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Uncertainty-aware Graph Structure Learning
Anonymous Author(s)

Abstract
Graph Neural Networks (GNNs) have become a prominent approach

for learning from graph-structured data. However, their effective-

ness can be significantly compromised when the graph structure is

sub-optimal. To address this issue, Graph Structure Learning (GSL)

has emerged as a promising technique that refines node connec-

tions adaptively. Nevertheless, we identify two key limitations in

existing GSL methods: 1) Most methods primarily focus on node

similarity to construct relationships, while overlooking the quality

of node information. Blindly connecting low-quality nodes and ag-

gregating their ambitious information can degrade the performance

of other nodes. 2) The constructed graph structures are often con-

strained to be symmetric, which may limit the model’s flexibility

and effectiveness.

To overcome these limitations, we propose an Uncertainty-
aware Graph Structure Learning (UnGSL) strategy. UnGSL esti-

mates the uncertainty of node information and utilizes it to adjust

the strength of directional connections, where the influence of

nodes with high uncertainty is adaptively reduced. Importantly,

UnGSL serves as a plug-in module that can be seamlessly integrated

into existing GSL methods with minimal additional computational

cost. In our experiments, we implement UnGSL into six representa-

tive GSL methods, demonstrating consistent performance improve-

ments.
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• Computing methodologies→ Neural networks.
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1 INTRODUCTION
Graph neural networks (GNNs) [1–3] have demonstrated remark-

able performance in tackling graph-structured data. To date, GNNs

have evolved with increasingly sophisticated model architectures

[4, 5] to enhance their capabilities. However, these model-centric

methods often neglect potential flaws in the underlying graph struc-

ture, which can lead to suboptimal performance. In practice, graph
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Figure 1: Performance varies with the ratios of eliminated
neighbors on Cora and Citeseer datasets. Here we first con-
structed a graph based on GRCN. We then eliminate a cer-
tain ratio of neighbors with the highest uncertainty for each
node, and evaluate the performance of GCN on such a pruned
graph. For comparison, we also report the performance un-
der random elimination.

data frequently exhibit suboptimal characteristics, such as noisy

connections and incomplete information, due to the inherent com-

plexities and inconsistencies in data collection [6, 7].

To address these issues, Graph Structure Learning (GSL) [8–

11], a data-centric approach, has garnered increasing attention.

Beyond learning node representations with GNNs, GSL learns to

refine node connections and edge weights. This approach has been

shown to effectively enhance the accuracy of GNNs on downstream

tasks while improving their resilience to topological perturbations

[6, 12]. Early work on GSL directly treated the graph structure (i.e.,
the adjacency matrix) as learnable parameters. However, due to

the large parameter space, these strategies often incur substantial

computational overhead and are difficult to train effectively [8, 13].

More recently, research has shifted towards embedding-based GSL

[9, 14–16], which constructs the adjacency matrix based on the

similarity of node embeddings. Various similarity metrics, such

as cosine similarity [15, 16] or neural networks [14], have been

employed. These methods aim to increase graph homophily and

typically achieve state-of-the-art performance, as nodeswith similar

features (or embeddings) are more likely to be connected.

Despite their success, we identify two key limitations in these

embedding-based GSL methods:

• These methods mainly rely on embedding similarity for
graph construction while neglecting the quality of node in-
formation. Given the critical role of edges in GNNs as conduits

for information propagation, it is essential to evaluate the quality

of the information being propagated. Aggregating unclear or

ambiguous information from neighbor nodes can disrupt the em-

bedding learning of the target node. Constructing connections

based solely on node similarity, without assessing the quality of

the node’s information, may lead to suboptimal performance. To

empirically validate this point, we conducted a simple experi-

ment using a representative GSL method (GRCN [17]). As shown

in Fig. 1, removing a certain proportion of neighbors with the

highest uncertainty results in a significant performance gain.

1
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Figure 2: Illustration of how our UnGSL differs from existing
embedding-based GSL methods. Existing GSL learns sym-
metric relationships, leading to a dilemma when managing
connections between high-quality and low-quality nodes. In
contrast, UnGSL learns asymmetric relationships, allowing
low-quality nodes to benefit from high-quality nodes while
mitigating the negative influence of low-quality nodes.

• These methods often generate symmetric graph structures,
which can hinder their effectiveness. Current embedding-

based methods tend to construct symmetric relationships be-

tween nodes, implying that both nodes exert an equal and bidirec-

tional influence during the GNN learning process. This imposed

symmetry can constrain the model’s flexibility and capacity, par-

ticularly when the connected nodes differ in quality. For example,

consider a scenario where a high-quality node is linked to a low-

quality node (refer to Fig. 2). While the high-quality node can

provide valuable information that greatly benefits the low-quality

node, the reverse influence from the low-quality node may have

a negative impact on the high-quality node. Symmetric relation-

ships fail to account for this disparity, leading to a dilemma in the

learning process. This inspires us to explore asymmetric struc-

ture learning. By modeling directional relationships separately,

we allow the low-quality node to benefit from the high-quality

node’s information while reducing the adverse influence in the

opposite direction, thus protecting the high-quality node from

negative effects. Although a few studies [11, 18, 19] have begun

to explore asymmetric graph structure learning, they typically

restrict the asymmetry to relations between labeled and unla-

beled nodes, overlooking the richer relationships between the

vast majority of unlabeled nodes.

To overcome these limitations, we propose an uncertainty-aware

graph structure learning (UnGSL) method that considers nodes’

information quality to learn an asymmetric graph structure. UnGSL

directly utilizes the uncertainty (Shannon Entropy [20] ) of the

node in classification to indicate the node’s information quality,

and conducts theoretical analyses to demonstrate that aggregating

neighbors with higher uncertainty would increase the target node’s

own uncertainty. Building on this, UnGSL leverages a learnable

node-wise threshold to differentiate low-quality neighbors from

high-quality ones, and adaptively reduces directional edge weights

from those low-quality neighbors. Notably, our UnGSL is simple

and can be easily incorporated into various embedding-based GSL

methods, boosting their performance with minor extra computa-

tional overhead.

In summary, this work makes the following contributions:

• We highlight the neccesity of modeling node’s uncertainty in

graph structure learning, and theoretically demonstrate that the

uncertainty of a node after GNN layer is positively correlated

with those of its neighbors.

• We propose a simple yet novel uncertainty-aware graph structure

learning strategy (UnGSL), which can be seamlessly integrated

with various embedding-based GSL models to mitigate the direc-

tional impact of high-uncertainty nodes.

• We conduct extensive experiments to demonstrate that UnGSL

can consistently boost existing embedding-based GSL models

across five benchmark datasets, with an average performance

increase of 2.18%.

2 PRELIMINARIES
In this section, we introduce basic notations and backgraound on

GNNs and GSL methods.

Consider the graph G = (V, E,A,X), where V represents a

set of 𝑛 nodes {𝑣1, ..., 𝑣𝑛} and E represents the set of edges. Let A
be the initial adjacency matrix of the graph, where A𝑖 𝑗 = 1 if an

edge exists between node 𝑣𝑖 and 𝑣 𝑗 ; otherwise, A𝑖 𝑗 = 0. The matrix

X = [𝑥1, ..., 𝑥𝑛] ∈ R𝑛×𝑑 represents the node feature matrix, where

each column 𝑥𝑖 corresponds to the feature vector of node 𝑣𝑖 . Let

D denote the diagonal degree matrix defined as D𝑖𝑖 = 1 +∑
𝑗 A𝑖 𝑗 ;

and Â denotes the normalized adjacency matrix with self-loop, i.e.,
Â = D− 1

2 (A+I)D− 1

2 for symmetric normalization or Â = D−1 (A+I)
for row normalization.

2.1 Graph Neural Networks
Graph Neural Networks (GNNs) have become a prominent ap-

proach for learning from graph-structured data, where node repre-

sentations are learned by iteratively aggregating and transforming

information from neighboring nodes. In recent years, various de-

signs for the aggregation and transformation processes have given

rise to different GNN models[1, 2, 21]. Among these, the Graph

Convolutional Network (GCN) [1] stands out as one of the most

widely adopted and influential architectures. The operation at the

𝑙-th layer in GCN can be formulated as:

Z(𝑙 ) = 𝜎 (ÂZ(𝑙−1)W(𝑙 ) ), (1)

where 𝜎 (·) denotes the activation function, W(𝑙 )
is a learnable

parameter matrix used to transform the node features.

Given the critical role of the graph structure in GNNs, which

determines the sources of information aggregation, ensuring the

quality of graph structure is of paramount importance. Recent

work demonstrates that suboptimal graph structures, even with the

introduction of a small percentage of noisy edges or topological

perturbations (e.g., 10%), can significantly degrade the performance

of GNNs (e.g., 25%).[6, 12].

2.2 Graph Structure Learning
Graph Structure Learning (GSL) aims to enhance the accuracy

and robustness of GNNs by learning the optimal graph S and the

corresponding node representations Z∗
. Given labels Y, the loss

2
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function in GSL methods can be formulated as:

L = L𝑇𝑎𝑠𝑘 (Z∗,Y) + 𝜆L𝑅𝑒𝑔 (Z∗, S,G), (2)

where L
Task

optimizes the GNN encoder for the downstream task

andLReg regularizes the learned adjacency matrix S. 𝜆 is a trade-off
hyperparameter.

Traditional GSL methods [8, 13] that treat each edge S𝑖 𝑗 as a
learnable parameter often suffer from significant computational

overhead and are challenging to train efficiently. Recent research

has focused on embedding-based GSL methods [9, 14–16] , which

construct the adjacency matrix S by leveraging the similarity be-

tween node embeddings:

S𝑖 𝑗 = S𝑗𝑖 = 𝜙 (Z𝑖 ,Z𝑗 ) . (3)

Here 𝜙 (·) is a metric function used to calculate the similarity be-

tween nodes.

Although the structure modeling paradigm in Eq. 3 is widely

employed in GSL methods, it suffers from two key limitations:

• This paradigm relies on embedding similarity while ne-
glecting the quality of node information. Only semantic

similarities between embeddings Z𝑖 and Z𝑗 are considered in this

structure modeling paradigm, while the varying uncertainties of

them, which reflect their information quality, are neglected. This

may undermine the quality of embeddings of target nodes when

aggregating inferior information from low-quality neighbors (as

validated by the preliminary experiment in the Introduction) .

• This paradigm constraining the graph to be symmetric,
which potentially hinder effectiveness of GSL models. The
pair-wise similarity constrains the learned edge between 𝑣𝑖 and

𝑣 𝑗 to be bidirectional, overlooking their unequal influence due to

varying information quality. For example, if Z𝑖 contains higher-
quality information than Z𝑗 , the constructed edge S𝑗𝑖 can provide
valuable information that greatly benefits the low-quality node

𝑣 𝑗 while the edge S𝑖 𝑗 propagate inferior information to poison the

embdding of 𝑣𝑖 . By modeling directional relationships separately,

we enable the low-quality node to benefit from the high-quality

node’s information while mitigating the negative impact in the

reverse direction.

Although a few works [11, 18, 19] have been proposed to learn

asymmetric graphs by generating directed edges S𝑖 𝑗 from the la-

beled node 𝑣 𝑗 to unlabeled node 𝑣𝑖 and constraining S𝑗𝑖 = 0, which

facilitates the propagation of label information and avoids intro-

ducing inconsistency to the labeled nodes. However, these methods

completely rely on annotated labels and fail to learn reasonable

asymmetric connections between the vast majority of unlabeled

nodes.

Given the flaws of existing methods, we argue for the necessity

of incorporating node uncertainty into graph structure learning to

learn an optimal asymmetric structure. We propose the uncertainty-

aware graph structure learning (UnGSL) method to enhance GSL

models, which leverage learnable node-wise thresholds to identify

high-uncertainty neighbors and adaptively reduce directional edge

weights from those low-quality neighbors.
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Figure 3: Visualization of node entropy after GNN aggrega-
tion (i.e., 𝐻 (𝑝𝑖 )) alongside the average entropy of its neigh-
bors (i.e.,

∑
𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗𝐻 (𝑝′

𝑗
)) on Cora datasets.

3 METHODOLOGY
In this section, we first conduct theoretical and empirical analyses

to demonstrate the detrimental impact of neighbors with high un-

certainty levels on GNN learning (Subsection 3.1). We then present

the proposed Ucertainty-aware graph structure learning method in

detail (Subsection 3.2).

3.1 Analyses on the Impact of Neighbor
Uncertainty

Aggregating unclear or ambiguous information can intuitively dis-

rupt the learning process of target nodes, thereby negatively af-

fecting the performance of Graph Neural Networks (GNNs). In this

section, we aim to conduct both theoretical and empirical analyses

to substantiate this claim. To begin, we introduce several formal

concepts to facilitate these analyses.

Semi-supervised Node Classification Task. For convenience,
we refer to recent analytical work on GNNs [22] and focus our

theoretical analysis on the semi-supervised node classification task,

which is the most common and widely studied scenario. Neverthe-

less, at the end of this section, we will also discuss how our method

can be adapted to the unsupervised learning scenario. Following

the definitions in [22], we consider a 𝐾-class classification problem

and employ a linear classification model. Formally, the classification

logits can be expressed as:

O = D−1 (A + I)XW, (4)

where W ∈ R𝑑×𝐾 is the linear classification matrix. Assume the

logit in matrix O are bounded by the scalar 1, i.e., max |O𝑖 𝑗 | <
1. From a local perspective for node 𝑣𝑖 , its probabilities can be

formulated as :

𝑝𝑖 =
O𝑖 + 1𝐾∑𝐾
𝑗=1 (O𝑖 𝑗 + 1)

, (5)

where 1𝐾 is 𝐾-dimensional all-ones vector. Here we simple omit

the nonlinear exponential function in the softmax, given that our

primary focus is on the impact of aggregation on node uncertainty

and the exponential function mainly serves to generate positive

values. This simplification has been adopted in prior work [23, 24],

and it also can be considered a first-order Taylor approximation.

Uncertainty Estimation via Entropy. Entropy measures the

information uncertainty within a probability distribution [20] . For

node classification tasks, the entropy of the classification proba-

bilities reflects the classifier’s certainty in assigning the node rep-

resentation to a specific class. A high-entropy node indicates that

3
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its representation carries significant uncertainty, making it chal-

lenging for the classifier to reach a confident decision. Aggregating

information from such nodes can poison the target node’s repre-

sentation, hindering the generation of accurate predictions. Given

probabilities 𝑝𝑖 of node 𝑣𝑖 , its entropy is defined as:

𝐻 (𝑝𝑖 ) = −
𝐾∑︁
𝑘=1

𝑝𝑖𝑘 log(𝑝𝑖𝑘 ). (6)

We further discuss the uncertianty metric for unsupervised learning

scenario at the end of this section.

Formally, to demonstrate the impact of the uncertainty of neigh-

bors along GNNs, we have the following proposition, with detailed

proof provided in Appendix A:

Proposition 1. Define the logits of the initial node feature matrix
as O′ = XW. For a given node 𝑣𝑖 , let 𝑝𝑖 denote its classification
probabilities after GNN aggregation. ∀𝑣 𝑗 ∈ N (𝑣𝑖 ), let 𝑝′𝑗 denote
classification probabilities of its initial features. Then the entropy of
𝑣𝑖 and the entropy of 𝑣 𝑗 ∈ N (𝑣𝑖 ) satisfy the following inequality:

𝐻 (𝑝𝑖 ) ≥
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗𝐻 (𝑝′𝑗 ), (7)

where

𝜂 𝑗 =

∑𝐾
𝑘=1

Â𝑖 𝑗 (𝑂 ′
𝑗𝑘

+ 1)∑
𝑣𝑗 ∈N(𝑣𝑖 )

∑𝐾
𝑘=1

Â𝑖 𝑗 (𝑂 ′
𝑗𝑘

+ 1)
. (8)

Discussion. Accodring to Proposition 1, the entropy of a node

is lower-bounded by the weighted sum of its neighbors’ entropies

prior to aggregation. We can therefore obtain the following insight:

If a node is connected to high-uncertainty neighbors, its own un-

certainty will inevitably increase after GNN learning, degrading its

representation and leading to incorrect node classification.

Empirical Analyses.We conduct a simple experiment to em-

pirically demonstrate that aggregating neighbors with higher un-

certainty would increase the node’s own uncertainty. Specifically,

we train the model with 1-layer GCN and linear classifier on given

datasets. Then we visualize the entropy of a node after GNN aggre-

gation (i.e., 𝐻 (𝑝𝑖 )) alongside the average entropy of its neighbors

(i.e.,

∑
𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗𝐻 (𝑝′

𝑗
)). As shown in Fig. 3, we observe a strong

linear correlation between the entropy of a node after GNN aggrega-

tion and the average entropy of its neighbors, which substantiates

our proposition( see additional experimental results in the Appen-

dix C.1) .

The above analyses clearly illustrates the impact of node un-

certainty in aggregation process in GNNs. Blindly connecting and

aggregating information from nodes with high uncertainty may

undermine the performance of the nodes themselves. It is therefore

important to consider node uncertainty in graph structure learning

to learn a reasonable asymmetric structure. Specifically, one can

prevent a node falling into a high-uncertainty region by weakening

its connections to neighbors with high uncertainty. Meanwhile, it

can receive more stable information via strengthened connections

with low-uncertainty nodes.

3.2 Uncertainty-aware Graph Structure
Learning

Given the importance of considering uncertainty in graph structure

learning, we propose the simple yet novel uncertainty-aware graph

structure learning (UnGSL) method that leverages learnable node-

wise thresholds to distinguish low-quality neighbors from high-

quality ones and adaptively refines edges based on their uncertainty

levels. Specifically, UnGSL first pretrains the GSL model to estimate

node uncertainty. Afterwards, it normalizes these uncertainty into

confidence scores, which are used to construct a node confidence

matrix. Then, UnGSL applies learnable node-wise thresholds to

split neighbors with different levels of uncertainty into two groups

(i.e., high-confidence and low confidence) for each node. Finally, it

amplifies edge weights from confident neighbors while reducing

edge weights from uncertain ones. In summary, the process of

UnGSL can be formulated as:

C = 𝑒−U · 1⊤𝑛 , (9)

and

A∗ = S ⊙𝜓 (C − 𝜺 · 1⊤𝑛 ), (10)

where U = [𝑢1, ..., 𝑢𝑛] is node uncertianty estimated during pre-

training stage, 𝜺 = [𝜀1, ..., 𝜀𝑛] is learnable node-wise thresholds,

C is node confidence matrix, 𝜓 (·) is a activate function, S is the

construct graph of the GSL model, and ⊙ denotes the Hadamard

product operator.

Here Eq. 9 aims to normalize node uncertainty into confidence

within the interval (0, 1) and transform them into a node confidence

matrix C, where C𝑖 𝑗 is the confidence of node 𝑣 𝑗 .
Eq. 10 leverage node-wise learnable thresholds 𝜺 to distinguish

low-confidence neighbors (i.e., C𝑖 𝑗 < 𝜀𝑖 ) from high-confidence ones

(i.e., C𝑖 𝑗 ≥ 𝜀𝑖 ) and adaptively refines the corresponding edges using
the following activation function:

𝜓 (𝑥) =
{
𝜏 · 𝑠 (𝑥), 𝑥 ≥ 0,

𝛽, 𝑥 < 0,
(11)

where 𝑠 (·) is the sigmoid function, 𝜏 is a hyperparameter ampli-

fies of edge weights from high-confidence neighbors, 𝛽 is a hy-

perparameter that controls the reduction of edge weights from

low-confidence neighbors.

Based on the above formulation, we next discuss several key

advantages of UnGSL:

Uncertainty-aware. UnGSL considers the information quality

of nodes during the structure modeling process, facilitating the

learning of an optimal graph that mitigates the negative impact of

high-uncertainty neighbors in GNN learning.

Asymmetric Graph Structure. UnGSL proposes learning an

asymmetric graph, where the edge weights between nodes differ

based on their uncertainty levels. Specifically, UnGSL weakens

edges from uncertain nodes to confident nodes, mitigating the

impact of inferior information. Meanwhile it strengthens the edge

in the opposite direction to improve the representations of uncertain

nodes.

Notably, several methods that construct directed edges from la-

beled nodes to unlabeled nodes [11, 19] can be viewed as specific

cases of UnGSL, as the embeddings of labeled nodes are directly

optimized during training and therefore more likely to exhibit lower
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uncertainty. In contrast, UnGSL models the asymmetric relation-

ships among the predominantly unlabeled nodes, leading to supe-

rior performance. We further empirically validate this in Section 4.

Model-agnostic. UnGSL can be seamlessly integrated with var-

ious GSL models to further enhance their ability to learn graphs,

improving the performance of GNNs on downstream tasks. Com-

prehensive experiments supporting this can be found in Section 4.

Efficiency. UnGSL contains only 𝑛 learnable parameters, impos-

ing minimal burden on the training of GSL models. Besides, UnGSL

refines the existing edges of the given graph without generating

new ones, resulting in slight impact on the space consumption of

constructed adjacency matrix.

Adaptive to Unsupervised Scenarios.Despite the mainstream

focus of GSL research on supervised learning, our approach can be

generalized to unsupervised GSL scenarios. The main challenge lies

in determining an appropriate uncertainty metric for unsupervised

GSL method. We suggest employing the self-supervised structure

learning loss (i.e., graph contrastive learning loss) as uncertainty.

The GCL loss can measure the invariance of node representations

to feature or structure perturbations, where this invariance can

be interpreted as the uncertainty of nodes with respect to their

original features and structure.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness

of the proposed UnGSL strategy. Our experiments aim to answer

the following research questions:

• RQ1: Does the integration of UnGSL into existing GSL methods

lead to performance improvements?

• RQ2:What is the impact of key configurations (e.g., node-wise

thresholds, asymmetric graphs, hyperparameters 𝛽) on UnGSL

performance?

• RQ3: Can UnGSL enhance the robustness of GNNs against struc-

tural perturbations?

• RQ4: How well does UnGSL generalize across different GNN

backbones?

• RQ5: Does UnGSL introduce significant additional computa-

tional overhead?

4.1 Experiment Settings
4.1.1 Datasets. To comprehensively evaluate UnGSL’s performance

on node classification, we follow previous works [6, 17] and select

5 commonly used datasets, including three homophilous citation

datasets [25] (Cora, Citeseer, and Pubmed) and two heterophilous

datasets (Blogcatalog [26] and Roman-Empire [27]). The chosen

datasets cover a wide range of homophily levels and graph sizes,

allowing us to demonstrate UnGSL’s effectiveness under various

conditions. For a fair comparison, we strictly follow the data split

settings used in the newly proposed benchmark for GSL [6]. De-

tailed statistics of these datasets are provided in Appendix B.

4.1.2 Baselines. To demonstrate UnGSL’s generalizability across

different GSL models, we select 6 state-of-the-art GSL algorithms

corresponding to the chosen datasets as baselines:

• GRCN [17] uses a GCN to extract topological features and com-

pute the similarity between nodes as the edge weights of the

learned graph.

• ProGNN [8] treats the graph as a learnable adjacency matrix and

optimizes the sparsity, low-rankness, and feature smoothness of

the graph structure.

• PROSE [15] identifies influential nodes using PageRank scores

and reconstructs the graph structure by connecting these influ-

ential nodes.

• IDGL [9] iteratively learns the graph structure and node embed-

dings, and introduces a node-anchor message-passing paradigm

to scale IDGL to large graphs.

• SLAPS [10] proposes learning a denoising autoencoder to filter

noisy edges in the graph structure.

• CUR [11] is a model-agnostic structure learning module, which

proposes constructing unidirectional edges from unlabeled nodes

to labeled nodes via CUR decomposition to facilitate the propa-

gation of supervision signals to unlabeled nodes.

• SUBLIME [28] is an unsupervised GSL model that employs con-

trastive learning between the learned graph and an augmented

graph to enhance the robustness of the graph structure.

For all models, we report the average performance and standard

deviations of 10 runs with different random seeds.

4.1.3 Configuration. With regard to hyperparameter setting, we

tuned the hyperparameters of UnGSL using Bayesian search. Specif-

ically, the initial values of the learnable nodewise thresholds 𝜺 are
uniformly set within the range (0, 1). The hyperparameter 𝛽 was

searched within the range (0, 1). For hyperparameter 𝜏 , we found

that setting it to a constant value of 2 works well. For detailed

hyperparameter settings please refer to Appendix C.4.

We optimized the model using Adam optimizer, with the learning

rate selected from range (0.01, 0.0001). For all baselines, we strictly

adhere to their original settings for hyperparameter tuning to en-

sure that they attain best performance. All GSL methods are evalu-

ated based on the performance of GNNs on downstream tasks when

using the learned structure. We also consider cross-architecture

scenarios in Section 4.5, where GSL training and downstream tasks

use different GNN architectures.

4.2 Main Results (RQ1)
4.2.1 Comparison to Vanilla GSL Models. Table 1 presents the ex-
perimental results of the UnGSL module applied to various GSL

models. We can observe that: 1) UnGSL significantly improves the

node classification accuracy for all GSL models across all datasets

with an average increase of 2.18%, achieving new state-of-the-art

performance in the GSL literature. The improvement brought by

UnGSL is particularly pronounced on GRCN, achieving an aver-

age improvement of 4.70%. These results empirically demonstrate

UnGSL’s effectiveness in further denoising the learned graph struc-

ture from the perspective of uncertainty, resulting in more re-

liable node representations and accurate predictions. 2) For the

self-supervised GSL model SUBLIME, UnGSL continues to achieve

higher accuracy by utilizing contrastive loss as a form of uncer-

tainty estimation to guide structure refinement, resulting in an

average improvement of 2.35%.
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Table 1: Node classification accuracy±std comparsion(%). Each experiment was repeated 10 times with different random seeds.
"OOM" denotes out of memory. The top-performing results are marked in bold.

Model Cora Citeseer Pubmed BlogCatalog Roman-empire

GRCN 84.70±0.31 72.49±0.77 78.94±0.16 76.17±0.23 44.29±0.28

GRCN+UnGSL 85.84±0.51 73.88±0.55 79.59±0.48 76.78±0.11 52.54±0.31
PROGNN 80.39±0.41 67.94±0.52 OOM 76.17±0.22 OOM

PROGNN+UnGSL 81.86±0.55 69.66±0.27 OOM 76.82±0.19 OOM

PROSE 81.1±0.45 72.3±0.37 83.3±0.71 75.31±0.17 55.61±0.34

PROSE+UnGSL 81.90±0.31 73.10 ±0.32 83.86 ±0.30 75.77±0.36 56.17±0.31
IDGL 84.50±0.5 72.49±0.67 82.83±0.33 89.66±0.28 46.67±0.56

IDGL+UnGSL 84.90±0.42 73.74±1.01 83.33±0.32 92.13±0.18 47.05±0.59
SLAPS 72.89±1.02 70.05±0.83 69.12±1.00 91.62±0.39 63.42±0.24

SLAPS+UnGSL 74.28±0.95 72.08±0.94 70.32±1.04 91.89±0.41 64.33±0.29
SUBLIME 82.50±0.6 71.56±0.17 80.41±0.69 93.39±0.24 63.48±0.53

SUBLIME+UnGSL 84.24±0.91 74.34±0.73 80.84±0.92 95.37±0.22 65.45±0.32

Table 2: Performance comparison between the CUR decom-
position and UnGSL modules.

Model Cora Citeseer Roman-empire

GRCN+CUR 84.89±0.22 73.35±0.46 44.04±0.28

GRCN+UnGSL 85.47±0.40 73.93±0.45 52.46±0.32
IDGL+CUR 84.73±0.23 72.93±0.85 OOM

IDGL+UnGSL 84.89±0.22 74.73±0.60 46.68±0.63

Table 3: Ablation study on the UnGSL when integrating with
GRCN model. We report the performance of UnGSL and two
variants.

Method Cora Citeseer Roman-empire

Fixed 𝜺 85.23±0.15 73.2±0.96 44.72±0.14

SymmetrizeA∗
85.03±0.40 73.74±0.49 52.28±0.025

UnGSL 85.47±0.40 73.93±0.45 52.46±0.32

4.2.2 Comparison to the Label-oriented Directed GSL Module. Here
We compare the performance of UnGSL with CUR decomposition

[11], another GSL module proposed recently to learn asymmetric

graph structure by constructing directed edges from labeled nodes

to unlabeled nodes. Table 2 shows the experiment results of UnGSL

and CUR decomposition. We can observe that: 1) UnGSL consis-

tently outperforms CUR decomposition on supervised GSLmethods.

2) UnGSL demonstrates better scalability with large-scale graphs

compared to CUR decomposition. For example, IDGL+UnGSL is

applicable to the Roman-Empire dataset and further enhances ac-

curacy, while IDGL+CUR encounters an out-of-memory problem.

4.3 Ablation Studies (RQ2)
4.3.1 Effects of Adaptive Threshold 𝜺. To highlight the effectiveness
of the learnable threshold, we considered a variant where we fixed

the 𝜺 in UnGSL during training phase. Specifically, for each node, we
select a fixed proportion of the most uncertain neighbors, as high-

uncertainty neighbors, where this proportion is consistent across

all nodes. Next, we reweight edges according to Eq. 9. As shown in

Table 3, the learnable 𝜺 outperforms the fixed 𝜺 across 3 datasets.
The results indicate that the learnable threshold effectively differen-

tiates high-uncertainty neighbors from low-uncertainty neighbors

for each node. By adaptively modifying the corresponding edges,

UnGSL further enhances node representations and facilitates accu-

rate predictions.

4.3.2 Superiority of Asymmetric Graph. To demonstrate the supe-

riority of the asymmetric edges constructed by UnGSL, we sym-

metrize the graph refined by UnGSL during training phase, generat-

ing an symmetric graph structure. As shown in Table 3, symmetriz-

ing graph A∗
of UnGSL degrades its performance on node classifi-

cation. The underlying reason is that the symmetrization operation

may perturb the graph by weakening edges from low-uncertainty

neighbors and strengthening edge weights from high-uncertainty

neighbors, which violates the core mechanism of UnGSL.

4.3.3 Analysis on Hyperparameter 𝛽 . To explore the role of 𝛽 in

UnGSL’s activation function𝜓 (·), we assign different values of 𝛽

from interval [0, 1] and evaluate the corresponding performance

across various GSL models. As shown in Figure 4, we can observe

that: (1) UnGSL enhances the accuracy of GSL models by reducing

edge weights to low-uncertainty neighbors using an appropriate

𝛽 . (2) UnGSL with positive 𝛽 consistently outperform UnGSL with

𝛽 = 0. The results indicate that high-uncertainty neighbors still con-

tain valuable information that enhances the node’s representation,

and removing connections from high-uncertainty nodes blindly

may lead to information loss. Furthermore, setting 𝛽 = 0 in UnGSL

directly reduces the average node degree, leading to increased neigh-

bor distribution variance and consequently undermining intra-class

node separability [22].

4.4 Robustness Analysis (RQ3)
To assess the robustness of UnGSL in GSL models under topologi-

cal perturbations, we randomly added or removed edges from the

original Cora and Blogcatalog datasets. The ratio of modified edges

varied from 0 to 0.8 to simulate different levels of perturbation
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Figure 4: Comparsion of different 𝛽 on Cora and Citeseer datasets.

0.0 0.2 0.4 0.6 0.8
Edge Deletion Rate

75

80

85

Ac
cu

ra
cy

(%
)

Cora

0.0 0.2 0.4 0.6 0.8
Edge Deletion Rate

65

70

75

Ac
cu

ra
cy

(%
)

BlogCatalog

0.0 0.2 0.4 0.6 0.8
Edge Addition Rate

70

75

80

85

Ac
cu

ra
cy

(%
)

Cora

0.0 0.2 0.4 0.6 0.8
Edge Addition Rate

72

74

76

78

Ac
cu

ra
cy

(%
)

BlogCatalog
GRCN GRCN+UnGSL

(a) Robustness comparison of GRCN and GRCN+UnGSL
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Figure 5: Robustness analysis with random noise injection on Cora and BlogCatalog datasets.

intensity. As shown in Figure 5, all GSL models experience a per-

formance decline as the ratio of modified edges increases, while

UnGSL can generally improves the performance of GSL models

across different perturbation ratios, demonstrating its robustness

against topological perturbations.

4.5 Generalizability on GNN Models (RQ4)
We further consider the scenario where GSL training and down-

stream tasks use different GNN backbones. We evaluate the gener-

alizability of the learned structures generated by the GSL+UnGSL

on several other GNN models, including SGC [2] , APPNP [29],

GAT[21], and JKNet [30]. The results are presented in Table 4. We

observe that the graphs produced by GSL+UnGSL improve the pre-

diction of various GNN models compared to those generated by

vanilla GSL. Overall, UnGSL demonstrates its generalizability in

enhancing performance across different GNN architectures.

5 Effiency Analysis (RQ5)
We analysis the time and memory effiency of UnGSL on Cora

dataset. To assess time efficiency, we evaluate the algorithms by

measuring the time taken to converge, i.e., to reach optimal perfor-

mance on the validation set. As shown in Fig. 6, while GSL models

with UnGSL slightly increase convergence time and training space,

it can reduce SUBLIME’s convergence time. In general, the results

show that UnGSL slightly increases the time and space costs of GSL

models, demonstrating its efficiency (see additional experimental

results in the Appendix C.2) .

6 RELATEDWORK
In this section, we provide a brief review of related work from three

perspectives.

6.1 Graph Neural Networks
Graph neural networks (GNNs) are powerful models for learning

node representations from graph data. Existing GNNs can be cate-

gorized as spectral GNNs and spatial GNNs. Spectral GNNs leverage

eigenvectors and eigenvalues within the graph Laplacian matrix

to design graph signal filters in the spectral domain [31–34]. Spa-

tial GNNs [1–3, 21, 35] simplified spectral graph filter [32] using
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Table 4: Generalizability of UnGSL with different backbones on Cora and Citeseer datasets. The value in bold signifies the
top-performing result.

Cora Citeseer

Methods SGC APPNP GAT JKNet SGC APPNP GAT JKNet

GRCN 84.40±0.00 84.00±0.15 81.45±1.04 83.73±1.33 72.00±0.00 72.73±0.96 70.77±1.06 71.83±0.72

GRCN+UnGSL 84.80±0.10 84.40±0.61 82.45±1.04 84.53±1.38 72.37±0.06 73.50±0.30 70.88±1.70 72.32±1.75

IDGL 78.00±0.00 82.13±0.32 79.87±1.01 76.23±1.19 71.90±0.00 72.20±0.75 63.83±0.97 71.00±1.15

IDGL+UnGSL 78.20±0.12 82.50±0.61 80.23±0.49 77.10±0.50 73.40±0.00 73.37±0.61 67.00±0.69 72.33±0.9
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Figure 6: Time and space consumption of different methods
on Cora dataset.

first-order approximation, which aggregates features from neigh-

boring nodes in the spatial graph to generate node embeddings.

In recent years, GNNs have developed sophisticated architectures

to handle complex task scenarios, such as structural distribution

shifts [36], continual graph learning [37], and model explainability

[38]. However, existing GNNs assume that the input graph struc-

ture is sufficiently clean for learning, whereas real-world graphs

are often noisy and incomplete, which limits GNN performance on

downstream tasks [39]. In this paper, we propose uncertainty-aware

graph structure learning, which effectively denoises the graph struc-

ture to alleviate the above limitation.

6.2 Graph Structure Learning
Graph Structure Learning (GSL) aims to learn an optimal graph

that improves the accuracy of Graph Neural Networks (GNNs)

on downstream tasks while enhancing their robustness against

topological perturbations. Early GSL methods [8, 13] directly treat

the target adjacency matrix as learnable parameters, incurring

substantial computational overhead and optimization challenge.

Mainstream GSL methods [9, 15–17] learn edge weights based on

node-pair embedding similarities, employing various metrics such

as cosine similarity [15, 16], inner product [17] or neural networks

[14]. These methods aim to increase graph homophily and typically

achieve state-of-the-art performance, as these metrics can capture

nodes with similar semantics. However, these embedding-based

GSLmethods suffer from two limitations: First, they construct edges

solely based on embedding similarities while neglecting node un-

certainty, which may introduce inferior information that poison the

target node’s embedding. Although some works [14, 40] incorpo-

rate predictive uncertainty in structure learning, they only use it for

cross-view structure fusionwithout distinguishing nodes of varying

uncertainty levels within a graph. Second, embedding-based meth-

ods impose bidirectional edges between nodes, disregarding their

unequal influence due to varying levels of uncertainty. Recently,

several methods propose constructing directed edges from labeled

to unlabeled nodes to facilitate the propagation of supervision sig-

nals [11, 18, 19]. However, these methods fail to learn reasonable

asymmetric connections between the vast majority of unlabeled

nodes. Different from the above works, we propose an uncertainty-

aware neighbor learning (UnGSL) strategy that learns nodewise

thresholds to differentiate low-uncertainty from high-uncertainty

neighbors and adaptively refine the corresponding edges. Notably,

UnGSL is able to directly applied to most GSL models where edge

weights updated through gradient descent, and it is not compatible

with a few GSL models [41–43] that do not meet this criterion.

6.3 Uncertainty in GNNs
GNNs inevitably present uncertainty towards their predictions,

leading to unstable and erroneous prediction results [44]. In recent

years, uncertainty in GNNs has been widely researched to adapt

various tasks, including out-of-distribution (OOD) detection [23,

24, 45], trustworthy GNN learning [46, 47], and GNN modeling

[7]. However, these uncertainty-based GNNs assume that the input

graph is sufficiently clean and primarily focus on incorporating

uncertainty into the model architecture. In contrast, our proposed

uncertainty-aware graph structure learning aims to refine the edge

based on node uncertainty, assisting in improving graph quality.

7 CONCLUSION
In this paper, we first conduct theoretical and empirical analyses

to demonstrate the detrimental impact of neighbors with high un-

certainty levels on GNN learning. Building on this, we propose the

UnGSL strategy, a lightweight plug-and-play module that integrates

seamlessly with state-of-the-art GSL models and boosts perfor-

mance with minimal extra computational overhead. UnGSL learns

nodewise thresholds to differentiate between low-uncertainty and

high-uncertainty neighbors, and adaptively refines the graph based

on each node’s uncertainty level. Experiments demonstrate that

UnGSL consistently enhances the performance and robustness of

existing GSL models. In the future, we plan to explore more effec-

tive uncertainty metrics to accurately identify uncertain nodes in

graph structure learning.
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A Proof of Proposition 1
To prove Proposition 1, we first introduce the log-sum inequality

below.

Lemma 1 (Log-sum Ineqality). Let 𝑎1, ..., 𝑎𝑛 and 𝑏1, ..., 𝑏𝑛 be
nonnegative numbers. Denote the sum of all 𝑎𝑖 s by a and the sum of
all 𝑏𝑖 s by b. Then log-sum inequality states that

𝑛∑︁
𝑖=1

𝑎𝑖 log
𝑎𝑖

𝑏𝑖
≥ 𝑎log𝑎

𝑏
, (12)

Proof. ∀𝑣𝑖 ∈ V ,by define the logit 𝑜𝑖 = W
∑
𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗𝑥 𝑗 and

logit 𝑜′
𝑖
= W𝑥𝑖 , where

∑
𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗 = 1, we have:

𝑜𝑖 =
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
Â𝑖 𝑗𝑜′𝑗 (13)

then for predictive probability vector 𝑝𝑖 of 𝑜𝑖 , we have:

𝑝𝑖 =
𝑜𝑖 + 1𝐾∑𝐾
𝑘=1

(𝑜𝑖𝑘 + 1)

=

∑
𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗 (𝑜

′
𝑗
+ 1𝐾 )∑𝐾

𝑘=1
(∑𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗𝑜

′
𝑗
+ 1)

=

∑
𝑣𝑗 ∈N(𝑣𝑖 ) 𝑝

′
𝑗
(Â𝑖 𝑗

∑𝐾
𝑘=1

(𝑜′
𝑗𝑘

+ 1))∑
𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗

∑𝐾
𝑘=1

(𝑜′
𝑗𝑘

+ 1)
,

=
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗𝑝

′
𝑗 , (14)

where,

∑
𝑣𝑗 ∈N(𝑣𝑖 ) 𝜂 𝑗 = 1. Now we focus the 𝑙-th element in the

probability vector:

𝑝𝑖𝑙 =
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗𝑝

′
𝑗𝑙

=⇒ 𝑝𝑖𝑙 log𝑝𝑖𝑙 = (
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗𝑝

′
𝑗𝑙
)log(

∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

𝜂 𝑗𝑝
′
𝑗𝑙
)

= (
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗𝑝

′
𝑗𝑙
)log(

∑
𝑣𝑗 ∈N(𝑣𝑖 ) 𝜂 𝑗𝑝

′
𝑗𝑙∑

𝑣𝑗 ∈N(𝑣𝑖 ) 𝜂 𝑗
)

≤
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗𝑝

′
𝑗𝑙
log𝑝′

𝑗𝑙

=⇒ −
𝐾∑︁
𝑙=1

𝑝𝑖𝑙 log𝑝𝑖𝑙 ≥ −
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗

𝐾∑︁
𝑙=1

𝑝′
𝑗𝑙
log𝑝′

𝑗𝑙

=
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝜂 𝑗𝐻 (𝑝′𝑗 ), (15)

which completes the proof.

B Datasets
Table 5 shows the statistics of these datasets.

C Additional Experimental Results
C.1 Visualization of Node Entropy and Average

Neighbor Entropy
Figure 7 presents the node entropy after GNN aggregation, along-

side the average entropy of its neighbors, on the Citeseer dataset.

Table 5: Detailed statistics of node classification datasets.

Dataset #Nodes #Edges #Feat. #Avg.degree #Homophily

Cora 2,708 5,278 1,433 3.9 0.81

Citeseer 3,327 4,552 3,703 2.7 0.74

Pubmed 19,717 44,324 500 4.5 0.80

BlogCatalog 5,196 171,743 8,189 66.1 0.40

Roman-Empire 22,662 32,927 300 2.9 0.05

0.5 1.0 1.5
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Figure 7: Visualization of node entropy after GNN aggrega-
tion (i.e., 𝐻 (𝑝𝑖 )) alongside the average entropy of its neigh-
bors (i.e.,

∑
𝑣𝑗 ∈N(𝑣𝑖 ) Â𝑖 𝑗𝐻 (𝑝′

𝑗
)) on Citeseer datasets.
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Figure 8: Efficiency analysis on Pubmed dataset.

C.2 Effiency Analysis
C.2.1 Time and Space Effiency Analysis. Fig. 8 shows the time and

memory efficiency of UnGSL on the Pubmed dataset. the results

show that UnGSL slightly increases the time and space costs of GSL

models, demonstrating its efficiency.

C.2.2 Average Degree of LearnedGraph. To demonstrate that UnGSL

introduces fewer burden to the learned graph in the GSL model,

we compute the average degree of learned graph before and after

applying UnGSL. As shonw in Table 6, after applying UnGSL, the

node degree shows a slight increase, and in some cases, the node

degree even decreases compared to the original learned graph. This

demonstrates the superiority of UnGSL, which uses fewer edges to

significantly enhance GSL’s performance.

In general, the results show that UnGSL slightly increases the

time and space costs of GSL models, demonstrating its efficiency.

C.3 Visualization on Predictive Uncertainty.
To demonstrate that UnGSL effectively reduces the predictive un-

certainty of nodes in a learned graph, we analyze the changes in

the entropy distribution. Specifically, we select nodes from the test

sets of the Cora and Citeseer datasets, calculate their entropies,
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Table 6: Comparison of the average node degree in the
learned graph structure before and after applying UnGSL.

Model Cora Citeseer Pubmed

GRCN 156.2 319.4 1.8

GRCN+UnGSL 156.8 312.9 2.1

IDGL 2618.2 3271.7 1390.6

IDGL+UnGSL 2649.8 3277.6 1316.6

SUBLIME 2.6 5.7 9.1

SUBLIME+UnGSL 1.1 5.2 7.4

GRCN+UnGSL GRCN IDGL+UnGSL IDGL
Model
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Figure 9: Boxplots of the node entropy on Cora and Citeseer
datasets.

Table 7: Hyperparameter settings of learning rate, 𝛽 and ini-
tial value in UnGSL.

Setting GRCN PROGNN PROSE IDGL SLAPS SUBLIME

Cora

lr 0.0005 0.0001 0.01 0.001 0.0001 0.001

𝛽 0.40 0.82 0.01 0.95 0.75 0.98

Initial value 0.57 0.48 0.18 0.71 0.019 0.20

Citeseer

lr 0.006 0.03 0.001 0.0005 0.03 0.03

𝛽 0.56 0.57 0.75 0.78 0.19 0.89

Initial value 0.47 0.078 0.66 0.62 0.41 0.72

Pubmed

lr 0.09 - 0.01 0.001 0.02 0.004

𝛽 0.35 - 0.22 0.16 0.65 0.46

Initial value 0.867 - 0.66 0.62 0.41 0.72

BlogCatalog

lr 0.0056 0.0002 0.06 0.01 0.007 0.0001

𝛽 0.65 0.87 0.36 0.90 0.18 0.47

Initial value 0.82 0.95 0.94 0.03 0.78 0.438

Roman-Empire

lr 0.0008 - 0.001 0.002 0.02 0.007

𝛽 0.001 - 0.001 0.82 0.83 0.54

Initial value 0.93 - 0.96 0.31 0.075 0.084

and present the results in a box plot, as shown in Fig. 9. We ob-

serve that GSL models incorporating UnGSL generally reduce node

entropy, demonstrating UnGSL’s effectiveness in learning high-

quality structures that prevent nodes from falling into regions of

high uncertainty.

C.4 Hyperparameter Settings
Table 7 presents the hyperparameter settings of learning rate, 𝛽

and the initial value in UnGSL.
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