Under review as a conference paper at ICLR 2026

GRAPH NEURAL DYNAMICS VIA LEARNED ENERGY
AND TANGENTIAL FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce TANGO — a dynamical systems inspired framework for graph repre-
sentation learning that governs node feature evolution through a learned energy
landscape and its associated descent dynamics. At the core of our approach is a
learnable Lyapunov function over node embeddings, whose gradient defines an
energy non-increasing direction that guarantees stability. To enhance flexibility
while preserving the benefits of energy-based dynamics, we incorporate a novel
tangential component, learned via message passing, that evolves features while
maintaining the energy value. This decomposition into orthogonal flows of energy
gradient descent and tangential evolution yields a flexible form of graph dynamics,
and enables effective signal propagation even in flat or ill-conditioned energy re-
gions, that often appear in graph learning. Our method is designed to help alleviate
oversquashing, and is compatible with different graph neural network backbones.
Empirically, TANGO achieves strong performance across a diverse set of node and
graph classification and regression benchmarks, demonstrating the effectiveness of
jointly learned energy functions and tangential flows for graph neural networks.

1 INTRODUCTION

Graph Neural Networks (GNNSs) have achieved remarkable success in learning representations for
graph-structured data (Bronstein et al.l 2021)), but they face fundamental challenges when scaling
depth or modeling long-range interactions, such as vanishing gradients (Arroyo et al.| 2025), over-
smoothing (Nt & Maeharal, 2019;|Cai & Wang| 2020; Rusch et al.}2023), and over-squashing (Alon
& Yahavl, 2021} [Topping et al., |2022; [Di Giovanni et al., 2023aj |Gravina et al., [2023}; [2025). To
address these issues, recent works have drawn connections between GNNs and dynamical systems or
control theory to understand and mitigate these issues (Poli et al., 2019; |Chamberlain et al., 2021b;
Eliasof et al., |2021; |Gravina et al., 2023} |Arroyo et al., [2025). For example, treating a GNN as a
continuous dynamical system (or neural ODE) opens the door to analyzing stability through the lens
of diffusion (Chamberlain et al.| 2021b), energy conservation (Rusch et al., [2022), antisymmetric
dynamics (Gravina et al.[(2023)), and Hamiltonian flows (Heilig et al., 2025). In parallel, physics-
informed neural architectures have shown that embedding physical priors such as energy conservation
or dissipation into neural models can dramatically improve stability and interpretability (Bhattoo
et al., [2022; \Gao et al.| [2022; Brandstetter et al.,2022). The common theme in the aforementioned
works is the reliance on the existence of some energy functional that is minimized or preserved by
the GNN parameterization, which is often relatively simple, such as the Dirichlet energy (Rusch
et al., |2023). Beyond GNNs, Lyapunov functions and Lyapunov-stable neural ODEs have also
been used to guarantee stability of general neural networks (Lawrence et al., [2020; |Rodriguez et al.
2022)), including models designed for adversarial robustness of image classifiers where the ODE is
regularized so that perturbed inputs converge to the same Lyapunov-stable equilibrium point (Kang
et al.| [2021), which was also studied for graph adversarial robustness in [Zhao et al.| (2023)). In
contrast, in TANGO, we focus on proposing a learnable energy that is utilized with a learned gradient
and tangential flow steps, and we use Lyapunov theory to derive the design of a downstream graph
learning framework.

At the same time, it is well-established in bioinformatics and computational chemistry that different,
and more complex, energy functions are necessary to accurately model various natural processes. For
instance, in protein folding, the energy landscape is often rugged and multi-funnel-shaped, reflecting
the presence of multiple stable conformations and transition pathways (Wolynes|, 2005)). Similarly, in
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Figure 1: TANGO dynamics in a 2D feature space. We plot the level sets of a learned energy function
and visualize the energy descent direction (green), the learned tangential direction (blue), and their

. The tangential component enables movement along level sets, while the
descent component reduces energy, allowing an effective navigation of the learned energy landscape.

computational chemistry, modeling complex chemical reactions and molecular interactions requires
sophisticated potential energy surfaces (Senn & Thiel, [2009).

Recently, deep learning has seen growing work on energy-based models (EBMs), which learn an
energy function to model data distributions (e.g., images or molecules), primarily for generative
modeling (LeCun et al., 2006} |Xie et al., 2016; [Du & Mordatch},|2019; |Guo et al., [2023)). In contrast,
we learn a downstream task-driven energy whose parameters are optimized through the loss of a
downstream task, such as graph or node classification, rather than generative modeling or a dedicated
energy loss function.

These insights motivate a fundamental question: How can we learn a task-driven energy function,
and how can it be effectively leveraged within a GNN architecture to guide representation dynamics?
Unlike energy-based generative models, where the energy function encodes data likelihood, our focus
is on learning an energy landscape whose evolution corresponds to solving a downstream task, such as
node or graph classification. To address these questions, we propose to decompose feature evolution
into two orthogonal components: (i) a gradient descent direction that minimizes the learned energy,
and (ii) a tangential direction that evolves along its level sets, preserving energy. This structured
decomposition yields a principled framework that promotes stability, enhances interpretability, and is
designed to help alleviate issues such as oversquashing.

Our Approach. We introduce TANGO, a framework for constrained graph dynamics that incorporates
a learnable Lyapunov energy function into the message-passing process, where the learned energy
governs representation updates through two complementary flows: (1) an energy descent compo-
nent, which drives convergence toward task-relevant solutions, and (2) a tangential, conservative
component, which preserves energy while retaining flexibility by moving along energy level sets. As
illustrated in Figure[I] the descent direction (green) lowers the energy, the tangential direction (blue)
moves along level sets, and their combination (orange) defines the full update step, enabling effective
information propagation with controlled and stable feature dynamics. TANGO’s Lyapunov-inspired
analysis guarantees stability in the sense of feature evolution throughout layers rather than claiming
state-of-the-art performance, and our empirical studies then assess the impact of the tangential flow.

Main Contributions. Our contributions are as follows:
1. Lyapunov-inspired Graph Neural Dynamics. We introduce TANGO, a novel framework for

graph representation learning that decomposes feature evolution into energy descent and tangential
components, both parameterized by GNNs.
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2. Theoretical Characterization of TANGO. We prove that, under mild assumptions, TANGO
satisfies Lyapunov conditions, ensuring stable dynamics. Additionally, we show that the tangential
component enables expressive yet controlled propagation and we connect this capacity to its
ability to mitigate oversquashing empirically via long-range benchmarks.

3. Strong Empirical Performance. We evaluate TANGO on a range of graph learning benchmarks,
demonstrating performance competitive with or surpassing strong and widely-used baselines.

2 MATHEMATICAL BACKGROUND

In this section, we provide a brief overview of Lyapunov stability theory, based on the classical
treatment in [Khalil & Grizzle| (2002)), which underpins the design of our TANGO. This theory
originates from control systems and differential equations, offering a principled way to assess whether
trajectories of a dynamical system remain bounded and converge over time.

Continuous Dynamical Systems. Let h(¢) € R? denote the state of a dynamical system at time
t > 0, and consider a first-order ODE:

—— = F(h(@)), M

where F: RY — R? is a continuous vector field. A point h* is called an equilibrium if F(h*) = 0.

Definition 1 (Lyapunov Function). Let h* € R? be an equilibrium of the system in Equation (1. A
continuously differentiable function V : R4 — R is called a Lyapunov function around h* if:

1. V(h) > 0 for all h in a neighborhood of h*, and V (h*) = 0;

2. LV(h(t)) = VaV(h(t))TF(h(t)) < 0 in that neighborhood.
The first condition ensures that V' is lower-bounded by 0, i.e., that value of the Lyapunov function,
sometimes also referred to as energy is non-negative, and the second that V' does not increase along
trajectories of the system.

We now recall a classical (Khalil & Grizzle| 2002) stability criterion for the dynamical system in
Equation (T)), based on the definition of a Lyapunov function, which we will later use to characterize
the stability of our approach in Section[4]

Theorem 1 (Lyapunov Stability). Let h* be an equilibrium of Equation (1) and let V' be a Lyapunov
function in a neighborhood N of h*. If %V(h(t)) < 0in N, then h* is Lyapunov stable.

3 METHOD

As discussed in Section[I} our goal is to learn a task-driven energy function, and to devise a principled
way to utilize it towards improved downstream performance for graph learning tasks, based on
a combination of TANgential- and Gradient-steps Optimization of node features. We therefore
call our method TANGO. In Section [3.1] we outline the blueprint of TANGO. In Section [3.2] we
discuss implementation details. Later, in Section[d] we discuss the properties of our TANGO, and in
Appendix [C] we discuss its complexity.

Notations. We consider a graph G = (V,€) with n = |V| nodes and m = || edges. Let
H(t) = [hy(t),ha(t),...,h,(t)]T € R"*9 denote the matrix of node features at continuous time
t, where h,(t) € R? is the state of node v at time ¢. Following the literature of GNNs based on
dynamical systems (Eliasof et al.;, 2021} Gravina et al., [2023} |Arroyo et al.,[2025)), when considering
a discrete architecture with a finite number of layers, we draw an analogy between time ¢ and network
depth £. Henceforth, we will interchangeably use the terms H(#) and H(*) to denote node features at
a certain time or layer of the network, depending on the context.
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3.1 OPTIMIZING FEATURES WITH ENERGY TANGENTIAL AND GRADIENT STEPS

Our TANGO concept is based on a dynamical system that, given a graph energy function V{, considers
two steps: (i) energy gradient descent and (ii) tangential direction flows, that evolve the node features:

M) (B(1) VeV (FL()) + g (L(1)) Ty, (FI(t), @

dt
Energy Gradient Descent Tangential Direction

where «g, Bg are non-negative scalars that balance the two steps, Vi Vg (H(t)) is the energy gradient
with respect to node features H(t), and Ty, (H(t)) is an update direction that is orthogonal, i.e,
tangential to the energy gradient. We note that, while in general, there are many possible directions
that are orthogonal to the gradient, in Section [3.2] we specify a procedure for learning this direction.
In particular, we note that, by design, the first step decreases the energy, while the second is a
tangential flow that preserves energy. Below, we formalize the tangential component and provide
implementation details in Section[3.2]

Tangential Flow. Setting 3 = 0 in Equation (2)) yields a standard energy gradient flow applied to
the features. While it guarantees energy dissipation, it may suffer from slow convergence (Boyd &
'Vandenberghe| 2004; Nocedal & Wright,|[1999) and restricted dynamics during training. As discussed
in Section [I| while a gradient flow is commonly used in generative applications, accompanied by
hundreds or thousands of steps are, this approach is not suitable for downstream learning, as it renders
a neural network with equivalently many effective layers, that is hard to train (Peng et al.| [2024))
and has high computational costs. To address this, and to accelerate the minimization of the energy
function, we introduce a tangential flow that evolves tangentially to the gradient of V, preserving
energy. As we illustrate in Figure[T] and later theoretically discuss in Section[d] while the tangential
flow itself maintains the same energy level, its combination with the energy gradient descent step,
as shown in Equation (2)), can offer a better overall descent direction, thereby accelerating energy
convergence.

In order to obtain a direction that is orthogonal to Vg Vg (H(t)), let M(H(t)) be a predicted update
direction of the node features. We then define the tangential node feature update direction as:

Ty (HL(1) = M(H(0)) — (M(H(0)), VaVe(H(1) ) - VarVa(H(), ®

where Vi Vg (H(t)) is the normalized energy gradient. Unless ViVg (H(t)) = 0, where then we
define Ty, (H(t)) = M(H(t)), the projection in Equation (3) removes shared the component of
M(H(t)) with the energy descent direction, ensuring Ty, is orthogonal to the gradient of the energy
function Vg (H(t)).

3.2 TANGO GRAPH NEURAL NETWORKS

In Section[3.1] we described the concept of TANGO and its underlying continuous dynamical system.
To materialize this concept and obtain a GNN, we discretize Equation (2)) using the commonly used
in GNNs (Gravina et al.} 2023; [Eliasof et al., 2021} |(Chamberlain et al., | 2021b; |Arroyo et al., [2025};
Choi et al., [2023) forward Euler approach to obtain the following graph neural layer:

HD = HO + ¢ (—ag(HY) VaVg(H) + 86(HO) Ty, (H?) ), o)

for{ =0,...,L — 1, where ¢ > 0 is a hyperparameter step size that stems from the forward Euler
discretization that is commonly used in ODE inspired GNNs (Chamberlain et al., [2021bj [Eliasof
et al., 2021} |Gravina et al.| 2023)), further discussed in Appendix VuVg (H(f)) is the gradient of
the energy function defined in Equation (7). The coefficients aig > 0, g are scalars that balance the
energy descent and tangential terms, and are also predicted by the respective GNNs shown below.

Energy Function. We now describe the implementation of V. Given features H(), we apply:
HO = & (ENERGYGNN(H(Z); g)) e R4, 5)

where ENERGYGNN is a graph neural network (e.g., GatedGCN (Bresson & Laurent, 2018)),
GPS (Rampasek et al 2022))), and o is a pointwise nonlinearity. We then compute per-node
energy scores using a multilayer perceptron (MLP):

Vg(H®) = MLPg(H®)) € R™*, (6)
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and define the overall graph energy scalar value as:

¢ 1 o (FT(0))2
Vg(HY) = - > VgHY)] € R O]
vey

The parameters of ENERGYGNN and the energy MLP are updated through the downstream supervised
loss (e.g., cross entropy or regression loss), hence Vg is a task—driven Lyapunov energy function
that forms the hidden feature dynamics, where the gradient term in Equation (@) uses this learned
energy function to ensure stable dynamics, while the tangential term allows feature updates along its
level sets. We also note that the gradient Vi Vg (H*)) in Equation @\yis different from the gradient
of the supervised loss with respect to the parameters of ENERGYG and TANGENTGNN. Thus,
even if Vg Vg (H(e)) becomes small at some layer, the parameters still receive gradients through the
dependence of Vg and Ty, on their weights, analogous to the outer gradient in bilevel optimization
(Dempe, [2002). Empirically, we do not observe vanishing gradients when increasing depth, as shown
in Appendix In addition, we employ a global sum pooling (Xu et al.,|2019) to H®, followed by
an MLP and sigmoid activation, to obtain a bounded non-negative scalar ag, as follows:

ag(HY) = S16MoID (MLPa (SUMPOOL(f{“)))) € [0,1] (8)

We note that non-negativity is required for a valid gradient descent to be obtained in Equation (),
and the bounded value is chosen to maintain stable training.

Tangential Update. To compute the tangential update Ty, (H®), we learn a dedicated GNN denoted
by TANGENTGNN. Specifically, given input features H(), we predict a node feature update:

MO — (TANGENTGNN(H“); Q)) ) ®

and define the energy-tangential component via orthogonal projection, as described in Equation (3).
Also, we define the scalar 3¢ that scales the tangential term, as follows:

Bg(HD) = MLP; (sUMPOOL(MW)) cR. (10)

4 THEORETICAL PROPERTIES OF TANGO

We now analyze the continuous-time dynamics of TANGO as defined in Equation equation 2} Our
analysis focuses on three aspects: energy dissipation, feature evolution in flat energy landscapes, and
the benefit of the tangent direction. Proofs are provided in Appendix [B}

Assumptions and Notations. Throughout this analysis, we assume that: (i) the input graph G =
(V, &) is connected; (ii) the energy function Vg (H(¢)) is twice differentiable and bounded from
below. For simplicity of notation, throughout this section we omit the time or layer scripts, and use
the term H to denote node features, when possible.

We start by showing that TANGO is dissipative if ||V Vg(H)||? > 0, and ag > 0 (obtained by
design), corresponding to the Lyapunov stability criterion from Theorem [I]
Proposition 1 (Energy is non-increasing). Suppose ag > 0and ||V Vg (H)|?
Vg (H) is non-increasing along trajectories of Equation . Specifically,

> 0. Then the energy

Vo) = —ag(H) [|Va Vg (H)|| + B¢ (H)(Ty, (H), Vi Vg (H))

= —ag(H) ||[VaVsH)|* <0. (11)

Proposition 1 establishes a standard Lyapunov property: the energy Vg (H) is non-increasing along
trajectories (i.e., layers), and, by construction, is bounded from below. As a result, solutions remain
in level sets {H : Vg (H) < Vg(H®)}, but are not forced to collapse in feature space. In particular,
Lyapunov stability obtained through the gradient flow controls the energy values, and the tangential
flow component Ty, (H) enables the evolution of node features along level sets of Vg, including in
regions where the energy gradient is small. We now show that unlike gradient flows, our TANGO
admits evolution of node features in flat energy landscapes, a prime challenge in optimization
techniques (Nocedal & Wright, [1999; Boyd & Vandenberghe, [2004)).
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Proposition 2 (TANGO can Evolve Features in Flat Energy Landscapes). Suppose Vi Vg(H) = 0,
and Ty, (H) # 0, then the TANGO flow in Equation (2) reads:

dH

it =PBg (H)TVg (H)
This implies that in contrast to gradient flows, the dynamics of TANGO obtained by the tangential
term can evolve even in regions where the energy landscape is flat.

Theoretical Benefits of Using the Tangent Direction. Our TANGO combines two terms as shown in
Equation (2) and its discretization in Equation (E]) These are the energy gradient Vi Vg (H®) and
the tangential direction vector Ty, (H). A natural theoretical and practical question is: under what
conditions does the inclusion of the tangential direction improve over simple gradient descent? To
address this question, we first recall a classic convergence result for gradient-based minimization.
Proposition 3 (Convergence of Gradient Descent of a Scalar Function, Nocedal & Wright| (1999)).
Let Vg(+) be a scalar function and let H*+Y) = H®) — a(gé)(H(z))VHVg (H®D) be a gradient-
descent iteration of the energy Vg(-). Then, a linear convergence is obtained, with convergence
rate:

)\max - Amin

)\max + Amin ’

where Amax is the maximal eigenvalue, and in the case of problems that involve the graph Laplacian,
Amin IS the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the Hessian of Vg ().

r =

Proposition [3] shows that gradient descent suffers in ill-conditioned problems, i.e., when the ratio
between the A ax and Ay is large. This is common in graph-based tasks, where the Hessian may
inherit poor conditioning from the graph Laplacian, particularly when oversquashing occurs due to
bottlenecks in the graph Topping et al.| (2022);|Giraldo et al.|(2023)); Di Giovanni et al.| (2023a). As
an alternative, consider the effect of adding an orthogonal flow to the gradient descent direction. In
this case, the combined update direction is

D = ag(HY)Vy Vg (HY) + s (H)Ty, (HDY). (12)

The following proposition demonstrates that it is possible, i.e., the model has the capacity, to learn T’
such that D becomes a Newton-like direction with quadratic convergence (Nocedal & Wright, [1999).

Proposition 4 (TANGO can learn a Quadratic Convergence Direction). Assume for simplicity that
Bg = 1, and that the Hessian of Vg is invertible. Let D = ag(H® )V Vg (H®) + Ty, (H®) with

<Tvg (H®), §HVg(H(Z))> = 0. Then, it is possible to learn a direction Ty, (H®)) and a step size
ag such that D is the Newton direction, N = (V2Vg) "1V V5.

In addition to its improved global convergence, Newton’s method is notable for its local convergence
rate behavior, being independent of the condition number of the Hessian (Nocedal & Wright, [1999;
Boyd & Vandenberghel [2004). This implies that if the tangential flow is learned to approximate
Newton direction, TANGO can overcome the slow convergence caused by highly ill-conditioned
energy landscapes, as commonly observed in different second order optimization techniques and
their approximations, such as conjugate gradients (CG) and LBFGS (Nocedal & Wright, [1999; Boyd
& Vandenberghel 2004). In the context of graph learning, Proposition {| is particularly relevant
when considering the oversquashing problem (Alon & Yahav, 2021} |Di Giovanni et al.,[2023a)), and
motivates the utilization of the conceptual blueprint of TANGO from Equation (2)) for graph learning:
oversquashing leads to poor conditioning; the graph Laplacian has a smallest eigenvalue of zero (for
connected graphs), and the second smallest eigenvalue is also close to zero (Topping et al., 2022
Giraldo et al., 2023} [Black et al.,|2023; Jamadandi et al.,|2024). Under these conditions, gradient
flow methods, which are implicitly implemented by common GNN formulations (Di Giovanni
et al., |2023b)), perform poorly due to their ill-conditioned energy landscape, limiting the ability of
propagating information between nodes. By enabling feature updates that can approximate second-
order information, i.e., Newton-like directions, our TANGO offers a mechanism that can, in principle
alleviate oversquashing. We empirically validate these results in Figure 2] where we compare our
method with a Dirichlet energy gradient flow process, which is often implemented by baseline
GNNs (Rusch et al., [2023; (D1 Giovanni et al.,[2023b)), with more details described in Appendix
highlighting the importance of tangential flows in our TANGO, and further evaluate the effectiveness
of our TANGO across oversquashing-related benchmarks in Section 3]
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Figure 2: Comparison of propagation behaviors between gradient flow and TANGO with 50 layers.
While a Dirichlet energy gradient flow struggles propagating information through the bottleneck, our
TANGO is effective. We provide details on this experiment in Appendix[D.2]

5 EXPERIMENTS

We evaluate the performance
of our TANGO on a suite
of benchmarks: (i) synthetic

Table 1: Mean test set logi1o(MSE)({) and std averaged on 4 random
weight initializations on Graph Property Prediction. Lower is better.
First, second, and third best results for each task are color-coded.

benchmarks that require the ex-
change of messages with large
distances, called graph prop-
erty prediction from |Gravina
et al] (2023), in Section [5.1}
(i) the peptides long-range
graph benchmark (Dwivedi
et al. 2022b) in Section [5.3}
(iii)) GNN benchmarks from
(Dwivedi et al.,|2023) including
the ZINC-12k, MNIST, CIFAR-
10, PATTERN, and CLUS-
TER datasets; and (iv) the
heterophilic node classification
datasets from [Platonov et al.
(2023). Notably, TANGO shows

Model

Diameter

SSSp

Eccentricity

MPNNs

GatedGCN (Bresson & Laurent, 2018) 0.13484.0.0397

GCN (Kipf & Welling} |2016)

GAT (Velickovic et al.,[2018)
GraphSAGE (Hamilton et al.; 2017)
GIN (Xu et al.; 2019)

GCNIT (Chen et al.;[2020)

0.7424 1.0.0466
0.822110.0752
0.6131+0.0990
0.5287 +0.0570

-3.26104+0.0514
0.2863+0.1843
-0.5408+0.4193
-1.132940.0135

0.6995+0.0302
0.8468 1.0.0028
0.7909 +.0.0222
0.764040.0355

DE-GNNs
DGC (Poli et al.}[2019)
GRAND (Chamberlain et al.,[2021b)
GraphCON (Rusch et al.|[2022)
A-DGN (Gravina et al.}|2023)
SWAN (Gravina et al.}|2025)
PH-DGN (Heilig et al.;[2025)

0.6028 +-0.0050
0.671540.0490
0.0964 1.0.0620
-0.5188+0.1812
-0‘5981 4+0.1145

-0.1483 +0.0231
-0.09421.0.3897
-1.383610.0092
-3.2417 +0.0751
-3.542510.0830
-4.29931.0.0721

0.826140.0032
0.66021.0.1393
0.6833+0.0074
-0.073910.2190
-0.9348 1.0.2007

Transformers
GPS (Rampasek et al.,[2022)

-0.51214+0.0426

-3.599010.1949

0.6077 +-0.0282

- Ours
COHSISte.nt downStream perf9r_ TANGOGCN 0-1729i0,0382 '1-0024:&00854 —1.6264i0‘0053
mance 1mprovements over 1ts ~ TANGOGin 0.0433 10,0211 -2.8923+0.0037 -1.7228+0.0046
. TANGOGATEDGCN -0.66811+0.0745 -5.062640.0742 -1.741940.0106
four backbone models: GCN 7, ¢ 2" 0977240 0515 -5.5263 10 0835 -2145540.0035

(Kipf & Welling], [2016)), GIN
(Xu et al.}2019), GatedGCN (Bresson & Laurent, 2018]), and GPS (Rampasek et al.| [2022), high-
lighting its usefulness. It also offers competitive performance compared with other popular and
state-of-the-art methods, such as MPNN-based models, DE-GNNs, higher-order DGNs, and graph
transformers. In all experiments, TANGO is trained with the same loss function as other GNN
baselines, like the cross-entropy loss. In Appendix [D| we provide full experimental details on the
hyperparameters, benchmark evaluation, and runtimes. Additional results and comparisons, as well
as evaluation on heterophilic node classification and ablation studies that isolate the effect of energy
term, the tangential projection, and depth, are provided in Appendix [E]

5.1 GRAPH PROPERTY PREDICTION

Setup. We consider the three graph property prediction tasks from |Gravina et al.|(2023), evaluating
the performance of TANGO in predicting graph diameters, single source shortest paths (SSSP), and
node eccentricity on synthetic graphs. To effectively address these tasks, it is essential to propagate
information not only from direct neighbors but also from distant nodes within the graph. As a result,
strong performance in these tasks mirrors the ability to facilitate long-range interactions.

Results. Tablereports the mean test log;o(MSE), comparing our TANGO with various MPNNs, DE-
GNNss, and transformer-based models. The results highlight that TANGO, in all variants, consistently
achieves the lowest (best) error across all tasks, demonstrating its efficacy compared with existing
methods. For example, in the Eccentricity task, TANGOgps reduces the error score by over 1.2
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Table 2: Test performance in five benchmarks from |Dwivedi et al.|(2023). Shown is the mean g4 of
4 runs with different random seeds. Highlighted are the top first, second, and third results.

Model ZINC-12k  MNIST CIFAR10 PATTERN CLUSTER
MAE| Accuracy?  Accuracy?  Accuracyl  Accuracy?
GCN (Kipf & Wellil’lg, 2016) 0.367i04011 90-705i04218 55~710i04381 71.892i0,334 68.498io_976
GIN (Xu et al.,|2019) 0.526+0.051 96.485+0.252 55.255+1.527 85.387+0.136 64.716+1.553
GAT (VellékOVIé et al., 2018) 0.384i0‘007 95.535i0‘205 64.223i0‘455 78-271i0.186 70.587i0_447
GatedGCN (Bresson & Laurent, 2018) 0.282:{:0‘015 97.340:{:0_143 67.312:{:0‘311 85.568i0,088 73-840:t0.326
PNA (COI‘SO et al., 2020) 0.188i04004 97.940i04120 704350i04630 — -
DGN (Beaini et al ., [2021) 0.168+0.003 — 72.838.0.417 86.680+0.034 —
CRan (Ténshoff et al., 2023b) 0.085i0‘004 97.944&0‘050 69.013i0‘259 - _
GIN-AK+ (Zhao et al.| [2022) 0.0804+0.001 — 72.190+0.130 86.850-0.057 —
SAN (Kreuzer et al.[2021al) 0.139-+0.006 — - 86.5814+0.037 76.691+0.65
EGT (Hussain et al., 2022) 0.108i0‘009 98-173i(u)87 68.702i0‘409 86.821i0,020 79.232i0,343
Graphormer-GD (Zhang et al.,[2023)  0.081+0.009 — — — —
GPS (Rampai§ek et al., 2022) 0-070i04004 98-051i04126 72~298i04356 86.685i0,059 78.016io_180
GRIT (Ma et al., 2023) 0.059;0_002 98.108:{:0,111 76.468;[)_851 87.196‘U)_(176 80.026‘“),277

TANGOGCN 0.153+0.010 94.579+0.211 64.9201+0.402 81.198+£9.299 74.040+1.109
TANGOGIN 0.12240.031 97.65140.247 66.350+0.967 86.7034+0.194 71.360+1.169
TANGOGaedGeN 0.1284+0.011 97.788+0.105 70.894+10.320 86.67240.071 78.194+0.307
TANGOGps 0.06210.005 98.197+0.110 75.783+0.261 87.182+0.063 80.113+0.138

points compared to PH-DGN (Heilig et al., [2025) and by over 2.0 points compared to SWAN,
which are models designed to propagate information over long radii effectively. On Diameter and
SSSP, TANGOgps also yields gains over the strong prior DE-GNN baseline PH-DGN, improving the
log19(MSE) by 0.4 and 1.2 points respectively. Overall, these results validate the effectiveness of our
TANGO in modeling long-range interactions and and are consistent with alleviation of oversquashing.
Furthermore, TANGO strengthens the performance of simple MPNN backbones like GatedGCN.
For example, GatedGCN augmented with our TANGO consistently delivers better results than the
baseline GatedGCN, highlighting its ability to enhance traditional MPNNSs. This demonstrates that
our method can effectively leverage the strengths of simple models while overcoming their limitations
in long-range propagation.

5.2 GNN BENCHMARKING

Setup. To further evaluate the performance of our TANGO, we consider multiple GNN from |[Dwivedi
et al.| (2023), that include the ZINC-12k dataset, MNIST and CIFAR-10 superpixels datasets, and
CLUSTER and PATTERN datasets. These datasets are commonly used to evaluate state-of-the-art
techniques (Ma et al.,[2023). For a fair and direct comparison with other methods, we follow the
training and evaluation protocols from |Dwivedi et al.| (2023).

Results. Table |2| reports the average and standard deviation of the obtained test metric. Besides
ZINC-12k, which is a regression problem with mean absolute error (MAE) as the metric, all other
datasets consider the accuracy(%) metric. Our results show that across all benchmarks, our TANGO
consistently improves its backbone performance, and often outperforms other strong baselines.

5.3 LONG-RANGE BENCHMARK

Setup. We evaluate our method on the real-world Long-Range Graph Benchmark (LRGB) (Dwivedi
et al.,[2022b), focusing on Peptides-func and Peptides-struct. We follow the experimental setting in
Dwivedi et al.|(2022b)), including the SO0K parameter budget. Transformer baselines use positional
and structural encodings; TANGO uses none. The datasets contain large peptide molecular graphs,
whose structure and function depend on long-range interactions. Thus, short-range interactions, such
as local message passing in GNNs, may be insufficient for this task.

Results. Table [3] provides a comparison of our TANGO model with a wide range of baselines.
For example, on Peptides-struct, all TANGO variants achieve competitive MAE compared with all
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methods in Table 3 under the shared parameter budget. A broader comparison is presented in Table[T2]
The results indicate that TANGO outperforms standard MPNNSs, transformer-based GNNs, DE-GNNss,
Multi-hop GNNs, and methods that use rewiring like GRAND (Chamberlain et al.,[2021b) and DRew

(Gutteridge et al,[2023).

5.4 HETEROPHILIC NODE CLASSIFICATION

Setup. We consider heterophilic Table 3: Results for Peptides-func and Peptides-struct (3 train-

node classification datasets;
Roman-empire, Amazon-ratings,
Minesweeper, Tolokers, and Ques-

ing seeds). The first, second, and third best scores are colored.

Peptides-func Peptides-struct

tions tasks, to evaluate TANGO in AP T MAE |
capturing complex node relation-
ships beyond simple homophily. 59.304+0.23 0.3496+0.0013
. 54.9840.79 0.3547+0.0045
We follow the training and evalua- 55431075 0347110 0010
tion protocols from [Platonov et al. 58.6440.77 0.342040.0013
(2023). Multi-hop GNNs
DIGL+MPNN-+LapPE (G 2019) 68.3040.26 0.261640.0018
Results. We report the perfor-  MixHop-GCN+LapPE ‘IW' 684340.40 0261410 0023
mance of TANGO in Appendlx@ DRew-GCN+LapPE m 71.50 1044 0.253640.0015
and compare it with several re- Transformers
. ey Transformer+LapPE —waedl et al 023 63.264+1.26 0.2529+0.0016
cent leadl_ng methods.. Specifi SAN+LapPE S03Ta 2023) 638411 o 02683 10 oo
cally, we include baseline results GPS+LapPE (RampaZek ot al, 65354041 0.250040.0005
from [Finkelshtein et al.| (2024 DE-GNNs
[Platonov et al.| (2023)); Miiller et a]. GRAND (Chamberlain et al}2021b) 57.8940.62 0.3418.40.0015
. Across all datasets, TANGO  GraphCON (Rusch et al | 2027 60.2240.68 0.277840.0018
@) .. y A-DGN (Gravina et al}|[2023) 59.7540.44 0.28740.0021
achieves competitive performance  gyan (Gravima ot ] 2023) 675150 30 0.2485+0 0000
that often outperforms state-of-the-  PH-DGN (Heilig et al.[[2025 70.1240.45 0.246510 0020
art methods, and consistently im-  gurs
proves its backbone GNN per-  TaNGOGen 69.1740.31  0.243240.0011
formance, demonstrating that our ~ -ANG0aw 68.7810.66 0.244010.0024
- TANGOGTEDGCN 68.9240.40 0.2451+0.0006
TANGO can also be utilized on TANGOGpS 70214045 0242250 0014

larger graphs and in heterophilic sce-
narios.

6 RELATED WORK

We now cover two main topics related to our TANGO, with additional related works in Appendix [A]

Deep GNNs and Dynamical Systems. A growing body of work interprets GNN layers as iterative
updates in a dynamical system, providing a principled framework to analyze stability, control
diffusion, and inform architectural design. [Poli et al|(2019) introduced Graph Neural ODEs, inspired
by neural ODEs (Ruthotto & Haber}, 2020; (Chen et al., 2018)), modeling node feature evolution via
continuous-depth ODEs aligned with graph structure, enabling adaptive computation and improved
performance in dynamic settings. Similarly, Xhonneux et al.| (2020) proposed Continuous GNNS,
where feature channels evolve by differential equations, mitigating over-smoothing via infinite-
depth limits. Follow-up works such as GODE (Zhuang et al,[2020), GRAND (Chamberlain et al.},

2021b), PDE-GCNp (Eliasof et al} 2021), and DGC (Wang et al, 2021)) view GNN layers as
discrete integration steps of the heat equation to control oversmoothing (Nt & Maehara, 2019;

Oono & Suzuki, 2020; 2020). Extensions like PDE-GCNy; (Eliasof et al., [2021) and
GraphCON (Rusch et al.;|2022)) add oscillatory components to preserve feature energy, while others
leverage heat-kernel attention (Choromanski et al., 2022), anti-symmetry (Gravina et al.| 2023}, 2025),
reaction-diffusion (Wang et al., 2023}, |Choi et al.}[2023), advection-reaction-diffusion (Eliasof et al.,
20244) to enhance long-range or directional flow, and higher-order graph neuro ODE models (Eliasof
et al., 2024b). A comprehensive overview is given in|[Han et al.| (2023). Closely related, Di Giovanni
et al.[(2023b) interpret GNN layer updates as gradient flows of the Dirichlet energy, aligning message
passing with energy minimization, and [Zhao et al.| (2023)) studies the adversarial robustness of
Lyapunov-based GNNs. In contrast, our TANGO takes a different approach. Instead of viewing
GNN layers as discretizations whose weights are to be learned, TANGO learns a graph-adaptive,
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task-driven energy and introduces a novel descent mechanism combining energy gradients with a
learnable tangential component, enabling more flexible dynamics than pure gradient flows.

Learning Energy Functions in Neural Networks. Energy-based models (EBMs) provide a flexible
framework in deep learning by learning an energy function whose low-energy regions correspond
to areas with high probability for the data. They have been widely used in generative tasks such as
image synthesis (LeCun et al.,|2006; Xie et al., 2016; |Du & Mordatchl 2019;|Guo et al., 2023)) and
graph generation (Liu et al., [2021} Reiser et al.,[2022)). In contrast to these typically unsupervised
settings, our work uses a fask-driven energy function whose parameters are optimized only through
supervised losses on node or graph labels, rather than via a separate generative objective. The energy
plays the role of a Lyapunov potential that shapes the hidden feature dynamics; we do not require
or assume that its global minima coincide with globally optimal predictions. Relatedly, Lyapunov
functions, classical tools from control theory (Khalil, 2002), have been used in neural networks to
ensure stable learning or inference dynamics, e.g., by enforcing stability in Neural ODEs (Rodriguez
et al., 2022) and GNN-based controllers (Fallin et al., 2025), Hamiltonian graph flows for adversarial
robustness (Zhao et al.| |2023)), as well as Beltrami flow and neural diffusion on graphs (Chamberlain
et al.| 20214a), which use a discretization of the Beltrami flow in joint feature and position space and
induce an implicit rewiring mechanism. Notably, in a Hamiltonian system, the energy is conserved,
which has been shown to be useful for adversarial robustness (Zhao et al.,|[2023)), while a Lyapunov-
stable system implies that close initial conditions evolve along similar trajectories. Lyapunov-stable
neural ODEs have also been studied by regularizing an ODE to obtain Lyapunov-stable equilibria,
an approach that has been found beneficial for adversarial robustness in image classification (Kang
et al.,[2021)). Our method, TANGO, is complementary to these lines of work: it operates directly on
graph-structured hidden states, learns a task-driven graph energy that is used explicitly as a Lyapunov
function, and couples its gradient flow with a learned tangential component. This tangential flow can
both accelerate energy minimization and maintain informative feature updates even in areas where the
energy landscape is flat. In this way, TANGO bridges and extends these perspectives by introducing a
graph-adaptive, task-specific energy and a novel feature evolution mechanism, which is reflected in
enhanced downstream performance on graph learning tasks, as shown in Section 3]

7 CONCLUSIONS

We introduced TANGO, a novel framework for learning graph neural dynamics through the joint
modeling of an energy descent direction and a tangential flow. By interpreting GNN message passing
through the lens of Lyapunov theory and continuous dynamical systems, TANGO unifies task-driven
energy-based modeling with flexible, learnable tangential flows, which allow for better utilization
of the learned energy function by accelerating its minimization. We further show that the tangential
component enables continued feature evolution in flat or ill-conditioned energy landscapes, offering
a compelling advantage over traditional gradient flow approaches. We relate this property to the
mitigation of oversquashing, a persistent challenge in graph learning. Empirically, TANGO achieves
strong performance across 15 synthetic and real-world benchmarks, outperforming message-passing,
diffusion-based, and attention-based GNNs. This work opens several interesting directions for future
research, including the incorporation of higher-order differential operators into the tangential flow
mechanism, and an analysis and regularization techniques for the learned energy landscape, as well
as studying tangential flows in other domains and applications.
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Reproducibility Statement. We will release the full codebase upon acceptance, including model
implementations for TANGO backbones, training and evaluation scripts, and dataset configuration
files. Comprehensive experimental details—covering dataset descriptions, splits, preprocessing, im-
plementation specifics, parameter budgets, and runtime measurements—are provided in Appendix

Ethics Statement. This work is methodological and evaluated on public benchmark datasets that
are widely used in graph learning research. We followed the licenses and terms of use for each
dataset and did not collect any new human subject data. While our contribution is foundational,
graph representation learning can be applied to sensitive domains. We encourage the responsible
use of graph models, particularly when working with personal, social, or otherwise sensitive data.
Practitioners should ensure appropriate consent and safeguards, and follow established fairness,
accountability, and transparency practices.

Usage of Large Language Models. Large language models were used only for limited text
editing suggestions. All research ideas, theoretical analysis, algorithm design, code development,
experiments, and original technical writing were conducted by the authors.
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A ADDITIONAL RELATED WORK

Oversquashing in Graph Learning. Graph neural networks (GNNs) typically operate through
message-passing mechanisms, aggregating information from local neighborhoods. While effective
in capturing short-range dependencies, this design often leads to oversquashing, a phenomenon
where signals from distant nodes are compressed into fixed-size representations, impeding the flow of
long-range information (Alon & Yahav} 2021} |Di Giovanni et al.| |2023a; [Topping et al., [2022). This
limitation poses a challenge in domains that demand rich global context, such as bioinformatics (Baek
et al.,|2021; Dwivedi et al., 2022b) and heterophilic graphs (Luan et al.,[2024; |Wang et al., |2024b)).
A range of strategies have been proposed to mitigate oversquashing. Graph rewiring approaches,
such as SDRF (Topping et al.}|2022), densify the graph to enhance connectivity prior to training. In
contrast, methods like GRAND (Chamberlain et al., [2021b}), BLEND (Chamberlain et al., 2021a)),
and DRew (Gutteridge et al.,[2023)) adjust the graph structure dynamically based on node features.
Transformer-based models offer another promising route by leveraging global attention to enable
direct, long-range message passing. Examples include SAN (Kreuzer et al.}[2021c), Graphormer (Ying
& Leskovec, |2021)), and GPS (Rampasek et al.2022)), which incorporate positional encodings, such
as Laplacian eigenvectors (Dwivedi et al., [2023)) and random walk structural embeddings (Dwivedi
et al.}2022a) to preserve structural identity. However, the quadratic complexity of full attention in
these models raises scalability concerns, motivating interest in sparse attention mechanisms (Zaheer
et al., |2020; Choromanski et al., 2020; |Shirzad et al.| |2023)). An alternative line of work explores
non-local dynamics to enhance expressivity without relying solely on attention. FLODE (Maskey
et al., |2023) employs fractional graph operators, QDC (Markovich, [2023) uses quantum diffusion
processes, and G2TN (Toth et al.} 2022)) models explicit diffusion paths to propagate information
more effectively. While these approaches address the oversquashing bottleneck, they often come with
increased computational demands due to dense propagation operators. For a broader overview of these
techniques, see|Shi et al.[(2023)). We note that the challenge of modeling long-range dependencies
also arises in other domains, such as sequential architectures (Hochreiter & Schmidhuber, (1997} Gu
et al.l [2022).

Optimization Techniques. The formulation of TANGO draws parallel with concepts that have
been explored in the optimization literature, particularly in the design of dynamical systems that
balance expressivity and convergence. While traditional gradient descent provides a robust and
interpretable mechanism for minimizing energy functions, its convergence rate can be limited in
poorly conditioned settings (Boyd & Vandenberghel 2004;|Nocedal & Wrightl|1999)), which frequently
arise in graph-based problems due to structural bottlenecks (Alon & Yahavl, 2021} |Topping et al.,
2022). Second-order approaches, such as Newton’s method, are known to accelerate convergence
by incorporating curvature information, albeit at increased computational cost. The combination of
energy gradient descent and a learned tangential component in TANGO suggests a learnable departure
from purely first-order schemes. Rather than explicitly computing or approximating the Hessian,
our framework enables the model to learn corrective update directions that are orthogonal to the
descent path. This design implicitly aligns with the motivations behind quasi-Newton techniques like
conjugate gradients and LBFGS (Nocedal & Wrightl [1999), which aim to improve convergence by
leveraging directional information that complements the gradient. From this perspective, TANGO can
be viewed as embedding optimization-inspired dynamics within graph learning frameworks. This
is particularly relevant in scenarios affected by oversquashing (D1 Giovanni et al.| [2023a), where
effective feature transmission often requires departing from strictly local, gradient-driven updates. By
allowing energy-preserving tangential flows, TANGO introduces flexibility reminiscent of structured
optimization methods, adapted to the graph learning domain.

B PROOFS OF THEORETICAL RESULTS

In this section, we restate the theoretical results from Section 4] and provide their proofs. As in the
main text, we assume the following throughout: (i) the input graph G = (V, &) is connected; (ii) the
energy function Vg (H(t)) is twice differentiable and bounded from below. For simplicity of notation,
throughout this section, we omit the time or layer scripts and use the term H to denote node features
when possible.
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Proposition 1 (Energy Dissipation). Suppose ag > 0 and ||VuVg(H)||? > 0. Then the energy
Vg (H) is non-increasing along trajectories of Equation equation [Z] Specifically,

%VQ(H) = —ag(H) |VaVg(H)|? + Bg(H)(Ty, (H), Vi Vg (H))

= —ag(H)||ValgHE)| <o0.

Proof. By the chain rule,

d dH
—Vg(H) = H), — ).
V(e = (Tuvo(en, G5
Substituting the dynamics of Equation equation [2}
d
Vo) = (VuVe(H), —ag(H) VuVs(H) + fg(H) Ty, (H))

= —ag(H) [VaVs®)|” + 85 (H) (Ty, (H), VuV(H)) .
As discussed in Section [3] we have by design, that

(Tvy (H), VuVg(H)) = 0.

Therefore,

d 2

5 Vo(H) = —ag(H) [VaVg(H)]".
Because ag(H) > 0 by design, the energy is non-increasing, and assuming ag (H) > 0, the system
is dissipative, i.e., its energy is decreasing. O

Proposition 2 (TANGO can Evolve Features in Flat Energy Landscapes). Suppose Vi Vg(H) = 0,
and Ty, (H) # 0, then the TANGO flow in Equation (2)) reads:

T = g (F) Ty, ().

This implies that in contrast to gradient flows, the dynamics of TANGO can evolve even in regions
where the energy landscape is flat.

Proof. Because ViVg(H) = 0, the first term in Equation (2) vanishes, and the TANGO dynamical
system reads:

O = B (BT, ()

Assuming that Ty, (H) # 0, TANGO can continue evolving node features also in cases where
VuVg(H) = 0, i.e., where the energy landscape is flat. O

Proposition 3 (Convergence of Gradient Descent of a Scalar Function, Nocedal & Wright| (1999)).
Let Vg(+) be a scalar function and let H/+D = H®) — Oé(gé)(H(l))vHVg (H®D) be a gradient-
descent iteration of the energy Vg (). Then, a linear convergence is obtained, with convergence
rate:

)\max - Amin

)\max + )\min ’

where Amax IS the maximal eigenvalue, and in the case of problems that involve the graph Laplacian,
Amin IS the second minimal eigenvalue, i.e., the first non-zero eigenvalue of the Hessian of Vg ().

T =

Proposition 4 (TANGO can learn a Quadratic Convergence Direction). Assume for simplicity that
Bg = 1, and that the Hessian of Vg is invertible. Let D = ag(H")Vig Vg (H®) + Ty, (H®) with

<Tvg (HO), VgV (H(Z))> = 0. Then, it is possible to learn a direction Ty, (H")) and a step size
ag such that D is the Newton direction, N = (V2Vg) "1V 1.
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Proof. We aim to construct a direction D = ag(H) Vi Vg(H) + Ty, (H) that matches the Newton
direction:

N = (VidVo(H) ' VaV(H).
Recall that by design, we have that Ty, (H) is orthogonal to the energy gradient, i.e.,
(T'v,(H), VaVg(H)) = 0. Then, we can express a Newton direction by the decomposition:

N =ag(H) VgV (H) + Ty, (H).
Solving for the orthogonal component yields:

Tv,(H) =N — ag(H) Vu Vg (H).
To enforce orthogonality, we require:

(N = ag(H) VuVg(H), VaVg(H)) = 0.
Expanding and simplifying, we find:
(N, VuVg(H)) — ag(H) |VaVg(H)||* =0,
and the optimal step size is given by:
(N, VuVg(H))
ag(H) = ——————~,
IVaVg(H)]

showing that it is possible to learn a Newton direction, i.e., a quadratic energy convergence direction.
O

C COMPLEXITY AND RUNTIMES

Complexity. Each step of TANGO requires computing the gradient of the learned energy function
Vg(H®), that is defined in Equation . This involves two main operations: (i) forward and
backward passes through the energy network ENERGYGNN, which contains Leyergy message-passing
layers and an MLP; and (ii) automatic differentiation to compute Vi Vg (H®)) with respect to the
input node features. In parallel, the tangential flow direction Ty, (H(e)) is obtained by projecting the

vector field M9 computed by a separate TANGENTGNN with Liygen; layers onto the orthogonal
complement of the normalized energy gradient, as shown in Equation (3). This projection is of
computational cost of O(nd) per step, where n = || and d is the feature dimensionality. In addition,
scalar coefficients ag and g are computed from pooled node features using MLPs (Equations (8]
and (10)). Assuming both ENERGYGNN and TANGENTGNN are message-passing architectures
with linear complexity in the number of nodes and edges, and setting Lepergy = Liangent, the total
complexity per layer becomes O(Lgnn - (7 + m) - d), where Lyp, is the number of GNN layers used
in each subnetwork and m = |£| is the number of edges. Unrolling the dynamics over L steps, the
overall computational complexity of TANGO is:

Memory. The memory footprint of TANGO is dominated by storing activations for backpropagation,
as in any deep GNN. Using two subnetworks of the same backbone type (ENERGYGNN and
TANGENTGNN) roughly doubles the number of feature tensors that need to be kept in memory.
Nonetheless, we match the overall parameter budget to the underlying backbone by reducing widths
where needed (see Table[7), so that the resulting models remain comparable in size. The asymptotic
memory complexity remains linear in the number of nodes and edges and in the number of unrolled
steps: the additional cost of computing Vg Vg (H“)) is handled by standard automatic differentiation,
which is already widely used in graph models that differentiate through intermediate node states
or energies. In practice, we did not observe memory blow-up or numerical instabilities due to the
projection in Equation (3); all reported configurations train within the same hardware constraints as
the corresponding backbones.

Parameter count comparison. To ensure a fair comparison, we match the parameter budget of each
backbone when instantiating TANGO. Table 4] reports parameter counts alongside mean performance
and standard deviation across datasets and metrics. As shown, TANGO uses a comparable number
of parameters to its corresponding backbones while achieving consistently stronger results. This
protocol allows us to isolates the contribution of our Lyapunov-guided dynamics in TANGO from the
number of parameters.
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Table 4: Comparison of models across datasets. Performance is reported as mean + standard
deviation, with the metric indicated; | means lower is better and 1 means higher is better.

Dataset Model Params  Performance (metric)

GatedGCN 503,013 0.282 & 0.015 (MAE )
TANGO 503,409 0.128 + 0.011 (MAE )
GPS 423,717 0.070 & 0.004 (MAE )
TANGO 422,947  0.062 £ 0.005 (MAE )

GatedGCN 541,086  74.46 & 0.54 (Acc 1)
TANGO 520,822 91.89 & 0.30 (Acc 1)
GPS 524218  87.04 £ 0.58 (Acc 1)
TANGO 525,016  91.08 & 0.57 (Acc 1)

GatedGCN 496,184 58.64 +0.77 (AP 1)
Peptides-func TANGO 496,590 68.92 4+ 0.40 (AP 1)
GPS 504,362 65.35+0.41 (AP 1)
TANGO 502,938 70.21 +0.43 (AP 1)

ZINC-12k

Roman-Empire

Table 5: Training runtime comparison per epoch (ms) across datasets and baselines. TANGO achieves
a similar runtime to other methods. We note that while TANGO requires more computation time than
its backbone GNN, it remains efficient and within the same order of magnitude of computations as
other methods, while offering improved performance as shown in the results in Tables E] andE}

Model Questions Roman-Empire ZINC-12k Diameter
GIN 108.72 23.32 382.63 450.21
GCN 69.77 14.96 249.45 294.35
GatedGCN 129.92 27.86 453.76 537.57
GAT 112.40 24.12 398.02 471.40
GPS 429.08 92.08 1506.05  1822.03
GRIT 520.00 111.57 1865.06  2163.81
TANGO-GatedGCN 184.98 39.66 653.29 778.22
TANGO-GPS 694.27 148.96 243585  2899.24

Runtimes. We benchmark training runtimes per iteration for TANGO instantiated on two backbones
(GatedGCN and GPS) and compare against standard baselines across four datasets: Questions,
Roman-Empire, ZINC-12k, and Diameter. The measurements are reported in Table E} It is evident
that TANGO introduces a moderate overhead relative to its corresponding backbone while remaining
in the same order of magnitude as commonly used architectures. In particular, TANGO-GatedGCN
is slower than GatedGCN but substantially faster than GPS-class methods, and TANGO-GPS scales
proportionally with GPS. All measurements were taken under matched hyperparameters with 256
channels, 8 layers on a single NVIDIA RTX6000 Ada GPU with 48 GB memory.

D EXPERIMENTAL DETAILS

In this section, we provide additional experimental details.

Computational Resources. Our experiments are run on NVIDIA RTX6000 Ada with 48GB of
memory. Our code is implemented in PyTorch [Paszke et al.|(2019)), and will be publicly released
upon acceptance.

Baselines. We consider different classical and state-of-the-art GNN baselines. Specifically:
* Classical MPNNE, i.e., GCN (Kipf & Welling} 2016), GraphSAGE (Hamilton et al.,|2017),

GAT (Velickovic¢ et al.,[2018), GatedGCN (Bresson & Laurent, 2018)), GIN (Xu et al.,[2019),
GINE (Hu et al., 2020), GCNII (Chen et al., 2020), and CoGNN (Finkelshtein et al., [2024);
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* Heterophily-specific models, i.e., H2GCN (Zhu et all, 2020), CPGNN (Zhu et al., 2021),
FAGCN (Bo et al 2021), GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022,
GloGNN [Li et al|(2022), GBK-GNN (Du et al., |2022), and JacobiConv (Wang & Zhang,
2022);

* DE-DGN:s, i.e., DGC (Wang et al, 2021), GRAND (Chamberlain et al., [2021b)), Graph-
CON (Rusch et al.l [2022)), A-DGN (Gravina et al,[2023)), and SWAN (Gravina et al.| 2025));

e Graph Transformers, i.e., Transformer (Vaswani et al.} 2017; [Dwivedi & Bresson| [202T),
GT 2021), SAN (Kreuzer et al.l 2021b), GPS (Rampések et al.| 2022), GOAT (Kong
[2023), and Exphormer (Shirzad et al., [2023));

* Higher-Order DGN, i.e., DIGL (Gasteiger et al.|[2019), MixHop (Abu-El-Haija et al., 2019),
and DRew (Gutteridge et al} [2023).

¢ SSM-based GNN, i.e., Graph-Mamba (Wang et al., 2024a), GMN (Behrouz & Hashemil
2024), and GPS+Mamba (Behrouz & Hashemil, [2024)

D.1 FORWARD EULER DISCRETIZATION AND STABILITY

Recall that the continuous-time dynamics of TANGO are given by Equation (2) where Vg is a non-
negative Lyapunov energy, VgV is its gradient with respect to node features, and Ty, is constrained
to be orthogonal to this gradient. In discrete depth, we implement TANGO using the forward Euler
residual update as shown in Equation @) for £ = 0,..., L — 1, with step size ¢ > 0. In classical
numerical analysis, explicit Euler schemes can be fragile when applied to a fixed stiff ODE: for a
given vector field, only a restricted range of step sizes yields stable trajectories. In TANGO, however,
we do not discretize a predetermined ODE. Instead, the vector field is learned, while € is selected
from a small grid. If a particular combination of parameters and step size led to severe instability (for
example exploding feature norms or chaotic trajectories), the resulting network would fail to train and
would not attain the reported validation and test performance. The fact that TANGO trains reliably
across all benchmarks, including deep networks (as shown in Appendix [E.2), empirically indicates
that the learned dynamics lie in a regime where the forward-Euler discretization is numerically well
behaved.

Our continuous-time analysis in Section[d]shows that, under the assumptions of Proposition 1, the
energy Vg(H(t)) is non-increasing along trajectories of Equation . The forward Euler update
Equation (@) inherits this behavior up to second-order terms in e. Let us assume that Vg is twice
continuously differentiable and that its Hessian is bounded in operator norm by Ly, on the subset
of feature space visited during training. A second-order Taylor expansion of V; along the direction
eF(HWY) gives

2
Vo(HED) = Vo (HO) 4+ e(VarVg(HY), FH®) ) + 5 FHO) Vi Vg () F(HD),
(13)

for some intermediate point £() on the line segment between H®) and H(**1). By construction, Ty,
is orthogonal to V1 Vg, and ag (H®)) > 0, so the inner product term satisfies

(uVe(H), FH®)) = —ag(HO) | ViVe(HD)[* <0,

Using the Hessian bound and the Cauchy—Schwarz inequality, the remainder term is bounded above
by
2 L
SEHEO) V(O FHED) < 2 || FEO)|.
Combining these two observations, we obtain

L
Vo(H) < Vo (H©O) + =2 | FHD)|*,

(14)

which shows that the discrete-time dynamics are Lyapunov-dissipative up to a second-order term in
the step size. In the limit e — 0, the discrete trajectories converge to those of the continuous-time
system and inherit its strict energy dissipation. In practice, we select ¢ from a range where Vg (H®)
is empirically non-increasing along depth and training remains stable.
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This behavior is analogous to what is observed in residual networks and continuous-depth models.
Architectures such as Neural Ordinary Differential Equations for Euclidean data and graph-based
ODE models such as in|Chamberlain et al.|(2021b)); [Eliasof et al.|(2021)); |Gravina et al. (2023)); |Rusch
et al.[(2022)); |Choi et al.|(2023) are typically implemented using an explicit Euler or closely related
explicit Runge—Kutta scheme on a learned vector field. In all these cases, the effective stability of
the discretization is governed by the interaction between the learned dynamics, the chosen step size,
and the training objective: unstable combinations do not converge during training, while successful
training implicitly identifies a regime where the explicit integrator is adequate. Our contribution is
orthogonal to the specific choice of time integrator. TANGO proposes a Lyapunov-structured vector
field on node embeddings, decomposed into an energy-dissipating gradient term and an energy-
preserving tangential term, and instantiates it with the same forward Euler step that is standard in
ODE-inspired GNNs (Chamberlain et al.| 2021b; [Eliasof et al.,|2021; |Gravina et al., 2023)). More
sophisticated integrators (for example implicit—explicit schemes, semi-implicit methods, or higher-
order Runge—Kautta rules) could in principle be combined with TANGO as well, and a systematic
comparison of such integrators in this setting is an interesting avenue for future work.

D.2 SYNTHETIC EXAMPLE

In the synthetic example in Figure 2] we demonstrate the effectiveness of TANGO in overcoming the
oversquashing issue in GNNs. To do that, we consider a Barbell graph, where all node features are set
to 0, besides the left-most node in the graph, which is set to 1, as shown in Figure 2[a). The goal is to
allow the information to propagate through all nodes effectively. We do this by considering a gradient
flow process of the Dirichlet energy using 50 layers (steps), as shown in Figure [2(b), where it is
noticeable that the information is now flowing to the right part in the graph, because of the bottleneck
between the two cliques. However, as we show in Figure [[c), by considering our TANGO, which
utilizes both an energy flow as well as a tangential flow, it is possible to effectively propagate the
information through all the nodes in the graphs.

D.3 GRAPH PROPERTY PREDICTION

Dataset. We construct our benchmark following the protocol introduced by |Gravina et al.| (2023).
Graph instances are synthetically generated from a variety of canonical topologies, including
Erdés—Rényi, Barabasi-Albert, caveman, tree, and grid models. Each graph consists of 25 to 35
nodes, with node features initialized as random identifiers sampled uniformly from the interval [0, 1).
The prediction targets encompass several structural tasks: computing the shortest paths from a source
node, estimating node eccentricity, and determining graph diameter. The complete dataset contains
7,040 graphs, split into 5,120 for training, 640 for validation, and 1,280 for testing. These tasks
inherently demand capturing long-range dependencies, as they involve global graph computations
such as shortest path inference. As highlighted in|Gravina et al.| (2023)), traditional algorithms like
Bellman-Ford or Dijkstra’s method require multiple rounds of message propagation, which motivates
the need for expressive graph models. The benchmark graph families, such as caveman, tree, line,
star, caterpillar, and lobster, frequently include structural bottlenecks that are known to induce over-
squashing effects (Topping et al., [2022)), posing additional challenges for message-passing-based
GNNG.

Experimental Setup. We adopt the same evaluation framework as|Gravina et al.[(2023)), including
datasets, training routines, and hyperparameter spaces. Model training is conducted using the Adam
optimizer for up to 1500 epochs, with early stopping triggered after 100 consecutive epochs of no
improvement on the validation Mean Squared Error (MSE). Hyperparameters are selected via grid
search, and performance is averaged over 4 independent runs with different random seeds for weight
initialization. A summary of the hyperparameter grid used in our experiments is provided in Table [7]

D.4 GRAPH BENCHMARKS

Dataset. To comprehensively assess the capabilities of TANGO, we evaluate its performance on a
diverse set of graph learning benchmarks curated by |[Dwivedi et al.| (2023)). The benchmark suite
includes: ZINC-12k, a molecular regression dataset containing chemical compounds, where the goal
is to predict the constrained solubility of each molecule. Graphs represent molecular structures, with
atoms as nodes and chemical bonds as edges. Node and edge features encode atom types and bond
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types, respectively. MNIST and CIFAR-10 superpixels are graph-structured versions of standard
image classification datasets, where images are converted into sparse graphs of superpixels. Each
superpixel forms a node, and edges are based on spatial adjacency. The tasks involve classifying digits
(MNIST) and natural objects (CIFAR-10) based on graph-structured representations. CLUSTER and
PATTERN are synthetic datasets designed to assess the relational inductive biases of graph neural
networks. Both datasets are generated from a set of stochastic block models (SBMs). In CLUSTER,
the task is to group nodes by community, while PATTERN involves identifying specific structural
patterns within each graph. These datasets span a variety of domains: chemical, image, and synthetic
graphs, and are commonly used to benchmark architectural innovations in GNNs (Ma et al., [2023).
We follow the official training, validation, and test splits provided by Dwivedi et al.|(2023)), ensuring
consistency in evaluation across models.

Experimental Setup. We adhere to the training and evaluation protocol established in [Dwivedi
et al.| (2023)). For each dataset, we perform hyperparameter tuning via grid search, optimizing the
corresponding evaluation metrics: Mean Absolute Error (MAE) for ZINC-12k, and classification
accuracy for the remaining tasks. We use the AdamW optimizer and train all models for up to
300 epochs, with early stopping based on validation performance. To ensure comparability with
prior work, we respect the same parameter budgets used in the original benchmark and maintain the
architectural constraints defined for fair evaluation. Each configuration is trained with three random
seeds, and we report the average and standard deviation of the results. Hyperparameter ranges used
in this set of experiments are summarized in Table

D.5 LONG RANGE GRAPH BENCHMARK

Dataset. To evaluate model performance on real-world graphs with significant long-range depen-
dencies, we utilize the Peptides-func and Peptides-struct benchmarks introduced in Dwivedi et al.
(2022b). These datasets represent peptide molecules as graphs, where nodes correspond to heavy
(non-hydrogen) atoms, and edges denote chemical bonds. Peptides-func is a multi-label classification
task with 10 functional categories, including antibacterial, antiviral, and signaling-related properties.
In contrast, Peptides-struct focuses on regression, targeting physical and geometric attributes such as
molecular inertia (weighted by atomic mass and valence), atom pair distance extremes, sphericity, and
average deviation from a best-fit plane. Together, the two datasets comprise 15,535 peptide graphs
and roughly 2.3 million nodes. We adopt the official train/validation/test partitions from |[Dwivedi
et al.|(2022b)) and report mean and standard deviation across three different random seeds for each
experiment.

Experimental Setup. We follow the evaluation protocol established in [Dwivedi et al.| (2022b)),
including dataset usage, training strategy, and model capacity constraints. Hyperparameter tuning is
carried out via grid search, optimizing for Average Precision (AP) in the classification task and Mean
Absolute Error (MAE) in the regression task. All models are trained using the AdamW optimizer
for up to 300 epochs, with early stopping based on validation performance. To ensure fairness and
comparability, all models adhere to the 500K parameter limit, in line with the settings of Dwivedi
et al.| (2022b)) and |Gutteridge et al.|(2023). Each configuration is run three times with different weight
initializations, and the results are averaged. Details of the hyperparameter ranges considered can be
found in Table[7l

D.6 HETEROPHILIC NODE CLASSIFICATION

Dataset. For evaluating performance in heterophilic graph settings, we consider five benchmark tasks
introduced by Platonov et al.|(2023)): Roman-Empire, Amazon-Ratings, Minesweeper, Tolokers, and
Questions. These datasets span a diverse range of domains and graph topologies. Roman-Empire is
constructed from the Wikipedia article on the Roman Empire, where nodes represent words and edges
capture either sequential adjacency or syntactic relations. The task is node classification with 18
syntactic categories, and the underlying graph is sparse and chain-structured, suggesting the presence
of long-range dependencies. Amazon-Ratings originates from Amazon’s product co-purchasing graph.
Nodes correspond to products, linked if they are frequently bought together. The classification task
involves predicting discretized average product ratings (five classes), with node features derived
from fastText embeddings of product descriptions. Minesweeper is a synthetic dataset modeled as a
100 x 100 grid. Nodes represent individual cells, with edges connecting adjacent cells. A random
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20% of nodes are labeled as mines, and the objective is to classify mine-containing cells based on
one-hot features that encode the number of neighboring mines. Zolokers is based on the Toloka
crowdsourcing platform (Likhobaba et al., 2023), where each node is a worker (toloker), and edges
indicate co-participation on the same project. The task involves binary classification to detect whether
a worker has been banned, using node features from user profiles and performance metrics. Questions
draws from user interaction data on Yandex Q, a question-answering forum. Nodes represent users,
and edges capture answering interactions. The goal is to identify users who remain active, with input
features derived from user-provided descriptions. A summary of dataset statistics is provided in
Table |6l

Table 6: Statistics of the heterophilic node classification datasets.

Roman-empire ~ Amazon-ratings  Minesweeper  Tolokers  Questions

N. nodes 22,662 24,492 10,000 11,758 48,921
N. edges 32,927 93,050 39,402 519,000 153,540
Avg degree 291 7.60 7.88 88.28 6.28
Diameter 6,824 46 99 11 16
Node features 300 300 7 10 301
Classes 18 5 2 2 2
Edge homophily 0.05 0.38 0.68 0.59 0.84

Experimental Setup. Our experimental procedure aligns with that of |Freitas et al.| (2021)) and
Platonov et al.|(2023). We conduct a grid search to optimize model performance, using classifica-
tion accuracy for the Roman-Empire and Amazon-Ratings tasks, and ROC-AUC for Minesweeper,
Tolokers, and Questions. Each model is trained using the AdamW optimizer for a maximum of 300
epochs. Our experiments follow the official dataset splits provided by Platonov et al.[(2023)). For each
model configuration, we perform multiple training runs with different random seeds and report the
mean and standard deviation of the results. The hyperparameter grid explored in these experiments is
summarized in Table

D.7 HYPERPARAMETERS

In Table [7} we summarize the hyperparameter grids used for tuning our TANGO across different
benchmarks. In particular, we have followed similar practices from the literature (Gravina et al.,
2025} Rusch et al.| 2022). Alongside standard training hyperparameters such as learning rate, weight
decay, and batch size, our method introduces several additional components. These include the
number of unrolled steps L (corresponding to the depth of the energy-based dynamics), the hidden
dimension d of node features, and the number of message-passing layers Lgy, used within the internal
ENERGYGNN and TANGENTGNN modules. In all experiments, we share the architecture depth
between ENERGYGNN and TANGENTGNN. We also tune the step size € used in the forward Euler
update (Equation (@), which controls the integration scale of the continuous dynamics. We explore
multiple values of L to assess how the number of dynamical steps impacts long-range propagation
across different tasks. Details of the complete hyperparameter grid can be found in Table

Table 7: Hyperparameter grids used during model selection for the different benchmark categories:
GraphPropPred (Diameter, SSSP, Eccentricity), LRGB (Peptides-func/struct), Graph Benchmarks
(ZINC-12k, MNIST, CIFAR-10, CLUSTER, PATTERN), and Node Classification (Roman-Empire,
Amazon-Ratings, Minesweeper, Tolokers, Questions).

Hyperparameter ‘ GraphPropPred ‘ LRGB ‘ Graph Benchmarks ‘ Node Classification
Unrolled steps L {1,5,10,20} {2,4,8,16,32} {2,4,8,16,32} {2,4,8,16,32}

GNN layers L {1,2,4,8,16} {1,2,4,8,16} {1,2,4,8,16} {1,2,4.8,16}
Feature dimension d {10, 20, 30} {64, 128,256} {64,128, 256} {64,128, 256}

Step size € {0.001, 0.1, 1.0} {0.001, 0.1, 1.0} {0.001, 0.1, 1.0} {0.001, 0.1, 1.0}
Learning rate {le-3, le-4} {1e-3, le-4} {le-3, le-4} {1e-3, le-4}
Weight decay {0,1e-6, le-5} {0, le-6, le-5} {0, 1e-6, le-5} {0, 1e-6, le-5}
Activation function (o) ReLU ELU, GELU, ReLU ELU, GELU, ReLU ELU, GELU, ReLU
Batch size {32,64,128} {32,64,128} {32, 64,128} N/A
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E ADDITIONAL RESULTS AND COMPARISONS

E.1 HETEROPHILIC NODE CLASSIFICATION

We report and compare the performance of our TANGO with other recent benchmarks on the het-
erophilic node classification datasets from [Platonov et al.[(2023)), in TableE} As can be seen from the
Table, TANGO offers strong performance that is similar or better than recent state-of-the-art methods,
further demonstrating its effectiveness.

E.2 ABLATION ON DEPTH: NUMBER OF LAYERS

Setup. We study the effect of depth by varying the number of layers and measuring downstream
performance on ROMAN-EMPIRE. All runs use identical training settings and data splits; only the
depth differs.

Results. Table[§|shows that TANGO benefits from increased depth up to a task-dependent plateau.
For TANGO-GatedGCN, performance improves steadily and saturates around 16 layers. For TANGO-
GPS, gains persist up to 8 to 16 layers and then flatten. Importantly, we do not observe degradation
when adding more layers within the explored range.

Table 8: Ablation on the number of layers for ROMAN-EMPIRE. Values are mean classification
accuracy (%) =+ standard deviation.

Layers 2 4 8 16 32
TANGO-GatedGCN 87.13 £ 0.36 89.08 +0.41 90.80 +0.37 91.89 £0.30 91.82 4+ 0.44
TANGO-GPS 86.98 £ 0.48 88.71 £ 0.59 91.08 £ 0.57 91.01 £ 0.64 91.05 £ 0.60

E.3 ADDITIONAL COMPARISONS

The comparisons made in Section [5 offer a focused comparison with directly related methods as well
as baseline backbones. In addition to that, we now provide a more comprehensive comparison in
Table[I2]and Table[I3] to further facilitate a comprehensive comparison with recent methods. As can
be seen, also under these comparisons, our TANGO offers strong performance.

E.4 ABLATION STUDY

Setup. We conduct two key ablation studies to better understand the contributions of the energy
function and the tangential flow in TANGO. Specifically, we aim to answer the following questions:

(1) Does downstream performance benefit from incorporating a tangential term even when the
underlying GNN is not the gradient of an energy function?

(ii) Is the observed improvement due to the tangential nature of the added component, or simply due
to additional parameters and network?

To address these questions, we design two controlled experiments. For comprehensive coverage,
we evaluate one representative dataset from each benchmark group: ZINC-12k, Roman-empire,
Peptides-func, and Diameter. All experiments are run with two backbone architectures, GatedGCN
and GPS. For reference, we also report the performance of the original backbones.

Results. For ablation (i), we compare TANGO against a variant we call TANGO-NON-ENERGY,
in which the gradient-based energy descent term Vi Vg (H) in Equation (4) is replaced by inter-
mediate node features from the same GNN backbone, as detailed in Equation @) These features
are computed using the same architecture but are not guaranteed to correspond to the gradient of
any scalar energy function. This setup ensures fairness in capacity while removing the energy-based
structure. As shown in Table[I0] although both variants benefit from the inclusion of the tangential
component, the full TANGO consistently outperforms TANGO-NON-ENERGY, confirming that
leveraging a valid energy gradient contributes meaningfully to downstream performance.
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Table 9: Mean test set score and std averaged over the splits from [Platonov et al.| (2023). First,
second, and third best results for each task are color-coded. We mark each method once — if two
variants are among the leading methods, we mark the best-performing variant.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

Model Acc T Acc T AUC 1t AUC 1 AUC 1t
MPNNs
GIN 72.8240.58 46.96+0.44 88.04+0.78 81.79+0.55 75.90+1.03
GAT 80.87:t0.30 49.09:‘:0.63 92-01:t0.68 83.70i0,47 77.43i1,20
GAT—Sep 88.75i0,41 52-70i0A62 93.91i0,35 83.78i0_43 76.79i0,71
Gated-GCN 74-46:‘:0.54 43.00:‘:0.32 87.54:‘:1,22 77.31i1,14 76.61i1,13
GCN 73.69i0.74 48-701063 89.75i0.52 83.64i0_67 76‘09i1A27
CO—GNN(Z, E) 91.57i0.32 51.2810,56 95-09:t1.18 83.36i0,89 80.02i0_86
CO-GNN(/.L, /.L) 91.37i0,35 54.17i().37 97.31i0(41 84.45i1‘17 76.54i0A95
SAGE 85.74:|:0.67 53.63:‘:0.39 93.51:‘:0,57 82.43i0,44 76-4410.62
Graph Transformers
Exphormer 89.0310.57 53.5140.46 90.744+0.53 83.77+0.78 73.94+1.06
NAGphormer 74.34350.77 51.2610.72 84-19i0.66 78.32i0,95 68.17i1_53
GOAT 71.59;{:125 44.61:{:050 8].09:&1‘02 83.1 1;[:1‘04 75:76:[:1‘66
GPScar+performer (RWSE)  87.0410.55 49.9210.68 91.0810.58 84.3810.91 77.1411.49
GT 86.51:[:073 51.17;‘:066 9].85:&0‘76 83.23:&054 77~95:i:()‘68
GT—sep 87~32i0.39 52.18i0_30 92-29i0.47 82-52i0.92 78.05i0_93
Heterophily-Designated GNNs
FAGCN 65.22:|:0.56 44.12:‘:0.30 88.17:‘:0,73 77.75i1,05 77.24i1,25
FSGNN 79.9240.56 52.7440.83 90.08+0.70 82.76+0.61 78.86+0.92
GBK-GNN 74.57:|:0.47 45.98:‘:0.71 90.85:‘:0,58 81-01:t0.67 74-47:t0.86
GloGNN 59.63+0.69 36.89+0.14 51.0841.23 73.39+1.17 65.74+41.19
GPR-GNN 64.85j:0.27 44.88:‘:0.34 86.24i0,61 72.94i0,97 55.48i0,91
JacobiConv 71.14i0.42 43.55i04s 89.66i0A40 68.66io_65 73.88i1A16
Ours
TANGOGeN 89.671+0.68 52.9840.71 98.37+0.49 85.57+0.73 79.86+1.14
TANGOGIN 89.19;|:0A62 50.761047 97‘38:&050 84.39:{:0_61 78‘84:&()‘96
TANGOGatedeN 91.8910.30 52.60+0.53 98.3210.59 85.5110.98 80.39+1.04
TANGOGps 91.0810.57 53.8340.32 98.391 054 85.66101 80.324+1.07

Table 10: Ablation study on the importance of using a gradient of an energy term in Equation (EI)

ZINC-12k  Roman-empire Peptides-func Diameter

Model MAE | Acc. T AP 1 log,o,(MSE) |

GatedGCN 0.282i04015 74.46i0A54 58.64i0,77 0.1348i040397
TANGO-NON-ENERGY Gaedgen 0.138+0.014 86.94 10 .43 68.07+0.45 -0.599240.0831
TANGOGatedGeN 0.128.10.011 91.89-0.30 68.92.9.40 -0.6681.0.0745
GPS 0.070:{:0_004 87.0410.58 65.35;{:0.41 '0-5121100426
TANGO-NON-ENERGY gps 0.067 +0.004 89.00+0.61 67.5840.39 -0.7178+0.0729
TANGOGps 0.0620.005 91.080.57 70.2140.43 -0.977210.0518

For ablation (ii), we isolate the effect of the tangential nature of the added direction. In this variant,
denoted TANGO-NON-TANGENT, we use the same output from the tangential network as in
Equation (9) but omit the orthogonal projection step defined in Equation (3)). Thus, while we still
introduce an additional GNN term into the dynamics, it is not explicitly orthogonal to the energy
gradient. Our results in Table[IT|show that while this variant improves the performance compared
with the baseline backbone, it also results in a drop in performance compared to the full TANGO.
This highlights the importance of the tangential constraint, and its contribution towards improving
the utilization of the learned energy function, as discussed in Section[d Together, these ablations
underscore the importance of both components in our design: (i) the principled learned energy
descent, and (ii) the structured tangential update, as crucial for effective and flexible feature evolution.
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Table 11: The importance of using a tangential term to the energy term in Equation (4).

ZINC-12k  Roman-empire Peptides-func Diameter

Model MAE | Acc. 1 AP 4 log,,(MSE) |

GatedGCN 0.282:(:0,015 74.46j:0.54 58.64:t0.77 0.1348:(:0,0397
TANGO-NON-TANGENTGatedGCN 0.186i0,016 83-59i0448 68.0110.52 '0~2193i0.0899
TANGOGatedGeN 0.128.10.011 91.89+0.30 68.9210 40 -0.6681_10.0745
GPS 0.070j:0,004 87.04;{:0458 65.35:‘:0.41 '0-5121:t0.0426
TANGO-NON-TANGENTgps 0.066+0.010 88.57+0.72 67.3340.59 -0.291640.0404
TANGOgGps 0.062+0.005 91.08+0.57 70.2140.43 -0.9772+0.0518

Table 12: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Baseline
results are taken from Dwivedi et al.| (2022b)) and (Gutteridge et al.| (2023)). Re-evaluated methods
employ the 3-layer MLP readout proposed in [Tonshoff et al.| (2023a)). Note that all MPNN-based
methods include structural and positional encoding. * means 3-layer MLP readout and residual
connections are employed based on (Tonshoff et al., 2023a). This table is an extended version of the
focused Table[3]

Peptides-func  Peptides-struct

Model
AP 4 MAE |
MPNNs
GCN 59.30+0.23 0.3496+0.0013
GINE 54.9840.79 0.3547 £0.0045
GCNII 55.43;{:0.78 0.3471 +0.0010
GatedGCN 58.6410.77 0.3420+0.0013
Multi-hop GNNs
DIGL+MPNN 64.6940.19 0.3173+0.0007
DIGL+MPNN+LapPE 68.30i0426 0.2616i0A0018
MixHop-GCN 65.92+0.36 0.2921+0.0023
MixHop-GCN+LapPE 68.4310.49 0.2614+0.0023
DRew-GCN 69.9640.76 0.2781+0.0028
DRew-GCN+LapPE 71.50+0.44 0.2536£0.0015
DRew-GIN 69.4040.74 0.2799+0.0016
DRew-GIN+LapPE 71.26i0445 0.2606i0A0014
DRew-GatedGCN 67.3310.94 0.26990.0018
DRew-GatedGCN+LapPE 69.77+0.26 0.253910.0007
Transformers
Transformer+LapPE 63.26+1.26 0.252940.0016
SAN+LapPE 63.8411.21 0.2683+0.0043
GraphGPS+LapPE 65.35+0.41 0.250040.0005
Modified and Re-evaluated?
GCN 68.60+0.50 0.2460-+-0.0007
GINE 66.21+0.67 0.2473+0.0017
GatedGCN 67.6540.47 0.2477 +0.0009
GraphGPS 65.3410.91 0.2509410.0014
DE-GNNs
GRAND 57.89+0.62 0.3418+0.0015
GraphCON 60.22+0.68 0.2778+0.0018
A-DGN 59.75i0444 0.2874io_0021
SWAN 67.51+0.39 0.2485+0.0009
Graph SSMs
Graph—Mamba 67.39i0487 0-2478i0A0016
GMN 70.7140.83 0.2473+0.0025
Ours
TANGOGeN 69.17+0.31 0.2432410.0011
TANGOGIN 68.78+0.66 0.2440+0.0024
TANGOGatEpGCN 68.9240.40 0.2451+0.0006
TANGOgGps 70.2140.43 0.242240.0014
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Table 13: Mean test set score and std averaged over the splits from |Platonov et al.|(2023). This table
is an extended version of the focused Table[0] Baseline results are reported from [Finkelshtein et al.
(2024); Platonov et al. (2023)); Miiller et al.| (2024); Luan et al.|(2024).

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

Model Acc T Acc T AUC 1 AUC T AUC 1
MPNNs
GIN 72.82+40.58 46.96+0.44 88.04+0.78 81.79+0.55 75.90+1.03
GAT 80.87+0.30 49.0940.63 92.01+0.68 83.704+0.47 77.4311.20
GAT-sep 88.75+0.41 52.7040.62 939140.35 83.78+0.43 76.79+0.71
GAT (LapPE) 84‘80i()‘46 44.90i0473 93.50i0454 84.99i0A54 76.55i0484
GAT (RWSE) 86.6210.53 48.58i0441 92~53i0465 85-0210467 77.83i1‘22
GAT (DEG) 85.51410.56 51.65+0.60 93.0410.62 84.2240.81 77.1041.23
Gated-GCN 74.4610.54 43.0040.32 87.541120 T77314+1.14 76.614+1.13
GCN 73.694+0.74 48.70+0.63 89.751052 83.641067 76.0911.27
GCN (LapPE) 83.3710.55 44.35i0436 94.26i0,49 849510478 77-79i1434
GCN (RWSE) 84.84 1055 46.40+0.55 93.8410.48 85111077 77.8141.40
GCN (DEG) 84.2140.47 50.0140.69 94141050 82.5110.83 76.9611 21
CO—GNN(Z, E) 91 .57;‘:(]‘32 51 .28;|:0A56 95-09:{:1.18 83.36;‘:()‘89 80-02:{:0.86
CO-GNN(/L, /L) 91-37i0.35 54-17i0437 97-31i0.41 84.45i1‘17 76.54i0‘95
SAGE 85.741(]‘67 53.63:l:0_39 93.51 +0.57 82.43:&()‘44 76.44;{:0_62
Graph Transformers
Exphormer 89.03i0,37 53-51i0446 90.74i0‘53 83.77i0,73 73-94i1406
NAGphormer 74-34;&0.77 51.26;{:0472 84-19:!:0466 78.32i0,95 68.17:{:1‘53
GOAT 71.5941 25 44.6110.50 81.09+1.02 83.1111.04 75761166
GPS 82.00;&0.61 53.10;{:0442 90.63;{:0‘67 83-7110.48 71.73:{:1‘47
GPScen+performer (LapPE) 83.9610.53 48.20+0.67 93.85+0.41 84.7240.77 77.85+1.05
GPScen+performer (RWSE) 84.72+0.65 48.08+0.85 92.88+0.50 84.811t0.86 76.45+1.51
GPSceneperformer (DEG) 83.38+0.68 48.9310.47 93.60+0.47 80.49+0.97 74241118
GPSgar+performer (LapPE) 85.9340.52 48.86+0.38 92.6240.79 84.6240.514 76.71+0.98
GPScart+performer (RWSE) 87.04+0.58 49.9210.68 91.08+0.58 84.38+0.91 77.1411.49
GPScar+performer (DEG) 85.5410.58 51.03+0.60 91.524+0.46 82.451+0.89 76.51+1.190
GPSGCN+Transformcr (LapPE) OOM OOM 91.82i0441 83.51i0A93 OOM
GPScensransformer (RWSE) OOM OOM 91.17+051 83531106 OOM
GPSGCN+Transformcr (DEG) OOM OOM 9176i061 8082i095 OOM
GPScar+Transformer (LapPE) OOM OOM 92.2940.61 84704056 OOM
GPScart+Transformer (RWSE) OOM OOM 90.824+0.56 84.0110.96 OOM
GPSGAT+Transformer (DEG) OOM OOM 9158i056 8189i085 OOM
GT 86.5110.73 51.17+0.66 91.854+0.76 83.2310.64 77.95+0.68
GT—sep 87.3210.39 52.18i0480 92.29i0.47 82.52i0‘92 78.05i0‘93
Heterophily-Designated GNNs
CPGNN 63.96:‘:0.62 39.79j:0.77 52-03:!:5.46 73.36i1,01 65.96:{:1,95
FAGCN 65.2210.56 44.1210.30 88.17+10.73 77.7511.05 77241196
FSGNN 79.92:‘:0.56 52.74j:0.83 90.08;{:0,70 82.76i0,61 78.86:{:0‘92
GBK-GNN 74.5710.47 45.98+0.71 90.8510.58 81.0110.67 74.4710.56
GloGNN 59.63:‘:0.69 36.89;{:0414 51.08;{:1‘23 73.39i1,17 65.74:{:1‘19
GPR-GNN 64.8510.27 44.88+0.34 86241061 72941097 55.48410.01
H2GCN 60.11:‘:0.52 36.47;{:0423 89.71;{:0‘31 73.35i1,01 63.59:{:1‘46
JaCObiCOHV 71.1410.42 43-55i0448 89.66i0440 68.66i0,65 73.88i1416
Graph SSMs
GMN 87.6910.50 54.07i0431 91.01i0‘23 84.52i0‘21 —
GPS + Mamba 83.1040.28 45.1340.97 89.9310.54 83.70+1.05 -
Ours
TANGOGeN 89.67+0.68 52.9810.71 98.37+0.49 85.57+0.73 79.864+1.14
TANGOGIN 89.1940.62 50.7640.47 97.38 41050 84.39+0.61 78.8410.96
TANGOGatedGeN 91.89+0.30 52.60+0.53 98.3240.59 85.51+0.98 80.39+1.04
TANGOGps 91.08+0.57 53.8310.32 98.3910.54 85.66+1.01 80.32+1.07
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