610 ± 0.0514	0.6995 ± 0.0302
GCN (Kipf & Welling, 2016)	0.7424 ± 0.0466	0.9499 ± 0.0001	0.8468 ± 0.0028
GAT (Veličković et al., 2018)	0.8221 ± 0.0752	0.6951 ± 0.1499	0.7909 ± 0.0222
GraphSAGE (Hamilton et al., 2017)	0.8645 ± 0.0401	0.2863 ± 0.1843	0.7863 ± 0.0207
GIN (Xu et al., 2019)	0.6131 ± 0.0990	-0.5408 ± 0.4193	0.9504 ± 0.0007
GCNII (Chen et al., 2020)	0.5287 ± 0.0570	-1.1329 ± 0.0135	0.7640 ± 0.0355
DE-GNNs			
DGC (Poli et al., 2019)	0.6028 ± 0.0050	-0.1483 ± 0.0231	0.8261 ± 0.0032
GRAND (Chamberlain et al., 2021b)	0.6715 ± 0.0490	-0.0942 ± 0.3897	0.6602 ± 0.1393
GraphCON (Rusch et al., 2022)	0.0964 ± 0.0620	-1.3836 ± 0.0092	0.6833 ± 0.0074
A-DGN (Gravina et al., 2023)	-0.5188 ± 0.1812	-3.2417 ± 0.0751	0.4296 ± 0.1003
SWAN (Gravina et al., 2025)	$\textcolor{red}{-0.5981 \pm 0.1145}$	-3.5425 ± 0.0830	$\textcolor{red}{-0.0739 \pm 0.2190}$
PH-DGN (Heilig et al., 2025)	$\textcolor{red}{-0.5385 \pm 0.0187}$	$\textcolor{red}{-4.2993 \pm 0.0721}$	$\textcolor{red}{-0.9348 \pm 0.2097}$
Transformers			
GPS (Rampášek et al., 2022)	-0.5121 ± 0.0426	$\textcolor{red}{-3.5990 \pm 0.1949}$	0.6077 ± 0.0282
Ours			
TANGO_{GCN}		0.1729 ± 0.0382	-1.0024 ± 0.0854
TANGO_{GIN}		0.0433 ± 0.0211	-2.8923 ± 0.0937
TANGO_{GATEDGCN}		-0.6681 ± 0.0745	-5.0626 ± 0.0742
TANGO_{GPS}		$\textcolor{red}{-0.9772 \pm 0.0518}$	$\textcolor{red}{-5.5263 \pm 0.0838}$
			$\textcolor{red}{-2.1455 \pm 0.0033}$

378 Table 2: Test performance in five benchmarks from Dwivedi et al. (2023). Shown is the mean \pm_{std} of
 379 4 runs with different random seeds. Highlighted are the top **first**, **second**, and **third** results.
 380

381 Model	ZINC-12k	MNIST	CIFAR10	PATTERN	CLUSTER
	382 MAE \downarrow	382 Accuracy \uparrow	382 Accuracy \uparrow	382 Accuracy \uparrow	382 Accuracy \uparrow
384 GCN (Kipf & Welling, 2016)	0.367 \pm 0.011	90.705 \pm 0.218	55.710 \pm 0.381	71.892 \pm 0.334	68.498 \pm 0.976
385 GIN (Xu et al., 2019)	0.526 \pm 0.051	96.485 \pm 0.252	55.255 \pm 1.527	85.387 \pm 0.136	64.716 \pm 1.553
386 GAT (Veličković et al., 2018)	0.384 \pm 0.007	95.535 \pm 0.205	64.223 \pm 0.455	78.271 \pm 0.186	70.587 \pm 0.447
387 GatedGCN (Bresson & Laurent, 2018)	0.282 \pm 0.015	97.340 \pm 0.143	67.312 \pm 0.311	85.568 \pm 0.088	73.840 \pm 0.326
388 PNA (Corso et al., 2020)	0.188 \pm 0.004	97.940 \pm 0.120	70.350 \pm 0.630	—	—
389 DGN (Beaini et al., 2021)	0.168 \pm 0.003	—	72.838 \pm 0.417	86.680 \pm 0.034	—
390 CRaW1 (Tönshoff et al., 2023b)	0.085 \pm 0.004	97.944 \pm 0.050	69.013 \pm 0.259	—	—
391 GIN-AK+ (Zhao et al., 2022)	0.080 \pm 0.001	—	72.190 \pm 0.130	86.850 \pm 0.057	—
392 SAN (Kreuzer et al., 2021a)	0.139 \pm 0.006	—	—	86.581 \pm 0.037	76.691 \pm 0.65
393 EGT (Hussain et al., 2022)	0.108 \pm 0.009	98.173 \pm 0.087	68.702 \pm 0.409	86.821 \pm 0.020	79.232 \pm 0.348
394 Graphomer-GD (Zhang et al., 2023)	0.081 \pm 0.009	—	—	—	—
395 GPS (Rampášek et al., 2022)	0.070 \pm 0.004	98.051 \pm 0.126	72.298 \pm 0.356	86.685 \pm 0.059	78.016 \pm 0.180
396 GRIT (Ma et al., 2023)	0.059 \pm 0.002	98.108 \pm 0.111	76.468 \pm 0.881	87.196 \pm 0.076	80.026 \pm 0.277
397 TANGO_{GCN}	0.153 \pm 0.010	94.579 \pm 0.211	64.920 \pm 0.402	81.198 \pm 0.299	74.040 \pm 1.109
398 TANGO_{GIN}	0.122 \pm 0.031	97.651 \pm 0.247	66.350 \pm 0.967	86.703 \pm 0.194	71.360 \pm 1.169
399 TANGO_{GatedGCN}	0.128 \pm 0.011	97.788 \pm 0.105	70.894 \pm 0.329	86.672 \pm 0.071	78.194 \pm 0.307
400 TANGO_{GPS}	0.062 \pm 0.005	98.197 \pm 0.110	75.783 \pm 0.261	87.182 \pm 0.063	80.113 \pm 0.138

401 points compared to PH-DGN (Heilig et al., 2025) and by over 2.0 points compared to SWAN,
 402 which are models designed to propagate information over long radii effectively. **On Diameter and**
 403 **SSSP, TANGO_{GPS} also yields gains over the strong prior DE-GNN baseline PH-DGN, improving the**
 404 **$\log_{10}(\text{MSE})$ by 0.4 and 1.2 points respectively.** Overall, these results validate the effectiveness of our
 405 TANGO in modeling long-range interactions and **and are consistent with alleviation of oversquashing.**
 406 Furthermore, TANGO strengthens the performance of simple MPNN backbones like GatedGCN.
 407 For example, GatedGCN augmented with our TANGO consistently delivers better results than the
 408 baseline GatedGCN, highlighting its ability to enhance traditional MPNNs. This demonstrates that
 409 our method can effectively leverage the strengths of simple models while overcoming their limitations
 410 in long-range propagation.

411 5.2 GNN BENCHMARKING

412 **Setup.** To further evaluate the performance of our TANGO, we consider multiple GNN from Dwivedi
 413 et al. (2023), that include the *ZINC-12k* dataset, *MNIST* and *CIFAR-10* superpixels datasets, and
 415 *CLUSTER* and *PATTERN* datasets. These datasets are commonly used to evaluate state-of-the-art
 416 techniques (Ma et al., 2023). For a fair and direct comparison with other methods, we follow the
 417 training and evaluation protocols from Dwivedi et al. (2023).

418 **Results.** Table 2 reports the average and standard deviation of the obtained test metric. Besides
 419 *ZINC-12k*, which is a regression problem with mean absolute error (MAE) as the metric, all other
 420 datasets consider the accuracy(%) metric. Our results show that across all benchmarks, our TANGO
 421 consistently improves its backbone performance, and often outperforms other strong baselines.

423 5.3 LONG-RANGE BENCHMARK

424 **Setup.** We evaluate our method on the real-world Long-Range Graph Benchmark (LRGB) (Dwivedi
 425 et al., 2022b), focusing on *Peptides-func* and *Peptides-struct*. We follow the experimental setting in
 426 Dwivedi et al. (2022b), including the 500K parameter budget. Transformer baselines use positional
 427 and structural encodings; TANGO uses none. The datasets contain large peptide molecular graphs,
 428 whose structure and function depend on long-range interactions. Thus, short-range interactions, such
 429 as local message passing in GNNs, may be insufficient for this task.

431 **Results.** Table 3 provides a comparison of our TANGO model with a wide range of baselines.
 432 For example, on *Peptides-struct*, all TANGO variants achieve competitive MAE compared with all

432 methods in Table 3 under the shared parameter budget. A broader comparison is presented in Table 12.
 433 The results indicate that TANGO outperforms standard MPNNs, transformer-based GNNs, DE-GNNs,
 434 Multi-hop GNNs, and methods that use rewiring like GRAND (Chamberlain et al., 2021b) and DRew
 435 (Gutteridge et al., 2023).

436

437 5.4 HETEROPHILIC NODE CLASSIFICATION

438

439 **Setup.** We consider heterophilic
 440 node classification datasets;
 441 *Roman-empire*, *Amazon-ratings*,
 442 *Minesweeper*, *Tolokers*, and *Ques-*
 443 *tions* tasks, to evaluate TANGO in
 444 capturing complex node relation-
 445 ships beyond simple homophily.
 446 We follow the training and evalua-
 447 tion protocols from Platonov et al.
 (2023).

448

449 **Results.** We report the per-
 450 formance of TANGO in Appendix E.1,
 451 and compare it with several re-
 452 cent leading methods. Specifi-
 453 cally, we include baseline results
 454 from Finkelstein et al. (2024);
 455 Platonov et al. (2023); Müller et al.
 456 (2024). Across all datasets, TANGO
 457 achieves competitive performance
 458 that often outperforms state-of-the-
 459 art methods, and consistently im-
 460 proves its backbone GNN per-
 461 formance, demonstrating that our
 462 TANGO can also be utilized on
 463 larger graphs and in heterophilic sce-
 464 narios.

465

466

6 RELATED WORK

467

We now cover two main topics related to our TANGO, with additional related works in Appendix A.

468

469

Deep GNNs and Dynamical Systems. A growing body of work interprets GNN layers as iterative
 470 updates in a dynamical system, providing a principled framework to analyze stability, control
 471 diffusion, and inform architectural design. Poli et al. (2019) introduced Graph Neural ODEs, inspired
 472 by neural ODEs (Ruthotto & Haber, 2020; Chen et al., 2018), modeling node feature evolution via
 473 continuous-depth ODEs aligned with graph structure, enabling adaptive computation and improved
 474 performance in dynamic settings. Similarly, Xhonneux et al. (2020) proposed Continuous GNNs,
 475 where feature channels evolve by differential equations, mitigating over-smoothing via infinite-
 476 depth limits. Follow-up works such as GODE (Zhuang et al., 2020), GRAND (Chamberlain et al.,
 477 2021b), PDE-GCN_D (Eliasof et al., 2021), and DGC (Wang et al., 2021) view GNN layers as
 478 discrete integration steps of the heat equation to control oversmoothing (Nt & Maehara, 2019;
 479 Oono & Suzuki, 2020; Cai & Wang, 2020). Extensions like PDE-GCN_M (Eliasof et al., 2021) and
 480 GraphCON (Rusch et al., 2022) add oscillatory components to preserve feature energy, while others
 481 leverage heat-kernel attention (Choromanski et al., 2022), anti-symmetry (Gravina et al., 2023; 2025),
 482 reaction-diffusion (Wang et al., 2023; Choi et al., 2023), advection-reaction-diffusion (Eliasof et al.,
 483 2024a) to enhance long-range or directional flow, and higher-order graph neuro ODE models (Eliasof
 484 et al., 2024b). A comprehensive overview is given in Han et al. (2023). Closely related, Di Giovanni
 485 et al. (2023b) interpret GNN layer updates as gradient flows of the Dirichlet energy, aligning message
 486 passing with energy minimization, and Zhao et al. (2023) studies the adversarial robustness of
 487 Lyapunov-based GNNs. In contrast, our TANGO takes a different approach. Instead of viewing
 488 GNN layers as discretizations whose weights are to be learned, TANGO learns a graph-adaptive,

Table 3: Results for Peptides-func and Peptides-struct (3 training seeds). The **first**, **second**, and **third** best scores are colored.

Model	Peptides-func	Peptides-struct
	AP \uparrow	MAE \downarrow
MPNNs		
GCN (Kipf & Welling, 2016)	59.30 \pm 0.23	0.3496 \pm 0.0013
GINE (Dwivedi et al., 2023)	54.98 \pm 0.79	0.3547 \pm 0.0045
GCNII (Chen et al., 2020)	55.43 \pm 0.78	0.3471 \pm 0.0010
GatedGCN (Bresson & Laurent, 2018)	58.64 \pm 0.77	0.3420 \pm 0.0013
Multi-hop GNNs		
DIGL+MPNN+LapPE (Gasteiger et al., 2019)	68.30 \pm 0.26	0.2616 \pm 0.0018
MixHop-GCN+LapPE (Abu-El-Haija et al., 2019)	68.43 \pm 0.49	0.2614 \pm 0.0023
DRew-GCN+LapPE (Gutteridge et al., 2023)	71.50 \pm 0.44	0.2536 \pm 0.0015
Transformers		
Transformer+LapPE (Dwivedi et al., 2023)	63.26 \pm 1.26	0.2529 \pm 0.0016
SAN+LapPE (Kreuzer et al., 2021a)	63.84 \pm 1.21	0.2683 \pm 0.0043
GPS+LapPE (Rampášek et al., 2022)	65.35 \pm 0.41	0.2500 \pm 0.0005
DE-GNNs		
GRAND (Chamberlain et al., 2021b)	57.89 \pm 0.62	0.3418 \pm 0.0015
GraphCON (Rusch et al., 2022)	60.22 \pm 0.68	0.2778 \pm 0.0018
A-DGN (Gravina et al., 2023)	59.75 \pm 0.44	0.2874 \pm 0.0021
SWAN (Gravina et al., 2025)	67.51 \pm 0.39	0.2485 \pm 0.0009
PH-DGN (Heilig et al., 2025)	70.12 \pm 0.45	0.2465 \pm 0.0020
Ours		
TANGO _{GCN}	69.17 \pm 0.31	0.2432 \pm 0.0011
TANGO _{GIN}	68.78 \pm 0.66	0.2440 \pm 0.0024
TANGO _{GATEDGCN}	68.92 \pm 0.40	0.2451 \pm 0.0006
TANGO _{GPS}	70.21 \pm 0.43	0.2422 \pm 0.0014

486 task-driven energy and introduces a novel descent mechanism combining energy gradients with a
 487 learnable tangential component, enabling more flexible dynamics than pure gradient flows.
 488

489 **Learning Energy Functions in Neural Networks.** Energy-based models (EBMs) provide a flexible
 490 framework in deep learning by learning an energy function whose low-energy regions correspond
 491 to areas with high probability for the data. They have been widely used in generative tasks such as
 492 image synthesis (LeCun et al., 2006; Xie et al., 2016; Du & Mordatch, 2019; Guo et al., 2023) and
 493 graph generation (Liu et al., 2021; Reiser et al., 2022). In contrast to these typically unsupervised
 494 settings, our work uses a *task-driven* energy function whose parameters are optimized only through
 495 supervised losses on node or graph labels, rather than via a separate generative objective. The energy
 496 plays the role of a Lyapunov potential that shapes the hidden feature dynamics; we do not require
 497 or assume that its global minima coincide with globally optimal predictions. Relatedly, Lyapunov
 498 functions, classical tools from control theory (Khalil, 2002), have been used in neural networks to
 499 ensure stable learning or inference dynamics, e.g., by enforcing stability in Neural ODEs (Rodriguez
 500 et al., 2022) and GNN-based controllers (Fallin et al., 2025). **Hamiltonian graph flows for adversarial
 501 robustness (Zhao et al., 2023)**, as well as Beltrami flow and neural diffusion on graphs (Chamberlain
 502 et al., 2021a), which use a discretization of the Beltrami flow in joint feature and position space and
 503 induce an implicit rewiring mechanism. Notably, in a Hamiltonian system, the energy is conserved,
 504 which has been shown to be useful for adversarial robustness (Zhao et al., 2023), while a Lyapunov-
 505 stable system implies that close initial conditions evolve along similar trajectories. Lyapunov-stable
 506 neural ODEs have also been studied by regularizing an ODE to obtain Lyapunov-stable equilibria,
 507 an approach that has been found beneficial for adversarial robustness in image classification (Kang
 508 et al., 2021). Our method, TANGO, is complementary to these lines of work: it operates directly on
 509 graph-structured hidden states, learns a task-driven graph energy that is used explicitly as a Lyapunov
 510 function, and couples its gradient flow with a learned tangential component. This tangential flow can
 511 both accelerate energy minimization and maintain informative feature updates even in areas where the
 512 energy landscape is flat. In this way, TANGO bridges and extends these perspectives by introducing a
 513 graph-adaptive, task-specific energy and a novel feature evolution mechanism, which is reflected in
 514 enhanced downstream performance on graph learning tasks, as shown in Section 5.
 515

7 CONCLUSIONS

516 We introduced TANGO, a novel framework for learning graph neural dynamics through the joint
 517 modeling of an energy descent direction and a tangential flow. By interpreting GNN message passing
 518 through the lens of Lyapunov theory and continuous dynamical systems, TANGO unifies task-driven
 519 energy-based modeling with flexible, learnable tangential flows, which allow for better utilization
 520 of the learned energy function by accelerating its minimization. We further show that the tangential
 521 component enables continued feature evolution in flat or ill-conditioned energy landscapes, offering
 522 a compelling advantage over traditional gradient flow approaches. We relate this property to the
 523 mitigation of oversquashing, a persistent challenge in graph learning. Empirically, TANGO achieves
 524 strong performance across 15 synthetic and real-world benchmarks, outperforming message-passing,
 525 diffusion-based, and attention-based GNNs. This work opens several interesting directions for future
 526 research, including the incorporation of higher-order differential operators into the tangential flow
 527 mechanism, and an analysis and regularization techniques for the learned energy landscape, **as well
 528 as studying tangential flows in other domains and applications.**
 529

530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 **Reproducibility Statement.** We will release the full codebase upon acceptance, including model
 541 implementations for TANGO backbones, training and evaluation scripts, and dataset configuration
 542 files. Comprehensive experimental details—covering dataset descriptions, splits, preprocessing,
 543 implementation specifics, parameter budgets, and runtime measurements—are provided in Appendix D.
 544

545 **Ethics Statement.** This work is methodological and evaluated on public benchmark datasets that
 546 are widely used in graph learning research. We followed the licenses and terms of use for each
 547 dataset and did not collect any new human subject data. While our contribution is foundational,
 548 graph representation learning can be applied to sensitive domains. We encourage the responsible
 549 use of graph models, particularly when working with personal, social, or otherwise sensitive data.
 550 Practitioners should ensure appropriate consent and safeguards, and follow established fairness,
 551 accountability, and transparency practices.

552 **Usage of Large Language Models.** Large language models were used only for limited text
 553 editing suggestions. All research ideas, theoretical analysis, algorithm design, code development,
 554 experiments, and original technical writing were conducted by the authors.
 555

556 **REFERENCES**

558 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
 559 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
 560 chitectures via sparsified neighborhood mixing. In *International Conference on Machine Learning*,
 561 pp. 21–29. PMLR, 2019.

562 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
 563 In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=i800PhOCVH2>.

564 Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
 565 Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
 566 smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. *arXiv preprint*
 567 arXiv:2502.10818, 2025. URL <https://arxiv.org/abs/2502.10818>.

568 Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
 569 Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein
 570 structures and interactions using a three-track neural network. *Science*, 373(6557):871–876, 2021.

571 Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
 572 Liò. Directional graph networks. In *International Conference on Machine Learning*, pp. 748–758.
 573 PMLR, 2021.

574 Ali Behrouz and Farnoosh Hashemi. Graph Mamba: Towards Learning on Graphs with State Space
 575 Models, 2024. URL <https://arxiv.org/abs/2402.08678>.

576 Ravinder Bhattoo, Sayan Ranu, and N. M. Anoop Krishnan. Learning articulated rigid body dynamics
 577 with lagrangian graph neural networks. In *Advances in Neural Information Processing Systems*,
 578 volume 35, pp. 29789–29800, 2022. URL <https://arxiv.org/abs/2209.11588>.

579 Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
 580 gnns through the lens of effective resistance. In *Proceedings of the 40th International Conference*
 581 *on Machine Learning*, pp. 2528–2547. PMLR, 2023.

582 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
 583 convolutional networks. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(5):
 584 3950–3957, May 2021. doi: 10.1609/aaai.v35i5.16514. URL <https://ojs.aaai.org/index.php/AAAI/article/view/16514>.

585 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

586 Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
 587 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=vSiix3HPYKSU>.

594 Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. *arXiv preprint*
595 *arXiv:1711.07553*, 2018.

596

597 Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
598 Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.

599 Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. *arXiv preprint*
600 *arXiv:2006.13318*, 2020.

601

602 Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen Dong,
603 and Michael Bronstein. Beltrami flow and neural diffusion on graphs. In *Advances in Neural*
604 *Information Processing Systems*, volume 34, 2021a.

605

606 Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele Rossi, and
607 Michael M Bronstein. GRAND: Graph neural diffusion. In *International Conference on Machine*
608 *Learning (ICML)*, pp. 1407–1418. PMLR, 2021b.

609

610 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph
611 Convolutional Networks. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th*
612 *International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning*
613 *Research*, pp. 1725–1735. PMLR, 13–18 Jul 2020.

614

615 Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
616 ferential equations. In *Advances in Neural Information Processing Systems*, pp. 6571–6583,
617 2018.

618

619 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
620 graph neural network. In *International Conference on Learning Representations*, 2021. URL
621 <https://openreview.net/forum?id=n6j17fLxrP>.

622

623 Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-
624 diffusion networks. In *ICML*, 2023.

625

626 Krzysztof Choromanski, Marcin Kuczynski, Jacek Cieszkowski, Paul L. Beletsky, Konrad M. Smith,
627 Wojciech Gajewski, Gabriel De Masson, Tomasz Z. Broniatowski, Antonina B. Gorny, Leszek M.
628 Kaczmarek, and Stanislaw K. Andrzejewski. Performers: A new approach to scaling transformers.
629 *Proceedings of the 37th International Conference on Machine Learning (ICML)*, pp. 2020–2031,
630 2020. URL <https://arxiv.org/abs/2009.14743>.

631

632 Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosh-
633 erstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten. From block-
634 toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked
635 transformers. In *Proceedings of the 39th International Conference on Machine Learning*, volume
636 162, pp. 3962–3983. PMLR, 2022.

637

638 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
639 Neighbourhood Aggregation for Graph Nets. In *Advances in Neural Information Processing*
640 *Systems*, volume 33, pp. 13260–13271. Curran Associates, Inc., 2020.

641

642 Stephan Dempe. *Foundations of bilevel programming*. Springer, 2002.

643

644 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Liò, and Michael
645 Bronstein. On over-squashing in message passing neural networks: the impact of width, depth, and
646 topology. In *Proceedings of the 40th International Conference on Machine Learning*, ICML’23.
647 JMLR.org, 2023a.

648

649 Francesco Di Giovanni, James Rowbottom, Benjamin P. Chamberlain, Thomas Markovich, and
650 Michael M. Bronstein. Graph neural networks as gradient flows. In *International Conference on*
651 *Learning Representations (ICLR)*, 2023b. URL <https://arxiv.org/abs/2206.10991>.

652

653 Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and Dongmei Zhang. Gbk-
654 gnn: Gated bi-kernel graph neural networks for modeling both homophily and heterophily. In
655 *Proceedings of the ACM Web Conference 2022*, WWW ’22, pp. 1550–1558, New York, NY, USA,
656 2022. Association for Computing Machinery. ISBN 9781450390965. doi: 10.1145/3485447.
657 3512201. URL <https://doi.org/10.1145/3485447.3512201>.

648 Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. In
 649 *Advances in Neural Information Processing Systems*, volume 32, 2019.
 650

651 Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to Graphs.
 652 *AAAI Workshop on Deep Learning on Graphs: Methods and Applications*, 2021.
 653

654 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 655 Graph neural networks with learnable structural and positional representations. In *International
 656 Conference on Learning Representations*, 2022a. URL <https://openreview.net/forum?id=wTTjnvGphYj>.
 657

658 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
 659 and Dominique Beaini. Long Range Graph Benchmark. In *Advances in Neural Information
 660 Processing Systems*, volume 35, pp. 22326–22340. Curran Associates, Inc., 2022b.
 661

662 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
 663 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24
 (43):1–48, 2023.
 664

665 Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph neural
 666 networks motivated by partial differential equations. *Advances in Neural Information Processing
 667 Systems*, 34:3836–3849, 2021.
 668

669 Moshe Eliasof, Eldad Haber, and Eran Treister. Feature transportation improves graph neural
 670 networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 11874–11882, 2024a.
 671

672 Moshe Eliasof, Eldad Haber, Eran Treister, and Carola-Bibiane B Schönlieb. On the temporal domain
 673 of differential equation inspired graph neural networks. In *International Conference on Artificial
 674 Intelligence and Statistics*, pp. 1792–1800. PMLR, 2024b.
 675

676 Brandon C Fallin, Cristian F Nino, Omkar Sudhir Patil, Zachary I Bell, and Warren E Dixon.
 677 Lyapunov-based graph neural networks for adaptive control of multi-agent systems. *arXiv preprint
 arXiv:2503.15360*, 2025.
 678

679 Ben Finkelshtein, Xingyue Huang, Michael M. Bronstein, and Ismail Ilkan Ceylan. Cooperative
 680 Graph Neural Networks. In *Forty-first International Conference on Machine Learning*, 2024. URL
 681 <https://openreview.net/forum?id=zQcqxCuoxD>.
 682

683 Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for graph rep-
 684 resentation learning. In J. Vanschoren and S. Yeung (eds.), *Proceedings of the Neural Information
 685 Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021.
 686

687 Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks: A
 688 unified framework for solving pde-governed forward and inverse problems. *Computer Methods in
 689 Applied Mechanics and Engineering*, 390:114502, 2022.
 690

691 Johannes Gasteiger, Stefan Weiß enberger, and Stephan Günnemann. Diffusion Improves Graph
 692 Learning. In *Advances in Neural Information Processing Systems*, volume 32. Curran Associates,
 693 Inc., 2019.
 694

695 Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros. On the trade-
 696 off between over-smoothing and over-squashing in deep graph neural networks. In *Proceedings of
 697 the 32nd ACM international conference on information and knowledge management*, pp. 566–576,
 698 2023.
 699

700 Alessio Gravina, Davide Baci, and Claudio Gallicchio. Anti-Symmetric DGN: a stable architecture
 701 for Deep Graph Networks. In *The Eleventh International Conference on Learning Representations*,
 702 2023. URL <https://openreview.net/forum?id=J3Y7cgZ0OS>.
 703

704 Alessio Gravina, Moshe Eliasof, Claudio Gallicchio, Davide Baci, and Carola-Bibiane Schönlieb.
 705 On oversquashing in graph neural networks through the lens of dynamical systems. In *The 39th
 706 Annual AAAI Conference on Artificial Intelligence*, 2025.

702 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
 703 state spaces. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=uYLFoz1vlAC>.

704

705

706 Qiu Shan Guo, Yifan Zhang, Yifan Wang, Yizhou Wang, and Hongsheng Li. Egc: Image gener-
 707 ation and classification via a diffusion energy-based model. In *Proceedings of the IEEE/CVF*
 708 *International Conference on Computer Vision*, pp. 12345–12354, 2023.

709

710 Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
 711 Dynamically rewired message passing with delay. In *International Conference on Machine*
 712 *Learning*, pp. 12252–12267. PMLR, 2023.

713

714 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 715 In *Proceedings of the 31st International Conference on Neural Information Processing Systems*,
 716 NIPS’17, pp. 1025–1035. Curran Associates Inc., 2017. ISBN 9781510860964.

717

718 Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural
 719 networks: Neural diffusion and beyond. *arXiv preprint arXiv:2310.10121*, 2023.

720

721 Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, and Davide Bacciu. Port-
 722 Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks. In
 723 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=03EkqSCKuO>.

724

725 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

726

727 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
 728 Strategies for Pre-training Graph Neural Networks. In *International Conference on Learning*
 729 *Representations*, 2020. URL <https://openreview.net/forum?id=HJ1WWJSFDH>.

730

731 Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
 732 a replacement for graph convolution. In *Proceedings of the 28th ACM SIGKDD Conference on*
 733 *Knowledge Discovery and Data Mining*, pp. 655–665, 2022.

734

735 Adarsh Jamadandi, Celia Rubio-Madrigal, and Rebekka Burkholz. Spectral graph pruning against
 736 over-squashing and over-smoothing. In *Advances in Neural Information Processing Systems*, 2024.

737

738 Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ode with lyapunov-stable
 739 equilibrium points for defending against adversarial attacks. *Advances in Neural Information*
 740 *Processing Systems*, 34:14925–14937, 2021.

741

742 Hassan K. Khalil. *Nonlinear Systems*. Prentice Hall, Upper Saddle River, NJ, 3rd edition, 2002.
 743 ISBN 978-0130673893.

744

745 Hassan K Khalil and Jessy W Grizzle. *Nonlinear systems*, volume 3. Prentice hall Upper Saddle
 746 River, NJ, 2002.

747

748 T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. *Proceed-
 749 ings of the International Conference on Learning Representations*, 2016.

750

751 Kezhi Kong, Juhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein. GOAT:
 752 A global transformer on large-scale graphs. In Andreas Krause, Emma Brunskill, Kyunghyun
 753 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th*
 754 *International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning*
 755 *Research*, pp. 17375–17390. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/kong23a.html>.

756

757 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 758 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing*
 759 *Systems*, 34:21618–21629, 2021a.

756 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 757 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing*
 758 *Systems*, 34:21618–21629, 2021b.

759 Sven Kreuzer, Michael Reiner, and Stefan D. D. De Villiers. Sant: Structural attention networks for
 760 graphs. *Proceedings of the 38th International Conference on Machine Learning (ICML)*, 2021c.

762 Nathan Lawrence, Philip Loewen, Michael Forbes, Johan Backstrom, and Bhushan Gopaluni. Almost
 763 surely stable deep dynamics. *Advances in neural information processing systems*, 33:18942–18953,
 764 2020.

765 Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu-Jie Huang. A tutorial on
 766 energy-based learning. *Predicting structured data*, 1(0):1–59, 2006.

768 Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
 769 Finding global homophily in graph neural networks when meeting heterophily. In Kamalika
 770 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
 771 *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 13242–13256. PMLR, 17–23 Jul 2022. URL
 772 <https://proceedings.mlr.press/v162/li22ad.html>.

773 Daniil Likhobaba, Nikita Pavlichenko, and Dmitry Ustalov. Toloker Graph: Interaction of Crowd
 774 Annotators, February 2023. URL <https://doi.org/10.5281/zenodo.7620796>.

776 Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. GraphEBM: Molecular graph generation
 777 with energy-based models. In *Energy Based Models Workshop - ICLR 2021*, 2021. URL https://openreview.net/forum?id=Gc51PtL_zYw.

779 Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-
 780 Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, and Stefanie Jegelka. The
 781 heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and
 782 challenges, 2024. URL <https://arxiv.org/abs/2407.09618>.

784 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
 785 Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
 786 *International Conference on Machine Learning*, pp. 23321–23337. PMLR, 2023.

787 Thomas Markovich. Qdc: Quantum diffusion convolution kernels on graphs, 2023.

789 Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph laplacian
 790 approach to oversmoothing. In *Thirty-seventh Conference on Neural Information Processing*
 791 *Systems*, 2023. URL <https://openreview.net/forum?id=ks7ED7eE74>.

792 Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in
 793 graph neural networks. *Journal of Computational Science*, 62:101695, 2022. ISSN 1877-7503. doi:
 794 <https://doi.org/10.1016/j.jocs.2022.101695>. URL <https://www.sciencedirect.com/science/article/pii/S1877750322000990>.

796 Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
 797 transformers. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 798 <https://openreview.net/forum?id=HhbqHBBrfZ>.

800 J. Nocedal and S. Wright. *Numerical Optimization*. Springer, New York, 1999.

801 Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
 802 *arXiv preprint arXiv:1905.09550*, 2019.

803 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
 804 node classification. In *International Conference on Learning Representations*, 2020. URL
 805 <https://openreview.net/forum?id=S1ldO2EFPr>.

807 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 808 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 809 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 2019.

810 Jie Peng, Runlin Lei, and Zhewei Wei. Beyond over-smoothing: Uncovering the trainability chal-
 811 lenges in deep graph neural networks. In *Proceedings of the 33rd ACM International Conference*
 812 *on Information and Knowledge Management*, pp. 1878–1887, 2024.

813 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
 814 A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
 815 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=tJbbQfw-5wv>.

816 Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
 817 Park. Graph neural ordinary differential equations. *arXiv preprint arXiv:1911.07532*, 2019. URL
 818 <https://arxiv.org/abs/1911.07532>.

819 Petr Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
 820 Beaini. Recipe for a general, powerful, scalable graph transformer (graphgps). In *Advances*
 821 *in Neural Information Processing Systems*, volume 35, pp. 28877–28890, 2022. URL <https://arxiv.org/abs/2205.12454>.

822 Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 823 minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. *Advances in Neural*
 824 *Information Processing Systems*, 35, 2022.

825 Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
 826 Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for
 827 materials science and chemistry. *Communications Materials*, 3(1):93, 2022.

828 Ivan Dario Jimenez Rodriguez, Aaron Ames, and Yisong Yue. Lyanet: A lyapunov framework for
 829 training neural odes. In *International conference on machine learning*, pp. 18687–18703. PMLR,
 830 2022.

831 T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
 832 Graph-coupled oscillator networks. In *International Conference on Machine Learning*, pp. 18888–
 833 18909. PMLR, 2022.

834 T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmoothing in
 835 Graph Neural Networks. *arXiv preprint arXiv:2303.10993*, 2023.

836 Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
 837 *Journal of Mathematical Imaging and Vision*, 62:352–364, 2020.

838 Hans M Senn and Walter Thiel. Qm/mm methods for biomolecular systems. *Angewandte Chemie*
 839 *International Edition*, 48(7):1198–1229, 2009.

840 Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
 841 gnns: Current methods, benchmarks and challenges. *arXiv preprint arXiv:2311.07073*, 2023.

842 Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
 843 prediction: Unified message passing model for semi-supervised classification. In Zhi-Hua Zhou
 844 (ed.), *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*,
 845 pp. 1548–1554. International Joint Conferences on Artificial Intelligence Organization, 8 2021.
 846 doi: 10.24963/ijcai.2021/214. URL <https://doi.org/10.24963/ijcai.2021/214>.
 847 Main Track.

848 Behzad Shirzad, Amir M. Rahmani, and Marzieh Aghaei. Exphormer: Sparse attention for graphs.
 849 *Proceedings of the 40th International Conference on Machine Learning (ICML)*, 2023.

850 Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
 851 the long-range graph benchmark. In *The Second Learning on Graphs Conference*, 2023a. URL
 852 <https://openreview.net/forum?id=rIUjwxc51j>.

853 Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
 854 hierarchy: Graph learning beyond message passing. *Transactions on Machine Learning Research*,
 855 2023b. ISSN 2835-8856. URL <https://openreview.net/forum?id=vgXnEYeWVY>.

864 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
 865 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *International*
 866 *Conference on Learning Representations*, 2022. URL [https://openreview.net/forum?](https://openreview.net/forum?id=7UmjRGzp-A)
 867 [id=7UmjRGzp-A](https://openreview.net/forum?id=7UmjRGzp-A).

868 Csaba Toth, Darrick Lee, Celia Hacker, and Harald Oberhauser. Capturing graphs with hypo-elliptic
 869 diffusions. In *Advances in Neural Information Processing Systems*, 2022.

870 A. Vaswani et al. Attention is all you need. *Advances in Neural Information Processing Systems*, 30,
 871 2017.

872 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 873 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 874 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.

875 Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph
 876 sequence modeling with selective state spaces. *arXiv preprint arXiv:2402.00789*, 2024a.

877 Kun Wang, Guibin Zhang, Xinnan Zhang, Junfeng Fang, Xun Wu, Guohao Li, Shirui Pan, Wei
 878 Huang, and Yuxuan Liang. The heterophilic snowflake hypothesis: Training and empowering
 879 gnn for heterophilic graphs. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge
 880 Discovery and Data Mining*, KDD '24, pp. 3164–3175, New York, NY, USA, 2024b. Association
 881 for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671791.

882 Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Kamala
 883 Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
 884 (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 885 *Proceedings of Machine Learning Research*, pp. 23341–23362. PMLR, 17–23 Jul 2022. URL
 886 <https://proceedings.mlr.press/v162/wang22am.html>.

887 Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Dissecting the Diffusion Process in
 888 Linear Graph Convolutional Networks. In *Advances in Neural Information Processing Systems*,
 889 volume 34, pp. 5758–5769. Curran Associates, Inc., 2021.

890 Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. ACMP: Allen-cahn message
 891 passing with attractive and repulsive forces for graph neural networks. In *The Eleventh International
 892 Conference on Learning Representations*, 2023. URL [https://openreview.net/forum?](https://openreview.net/forum?id=4fZc_79Lrqs)
 893 [id=4fZc_79Lrqs](https://openreview.net/forum?id=4fZc_79Lrqs).

894 Peter G Wolynes. Recent successes of the energy landscape theory of protein folding and function.
 895 *Quarterly reviews of biophysics*, 38(4):405–410, 2005.

896 Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In *Proceedings
 897 of the 37th International Conference on Machine Learning*, pp. 10432–10441, 2020. URL
 898 <https://proceedings.mlr.press/v119/xhonneux20a.html>.

899 Jianwen Xie, Yuting Lu, Ruiqi Gao, Honglak Zhuang, and Ying Nian Wu. A theory of generative
 900 convnet. *International Conference on Machine Learning*, pp. 2635–2644, 2016.

901 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 902 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

903 Zhitao Ying and Jure Leskovec. Graphomer: A transformer for graphs. *Proceedings of the 43rd
 904 International ACM SIGIR Conference on Research and Development in Information Retrieval*,
 905 2021.

906 Manzil Zaheer, Guru prasad G. H., Lihong Wang, S. V. K. N. L. Wang, Yujia Li, Jakub Konečný,
 907 Shalmali Joshi, Danqi Chen, Jennifer R. R., Zhenyu Zhang, Shalini Devaraj, and Srinivas
 908 Narayanan. Bigbird: Transformers for longer sequences. *Proceedings of the 37th Inter-
 909 national Conference on Machine Learning (ICML)*, pp. 12168–12178, 2020. URL <https://arxiv.org/abs/2007.14062>.

918 Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
919 via graph biconnectivity. In *The Eleventh International Conference on Learning Representations*,
920 2023. URL <https://openreview.net/forum?id=r9hNv76KoT3>.

921 Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Adversarial robustness
922 in graph neural networks: A hamiltonian approach. *Advances in Neural Information Processing
923 Systems*, 36:3338–3361, 2023.

925 Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN
926 with local structure awareness. In *International Conference on Learning Representations*, 2022.
927 URL https://openreview.net/forum?id=Mspk_WYKoEH.

928 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
929 homophily in graph neural networks: Current limitations and effective designs. In H. Larochelle,
930 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing
931 Systems*, volume 33, pp. 7793–7804. Curran Associates, Inc., 2020.

933 Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai
934 Koutra. Graph neural networks with heterophily. *Proceedings of the AAAI Conference on
935 Artificial Intelligence*, 35(12):11168–11176, May 2021. doi: 10.1609/aaai.v35i12.17332. URL
936 <https://ojs.aaai.org/index.php/AAAI/article/view/17332>.

937 Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, and James S Duncan. Ordinary differential equations
938 on graph networks. 2020.

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 A ADDITIONAL RELATED WORK
973

974 **Oversquashing in Graph Learning.** Graph neural networks (GNNs) typically operate through
975 message-passing mechanisms, aggregating information from local neighborhoods. While effective
976 in capturing short-range dependencies, this design often leads to *oversquashing*, a phenomenon
977 where signals from distant nodes are compressed into fixed-size representations, impeding the flow of
978 long-range information (Alon & Yahav, 2021; Di Giovanni et al., 2023a; Topping et al., 2022). This
979 limitation poses a challenge in domains that demand rich global context, such as bioinformatics (Baek
980 et al., 2021; Dwivedi et al., 2022b) and heterophilic graphs (Luan et al., 2024; Wang et al., 2024b).
981 A range of strategies have been proposed to mitigate oversquashing. *Graph rewiring* approaches,
982 such as SDRF (Topping et al., 2022), densify the graph to enhance connectivity prior to training. In
983 contrast, methods like GRAND (Chamberlain et al., 2021b), BLEND (Chamberlain et al., 2021a),
984 and DRew (Gutteridge et al., 2023) adjust the graph structure dynamically based on node features.
985 *Transformer-based models* offer another promising route by leveraging global attention to enable
986 direct, long-range message passing. Examples include SAN (Kreuzer et al., 2021c), Graphomer (Ying
987 & Leskovec, 2021), and GPS (Rampášek et al., 2022), which incorporate positional encodings, such
988 as Laplacian eigenvectors (Dwivedi et al., 2023) and random walk structural embeddings (Dwivedi
989 et al., 2022a) to preserve structural identity. However, the quadratic complexity of full attention in
990 these models raises scalability concerns, motivating interest in sparse attention mechanisms (Zaheer
991 et al., 2020; Choromanski et al., 2020; Shirzad et al., 2023). An alternative line of work explores
992 *non-local dynamics* to enhance expressivity without relying solely on attention. FLODE (Maskey
993 et al., 2023) employs fractional graph operators, QDC (Markovich, 2023) uses quantum diffusion
994 processes, and G2TN (Toth et al., 2022) models explicit diffusion paths to propagate information
995 more effectively. While these approaches address the oversquashing bottleneck, they often come with
996 increased computational demands due to dense propagation operators. For a broader overview of these
997 techniques, see Shi et al. (2023). We note that the challenge of modeling long-range dependencies
998 also arises in other domains, such as sequential architectures (Hochreiter & Schmidhuber, 1997; Gu
999 et al., 2022).

1000 **Optimization Techniques.** The formulation of TANGO draws parallel with concepts that have
1001 been explored in the optimization literature, particularly in the design of dynamical systems that
1002 balance expressivity and convergence. While traditional gradient descent provides a robust and
1003 interpretable mechanism for minimizing energy functions, its convergence rate can be limited in
1004 poorly conditioned settings (Boyd & Vandenberghe, 2004; Nocedal & Wright, 1999), which frequently
1005 arise in graph-based problems due to structural bottlenecks (Alon & Yahav, 2021; Topping et al.,
1006 2022). Second-order approaches, such as Newton’s method, are known to accelerate convergence
1007 by incorporating curvature information, albeit at increased computational cost. The combination of
1008 energy gradient descent and a learned tangential component in TANGO suggests a learnable departure
1009 from purely first-order schemes. Rather than explicitly computing or approximating the Hessian,
1010 our framework enables the model to learn corrective update directions that are orthogonal to the
1011 descent path. This design implicitly aligns with the motivations behind quasi-Newton techniques like
1012 conjugate gradients and LBFGS (Nocedal & Wright, 1999), which aim to improve convergence by
1013 leveraging directional information that complements the gradient. From this perspective, TANGO can
1014 be viewed as embedding optimization-inspired dynamics within graph learning frameworks. This
1015 is particularly relevant in scenarios affected by oversquashing (Di Giovanni et al., 2023a), where
1016 effective feature transmission often requires departing from strictly local, gradient-driven updates. By
1017 allowing energy-preserving tangential flows, TANGO introduces flexibility reminiscent of structured
1018 optimization methods, adapted to the graph learning domain.

1019 B PROOFS OF THEORETICAL RESULTS
1020

1021 In this section, we restate the theoretical results from Section 4 and provide their proofs. As in the
1022 main text, we assume the following throughout: (i) the input graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is connected; (ii) the
1023 energy function $V_{\mathcal{G}}(\mathbf{H}(t))$ is twice differentiable and bounded from below. For simplicity of notation,
1024 throughout this section, we omit the time or layer scripts and use the term \mathbf{H} to denote node features
1025 when possible.

1026 **Proposition 1** (Energy Dissipation). *Suppose $\alpha_G \geq 0$ and $\|\nabla_{\mathbf{H}} V_G(\mathbf{H})\|^2 > 0$. Then the energy*
 1027 *$V_G(\mathbf{H})$ is non-increasing along trajectories of Equation equation 2. Specifically,*
 1028

$$\begin{aligned} \frac{d}{dt} V_G(\mathbf{H}) &= -\alpha_G(\mathbf{H}) \|\nabla_{\mathbf{H}} V_G(\mathbf{H})\|^2 + \beta_G(\mathbf{H}) \langle T_{V_G}(\mathbf{H}), \nabla_{\mathbf{H}} V_G(\mathbf{H}) \rangle \\ &= -\alpha_G(\mathbf{H}) \|\nabla_{\mathbf{H}} V_G(\mathbf{H})\|^2 \leq 0. \end{aligned}$$

1033 *Proof.* By the chain rule,

$$\frac{d}{dt} V_G(\mathbf{H}) = \left\langle \nabla_{\mathbf{H}} V_G(\mathbf{H}), \frac{d\mathbf{H}}{dt} \right\rangle.$$

1037 Substituting the dynamics of Equation equation 2:

$$\begin{aligned} \frac{d}{dt} V_G(\mathbf{H}) &= \langle \nabla_{\mathbf{H}} V_G(\mathbf{H}), -\alpha_G(\mathbf{H}) \nabla_{\mathbf{H}} V_G(\mathbf{H}) + \beta_G(\mathbf{H}) T_{V_G}(\mathbf{H}) \rangle \\ &= -\alpha_G(\mathbf{H}) \|\nabla_{\mathbf{H}} V_G(\mathbf{H})\|^2 + \beta_G(\mathbf{H}) \langle T_{V_G}(\mathbf{H}), \nabla_{\mathbf{H}} V_G(\mathbf{H}) \rangle. \end{aligned}$$

1042 As discussed in Section 3, we have by design, that

$$\langle T_{V_G}(\mathbf{H}), \nabla_{\mathbf{H}} V_G(\mathbf{H}) \rangle = 0.$$

1046 Therefore,

$$\frac{d}{dt} V_G(\mathbf{H}) = -\alpha_G(\mathbf{H}) \|\nabla_{\mathbf{H}} V_G(\mathbf{H})\|^2.$$

1049 Because $\alpha_G(\mathbf{H}) \geq 0$ by design, the energy is non-increasing, and assuming $\alpha_G(\mathbf{H}) > 0$, the system
 1050 is dissipative, i.e., its energy is decreasing. \square

1052 **Proposition 2** (TANGO can Evolve Features in Flat Energy Landscapes). *Suppose $\nabla_{\mathbf{H}} V_G(\mathbf{H}) = 0$,
 1053 and $T_{V_G}(\mathbf{H}) \neq 0$, then the TANGO flow in Equation (2) reads:*

$$\frac{d\mathbf{H}}{dt} = \beta_G(\mathbf{H}) T_{V_G}(\mathbf{H}).$$

1057 *This implies that in contrast to gradient flows, the dynamics of TANGO can evolve even in regions
 1058 where the energy landscape is flat.*

1060 *Proof.* Because $\nabla_{\mathbf{H}} V_G(\mathbf{H}) = 0$, the first term in Equation (2) vanishes, and the TANGO dynamical
 1061 system reads:

$$\frac{d\mathbf{H}}{dt} = \beta_G(\mathbf{H}) T_{V_G}(\mathbf{H}),$$

1064 Assuming that $T_{V_G}(\mathbf{H}) \neq 0$, TANGO can continue evolving node features also in cases where
 1065 $\nabla_{\mathbf{H}} V_G(\mathbf{H}) = 0$, i.e., where the energy landscape is flat. \square

1067 **Proposition 3** (Convergence of Gradient Descent of a Scalar Function, Nocedal & Wright (1999)).
 1068 Let $V_G(\cdot)$ be a scalar function and let $\mathbf{H}^{(\ell+1)} = \mathbf{H}^{(\ell)} - \alpha_G^{(\ell)}(\mathbf{H}^{(\ell)}) \nabla_{\mathbf{H}} V_G(\mathbf{H}^{(\ell)})$ be a gradient-
 1069 descent iteration of the energy $V_G(\cdot)$. Then, a linear convergence is obtained, with convergence
 1070 rate:

$$r = \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}},$$

1074 where λ_{\max} is the maximal eigenvalue, and in the case of problems that involve the graph Laplacian,
 1075 λ_{\min} is the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the Hessian of $V_G(\cdot)$.

1076 **Proposition 4** (TANGO can learn a Quadratic Convergence Direction). *Assume for simplicity that
 1077 $\beta_G = 1$, and that the Hessian of V_G is invertible. Let $\mathbf{D} = \alpha_G(\mathbf{H}^{(\ell)}) \nabla_{\mathbf{H}} V_G(\mathbf{H}^{(\ell)}) + T_{V_G}(\mathbf{H}^{(\ell)})$ with
 1078 $\langle T_{V_G}(\mathbf{H}^{(\ell)}), \widehat{\nabla}_{\mathbf{H}} V_G(\mathbf{H}^{(\ell)}) \rangle = 0$. Then, it is possible to learn a direction $T_{V_G}(\mathbf{H}^{(\ell)})$ and a step size
 1079 α_G such that \mathbf{D} is the Newton direction, $\mathbf{N} = (\nabla^2 V_G)^{-1} \nabla V_G$.*

1080 *Proof.* We aim to construct a direction $\mathbf{D} = \alpha_{\mathcal{G}}(\mathbf{H}) \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) + T_{V_{\mathcal{G}}}(\mathbf{H})$ that matches the Newton
 1081 direction:

$$1082 \quad \mathbf{N} = (\nabla_{\mathbf{H}}^2 V_{\mathcal{G}}(\mathbf{H}))^{-1} \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}).$$

1083 Recall that by design, we have that $T_{V_{\mathcal{G}}}(\mathbf{H})$ is orthogonal to the energy gradient, i.e.,
 1084 $\langle T_{V_{\mathcal{G}}}(\mathbf{H}), \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) \rangle = 0$. Then, we can express a Newton direction by the decomposition:

$$1085 \quad \mathbf{N} = \alpha_{\mathcal{G}}(\mathbf{H}) \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) + T_{V_{\mathcal{G}}}(\mathbf{H}).$$

1086 Solving for the orthogonal component yields:

$$1088 \quad T_{V_{\mathcal{G}}}(\mathbf{H}) = \mathbf{N} - \alpha_{\mathcal{G}}(\mathbf{H}) \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}).$$

1089 To enforce orthogonality, we require:

$$1090 \quad \langle \mathbf{N} - \alpha_{\mathcal{G}}(\mathbf{H}) \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}), \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) \rangle = 0.$$

1091 Expanding and simplifying, we find:

$$1093 \quad \langle \mathbf{N}, \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) \rangle - \alpha_{\mathcal{G}}(\mathbf{H}) \|\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H})\|^2 = 0,$$

1094 and the optimal step size is given by:

$$1095 \quad \alpha_{\mathcal{G}}(\mathbf{H}) = \frac{\langle \mathbf{N}, \nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}) \rangle}{\|\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H})\|^2},$$

1097 showing that it is possible to learn a Newton direction, i.e., a quadratic energy convergence direction. \square

1100 C COMPLEXITY AND RUNTIMES

1103 **Complexity.** Each step of TANGO requires computing the gradient of the learned energy function
 1104 $V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$, that is defined in Equation (7). This involves two main operations: (i) forward and
 1105 backward passes through the energy network ENERGYGNN, which contains L_{energy} message-passing
 1106 layers and an MLP; and (ii) automatic differentiation to compute $\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$ with respect to the
 1107 input node features. In parallel, the tangential flow direction $T_{V_{\mathcal{G}}}(\mathbf{H}^{(\ell)})$ is obtained by projecting the
 1108 vector field $\mathbf{M}^{(\ell)}$ computed by a separate TANGENTGNN with L_{tangent} layers onto the orthogonal
 1109 complement of the normalized energy gradient, as shown in Equation (3). This projection is of
 1110 computational cost of $O(nd)$ per step, where $n = |\mathcal{V}|$ and d is the feature dimensionality. In addition,
 1111 scalar coefficients $\alpha_{\mathcal{G}}$ and $\beta_{\mathcal{G}}$ are computed from pooled node features using MLPs (Equations (8)
 1112 and (10)). Assuming both ENERGYGNN and TANGENTGNN are message-passing architectures
 1113 with linear complexity in the number of nodes and edges, and setting $L_{\text{energy}} = L_{\text{tangent}}$, the total
 1114 complexity per layer becomes $O(L_{\text{gnn}} \cdot (n + m) \cdot d)$, where L_{gnn} is the number of GNN layers used
 1115 in each subnetwork and $m = |\mathcal{E}|$ is the number of edges. Unrolling the dynamics over L steps, the
 1116 overall computational complexity of TANGO is:

$$1117 \quad O(L \cdot L_{\text{gnn}} \cdot (|\mathcal{V}| + |\mathcal{E}|) \cdot d).$$

1118 **Memory.** The memory footprint of TANGO is dominated by storing activations for backpropagation,
 1119 as in any deep GNN. Using two subnetworks of the same backbone type (ENERGYGNN and
 1120 TANGENTGNN) roughly doubles the number of feature tensors that need to be kept in memory.
 1121 Nonetheless, we match the overall parameter budget to the underlying backbone by reducing widths
 1122 where needed (see Table 7), so that the resulting models remain comparable in size. The asymptotic
 1123 memory complexity remains linear in the number of nodes and edges and in the number of unrolled
 1124 steps: the additional cost of computing $\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$ is handled by standard automatic differentiation,
 1125 which is already widely used in graph models that differentiate through intermediate node states
 1126 or energies. In practice, we did not observe memory blow-up or numerical instabilities due to the
 1127 projection in Equation (3); all reported configurations train within the same hardware constraints as
 1128 the corresponding backbones.

1129 **Parameter count comparison.** To ensure a fair comparison, we match the parameter budget of each
 1130 backbone when instantiating TANGO. Table 4 reports parameter counts alongside mean performance
 1131 and standard deviation across datasets and metrics. As shown, TANGO uses a comparable number
 1132 of parameters to its corresponding backbones while achieving consistently stronger results. This
 1133 protocol allows us to isolate the contribution of our Lyapunov-guided dynamics in TANGO from the
 1134 number of parameters.

1134 Table 4: Comparison of models across datasets. Performance is reported as mean \pm standard
 1135 deviation, with the metric indicated; \downarrow means lower is better and \uparrow means higher is better.

1137	Dataset	Model	Params	Performance (metric)
1138	ZINC-12k	GatedGCN	503,013	0.282 ± 0.015 (MAE \downarrow)
1139		TANGO	503,409	0.128 ± 0.011 (MAE \downarrow)
1140		GPS	423,717	0.070 ± 0.004 (MAE \downarrow)
1141		TANGO	422,947	0.062 ± 0.005 (MAE \downarrow)
1142	Roman-Empire	GatedGCN	541,086	74.46 ± 0.54 (Acc \uparrow)
1143		TANGO	520,822	91.89 ± 0.30 (Acc \uparrow)
1144		GPS	524,218	87.04 ± 0.58 (Acc \uparrow)
1145		TANGO	525,016	91.08 ± 0.57 (Acc \uparrow)
1146	Peptides-func	GatedGCN	496,184	58.64 ± 0.77 (AP \uparrow)
1147		TANGO	496,590	68.92 ± 0.40 (AP \uparrow)
1148		GPS	504,362	65.35 ± 0.41 (AP \uparrow)
1149		TANGO	502,938	70.21 ± 0.43 (AP \uparrow)

1151 Table 5: Training runtime comparison per epoch (ms) across datasets and baselines. TANGO achieves
 1152 a similar runtime to other methods. We note that while TANGO requires more computation time than
 1153 its backbone GNN, it remains efficient and within the same order of magnitude of computations as
 1154 other methods, while offering improved performance as shown in the results in Tables 1, 4 and 9.

1156	Model	Questions	Roman-Empire	ZINC-12k	Diameter
1157	GIN	108.72	23.32	382.63	450.21
1158	GCN	69.77	14.96	249.45	294.35
1159	GatedGCN	129.92	27.86	453.76	537.57
1160	GAT	112.40	24.12	398.02	471.40
1161	GPS	429.08	92.08	1506.05	1822.03
1162	GRIT	520.00	111.57	1865.06	2163.81
1163	TANGO-GatedGCN	184.98	39.66	653.29	778.22
1164	TANGO-GPS	694.27	148.96	2435.85	2899.24

1166
 1167 **Runtimes.** We benchmark training runtimes per iteration for TANGO instantiated on two backbones
 1168 (GatedGCN and GPS) and compare against standard baselines across four datasets: Questions,
 1169 Roman-Empire, ZINC-12k, and Diameter. The measurements are reported in Table 5. It is evident
 1170 that TANGO introduces a moderate overhead relative to its corresponding backbone while remaining
 1171 in the same order of magnitude as commonly used architectures. In particular, TANGO-GatedGCN
 1172 is slower than GatedGCN but substantially faster than GPS-class methods, and TANGO-GPS scales
 1173 proportionally with GPS. All measurements were taken under matched hyperparameters with 256
 1174 channels, 8 layers on a single NVIDIA RTX6000 Ada GPU with 48 GB memory.

1177 D EXPERIMENTAL DETAILS

1178 In this section, we provide additional experimental details.

1181 **Computational Resources.** Our experiments are run on NVIDIA RTX6000 Ada with 48GB of
 1182 memory. Our code is implemented in PyTorch Paszke et al. (2019), and will be publicly released
 1183 upon acceptance.

1184 **Baselines.** We consider different classical and state-of-the-art GNN baselines. Specifically:

- 1186 • Classical MPNNs, i.e., GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017),
 1187 GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2018), GIN (Xu et al., 2019),
 1188 GINE (Hu et al., 2020), GCNII (Chen et al., 2020), and CoGNN (Finkelshtein et al., 2024);

- Heterophily-specific models, i.e., H2GCN (Zhu et al., 2020), CPGNN (Zhu et al., 2021), FAGCN (Bo et al., 2021), GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022), GloGNN Li et al. (2022), GBK-GNN (Du et al., 2022), and JacobiConv (Wang & Zhang, 2022);
- DE-DGNs, i.e., DGC (Wang et al., 2021), GRAND (Chamberlain et al., 2021b), GraphCON (Rusch et al., 2022), A-DGN (Gravina et al., 2023), and SWAN (Gravina et al., 2025);
- Graph Transformers, i.e., Transformer (Vaswani et al., 2017; Dwivedi & Bresson, 2021), GT (Shi et al., 2021), SAN (Kreuzer et al., 2021b), GPS (Rampášek et al., 2022), GOAT (Kong et al., 2023), and Exphormer (Shirzad et al., 2023);
- Higher-Order DGNs, i.e., DIGL (Gasteiger et al., 2019), MixHop (Abu-El-Haija et al., 2019), and DRew (Gutteridge et al., 2023).
- SSM-based GNN, i.e., Graph-Mamba (Wang et al., 2024a), GMN (Behrouz & Hashemi, 2024), and GPS+Mamba (Behrouz & Hashemi, 2024)

D.1 FORWARD EULER DISCRETIZATION AND STABILITY

Recall that the continuous-time dynamics of TANGO are given by Equation (2) where V_G is a non-negative Lyapunov energy, $\nabla_{\mathbf{H}} V_G$ is its gradient with respect to node features, and T_{V_G} is constrained to be orthogonal to this gradient. In discrete depth, we implement TANGO using the forward Euler residual update as shown in Equation (4) for $\ell = 0, \dots, L-1$, with step size $\epsilon > 0$. In classical numerical analysis, explicit Euler schemes can be fragile when applied to a *fixed* stiff ODE: for a given vector field, only a restricted range of step sizes yields stable trajectories. In TANGO, however, we do not discretize a predetermined ODE. Instead, the vector field is *learned*, while ϵ is selected from a small grid. If a particular combination of parameters and step size led to severe instability (for example exploding feature norms or chaotic trajectories), the resulting network would fail to train and would not attain the reported validation and test performance. The fact that TANGO trains reliably across all benchmarks, including deep networks (as shown in Appendix E.2), empirically indicates that the learned dynamics lie in a regime where the forward-Euler discretization is numerically well behaved.

Our continuous-time analysis in Section 4 shows that, under the assumptions of Proposition 1, the energy $V_G(\mathbf{H}(t))$ is non-increasing along trajectories of Equation (2). The forward Euler update Equation (4) inherits this behavior up to second-order terms in ϵ . Let us assume that V_G is twice continuously differentiable and that its Hessian is bounded in operator norm by L_V on the subset of feature space visited during training. A second-order Taylor expansion of V_G along the direction $\epsilon F(\mathbf{H}^{(\ell)})$ gives

$$V_G(\mathbf{H}^{(\ell+1)}) = V_G(\mathbf{H}^{(\ell)}) + \epsilon \left\langle \nabla_{\mathbf{H}} V_G(\mathbf{H}^{(\ell)}), F(\mathbf{H}^{(\ell)}) \right\rangle + \frac{\epsilon^2}{2} F(\mathbf{H}^{(\ell)})^\top \nabla_{\mathbf{H}}^2 V_G(\boldsymbol{\xi}^{(\ell)}) F(\mathbf{H}^{(\ell)}), \quad (13)$$

for some intermediate point $\boldsymbol{\xi}^{(\ell)}$ on the line segment between $\mathbf{H}^{(\ell)}$ and $\mathbf{H}^{(\ell+1)}$. By construction, T_{V_G} is orthogonal to $\nabla_{\mathbf{H}} V_G$, and $\alpha_G(\mathbf{H}^{(\ell)}) \geq 0$, so the inner product term satisfies

$$\left\langle \nabla_{\mathbf{H}} V_G(\mathbf{H}^{(\ell)}), F(\mathbf{H}^{(\ell)}) \right\rangle = -\alpha_G(\mathbf{H}^{(\ell)}) \|\nabla_{\mathbf{H}} V_G(\mathbf{H}^{(\ell)})\|^2 \leq 0.$$

Using the Hessian bound and the Cauchy–Schwarz inequality, the remainder term is bounded above by

$$\frac{\epsilon^2}{2} F(\mathbf{H}^{(\ell)})^\top \nabla_{\mathbf{H}}^2 V_G(\boldsymbol{\xi}^{(\ell)}) F(\mathbf{H}^{(\ell)}) \leq \frac{L_V}{2} \epsilon^2 \|F(\mathbf{H}^{(\ell)})\|^2.$$

Combining these two observations, we obtain

$$V_G(\mathbf{H}^{(\ell+1)}) \leq V_G(\mathbf{H}^{(\ell)}) + \frac{L_V}{2} \epsilon^2 \|F(\mathbf{H}^{(\ell)})\|^2, \quad (14)$$

which shows that the discrete-time dynamics are Lyapunov-dissipative up to a second-order term in the step size. In the limit $\epsilon \rightarrow 0$, the discrete trajectories converge to those of the continuous-time system and inherit its strict energy dissipation. In practice, we select ϵ from a range where $V_G(\mathbf{H}^{(\ell)})$ is empirically non-increasing along depth and training remains stable.

This behavior is analogous to what is observed in residual networks and continuous-depth models. Architectures such as Neural Ordinary Differential Equations for Euclidean data and graph-based ODE models such as in Chamberlain et al. (2021b); Eliasof et al. (2021); Gravina et al. (2023); Rusch et al. (2022); Choi et al. (2023) are typically implemented using an explicit Euler or closely related explicit Runge–Kutta scheme on a *learned* vector field. In all these cases, the effective stability of the discretization is governed by the interaction between the learned dynamics, the chosen step size, and the training objective: unstable combinations do not converge during training, while successful training implicitly identifies a regime where the explicit integrator is adequate. Our contribution is orthogonal to the specific choice of time integrator. TANGO proposes a Lyapunov-structured vector field on node embeddings, decomposed into an energy-dissipating gradient term and an energy-preserving tangential term, and instantiates it with the same forward Euler step that is standard in ODE-inspired GNNs (Chamberlain et al., 2021b; Eliasof et al., 2021; Gravina et al., 2023). More sophisticated integrators (for example implicit–explicit schemes, semi-implicit methods, or higher-order Runge–Kutta rules) could in principle be combined with TANGO as well, and a systematic comparison of such integrators in this setting is an interesting avenue for future work.

D.2 SYNTHETIC EXAMPLE

In the synthetic example in Figure 2, we demonstrate the effectiveness of TANGO in overcoming the oversquashing issue in GNNs. To do that, we consider a Barbell graph, where all node features are set to 0, besides the left-most node in the graph, which is set to 1, as shown in Figure 2(a). The goal is to allow the information to propagate through all nodes effectively. We do this by considering a gradient flow process of the Dirichlet energy using 50 layers (steps), as shown in Figure 2(b), where it is noticeable that the information is now flowing to the right part in the graph, because of the bottleneck between the two cliques. However, as we show in Figure 2(c), by considering our TANGO, which utilizes both an energy flow as well as a tangential flow, it is possible to effectively propagate the information through all the nodes in the graphs.

D.3 GRAPH PROPERTY PREDICTION

Dataset. We construct our benchmark following the protocol introduced by Gravina et al. (2023). Graph instances are synthetically generated from a variety of canonical topologies, including Erdős–Rényi, Barabasi-Albert, caveman, tree, and grid models. Each graph consists of 25 to 35 nodes, with node features initialized as random identifiers sampled uniformly from the interval $[0, 1]$. The prediction targets encompass several structural tasks: computing the shortest paths from a source node, estimating node eccentricity, and determining graph diameter. The complete dataset contains 7,040 graphs, split into 5,120 for training, 640 for validation, and 1,280 for testing. These tasks inherently demand capturing long-range dependencies, as they involve global graph computations such as shortest path inference. As highlighted in Gravina et al. (2023), traditional algorithms like Bellman-Ford or Dijkstra’s method require multiple rounds of message propagation, which motivates the need for expressive graph models. The benchmark graph families, such as caveman, tree, line, star, caterpillar, and lobster, frequently include structural bottlenecks that are known to induce oversquashing effects (Topping et al., 2022), posing additional challenges for message-passing-based GNNs.

Experimental Setup. We adopt the same evaluation framework as Gravina et al. (2023), including datasets, training routines, and hyperparameter spaces. Model training is conducted using the Adam optimizer for up to 1500 epochs, with early stopping triggered after 100 consecutive epochs of no improvement on the validation Mean Squared Error (MSE). Hyperparameters are selected via grid search, and performance is averaged over 4 independent runs with different random seeds for weight initialization. A summary of the hyperparameter grid used in our experiments is provided in Table 7.

D.4 GRAPH BENCHMARKS

Dataset. To comprehensively assess the capabilities of TANGO, we evaluate its performance on a diverse set of graph learning benchmarks curated by Dwivedi et al. (2023). The benchmark suite includes: *ZINC-12k*, a molecular regression dataset containing chemical compounds, where the goal is to predict the constrained solubility of each molecule. Graphs represent molecular structures, with atoms as nodes and chemical bonds as edges. Node and edge features encode atom types and bond

types, respectively. *MNIST* and *CIFAR-10* superpixels are graph-structured versions of standard image classification datasets, where images are converted into sparse graphs of superpixels. Each superpixel forms a node, and edges are based on spatial adjacency. The tasks involve classifying digits (*MNIST*) and natural objects (*CIFAR-10*) based on graph-structured representations. *CLUSTER* and *PATTERN* are synthetic datasets designed to assess the relational inductive biases of graph neural networks. Both datasets are generated from a set of stochastic block models (SBMs). In *CLUSTER*, the task is to group nodes by community, while *PATTERN* involves identifying specific structural patterns within each graph. These datasets span a variety of domains: chemical, image, and synthetic graphs, and are commonly used to benchmark architectural innovations in GNNs (Ma et al., 2023). We follow the official training, validation, and test splits provided by Dwivedi et al. (2023), ensuring consistency in evaluation across models.

Experimental Setup. We adhere to the training and evaluation protocol established in Dwivedi et al. (2023). For each dataset, we perform hyperparameter tuning via grid search, optimizing the corresponding evaluation metrics: Mean Absolute Error (MAE) for *ZINC-12k*, and classification accuracy for the remaining tasks. We use the AdamW optimizer and train all models for up to 300 epochs, with early stopping based on validation performance. To ensure comparability with prior work, we respect the same parameter budgets used in the original benchmark and maintain the architectural constraints defined for fair evaluation. Each configuration is trained with three random seeds, and we report the average and standard deviation of the results. Hyperparameter ranges used in this set of experiments are summarized in Table 7.

D.5 LONG RANGE GRAPH BENCHMARK

Dataset. To evaluate model performance on real-world graphs with significant long-range dependencies, we utilize the *Peptides-func* and *Peptides-struct* benchmarks introduced in Dwivedi et al. (2022b). These datasets represent peptide molecules as graphs, where nodes correspond to heavy (non-hydrogen) atoms, and edges denote chemical bonds. *Peptides-func* is a multi-label classification task with 10 functional categories, including antibacterial, antiviral, and signaling-related properties. In contrast, *Peptides-struct* focuses on regression, targeting physical and geometric attributes such as molecular inertia (weighted by atomic mass and valence), atom pair distance extremes, sphericity, and average deviation from a best-fit plane. Together, the two datasets comprise 15,535 peptide graphs and roughly 2.3 million nodes. We adopt the official train/validation/test partitions from Dwivedi et al. (2022b) and report mean and standard deviation across three different random seeds for each experiment.

Experimental Setup. We follow the evaluation protocol established in Dwivedi et al. (2022b), including dataset usage, training strategy, and model capacity constraints. Hyperparameter tuning is carried out via grid search, optimizing for Average Precision (AP) in the classification task and Mean Absolute Error (MAE) in the regression task. All models are trained using the AdamW optimizer for up to 300 epochs, with early stopping based on validation performance. To ensure fairness and comparability, all models adhere to the 500K parameter limit, in line with the settings of Dwivedi et al. (2022b) and Gutteridge et al. (2023). Each configuration is run three times with different weight initializations, and the results are averaged. Details of the hyperparameter ranges considered can be found in Table 7.

D.6 HETEROGRAPHIC NODE CLASSIFICATION

Dataset. For evaluating performance in heterophilic graph settings, we consider five benchmark tasks introduced by Platonov et al. (2023): *Roman-Empire*, *Amazon-Ratings*, *Minesweeper*, *Tolokers*, and *Questions*. These datasets span a diverse range of domains and graph topologies. *Roman-Empire* is constructed from the Wikipedia article on the Roman Empire, where nodes represent words and edges capture either sequential adjacency or syntactic relations. The task is node classification with 18 syntactic categories, and the underlying graph is sparse and chain-structured, suggesting the presence of long-range dependencies. *Amazon-Ratings* originates from Amazon’s product co-purchasing graph. Nodes correspond to products, linked if they are frequently bought together. The classification task involves predicting discretized average product ratings (five classes), with node features derived from fastText embeddings of product descriptions. *Minesweeper* is a synthetic dataset modeled as a 100×100 grid. Nodes represent individual cells, with edges connecting adjacent cells. A random

1350 20% of nodes are labeled as mines, and the objective is to classify mine-containing cells based on
 1351 one-hot features that encode the number of neighboring mines. *Tolokers* is based on the Toloka
 1352 crowdsourcing platform (Likhobaba et al., 2023), where each node is a worker (toloker), and edges
 1353 indicate co-participation on the same project. The task involves binary classification to detect whether
 1354 a worker has been banned, using node features from user profiles and performance metrics. *Questions*
 1355 draws from user interaction data on Yandex Q, a question-answering forum. Nodes represent users,
 1356 and edges capture answering interactions. The goal is to identify users who remain active, with input
 1357 features derived from user-provided descriptions. A summary of dataset statistics is provided in
 1358 Table 6.

Table 6: Statistics of the heterophilic node classification datasets.

	Roman-empire	Amazon-ratings	Minesweeper	Tolokers	Questions
N. nodes	22,662	24,492	10,000	11,758	48,921
N. edges	32,927	93,050	39,402	519,000	153,540
Avg degree	2.91	7.60	7.88	88.28	6.28
Diameter	6,824	46	99	11	16
Node features	300	300	7	10	301
Classes	18	5	2	2	2
Edge homophily	0.05	0.38	0.68	0.59	0.84

1370 **Experimental Setup.** Our experimental procedure aligns with that of Freitas et al. (2021) and
 1371 Platonov et al. (2023). We conduct a grid search to optimize model performance, using classifica-
 1372 tion accuracy for the *Roman-Empire* and *Amazon-Ratings* tasks, and ROC-AUC for *Minesweeper*,
 1373 *Tolokers*, and *Questions*. Each model is trained using the AdamW optimizer for a maximum of 300
 1374 epochs. Our experiments follow the official dataset splits provided by Platonov et al. (2023). For each
 1375 model configuration, we perform multiple training runs with different random seeds and report the
 1376 mean and standard deviation of the results. The hyperparameter grid explored in these experiments is
 1377 summarized in Table 7.

D.7 HYPERPARAMETERS

1380 In Table 7, we summarize the hyperparameter grids used for tuning our TANGO across different
 1381 benchmarks. In particular, we have followed similar practices from the literature (Gravina et al.,
 1382 2025; Rusch et al., 2022). Alongside standard training hyperparameters such as learning rate, weight
 1383 decay, and batch size, our method introduces several additional components. These include the
 1384 number of unrolled steps L (corresponding to the depth of the energy-based dynamics), the hidden
 1385 dimension d of node features, and the number of message-passing layers L_{gnn} used within the internal
 1386 ENERGYGNN and TANGENTGNN modules. In all experiments, we share the architecture depth
 1387 between ENERGYGNN and TANGENTGNN. We also tune the step size ϵ used in the forward Euler
 1388 update (Equation (4)), which controls the integration scale of the continuous dynamics. We explore
 1389 multiple values of L to assess how the number of dynamical steps impacts long-range propagation
 1390 across different tasks. Details of the complete hyperparameter grid can be found in Table 7.

Table 7: Hyperparameter grids used during model selection for the different benchmark categories: *GraphPropPred* (Diameter, SSSP, Eccentricity), *LRGB* (Peptides-func/struct), *Graph Benchmarks* (ZINC-12k, MNIST, CIFAR-10, CLUSTER, PATTERN), and *Node Classification* (Roman-Empire, Amazon-Ratings, Minesweeper, Tolokers, Questions).

Hyperparameter	<i>GraphPropPred</i>	<i>LRGB</i>	<i>Graph Benchmarks</i>	<i>Node Classification</i>
Unrolled steps L	{1,5,10,20}	{2,4,8,16,32}	{2,4,8,16,32}	{2,4,8,16,32}
GNN layers L_{gnn}	{1,2,4,8,16}	{1,2,4,8,16}	{1,2,4,8,16}	{1,2,4,8,16}
Feature dimension d	{10, 20, 30}	{64, 128, 256}	{64, 128, 256}	{64, 128, 256}
Step size ϵ	{0.001, 0.1, 1.0}	{0.001, 0.1, 1.0}	{0.001, 0.1, 1.0}	{0.001, 0.1, 1.0}
Learning rate	{1e-3, 1e-4}	{1e-3, 1e-4}	{1e-3, 1e-4}	{1e-3, 1e-4}
Weight decay	{0, 1e-6, 1e-5}	{0, 1e-6, 1e-5}	{0, 1e-6, 1e-5}	{0, 1e-6, 1e-5}
Activation function (σ)	ReLU	ELU, GELU, ReLU	ELU, GELU, ReLU	ELU, GELU, ReLU
Batch size	{32,64,128}	{32,64,128}	{32,64,128}	N/A

1404 **E ADDITIONAL RESULTS AND COMPARISONS**
 1405

1406 **E.1 HETEROGRAPHIC NODE CLASSIFICATION**
 1407

1408 We report and compare the performance of our TANGO with other recent benchmarks on the het-
 1409 erophilic node classification datasets from Platonov et al. (2023), in Table 9. As can be seen from the
 1410 Table, TANGO offers strong performance that is similar or better than recent state-of-the-art methods,
 1411 further demonstrating its effectiveness.

1412 **E.2 ABLATION ON DEPTH: NUMBER OF LAYERS**
 1413

1414 **Setup.** We study the effect of depth by varying the number of layers and measuring downstream
 1415 performance on ROMAN-EMPIRE. All runs use identical training settings and data splits; only the
 1416 depth differs.

1417 **Results.** Table 8 shows that TANGO benefits from increased depth up to a task-dependent plateau.
 1418 For TANGO-GatedGCN, performance improves steadily and saturates around 16 layers. For TANGO-
 1419 GPS, gains persist up to 8 to 16 layers and then flatten. Importantly, we do not observe degradation
 1420 when adding more layers within the explored range.

1421 Table 8: Ablation on the number of layers for ROMAN-EMPIRE. Values are mean classification
 1422 accuracy (%) \pm standard deviation.

Layers	2	4	8	16	32
TANGO-GatedGCN	87.13 ± 0.36	89.08 ± 0.41	90.80 ± 0.37	91.89 ± 0.30	91.82 ± 0.44
TANGO-GPS	86.98 ± 0.48	88.71 ± 0.59	91.08 ± 0.57	91.01 ± 0.64	91.05 ± 0.60

1430 **E.3 ADDITIONAL COMPARISONS**
 1431

1432 The comparisons made in Section 5 offer a focused comparison with directly related methods as well
 1433 as baseline backbones. In addition to that, we now provide a more comprehensive comparison in
 1434 Table 12 and Table 13, to further facilitate a comprehensive comparison with recent methods. As can
 1435 be seen, also under these comparisons, our TANGO offers strong performance.

1436 **E.4 ABLATION STUDY**
 1437

1438 **Setup.** We conduct two key ablation studies to better understand the contributions of the energy
 1439 function and the tangential flow in TANGO. Specifically, we aim to answer the following questions:

1440 (i) *Does downstream performance benefit from incorporating a tangential term even when the*
 1441 *underlying GNN is not the gradient of an energy function?*
 1442 (ii) *Is the observed improvement due to the tangential nature of the added component, or simply due*
 1443 *to additional parameters and network?*

1444 To address these questions, we design two controlled experiments. For comprehensive coverage,
 1445 we evaluate one representative dataset from each benchmark group: ZINC-12k, Roman-empire,
 1446 Peptides-func, and Diameter. All experiments are run with two backbone architectures, GatedGCN
 1447 and GPS. For reference, we also report the performance of the original backbones.

1448 **Results.** For ablation (i), we compare TANGO against a variant we call TANGO-NON-ENERGY,
 1449 in which the gradient-based energy descent term $\nabla_{\mathbf{H}} V_{\mathcal{G}}(\mathbf{H}^{(\ell)})$ in Equation (4) is replaced by inter-
 1450 mediate node features from the same GNN backbone, as detailed in Equation (5). These features
 1451 are computed using the same architecture but are not guaranteed to correspond to the gradient of
 1452 any scalar energy function. This setup ensures fairness in capacity while removing the energy-based
 1453 structure. As shown in Table 10, although both variants benefit from the inclusion of the tangential
 1454 component, the full TANGO consistently outperforms TANGO-NON-ENERGY, confirming that
 1455 leveraging a valid energy gradient contributes meaningfully to downstream performance.

1458 Table 9: Mean test set score and std averaged over the splits from Platonov et al. (2023). **First**,
 1459 **second**, and **third** best results for each task are color-coded. We mark each method once – if two
 1460 variants are among the leading methods, we mark the best-performing variant.

1461

1462 Model	Roman-empire	Amazon-ratings	Minesweeper	Tolokers	Questions
	1463 Acc \uparrow	1463 Acc \uparrow	1463 AUC \uparrow	1463 AUC \uparrow	1463 AUC \uparrow
MPNNs					
1465 GIN	72.82 \pm 0.58	46.96 \pm 0.44	88.04 \pm 0.78	81.79 \pm 0.55	75.90 \pm 1.03
1466 GAT	80.87 \pm 0.30	49.09 \pm 0.63	92.01 \pm 0.68	83.70 \pm 0.47	77.43 \pm 1.20
1467 GAT-sep	88.75 \pm 0.41	52.70 \pm 0.62	93.91 \pm 0.35	83.78 \pm 0.43	76.79 \pm 0.71
1468 Gated-GCN	74.46 \pm 0.54	43.00 \pm 0.32	87.54 \pm 1.22	77.31 \pm 1.14	76.61 \pm 1.13
1469 GCN	73.69 \pm 0.74	48.70 \pm 0.63	89.75 \pm 0.52	83.64 \pm 0.67	76.09 \pm 1.27
1470 CO-GNN(Σ, Σ)	91.57\pm0.32	51.28 \pm 0.56	95.09 \pm 1.18	83.36 \pm 0.89	80.02\pm0.86
1471 CO-GNN(μ, μ)	91.37 \pm 0.35	54.17\pm0.37	97.31\pm0.41	84.45\pm1.17	76.54 \pm 0.95
SAGE	85.74 \pm 0.67	53.63\pm0.39	93.51 \pm 0.57	82.43 \pm 0.44	76.44 \pm 0.62
Graph Transformers					
1473 Exphormer	89.03\pm0.37	53.51 \pm 0.46	90.74 \pm 0.53	83.77 \pm 0.78	73.94 \pm 1.06
1474 NAGphormer	74.34 \pm 0.77	51.26 \pm 0.72	84.19 \pm 0.66	78.32 \pm 0.95	68.17 \pm 1.53
1475 GOAT	71.59 \pm 1.25	44.61 \pm 0.50	81.09 \pm 1.02	83.11 \pm 1.04	75.76 \pm 1.66
1476 GPS _{GAT+Performer} (RWSE)	87.04 \pm 0.58	49.92 \pm 0.68	91.08 \pm 0.58	84.38\pm0.91	77.14 \pm 1.49
1477 GT	86.51 \pm 0.73	51.17 \pm 0.66	91.85 \pm 0.76	83.23 \pm 0.64	77.95 \pm 0.68
GT-sep	87.32 \pm 0.39	52.18 \pm 0.80	92.29 \pm 0.47	82.52 \pm 0.92	78.05 \pm 0.93
Heterophily-Designated GNNs					
1479 FAGCN	65.22 \pm 0.56	44.12 \pm 0.30	88.17 \pm 0.73	77.75 \pm 1.05	77.24 \pm 1.26
1480 FSGNN	79.92 \pm 0.56	52.74 \pm 0.83	90.08 \pm 0.70	82.76 \pm 0.61	78.86\pm0.92
1481 GBK-GNN	74.57 \pm 0.47	45.98 \pm 0.71	90.85 \pm 0.58	81.01 \pm 0.67	74.47 \pm 0.86
1482 GloGNN	59.63 \pm 0.69	36.89 \pm 0.14	51.08 \pm 1.23	73.39 \pm 1.17	65.74 \pm 1.19
1483 GPR-GNN	64.85 \pm 0.27	44.88 \pm 0.34	86.24 \pm 0.61	72.94 \pm 0.97	55.48 \pm 0.91
1484 JacobiConv	71.14 \pm 0.42	43.55 \pm 0.48	89.66 \pm 0.40	68.66 \pm 0.65	73.88 \pm 1.16
Ours					
1485 TANGO_{GCN}	89.67 \pm 0.68	52.98 \pm 0.71	98.37 \pm 0.49	85.57 \pm 0.73	79.86 \pm 1.14
1486 TANGO_{GIN}	89.19 \pm 0.62	50.76 \pm 0.47	97.38 \pm 0.50	84.39 \pm 0.61	78.84 \pm 0.96
1487 TANGO_{GatedGCN}	91.89\pm0.30	52.60 \pm 0.53	98.32 \pm 0.59	85.51 \pm 0.98	80.39 \pm 1.04
1488 TANGO_{GPS}	91.08 \pm 0.57	53.83\pm0.32	98.39\pm0.54	85.66\pm1.01	80.32\pm1.07

1489

1490 Table 10: Ablation study on the importance of using a gradient of an energy term in Equation (4).
 1491

1492 Model	ZINC-12k	Roman-empire	Peptides-func	Diameter
	1493 MAE \downarrow	1493 Acc. \uparrow	1493 AP \uparrow	1493 $\log_{10}(\text{MSE}) \downarrow$
GatedGCN	0.282 \pm 0.015	74.46 \pm 0.54	58.64 \pm 0.77	0.1348 \pm 0.0397
TANGO-NON-ENERGY _{GatedGCN}	0.138 \pm 0.014	86.94 \pm 0.43	68.07 \pm 0.45	-0.5992 \pm 0.0831
TANGO _{GatedGCN}	0.128\pm0.011	91.89\pm0.30	68.92\pm0.40	-0.6681\pm0.0745
GPS	0.070 \pm 0.004	87.04 \pm 0.58	65.35 \pm 0.41	-0.5121 \pm 0.0426
TANGO-NON-ENERGY _{GPS}	0.067 \pm 0.004	89.00 \pm 0.61	67.58 \pm 0.39	-0.7178 \pm 0.0729
TANGO _{GPS}	0.062\pm0.005	91.08\pm0.57	70.21\pm0.43	-0.9772\pm0.0518

1500

1501

1502 For ablation (ii), we isolate the effect of the tangential nature of the added direction. In this variant,
 1503 denoted TANGO-NON-TANGENT, we use the same output from the tangential network as in
 1504 Equation (9) but omit the orthogonal projection step defined in Equation (3). Thus, while we still
 1505 introduce an additional GNN term into the dynamics, it is not explicitly orthogonal to the energy
 1506 gradient. Our results in Table 11 show that while this variant improves the performance compared
 1507 with the baseline backbone, it also results in a drop in performance compared to the full TANGO.
 1508 This highlights the importance of the tangential constraint, and its contribution towards improving
 1509 the utilization of the learned energy function, as discussed in Section 4. Together, these ablations
 1510 underscore the importance of both components in our design: (i) the principled learned energy
 1511 descent, and (ii) the structured tangential update, as crucial for effective and flexible feature evolution.

1512 Table 11: The importance of using a tangential term to the energy term in Equation (4).
1513

1514 Model	1515 ZINC-12k	1516 Roman-empire	1517 Peptides-func	1518 Diameter
	1519 MAE \downarrow	1520 Acc. \uparrow	1521 AP \uparrow	1522 $\log_{10}(\text{MSE}) \downarrow$
GatedGCN	0.282 \pm 0.015	74.46 \pm 0.54	58.64 \pm 0.77	0.1348 \pm 0.0397
TANGO-NON-TANGENT _{GatedGCN}	0.186 \pm 0.016	83.59 \pm 0.48	68.01 \pm 0.52	-0.2193 \pm 0.0899
TANGO _{GatedGCN}	0.128 \pm 0.011	91.89 \pm 0.30	68.92 \pm 0.40	-0.6681 \pm 0.0745
GPS	0.070 \pm 0.004	87.04 \pm 0.58	65.35 \pm 0.41	-0.5121 \pm 0.0426
TANGO-NON-TANGENT _{GPS}	0.066 \pm 0.010	88.57 \pm 0.72	67.33 \pm 0.59	-0.2916 \pm 0.0404
TANGO _{GPS}	0.062 \pm 0.005	91.08 \pm 0.57	70.21 \pm 0.43	-0.9772 \pm 0.0518

1523 Table 12: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Baseline
1524 results are taken from Dwivedi et al. (2022b) and Gutteridge et al. (2023). Re-evaluated methods
1525 employ the 3-layer MLP readout proposed in Tönshoff et al. (2023a). Note that all MPNN-based
1526 methods include structural and positional encoding. \dagger means 3-layer MLP readout and residual
1527 connections are employed based on (Tönshoff et al., 2023a). This table is an extended version of the
1528 focused Table 3.

1529 Model	1530 Peptides-func		1531 Peptides-struct
	1532 AP \uparrow	1533 MAE \downarrow	1534
MPNNs			
GCN	59.30 \pm 0.23	0.3496 \pm 0.0013	
GINE	54.98 \pm 0.79	0.3547 \pm 0.0045	
GCNII	55.43 \pm 0.78	0.3471 \pm 0.0010	
GatedGCN	58.64 \pm 0.77	0.3420 \pm 0.0013	
Multi-hop GNNs			
DIGL+MPNN	64.69 \pm 0.19	0.3173 \pm 0.0007	
DIGL+MPNN+LapPE	68.30 \pm 0.26	0.2616 \pm 0.0018	
MixHop-GCN	65.92 \pm 0.36	0.2921 \pm 0.0023	
MixHop-GCN+LapPE	68.43 \pm 0.49	0.2614 \pm 0.0023	
DRew-GCN	69.96 \pm 0.76	0.2781 \pm 0.0028	
DRew-GCN+LapPE	71.50 \pm 0.44	0.2536 \pm 0.0015	
DRew-GIN	69.40 \pm 0.74	0.2799 \pm 0.0016	
DRew-GIN+LapPE	71.26 \pm 0.45	0.2606 \pm 0.0014	
DRew-GatedGCN	67.33 \pm 0.94	0.2699 \pm 0.0018	
DRew-GatedGCN+LapPE	69.77 \pm 0.26	0.2539 \pm 0.0007	
Transformers			
Transformer+LapPE	63.26 \pm 1.26	0.2529 \pm 0.0016	
SAN+LapPE	63.84 \pm 1.21	0.2683 \pm 0.0043	
GraphGPS+LapPE	65.35 \pm 0.41	0.2500 \pm 0.0005	
Modified and Re-evaluated\dagger			
GCN	68.60 \pm 0.50	0.2460 \pm 0.0007	
GINE	66.21 \pm 0.67	0.2473 \pm 0.0017	
GatedGCN	67.65 \pm 0.47	0.2477 \pm 0.0009	
GraphGPS	65.34 \pm 0.91	0.2509 \pm 0.0014	
DE-GNNs			
GRAND	57.89 \pm 0.62	0.3418 \pm 0.0015	
GraphCON	60.22 \pm 0.68	0.2778 \pm 0.0018	
A-DGN	59.75 \pm 0.44	0.2874 \pm 0.0021	
SWAN	67.51 \pm 0.39	0.2485 \pm 0.0009	
Graph SSMs			
Graph-Mamba	67.39 \pm 0.87	0.2478 \pm 0.0016	
GMN	70.71 \pm 0.83	0.2473 \pm 0.0025	
Ours			
TANGO_{GCN}	69.17 \pm 0.31	0.2432 \pm 0.0011	
TANGO_{GIN}	68.78 \pm 0.66	0.2440 \pm 0.0024	
TANGO_{GATEDGCN}	68.92 \pm 0.40	0.2451 \pm 0.0006	
TANGO_{GPS}	70.21 \pm 0.43	0.2422 \pm 0.0014	

1566

1567

1568 Table 13: Mean test set score and std averaged over the splits from Platonov et al. (2023). This table
 1569 is an extended version of the focused Table 9. Baseline results are reported from Finkelshtein et al.
 1570 (2024); Platonov et al. (2023); Müller et al. (2024); Luan et al. (2024).

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Model	Roman-empire	Amazon-ratings	Minesweeper	Tolokers	Questions
	Acc \uparrow	Acc \uparrow	AUC \uparrow	AUC \uparrow	AUC \uparrow
MPNNs					
GIN	72.82 \pm 0.58	46.96 \pm 0.44	88.04 \pm 0.78	81.79 \pm 0.55	75.90 \pm 1.03
GAT	80.87 \pm 0.30	49.09 \pm 0.63	92.01 \pm 0.68	83.70 \pm 0.47	77.43 \pm 1.20
GAT-sep	88.75 \pm 0.41	52.70 \pm 0.62	93.91 \pm 0.35	83.78 \pm 0.43	76.79 \pm 0.71
GAT (LapPE)	84.80 \pm 0.46	44.90 \pm 0.73	93.50 \pm 0.54	84.99 \pm 0.54	76.55 \pm 0.84
GAT (RWSE)	86.62 \pm 0.53	48.58 \pm 0.41	92.53 \pm 0.65	85.02 \pm 0.67	77.83 \pm 1.22
GAT (DEG)	85.51 \pm 0.56	51.65 \pm 0.60	93.04 \pm 0.62	84.22 \pm 0.81	77.10 \pm 1.23
Gated-GCN	74.46 \pm 0.54	43.00 \pm 0.32	87.54 \pm 1.22	77.31 \pm 1.14	76.61 \pm 1.13
GCN	73.69 \pm 0.74	48.70 \pm 0.63	89.75 \pm 0.52	83.64 \pm 0.67	76.09 \pm 1.27
GCN (LapPE)	83.37 \pm 0.55	44.35 \pm 0.36	94.26 \pm 0.49	84.95 \pm 0.78	77.79 \pm 1.34
GCN (RWSE)	84.84 \pm 0.55	46.40 \pm 0.55	93.84 \pm 0.48	85.11 \pm 0.77	77.81 \pm 1.40
GCN (DEG)	84.21 \pm 0.47	50.01 \pm 0.69	94.14 \pm 0.50	82.51 \pm 0.83	76.96 \pm 1.21
CO-GNN(Σ, Σ)	91.57 \pm 0.32	51.28 \pm 0.56	95.09 \pm 1.18	83.36 \pm 0.89	80.02 \pm 0.86
CO-GNN(μ, μ)	91.37 \pm 0.35	54.17 \pm 0.37	97.31 \pm 0.41	84.45 \pm 1.17	76.54 \pm 0.95
SAGE	85.74 \pm 0.67	53.63 \pm 0.39	93.51 \pm 0.57	82.43 \pm 0.44	76.44 \pm 0.62
Graph Transformers					
Exphormer	89.03 \pm 0.37	53.51 \pm 0.46	90.74 \pm 0.53	83.77 \pm 0.78	73.94 \pm 1.06
NAGphormer	74.34 \pm 0.77	51.26 \pm 0.72	84.19 \pm 0.66	78.32 \pm 0.95	68.17 \pm 1.53
GOAT	71.59 \pm 1.25	44.61 \pm 0.50	81.09 \pm 1.02	83.11 \pm 1.04	75.76 \pm 1.66
GPS	82.00 \pm 0.61	53.10 \pm 0.42	90.63 \pm 0.67	83.71 \pm 0.48	71.73 \pm 1.47
GPS _{GCN+Performer} (LapPE)	83.96 \pm 0.53	48.20 \pm 0.67	93.85 \pm 0.41	84.72 \pm 0.77	77.85 \pm 1.25
GPS _{GCN+Performer} (RWSE)	84.72 \pm 0.65	48.08 \pm 0.85	92.88 \pm 0.50	84.81 \pm 0.86	76.45 \pm 1.51
GPS _{GCN+Performer} (DEG)	83.38 \pm 0.68	48.93 \pm 0.47	93.60 \pm 0.47	80.49 \pm 0.97	74.24 \pm 1.18
GPS _{GAT+Performer} (LapPE)	85.93 \pm 0.52	48.86 \pm 0.38	92.62 \pm 0.79	84.62 \pm 0.54	76.71 \pm 0.98
GPS _{GAT+Performer} (RWSE)	87.04 \pm 0.58	49.92 \pm 0.68	91.08 \pm 0.58	84.38 \pm 0.91	77.14 \pm 1.49
GPS _{GAT+Performer} (DEG)	85.54 \pm 0.58	51.03 \pm 0.60	91.52 \pm 0.46	82.45 \pm 0.89	76.51 \pm 1.19
GPS _{GCN+Transformer} (LapPE)	OOM	OOM	91.82 \pm 0.41	83.51 \pm 0.93	OOM
GPS _{GCN+Transformer} (RWSE)	OOM	OOM	91.17 \pm 0.51	83.53 \pm 1.06	OOM
GPS _{GCN+Transformer} (DEG)	OOM	OOM	91.76 \pm 0.61	80.82 \pm 0.95	OOM
GPS _{GAT+Transformer} (LapPE)	OOM	OOM	92.29 \pm 0.61	84.70 \pm 0.56	OOM
GPS _{GAT+Transformer} (RWSE)	OOM	OOM	90.82 \pm 0.56	84.01 \pm 0.96	OOM
GPS _{GAT+Transformer} (DEG)	OOM	OOM	91.58 \pm 0.56	81.89 \pm 0.85	OOM
GT	86.51 \pm 0.73	51.17 \pm 0.66	91.85 \pm 0.76	83.23 \pm 0.64	77.95 \pm 0.68
GT-sep	87.32 \pm 0.39	52.18 \pm 0.80	92.29 \pm 0.47	82.52 \pm 0.92	78.05 \pm 0.93
Heterophily-Designated GNNs					
CPGNN	63.96 \pm 0.62	39.79 \pm 0.77	52.03 \pm 5.46	73.36 \pm 1.01	65.96 \pm 1.95
FAGCN	65.22 \pm 0.56	44.12 \pm 0.30	88.17 \pm 0.73	77.75 \pm 1.05	77.24 \pm 1.26
FSGNN	79.92 \pm 0.56	52.74 \pm 0.83	90.08 \pm 0.70	82.76 \pm 0.61	78.86 \pm 0.92
GBK-GNN	74.57 \pm 0.47	45.98 \pm 0.71	90.85 \pm 0.58	81.01 \pm 0.67	74.47 \pm 0.86
GloGNN	59.63 \pm 0.69	36.89 \pm 0.14	51.08 \pm 1.23	73.39 \pm 1.17	65.74 \pm 1.19
GPR-GNN	64.85 \pm 0.27	44.88 \pm 0.34	86.24 \pm 0.61	72.94 \pm 0.97	55.48 \pm 0.91
H2GCN	60.11 \pm 0.52	36.47 \pm 0.23	89.71 \pm 0.31	73.35 \pm 1.01	63.59 \pm 1.46
JacobiConv	71.14 \pm 0.42	43.55 \pm 0.48	89.66 \pm 0.40	68.66 \pm 0.65	73.88 \pm 1.16
Graph SSMs					
GMN	87.69 \pm 0.50	54.07 \pm 0.31	91.01 \pm 0.23	84.52 \pm 0.21	–
GPS + Mamba	83.10 \pm 0.28	45.13 \pm 0.97	89.93 \pm 0.54	83.70 \pm 1.05	–
Ours					
TANGO _{GCN}	89.67 \pm 0.68	52.98 \pm 0.71	98.37 \pm 0.49	85.57 \pm 0.73	79.86 \pm 1.14
TANGO _{GIN}	89.19 \pm 0.62	50.76 \pm 0.47	97.38 \pm 0.50	84.39 \pm 0.61	78.84 \pm 0.96
TANGO _{GatedGCN}	91.89 \pm 0.30	52.60 \pm 0.53	98.32 \pm 0.59	85.51 \pm 0.98	80.39 \pm 1.04
TANGO _{GPS}	91.08 \pm 0.57	53.83 \pm 0.32	98.39 \pm 0.54	85.66 \pm 1.01	80.32 \pm 1.07