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ABSTRACT

In this work, we empirically study the data scaling properties of neural machine
translation (NMT). We first establish that the test loss of encoder-decoder trans-
former models scales as a power law in the number of training samples, with a
dependence on the model size. We then systematically vary various aspects of
the training setup to understand how they impact the data scaling laws. In par-
ticular, we change the (1) Architecture and task setup, to a Transformer-LSTM
Hybrid as well as a Decoder-only transformer with language modeling loss (2)
Noise level in the training distribution, starting with noisy data with filtering ap-
plied as well as clean data corrupted with synthetic iid noise. In all the above
cases, we find that the data scaling exponents are minimally impacted, suggesting
that marginally worse architectures or training data quality can be compensated
for by adding more data. Lastly, we find that changing the training distribution to
use back-translated data instead of parallel data, can impact the scaling exponent.

1 INTRODUCTION

In deep learning, a reliable recipe to improve the generalization performance of a model is to increase
the amount of compute and data used to train it (Krizhevsky et al., 2012; Brown et al., 2020). Many
recent advances in deep learning are directed towards increasing the efficiency of digesting data
through advancements in architecture (Vaswani et al., 2017), improving the quality of the data with
filtering, or incorporating entirely new sources of data into training (Radford et al., 2021; Chen et al.,
2020). In this new paradigm of machine learning, it is crucial to understand the data-efficiency of
our training methods, and whether improvements to them at small scale translate into improvements
at large scale.

Recent work (Hestness et al., 2017; Rosenfeld et al., 2019; Kaplan et al., 2020) on scaling laws offers
a useful tool to answer such questions — they show that the test loss of a model scales predictably
and smoothly as a power law in the relevant quantities of interest such as dataset size (D), model
size (N ) and amount of compute (C). We take these findings a step further and ask how different
interventions to the training setup impact the data scaling curves in the setup of neural machine
translation (NMT):

How do changes to the training setup (such as architecture, noise) impact the data scaling curves
in NMT?

Practically, data scaling laws can be leveraged to make experimental decisions for future large scale
experiments, and to decide where computational and research efforts should be focused. Currently,
NMT models are trained using massive web-scale data; Arivazhagan et al. (2019) used 25B training
examples (approx.1T tokens) and with the advent of the self-supervised learning techniques (Liu
et al., 2020; Raffel et al., 2020; Siddhant et al., 2020) this number can easily reach 10+T tokens.
At such large scales of data, it is unfeasible to ‘just perform the experiment’, and scaling laws can
be used to drive training decisions. For instance, if small changes in architecture do not lead to a
change in scaling exponent (as shown in Figure 1B), then architecture choice can be driven by other
factors such as computational efficiency by paying a small penalty in the form of more data. In the
opposite scenario, if a training setup performs worse at a given dataset size but scales much better,
it should be chosen for future larger scale experiments.
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Figure 1: Data scaling exponent is minimally impacted by changes to the training set up We
train a series of models on increasing amounts of data {500K...512M} sentence pairs while (A)
Changing the depth of the encoder-decoder transformer (B) Changing the architecture and task set-
up (C) Changing the noise in the training distribution. For each figure, we fit the data scaling law
similar Eq. 1 and find that a common exponent p provides good fits for the empirical observations.
Full details in Section 2, 3 & 4 respectively.

1.1 OUR CONTRIBUTIONS

In this work, we first establish that the test log-perplexity of encoder-decoder transformer models
trained to perform neural machine translation (NMT) follows a power law in the dataset size, with
a dependence on the model size (Figure 1A). We demonstrate that our scaling law predicts experi-
mental results over 3 orders of magnitude (from 500K-512M) training examples (sentence pairs in
NMT) 1. Then, we systematically vary aspects of the training setup to understand how these impact
the scaling laws.

In particular, we consider the effect of (1) Changing architecture and task setup from a vanilla Trans-
former Encoder-Decoder to Transformer Enoder-LSTM Decoder Hybrid as well as a Decoder-only
Transformer with language modeling objective (2) Changing the level of filtering in the dataset (3)
Changing the amount of noise on the source (input) side and the target (output) side (4) Using back-
translated data. Surprisingly, we find that, with the exception of back-translation, these changes do
not impact the scaling exponents much (See Fig. 1 for example of changing model size, architecture
and level of noise). Some of these changes affect the bias or the final loss value at infinite data.

Our work suggests that many of the common operations used to boost performance, such as small
changes to the architecture or data filtering, can be replaced by adding an additional constant factor
of data. That is, in some cases, sub-optimalities in the architectures and noise in the datasets
can both be considered as (model and data) scaling penalties.

1.2 EXPERIMENTAL SETUP

Models: Our experiments are conducted on pre-layer transformer networks (Xiong et al., 2020).
Models are trained with per-token cross-entropy loss and Adafactor optimizer (Shazeer & Stern,
2018). All models are trained with a fixed batch-size of 500K tokens and dropout rate of 0.1 for
residuals, feed-forward activations and attention. For the small dataset sizes, the models are trained
to early stopping (as measured on the log-perplexity of a held-out development set) and for large
dataset sizes they are trained for up to 500K gradient steps. The hyperparameters for these models
were optimized for a 6 encoder layer and 6 decoder layer model trained on 2.2 billion sentence
pairs. We train 5 different model sizes {2L6L, 6L2L, 6L6L, 6L28L, 28L6L}, where 28L6L means
28 encoder layers and 6 decoder layers.

We also train two decoder-only models with a language modeling loss with {9L, 13L}, and three
Hybrid-LSTM model with {6L2L, 6L6L, 6L12L}. All the hyperparameters are matched as closely
as possible between these models to provide an apples-to-apples comparison.

1Corresponding to 27.6 billion tokens.
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Figure 2: (A) Using the joint data and model scaling law from Eq. 2 to predict the performance of
a previously unseen model. (B) BLEU score and test loss display an almost-linear relationship (C)
Scaling law for different OOD test sets for a 6L6L model (Results plotted for Web Domain 1 test
set.)

Training data In our experiments, the models are trained on two large scale datasets. The first set
of experiments on data size scaling are using the dataset sampled from an in-house parallel corpora
containing up to 2.2B sentences translated from English to German. We sample training datasets of
sizes {1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M, 512M} independently to study the data
scaling laws. The second set of experiments are conducted with Paracrawl dataset (Bañón et al.,
2020) and with and without filtering applied. The details are described in Section 4.

Test data The model performance is measured on a held-out dataset from the training distribution.
Additionally, we also measure performance on various out-of-distribution test datasets. These test
datasets have different domain composition and sampling methods. The domains considered are (i)
Web-Domain (ii) News-Domain (iii) Wikipedia and (iv) Patents. The news-domain test sets come
from the WMT2019 evaluation campaign (newstest2019) for all language pairs. The other test sets
are internal test sets representing the different domains, ranging from 500 to 5000 sentence pairs for
each set.

2 DATA SCALING LAWS

We begin our investigation by training a series of large scale encoder-decoder transformer models
on the in-house English to German parallel corpus, with the parameters ranging from 170M to
800M. Our dataset sizes range from 500K to 512M sentence pairs, covers 28B tokens, which is 10
times larger than the experiments conducted in prior work on scaling laws for NMT Gordon et al.
(2021). Our goal is to find a function in the relevant variables that predicts test performance of our
experiments. We will mainly focus on the test log-perplexity on a heldout dataset from the training
distribution, but we will also discuss scaling of BLEU scores (Section 2.1) and performance on other
out-of-distribution test sets (Section 2.2) in later sections.

Form of the scaling law: The chosen scaling law must exhibit decreasing loss with dataset size D,
and at infinite data D =∞, the model must converge to a finite constant. Additionally, Kaplan et al.
(2020); Bahri et al. (2021), conjecture that when D → ∞, the models are in a “variance-limited”
regime and the loss should scale as O(1/D). These desiderata are satisfied by the following scaling
law for a fixed model size:

L = α

(
D0

D
+ C

)p
(1)

where α is a multiplicative constant, p is the scaling exponent and C is a model-dependent constant
that are fitted empirically (D0 = 1e6 is a fixed normalization constant use for numerical stability).
We find that this scaling law indeed provides a good fit for the experimental observations. Moreover,
when we fit just the last few datapoints (See Figure 5), we find that the loss scales as O(1/D), thus
confirming the conjecture even for large-scale supervised learning setup.
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Now as we change the model size (depth, width, or depth-width aspect ratio etc), it is not apriori ob-
vious if these different models, say encoder-heavy vs. decoder-heavy models, should have the same
data scaling parameters α, p. For instance, Ghorbani et al. (2021) observe that parameter scaling
for encoder-decoder models depends separately on the number of encoder and number of decoder
models. Thus, we train 5 different models {2L6L, 6L2L, 6L6L, 28L6L, 6L28L} including very
asymmetric ones and find that their scaling parameters α, p are in fact very similar (See Appendix
A.1 for individual fits for Equation 1 to each model). Additionally, the constant C must depend on
the model size, since at infinite data D = ∞ different models will converge to different loss values
αCp, with larger models converging to lower loss values. Figure 1A shows the fit for a common
α, p and 5 different {Ci}5i=1 for each different model. We find that a common exponent is sufficient
to provide a good fit for the experimental data.

We can go a step further and replace the constant C such that it recovers the parameter scaling curve
at D =∞. To do so, we leverage the parameter scaling law found by Ghorbani et al. (2021) and fit
the following final scaling law:

L(D,Ne, Nd) = α

(
D0

D
+ β

( 1

Npe
e

1

Npd
d

+ L∞

)1/p)p
(2)

The only free parameters in this equation are α and p, and the parameters in the right term
(β,Ne, Nd, L∞) are directly borrowed from Ghorbani et al. (2021), such that they converge to the
parameter scaling law at D = ∞. The fit using this scaling law is shown in Figure 2A. Since we
have a joint scaling law with dataset size and parameters, we can use this to predict the test loss
of models that were not used to fit the scaling law. For example, in Figure 2A we find α, p for all
models while holding out the model with 6L28L and later we are able to predict the performance of
this out-of-sample model. Note that this scaling law differs from Gordon et al. (2021) in two ways
(1) Using the encoder and decoder parameters separately vs. using the total number of parameters
(2) An additional L∞ term2 that remains even when the Ne, Nd, D =∞.

Implications: Equation 1 suggests that there exists two operating regimes for data scaling: (i) data-
limited regime where D0

D � C, and (ii) capacity limited regime where D0

D � C. Fitted exponents
in Figure 1 suggest that, in the data limited regime, loss scales as O(D−1/4), suggesting a marginal
value of O(D−5/4) for additional data. Increasing the model capacity in this regime has negligible
impact on the loss. In the capacity limited regime however, the loss scales as O(D−1) suggesting
a (significantly smaller) marginal value of O(D−2) for additional data. In this regime, the loss
value is dominated by the model-dependent constant C and most of the improvement can be had
by increasing the model size. There is a smooth phase transition between these two regimes at
approximately CD

D0
= 1 (See Appendix C for an illustration). Thus, by increasing the model size

(which reduces C), one can push the transition to larger values of D and leverage the available data
more efficiently.

2.1 BLEU SCORE

Language tasks can roughly be categorized into two groups understanding tasks where a given piece
of text is tasked to be encoded for downstream classification (eg. sentiment analysis, named entity
recognition), and generation tasks where a representation of a piece of text is used (conditioned) to
generate another arbitrary length sequence of text (eg. summarization, question answering). Ma-
chine translation, without loss of generality, belongs to both of the categories: source content first
needs to be understood and the corresponding target sequence must be generated. Given this cat-
egorization, we not only care about the model score on reference target sequence (measured in
log-perplexity) but we also care about the generation quality. Once sequences are generated from
a sequence model, in autoregressive fashion or not, we resort to automatic measures like BLEU

2Gordon et al. (2021) use relatively smaller model sizes. At small Ne, Nd, the L∞ term is dominated by
the 1/Npe

e N
pd
d term, which may explain why they did not need to use an additional L∞ term
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score.3 We find that the BLEU score4 and test log-perplexity have a nearly linear relationship as
shown in Figure 2B. Note that this linear relationship is known to break down at very low loss
values (Ghorbani et al., 2021).

2.2 OOD TEST DATASETS

Practically, we are also interested in the performance of our models on out-of-distribution (OOD)
test sets, outside the heldout set. These test sets are related to the training distribution but may
have different support or composition. To understand how performance on such test sets scales with
dataset size, we measure the performance on the test sets as described in Section 1.2. We find that
the test loss on these test sets also follows a similar power law in the dataset size as Equation 1.
Figure 2C shows the test loss fits for all the test sets for a 6L6L model. We find that most of the
test sets have similar scaling exponents (See Figure 6C for exact values). That is, we do not observe
any major differences in scaling on the basis on the test set composition — both target-original
and source-original test sets scale similarly. Additionally, since the different test sets have similar
scaling exponents, this implies that the in-distribution loss and the out-of-distribution loss must have
a nearly-linear relationship (See Figure 6C). This is in line with previous findings in vision (Miller
et al., 2021). Why these distributions scale similarly (or why they have a linear relationship) is still
an open theoretical question.

3 THE EFFECT OF ARCHITECTURE

Innovations in architecture have been fundamental to progress in deep learning. It is often suggested
that architectures confer certain inductive biases that enable learning. However, recent trend in
machine learning largely confirms the trade-off between architectural biases and the amounts of
data, namely tendency towards architectures with low inductive biases are being trained on large
amounts of data, compute and parameters. Thus, we believe it is essential to determine whether
these “low bias” architectures have similar scaling behavior with respect to the dataset size.

To understand the relationship between the amounts of data and architectural bias, we pick three
common architecture and loss set ups that are commonly used for machine translation. We take an
encoder-decoder transformer described in detail in Section 2 as the baseline. Next, we pick a Hybrid
architecture with a transformer encoder and an LSTM decoder (Chen et al., 2018) due to their wide
adoption by the industry applications.5 This allows us to compare the scaling of a transformer vs. an
LSTM — both popular but different sequence-to-sequence architectures. Finally, we use a decoder-
only tranformer that is trained with a language modeling (LM) loss. Thus, the last model changes
not only the architecture, but also the loss (by including an LM loss on the source side). This setup
is identical to GPT-3, and thus allows to compare if these two different set ups for doing translation
have similar data efficiency.

To compare the scaling of these models, we train a series of models on increasing subsets of the data.
All the three models have ∼ 300M parameters. Then, we fit a scaling law with a common exponent
p, but model-dependent {αi, Ci}3i=1. The results of our experiment are shown in Figure 1B. The
fitting parameters are shown in Appendix D. We find that this scaling law with a common exponent

3While we report BLEU in addition to log-perplexity scores in our study, we acknowledge and would like
to bring the recent findings on the deficiency of BLEU as an automatic metric to the readers attention. As the
MT systems got better over the years, BLEU scores (along with several other automatic metrics) started to lose
their sensitivity to approximate human judgement (Zhang & Toral, 2019; Mathur et al., 2020; Freitag et al.,
2020; 2021; Kocmi et al., 2021) and the translation community has started to experiment with learned metrics
such as COMET (Rei et al., 2020) or BLEURT (Sellam et al., 2020). We find the ongoing discussions around
the established automatic metrics quite important, but refrain from dilating the scope our study, hence report
both model scores and BLEU scores.

4BLEU score is a precision based metric that compares a reference translation with the generated hypothesis
by the model and yields a score between 0 and 1, taking into account n-gram overlap between reference and
hypothesis while compensating for the lack of recall with a brevity penalty.

5See https://www.microsoft.com/en-us/translator/blog/2019/06/17/
neural-machine-translation-enabling-human-parity-innovations-in-the-cloud
and https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.
html

5

https://www.microsoft.com/en-us/translator/blog/2019/06/17/neural-machine-translation-enabling-human-parity-innovations-in-the-cloud
https://www.microsoft.com/en-us/translator/blog/2019/06/17/neural-machine-translation-enabling-human-parity-innovations-in-the-cloud
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
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Figure 3: (A) Effect of filtering: We apply two different filtering algorithms to the raw Paracrawl
dataset and evaluate the data scaling curve. We find that a common exponent provides a good fit for
the experimental observations. (B) Effect of back-translation: We train a 6L6L model on back-
translated data from 4 different back-translation models {2L6L, 6L6L, 32L6L, 64L6L}. We find
that the scaling exponent for back-translated data is worse than that for clean parallel data.

describes the observed experimental data well. Please refer to Appendix D for more results with
different model sizes of the Hybrids and Decoder-only models.

Our experiments show that while subtly different architectures may have different performances on
a fixed dataset size, the architectures may nevertheless scale similarly. Thus, we can compensate for
a marginally worse architecture by adding more data. Crucially, the factor of additional data to be
added does not depend on the loss value, it will always be α1

α2

1/p, where α1, α2 are the multiplicative
constants for the two architectures and p is the common scaling exponent. On the other hand, if the
exponents were different, the factor of data to be added to achieve equal performance would increase
exponentially with decreasing loss. This suggests that when choosing between multiple architectures
that have similar data scaling, the decision can freely be driven by other considerations such as
compute efficiency, multi-task abilities, compressibility for deployment or generation latency etc.

4 THE EFFECT OF NOISE

Large scale parallel corpora are essential to building high-quality machine translation models (Ari-
vazhagan et al., 2019; Lepikhin et al., 2020; Fan et al., 2020). Such datasets are created by crawling
web pages and performing various post-processing steps to create parallel data such as document
alignment and sentence alignment (El-Kishky et al., 2020; Bañón et al., 2020). However, there are
many ways in which noise can enter this pipeline — misaligned sentences, copied URLs, typos,
mistranslations and so on. Such noise can potentially be detrimental to translation quality. For in-
stance, prior work (Khayrallah & Koehn, 2018) has found that adding a large amount of noisy data
to high quality parallel data can have a catastrophic effect on the performance of NMT models. In
this section, we will study the effect of noise, not just by comparing noisy and clean data at a single
dataset size, but by comparing their scaling for increasing dataset sizes. We approach this question
in two opposite and complementary ways (1) We start with a noisy web-crawled corpus, Paracrawl
English to German (Bañón et al., 2020) and apply filtering algorithms to it (Section 4.1) (2) We start
with a clean parallel corpus and add different types of noise to it (Sections 4.2.1, 4.2.2).

4.1 DATA FILTERING

Due to the prevalence of noise in web-crawled corpora and its impact on machine translation models,
a variety of algorithms and heuristics have been developed to filter out noisy sentences (Wang et al.,
2018; Junczys-Dowmunt, 2018; Ramı́rez-Sánchez et al., 2020). Our goal here is to understand the
impact of data filtering on the data scaling properties of NMT.

Our setup: To understand the effect of data filtering, we use the largest publicly available Paracrawl
English-German dataset(Bañón et al., 2020). We lightly filter the raw dataset with de-duplication,
length filtering (≤ 256) and language ID filtering. We also remove near duplicates of our test sets
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with a 10-gram overlap. This leaves ∼ 750M noisy sentence pairs. We train a 6L6L model on this
dataset with increasing dataset sizes {1M, 2M...256M}. To study the effects of the filtering, we
use two filtering algorithms. For the first filtering algorithm, we use the Bicleaner scores (Ramı́rez-
Sánchez et al., 2020) that are publicly released along with the Paracrawl dataset v8.1. This is a score
ranging from (0, 1), with a higher score indicating higher sentence quality. The bicleaner scores in-
cludes various hard-coded rules, language-model fluency scores, and scores from a classifier trained
to detect mutual translations. We use a threshold of 0.5 and discard all sentences below this threshold
leaving us with ∼ 300M sentence pairs. For the second filtering algorithm, we choose Contrastive
Data Selection (CDS) (Wang et al., 2018), which belongs to a family of cross-entropy-based filter-
ing algorithms (Moore & Lewis, 2010; Junczys-Dowmunt, 2018). CDS scores the quality of each
sentence pair according to the difference in cross entropy scores between two related translation
models: a clean model that was fine-tuned on a trusted dataset, and a noisy one that was not. We
choose the top 50% of the CDS-ranked sentence pairs.

Results: The results for the data scaling law for all three training datasets are shown in Figure 3A
and fitted coefficients in Table 1. We measure the test log perplexity on the Web Domain 1 test set.
We fit a scaling law with a common exponent p and separate α,C for each training set. We find that
a common exponent fits the experimental data well. We make the following observations:

α C p

No filter 2.501 0.034
0.278CDS 2.235 0.054

Bicleaner 2.130 0.064

Table 1: Coefficients for filtering

Multiplicative constant α shift: The filtered dataset has
lower α, implying that at a given dataset size, the loss for
filtered data is lower. Thus, if you were constrained by
compute to use a small fixed dataset size, it would be ad-
visable to use a filtered dataset.
Loss at convergence αCp is the same: In our experiments,
we find that the three datasets converge to the same loss
for a 6L6L model. This implies that at large dataset sizes,
a 6L6L model is unable to distinguish the differences be-
tween a filtered and unfiltered dataset. We would like to emphasize that this is a consequence of
the particular filtering algorithms used. For instance, it is possible to construct a filtering algorithm
that is very biased and discards all data from a certain domain, which may converge to a higher loss
value.
Similar exponents p: We find that a common exponent is sufficient to describe the experimental data.
This finding has the following important implication: We can compensate for noise in the dataset
simply by adding more data!

There is no standard, task-independent definition or measure of sentence quality or noise. Thus,
any filtering algorithm always runs the risk of biasing the training dataset, say, towards the in-
domain trusted dataset used for filtering. For example, a recent study by Gao (2021) shows that
very aggressive filtering can negatively impact the downstream performance of language models.
Our results show that the effect of unfiltered noisy sentence pairs is not catastrophic — while some
amount of filtering may be desirable for computational efficiency, we can replace filtered data
with more unfiltered data.

4.2 ADDING NOISE

While understanding the effect of filtering on data scaling curves is practically informative, filtering
combines many different types of noise and heuristics together. To get a more detailed understanding
of the effect of noise, we now add noise to a clean dataset to have finer control over the dataset.
In particular, we make two different types of distinctions. First, we add noise either only to the
source side (the input sentences) or only to the target side (the output sentences). Second, we
consider independent vs. dependent noise. Independent noise, includes noise such as changing a
character to a random character or deleting a random word — the noise does not depend on the
source/target sentence itself. By dependent noise, we mean that noise added to the sentence depends
on the sentence itself, for eg: if the word ‘cat’ is always mistranslated. We believe that this is a
natural distinction since the effect of the former type of noise can (at least information-theoretically)
be reversed if we are provided with more data. On the other hand, dependent noise can bias the
distribution in more drastic, irreversible ways.
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4.2.1 INDEPENDENT NOISE

α C p

No noise 1.969 0.064
0.296Source noise 2.222 0.067

Target noise 2.772 0.323

Table 2: Coefficients for added noise

We start with a simple setup of the following types of
iid noise added to the source and target side respec-
tively: (1) Character level: We perturb p = 0.1 frac-
tion of the characters in the sentences to random char-
acters (alphumeric + punctuations), (2) Word level: We
delete p = 0.15 fraction of the words from either the
source or the target side, and (3) Sentence level: For
p = 0.1 fraction of the sentences, we shuffle the map-
ping sentences of the sentence pairs. These noise types
have also been considered in prior work Khayrallah & Koehn (2018). Next, we train a 6L6L trans-
former model on increasing subsets of the noisy training datasets. The results are shown in Figure
1C and Table 3.

Our first observation is that, similar to the case of data filtering, we can fit a power law of Equation
1 with a common exponent p, but different α,C for the different training sets to our experimental
observations. On the other hand, unlike filtering, both the source and target noise datasets do not
converge to the same loss value as the clean dataset at large dataset sizes D → ∞. These results
show that while the exponents for different datasets can be similar, it is also important to consider
the C or the loss where these models converge. In this particular case, more data cannot always
offset the effect of noise. It is an open question if this is because the model size 6L6L is too weak
to learn in the presence of this amount of noise, that these types of noise are disruptive to neural
network training irrespective of model size, or that this problem is hard to solve at finite samples for
any class of models. It is also an interesting open question to see if we can predict which types of
noise will lead to a different C.

Lastly, another important observation is that target noise is much more harmful than source noise
for the same amount of noise. This may help explain why backtranslation (Sennrich et al., 2016),
a widely used data augmentation technique for machine translation, works — since it it uses a
clean monolingual target corpus and noisy back-translated source sentences. This is in contrast with
observations in the vision domain Bahri et al. (2021), where changes to the input distribution change
the exponent, but changes to the output distribution keep the exponent unchanged.

4.2.2 DEPENDENT NOISE: BACK-TRANSLATION

Now we turn our attention to changing the training distribution by using back-translated data instead
of parallel data. Back-translation (BT) (Sennrich et al., 2016) is a common data-augmentation tech-
nique employed in MT to increase the amount of training data. Say you are training your model to
translate English to German sentences. With back-translation, one would use a reverse model trained
from German to English, and a clean monolingual German corpus to generate English-German sen-
tence pairs. Back-translation can be considered a type of noise that is added to the source side.
However, it differs from the independent noise considered in Section 4 in that noise depends on the
source/target sentence itself. For instance, if the BT model was never trained on any sentences on
the topic of animals, it will make systematic errors on such sentences. These errors can be impossi-
ble for the downstream model to reverse, no matter how much training data is provided to it. This
makes it an interesting setup to study data scaling, as it is not apriori obvious if such a distributional
change would impact just the bias of the model C or also the scaling exponent p.

Setup: In our setup, to minimize the number of confounders, we extract the same German target
side of the same dataset that was used to train our models in Section 2. This keeps at least the target
distribution the same as that in Sections 2 and 4. We use four different German to English encoder-
decoder models of sizes {2L6L, 6L6L, 32L6L, 64L6L} to translate the German sentences, thus
giving us four different datasets with English source sentences of varying quality, with the smallest
model producing the ‘noisiest’ source sentences. Note that these German to English models are
trained on a different dataset, although there may be some sentence overlaps with the English to
German datasets. To evaluate the data scaling, we train a 6L6L model on increasing dataset sizes
for all these datasets.

The results of our experiments are shown in Figure 3B. We fit a scaling law with com-
mon α, p and dataset dependent C. Interestingly, we find that the scaling exponent of
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the BT trained models is slightly lower (∼ 0.2) than the scaling exponents of the par-
allel dataset (∼ 0.28) as is also visible in Figure 3B. We did not get good fits when
tried to jointly fit the BT data with the clean parallel data with a common exponent.
Moreover, the BT datasets converge to a worse loss value at the infinite data regime.

α C p

BT model 2L6L 2.343 0.059

0.0198BT model 6L6L 2.288 0.054
BT model 32L6L 2.251 0.040
BT model 64L6L 2.224 0.037
Parallel data 1.196 0.048 0.271

Table 3: Coefficients for BT

Another point of note is that different BT model
sizes have similar scaling, but larger models con-
verge to marginally better test log-perplexities.
Thus, if we are in the extreme data-limited
regime, almost any back-translation model will
provide good improvements, but as we approach
very large dataset sizes, it will be more beneficial
to use a larger BT model.

Taken altogether, these three experiments show
that noise has less impact than one might have
expected on the exponent characterizing the data-
scaling behavior of NMT, given the strong emphasis on data quality in the NMT community. Both
filtering natural noise and adding artificial independent noise have no impact on the exponent. How-
ever, they do impact the multiplicative constant, meaning that for a fixed computation or data budget,
filtering remains quite relevant. Crucially, the techniques outlined here give practitioners tools they
can use to help determine when effort should be put into improving removing noise, and when they
should focus on collecting more data.

5 RELATED WORKS

Our work builds extensively on prior work on scaling laws Hestness et al. (2017); Rosenfeld et al.
(2019) and in particular Kaplan et al. (2020). The papers most closely related to our work are
Hestness et al. (2017); Gordon et al. (2021) who provide data and parameter scaling laws for NMT.
In addition to conducting experiments at a much larger scale, our work goes beyond the experimental
setup in these papers and considers the question of how various change to the training setup impact
the data scaling law. Additionally, the form of our scaling law departs slightly from the scaling laws
presented in Gordon et al. (2021) as discussed in Section 2. Our scaling law differs from Hestness
et al. (2017) in that they conduct experiments with LSTMs and their law does not scale as O(1/D)
when D → ∞. Despite these differences, the scaling exponents found in both these papers are in
the same range as ours ∼ 0.3. Gordon et al. (2021) also conduct experiments on multiple language
pairs and find that their exponents are in the same range. Note that these exponents are much higher
than those found for the unconditional language modeling case by Kaplan et al. (2020); Hestness
et al. (2017) (0.1 vs. 0.3). Hoiem et al. (2021) conduct an analysis of data scaling curves in the
vision domain with a focus on architectures and pre-training.

6 DISCUSSION AND CONCLUSIONS

In this work, we study the data scaling of models trained to perform neural machine translation under
various interventions to the training pipeline, including changes to architecture as well as the training
distribution. We find that a majority of these changes lead only to a multiplicative shift in the scaling
curves, and the exponent changes minimally. Practically, this suggests that many advancements that
seem significant at smaller scale, could be equivalently achieved by moving further across the data
scaling curve and adding more data.

Apart from the practical implications, this work also raises some interesting theoretical questions.
If so many interventions to the training pipeline keep the exponents unchanged, then this may be
indicative of a deeper commonality in the mechanism by which these deep networks learn. For
instance, recent work (Bahri et al., 2021; Sharma & Kaplan, 2020) conjecture that the data scaling
exponent captures the “dimension of the data manifold” as it is represented by the model. If this
is the case, then our experiments suggest that some changes to the architecture or certain types of
changes to the distribution do not change this ‘manifold’.

In conclusion, we believe that understanding how different training methods change the scaling of
the test performance can yield important insights both theoretically and practically.
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A DETAILS ABOUT POWER LAW FITTING

A.1 SEPARATE FITS AND VARIATION IN THE EXPONENT

In Section 2, we showed that a single common exponent p gives a reasonable fits to the experimental
observations for different model sizes. We now examine the difference in the co-efficients for each
of these models. To do so, we fit a separate power law from Equation 1 to each model as shown
in Figure 4A. The scaling exponents for all models are not exactly the same — they do have minor
differences.

Some of these variations can be attributed to the sensitivity of these scaling parameters to ran-
domness in the training procedure. There are multiple sources of randomness in training — initial
random seed, randomness over sampling of the training set, randomness in SGD training such as
batch order. To understand the effect of these, we sample 5 different versions of the training set for
dataset sizes {250K, 500K, 1M} (we choose these as they require low compute to train to conver-
gence) and train networks on these datasets from scratch. Figure 4B shows the standard deviation
observed in the test loss for the 6L6L and 6L28L models. As we can see, the variance is up to 2%
of the loss. The variance in larger datasets is expected to be lower than those for smaller datasets.

Figure 4: (A) Separate power law fits from Equation 1 to different model sizes. We observe small
differences in the scaling co-efficients (B) Standard deviation in the loss due to randomness in train-
ing. The loss varies by up to 2% (C) Distribution of the scaling exponents from a monte-carlo
simulation assuming a 2% standard deviation in the loss.

To understand how this variance would affect the final observed scaling co-efficients, we do the
following monte carlo experiment: We assume that the loss is distributed as N (l, 0.02l) where l
is the loss for a given dataset size and model. We then simulate different loss values from this
distribution for all the dataset sizes, and fit scaling co-efficients to it. This gives us a distribution
over the scaling co-efficients. Figure 4C shows the distribution of the scaling exponents obtained
from this procedure for the 28L6L model. As we can see, a 2% randomness in the test loss, gives
us a standard deviation of 0.02 in the scaling exponent. This provides a benchmark in comparing
exponents obtained from two different experiments (say two different architectures). Please note that
this is only a rough calculation that is meant to give some intuition for how these sacling parameters
may be affected by various sources of randomness.

A.2 VARIANCE-LIMITED REGIME

We fit the scaling law L = γ(D0/D)p + B to dataset sizes >= 32M . If the “variance-limited”
conjecture is correct, then the scaling exponent should be p ∼ 1. Figure 5 indeed shows that this is
the case. Moreover, the transition point to this regime should occur later for larger model sizes. As
we can see, the exponents for the larger models has not reached 1.

B SCALING LAWS FOR DIFFERENT DATASETS

In all our main experiments, we study the scaling laws for a heldout test set from the same distri-
bution as the training set. But, practically, we may be interested in the performance of some other
out-of-distribution test sets. These other test sets have some overlap with the training distribution but
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Figure 5: Power law fits for large dataset sizes show that the loss decays as O(1/D)

may have different support or composition. To understand how performance on such test sets scales
with dataset size, we measure the performance on various other test sets as described in Section ??.

Figure 6: Scaling laws for various OOD test sets for 6L6L model

We find that the test loss on these additional test sets also follows a similar power law in the dataset
size as Equation 1. Figure 6 shows the test loss fits for 14 different test sets for a 6L6L model. We
find that most of the test sets have similar scaling exponents. That is, we do not observe any major
differences on the basis on the test set composition — both target and source original test sets scale
similarly.

Additionally, since the different test sets have similar scaling properties, this implies that the in-
distribution loss and the out-of-distribution loss must have a nearly-linear relationship.

C DATA SCALING PHASE TRANSITION

We fit the scaling law shown in Equation 1.

L = α

(
D0

D
+ C

)p
(3)

This equation displays two scaling regimes:

1. Over-parameterized (or small D): In this regime, the D0/D term dominates the loss and
the loss scales as O(1/Dp).

2. Under-parameterized (or large D): In this regime, we can take a Taylor’s approximation
for the small term D0/D which leads to the loss scaling as O(1/D).
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Equating the derivatives of the two expressions provides an expression for the point where the
marginal value of data transitions (and hence the model moves to capacity limited regime). A sim-
ple calculation shows that this point occurs at CD = D0. Figure 7 provides an illustration for this
transition in the simple scenario where D0 = 1.

10−2 10−1 100 101 102

Number of Sentence Pairs, D
0.0

0.0

0.2

8.1

376.7

−∇D ̂L(D)
αp

D−1 − p

D−2

CD= 1

Figure 7: Phase transition from data-limited regime to model-limited regime. For simplicity, we
assume D0 = 1.

D SCALING LAWS WITH DIFFERENT ARCHITECTURES

The fitting parameters for Figure 1B are shown here.

α C p
Encoder-Decoder 1.969 0.057

0.285Decoder-only 1.817 0.11
Hybrid-LSTM 2.011 0.078

We now show additional plots for decoder-only and transformer-LSTM hybrid models, with indi-
vidual fits for each model.

Figure 8: Separate fits for architecture with different depths (A) Decoder only (B) Transfomer-
LSTM Hybrids
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