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ABSTRACT

Forecasting future links is a central task in temporal graph (TG) reasoning, requir-
ing models to leverage historical interactions to predict upcoming ones. Traditional
neural approaches, such as temporal graph neural networks, achieve strong per-
formance but lack explainability and cannot be applied to unseen graphs without
retraining. Recent studies have begun to explore using large language models
(LLMs) for graph reasoning, but most of them are constrained to static graphs
or small synthetic TGs and lack the evaluation of the quality of reasoning traces
generated by LLMs. In this work, we present Reasoning-Enhanced Learning for
Temporal Graphs (ReaL-TG), a reinforcement learning framework that fine-tunes
LLMs to perform explainable link forecasting on real-world TGs. ReaL-TG uses
outcome-based reward to encourage models to self-explore reasoning strategies
from graph structure and to produce explanations that directly justify their pre-
dictions. To enable evaluation on LLM-generated reasoning traces, we propose
a new evaluation protocol combining ranking metrics with an LLM-as-a-Judge
system that assesses both the quality of reasoning and the impact of hallucinations.
Experiments with ReaL-TG-4B, obtained by fine-tuning Qwen3-4B under our
framework, show that it outperforms much larger frontier LLMs, including GPT-5
mini, on ranking metrics, while producing high-quality explanations confirmed by
both the LLM judge and human evaluation.

1 INTRODUCTION

Temporal graphs (TGs) represent node interactions as links annotated with timestamps (Kazemi et al.,
2020), making them well-suited for modeling a wide range of real-world scenarios such as social
and transaction networks (Huang et al., 2023). This expressiveness has fueled the growing interest in
TG reasoning, which focuses on capturing the dynamic graphical structures within TGs to support
various downstream tasks. A widely studied task in TG reasoning is future link prediction, also
known as link forecasting. It aims to predict future interactions between nodes based on historical
node interactions, which is particularly useful in practical applications such as recommendation
systems (Fan et al., 2021), community discovery (Rossetti & Cazabet, 2018) and financial analysis
(Shamsi et al., 2022). Mainstream methods for link forecasting train neural-based models such as
temporal graph neural networks (TGNNs) (Xu et al., 2020; Ma et al., 2020; Wang et al., 2021b;
Gravina et al., 2024), memory networks (Rossi et al., 2020; Liu et al., 2022a), and sequence modeling
units (Yu et al., 2023; Tian et al., 2024; Ding et al., 2025) on the training set of a TG, and then apply
the trained model to the test set of the same TG. While effective, they suffer from two key limitations.
First, most neural-based models lack human-readable explanations for their predictions, making it
difficult for users to assess the trustworthiness of the results. Second, they typically require retraining
when adapted to a new TG, and therefore cannot seamlessly generalize to unseen graphs.

Recently, the rapid scaling of language models has made them increasingly effective at generating
coherent text, leading to their widespread adoption in question answering (QA) tasks across diverse
domains. Building on this progress, an emerging line of research investigates whether large language
models (LLMs) can also reason over graphs by prompting them to answer graph-related (such as
link prediction) questions. Compared with traditional graph reasoning methods, LLMs naturally
provide human-readable explanations and exhibit strong zero-shot generalization, suggesting the
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potential to handle previously unseen graphs without retraining. Nevertheless, most existing studies
concentrate on static graphs (Chai et al., 2023; Perozzi et al., 2024; Fatemi et al., 2024; Chen et al.,
2024; Guo et al., 2025), and only a few have investigated TGs. Among these, several efforts focus
on TGs with textual attributes and demonstrate strong performance (Lee et al., 2023; Liao et al.,
2024; Wang et al., 2024; Wu et al., 2025). However, such settings carry a risk of data leakage,
since textual features—including those directly relevant to prediction and even the correct answers
to the questions—may already have been seen during pre-training (Ding et al., 2024). In contrast,
LLM4DyG (Zhang et al., 2024b) evaluates LLMs on TG reasoning using fully synthetic graphs
anonymized from text, thereby avoiding leakage. Yet its experiments are restricted to very small
scales (up to 20 nodes), limiting the applicability of the findings to realistic scenarios. Moreover,
existing studies largely overlook the evaluation of LLMs’ reasoning outputs. Strong performance on
link prediction metrics such as accuracy does not necessarily imply that the underlying reasoning
traces are correct. In practice, LLMs may generate flawed reasoning or introduce hallucinations that
still lead to the right prediction label, raising concerns about their reliability.

Building on these observations, we propose Reasoning-Enhanced Learning for Temporal Graphs
(ReaL-TG), a reinforcement learning (RL) framework that fine-tunes LLMs to do perform link
forecasting over TGs. Unlike prior works that rely on textual attributes or synthetic toy datasets,
Real-TG is developed and evaluated on anonymized real-world TGs (where nodes are represented
with numerical IDs without any semantic information) provided by the popular Temporal Graph
Benchmark (TGB) (Huang et al., 2023), making it both practical and aligned with real application
needs. By removing semantic information from textual attributes, anonymized graphs prevent data
leakage and require the model to reason solely over the temporal graphical structures, leading to
reasoning patterns focusing on the intrinsic dynamics of TG evolution. During RL, we choose a
reasoning LLM, i.e., Qwen3 (Yang et al., 2025), as the base model and adopt Grouped Regularized
Policy Optimization (GRPO) (Shao et al., 2024) together with an outcome-based reward tailored
to TG link forecasting. This outcome-based setup not only encourages the model to self-explore
reasoning strategies through its own textual outputs without process-level supervision, but also
compels it to produce human-readable explanations that justify its predictions. In this way, the model
is pushed to achieve both strong predictive accuracy and logically sound reasoning that supports
its answers. To comprehensively evaluate LLMs in TG link forecasting, we further propose a new
evaluation protocol tailored to this setting. First, we formulate the task as QA, where an LLM must
directly generate the set of nodes it predicts as correct answers. On top of this formulation, we
introduce penalized mean reciprocal rank (pMRR), an extension of MRR (Voorhees & Tice, 2000)
that discounts the score when predicted nodes fall outside the ground-truth set, thereby discouraging
over-generation. Second, to assess the quality of LLM-generated reasoning traces , we design an
LLM-as-a-Judge (Zheng et al., 2023) evaluation with three criteria: (i) faithfulness, whether the
reasoning is supported by the input graph; (ii) logical consistency, whether the reasoning follows a
coherent and valid chain; and (iii) answer–explanation alignment, whether the predicted answers are
justified by the model’s own reasoning.

We summarize our contributions as follows:

• We propose ReaL-TG, the first framework that enables LLMs to perform explainable and
effective link forecasting on real-world temporal graphs via reinforcement learning.

• We introduce a new evaluation protocol for TG link forecasting with LLMs that assesses not
only prediction accuracy but also reasoning quality and the impact of hallucinations.

• Our fine-tuned model ReaL-TG-4B outperforms much larger frontier LLMs on both seen
and unseen graphs. In addition, it produces high-quality explanations, as confirmed by both
the LLM judge and human evaluation.

2 RELATED WORK & PRELIMINARIES

2.1 RELATED WORK

Traditional Link Forecasting Methods. Traditional approaches to TG link forecasting span several
modeling paradigms. Memory-based methods such as TGN (Rossi et al., 2020) and TNCN (Zhang
et al., 2024a) maintain evolving node memories to capture temporal dynamics, often combined
with a Graph Neural Network (GNN) to aggregate graph information. Another line of works,
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including JODIE (Kumar et al., 2019), TCL (Wang et al., 2021a), DyGFormer (Yu et al., 2023),
and DyGMamba (Ding et al., 2025), leverages sequence modeling units such as recurrent neural
networks, Transformers (Vaswani et al., 2017), and Mamba layers (Gu & Dao, 2023) to model
temporal dynamics. Heuristic-based approaches like EdgeBank (Poursafaei et al., 2022) and Base
3 (Kondrup, 2025) avoid learnable parameters altogether, instead relying on carefully designed
algorithms to extract relevant information from past interactions. Pure MLP-based methods such
as GraphMixer (Cong et al., 2023) have also shown promise by directly encoding link information.
Finally, snapshot-based methods like ROLAND (You et al., 2022) and UTG (Huang et al., 2024)
adapt standard GNN architectures to TGs by modifying their training and inference procedures.
While effective on standard benchmarks, these methods require retraining from scratch (often with
hyperparameter tuning) when applied to new datasets, and they provide no explanations for their
predictions, limiting their applicability in settings where interpretability is critical.

LLMs for Graph Reasoning. A growing body of research explores LLMs’ reasoning abilities
on graph-related tasks. Fatemi et al. (2024) show that appropriate graph encodings can improve
performance. Methods such as GraphToken (Perozzi et al., 2024), GraphLLM (Chai et al., 2023), and
LLaGA (Chen et al., 2024) enhance reasoning by jointly training LLMs with graph representations,
while G1 (Guo et al., 2025) further demonstrates that RL improves reasoning on static graphs. Recent
works have started to examine LLMs’ capabilities on TGs. LLM4DyG (Zhang et al., 2024b) shows
that LLMs capture basic spatio-temporal dependencies but struggle with multi-hop reasoning, and its
evaluation is limited to small synthetic TGs. Li et al. (2025) explore in-context learning (ICL) on TGs,
showing that performance is highly sensitive to prompt design and subgraph selection. Concurrently,
TGTalker (Huang et al., 2025b) investigates ICL-based link forecasting on real-world TGs. Despite
these advances, none of the existing works addresses how to systematically evaluate LLMs’ reasoning
quality or how to guide them, through training, towards more effective reasoning strategies for link
forecasting on real-world TGs.

2.2 PRELIMINARIES

We first define TG as follows. Note that, in this work, we deliberately exclude node and edge features,
focusing instead on how LLMs can reason over TGs solely from their topological structure.

Definition 1 (Temporal Graph) Let N and T denote a set of nodes and timestamps, respectively.
A TG can be represented as a sequence of |G| chronological interactions G = {(ui, vi, ti)}|G|i=1 ⊆
N ×N × T with 0 ≤ t1 ≤ t2 ≤ ... ≤ t|G|, where ui, vi ∈ N are the source and destination node of
the i-th interaction happening at ti ∈ T , respectively.

Inspired by Huang et al. (2025b), we then define TG link forecasting as a QA task, making it naturally
adaptable to LLMs. We discuss the advantages of this formulation over the traditional one in App. E.

Definition 2 (TG Link Forecasting with LLMs) Assume a TG G ⊆ N × N × T containing all
ground-truth interactions, and let f(·) denote the inference process of an LLM. Given a prediction
query q = (uq, ?, tq) with source node uq ∈ N and timestamp tq ∈ T , together with its history
Htq = {(ui, vi, ti) | ti < tq, (ui, vi, ti) ∈ G}, TG link forecasting requires the model to produce a
text-based answer A specifying the ground truth missing node(s) vq ⊆ N as the predicted missing
destination(s). The answer is obtained byA = f

(
ψ(Htq , q)

)
, where ψ(·, ·) is a function that converts

Htq and q into a prompt consisting of historical graph context and a natural language question
asking about the missing destination node(s).

3 REAL-TG

The left part of Fig. 1 illustrates our ReaL-TG framework. Given a query q = (uq, ?, tq) and its
history Htq before query timestamp tq , we first apply the Temporal Context Graph Selection (T-CGS)
algorithm to construct a subgraph Gc that is most relevant to q based on Htq . Gc serves as the graph
context from which the LLM extracts information to make predictions. We then verbalize all links
in Gc and combine them with a natural language question derived from q into a prompt template,
denoted as Q. The prompt Q is fed into an LLM for inference, from which we extract the prediction
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Figure 1: Left: The ReaL-TG framework, which enables RL fine-tuning of LLMs to improve
TG forecasting (see Sec. 3). Right: The proposed LLM-as-a-Judge system, which provides a
comprehensive evaluation of LLM reasoning quality in TG link forecasting (see Sec. 4, paragraph
Reasoning Trace Evaluation).

answer. We compute a link forecasting reward for each prediction with a customized reward function,
and through RL the model self-explores reasoning patterns to improve forecasting in TGs.

Temporal Context Graph Selection. We input graph context as text into the LLM to ensure
explainability, since we require the output reasoning trace to explicitly justify predictions in nat-
ural language (see App. F for further discussion on why we represent graph context as text). We
aim to include as much relevant graph information as possible while excluding redundant details
that do not contribute to prediction. To this end, we propose T-CGS, an algorithm that selects
a temporal context graph for each query q = (uq, ?, tq). Inspired by Li et al. (2023), we con-
struct Gc centered around a temporal query node (uq, tq). Starting from (uq, tq), we perform an
α-temporal random walk, where at each step the walk terminates at the current temporal node
(e, t) with probability α ∈ (0, 1), and with probability 1 − α it continues to a node in the his-
torical temporal neighborhood Nei(e,t) = (e′, t′) | (e, e′, t′) or (e′, e, t′) ∈ Ht, t

′ < t of (e, t). If
the walk continues, the transition probability from (e, t) to each (e′, t′) ∈ Nei(e,t) is given by

P(e,t)(e
′, t′) = β|{(e′′,t′′)|(e′′,t′′)∈Nei(e,t),t

′′≥t′}|/
∑|Nei(e,t)|

z=1 βz , where β ∈ (0, 1) is a decay fac-
tor. The intuition behind it is to assign higher transition probabilities to temporal neighbors that
are closer in time to the current node (e, t), since recent interactions are generally more influen-
tial in information propagation on TGs, as shown in prior works (Liu et al., 2022b; Ding et al.,
2022; Li et al., 2023). Based on this setting, we compute the probability of an α-temporal random
walk starting from the query node (uq, tq) and terminating at one of its k-hop historical neigh-
bors. We then rank all visited temporal nodes by their termination probabilities and select the
top-ranked nodes Nq as the most relevant for answering query q. To construct the context graph Gc,
we retrieve all links in the ground-truth graph that involve nodes in N q and collect them into Gc.

Figure 2: Example of
context graph selection.

We provide an example in Fig. 2 to show how T-CGS constructs a context
graph. Assume we set α = 0.3, β = 0.6 and select only the top-1
temporal node to form N q. For the query node (uq, tq), it has two 1-
hop temporal neighbors (e1, t1) and (e2, t2), one 2-hop neighbor (e3, t3),
and one 3-hop neighbor (e2, t2) (this node is both a 1-hop and a 3-hop
neighbor), with the temporal order tq > t1 > t3 > t2. The termination
probability of (e1, t1) is (1−α)αβ2/(β+β2) ≈ 0.079, since the random
walk first proceeds one step with probability 1− α and then terminates
with probability α. Similarly, the termination probability of (e3, t3) is
(1−α)2αβ2/(β+ β2) ≈ 0.055. For (e2, t2), the termination probability
is (1− α)3αβ2/(β + β2) + (1− α)αβ/(β + β2) ≈ 0.131, as it can be
reached through two distinct paths. To this end, we have N q = {(e2, t2)},
and the context graph consists of all the links associated with it, i.e., {(uq, e2, t2), (e3, e2, t2)}. In
practice, we set |N q| to 100 and limit the random walk to at most 2 steps, yielding a Gc that contains
temporal neighbors of (uq, tq) up to 3 hops away. See App. G for more details including the value
selection of α and β.

Prompt Construction. Given Gc and query q, we construct the prompt Q shown in Fig. 3, which
embeds the graph context and instructs the LLM to produce both predictions and explanatory
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reasoning traces. To facilitate extraction, we require the reasoning to be enclosed within <think>
</think> tags and the final predictions within <answer> </answer> tags.

Figure 3: Prompt template for LLM to do TG link forecasting in ReaL-TG.

Training Data Collection. We collect 1,000 link forecasting queries from 4 TGB datasets:
tgbl-wiki, tgbl-subreddit, tgbl-coin, and tgbl-flight to construct the training
data. Since each query (uq, ?, tq) may have multiple ground-truth nodes as answers, the total number
of involved links is larger than 1,000. Specifically, we sample 225 queries each from tgbl-wiki
and tgbl-subreddit, and 275 queries each from tgbl-coin and tgbl-flight. The latter
two datasets are empirically shown to be more challenging in the original TGB benchmark (Huang
et al., 2023), so we allocate more training examples to them. For all datasets, queries are sampled
in reverse chronological order from the last training timestamp until the desired size is reached,
ensuring richer histories for constructing temporal context graphs. We skip queries where (i) the
T-CGS–selected temporal context graph does not contain all ground-truth answers or (ii) the temporal
context graph exceeds 600 links. This avoids cases where the LLM cannot observe the answer within
its prompt, making fine-tuning meaningless, or where the temporal context graph is so large that it
consumes most of the context window, leaving limited space for reasoning. Finally, for each query we
construct a Q prompt and pair it with its ground-truth missing nodes {vq} to form a training example.

Fine-tuning LLMs with RL. We use GRPO with a customized reward to fine-tune models. For
each query (uq, ?, tq) with a set of ground-truth missing nodes {vq}, the LLM aims to predict as
many ground-truths as possible without introducing spurious nodes. To achieve this, we design a
reward function based on the F1 score, balancing precision (whether all predicted nodes are correct)
and recall (whether all ground-truth nodes are retrieved). Specifically, let the contents between
<answer> </answer> tags in the LLM output O be denoted as A<ans>. We parse A<ans> into a set
A = {a<ans>} of predicted nodes and compute a link forecasting reward as

r(O) = F1({a<ans>}, {vq}). (1)
This reward depends solely on model outputs, encouraging LLMs to discover transferable reasoning
patterns across graphs without constraining their reasoning traces. Moreover, it is non-parametric,
requiring no additional cost for training a separate reward model. Given the reward, we update model
parameters by maximizing the GRPO objective

JGRPO(θ) = EQ∼P (Q),{Oi}g
i=1∼πθold (O|Q)

1

g

g∑
i=1

1

|Oi|

|Oi|∑
j=1(

min

(
πθ(Oi,j |Q, Oi,<j)

πθold(Oi,j |Q, Oi,<j)
Advi,j , clip

(
πθ(Oi,j |Q, Oi,<j)

πθold(Oi,j |Q, Oi,<j)
, 1− ϵ, 1 + ϵ

)
Advi,j

)
− γDKL

(
πθ ∥πref

))
,

(2)
where P (Q) is the prompt sampling distribution. πθ and πθold denote the current and old policy
models1, respectively. ϵ is a constant that clips the objective to prevent the policy from changing too

1In RL, we treat the LLM as a policy model, with the old policy model being the checkpoint before the
current update.
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drastically in a single update step. γ is a weighting factor for the KL-divergence DKL between πθ
and the pre-trained reference model πref, ensuring the fine-tuned model does not diverge excessively
from the original base model. For each prompt Q, g rollouts {Oi}gi=1 are sampled, each being
a full response, and the objective averages over all |Oi| tokens per rollout. Advi,j denotes the
advantage of the j-th token in the i-th rollout relative to the group of g rollouts, and is defined as
Advi,j = (r(Oi)−µ({r(Oi)}gi=1))/σ({r(Oi)}gi=1) where µ(·) and σ(·) denotes mean and standard
deviation, respectively. We refer readers to Shao et al. (2024) for more details of GRPO.

4 EVALUATION PROTOCOL

We propose a new protocol to evaluate LLMs on TG link forecasting.

Prediction Label Evaluation. We first follow Huang et al. (2023) to evaluate models with Mean
Reciprocal Rank (MRR). Assume we have M evaluation examples, each consisting of a prompt
Qm, a query (uqm , ?, tqm), and a ground-truth set ηgt

m = {vqm}. The corresponding prediction set is
ηpred
m = {v′qm}, which contains all nodes the LLM predicts as belonging to ηgt

m. We compute MRR as
follows

MRR =
1∑M

m=1 η
gt
m

M∑
m=1

ηgt
m∑

s=1

1

ranks
m

. (3)

ranksm denotes the rank of the s-th node in ηgt
m. The ranking is computed as follows. We first assign a

score of 0 to all nodes in the dataset, and then set the score to 1 for nodes included in ηpred
m . Following

prior works (Han et al., 2021; Gastinger et al., 2024), we use filtered MRR, where the influence of
other correctly predicted nodes is excluded by resetting their scores to 0 when evaluating a given node.
Finally, for each node we compute the mean of its optimistic rank (treating equally scored nodes as
ranked lower) and pessimistic rank (treating them as ranked higher), which gives ranks

m. Although
MRR is a widely used and robust metric for evaluating link prediction, it does not capture the risk of
over-generation in LLMs when the task is framed as QA-style generation. During reasoning, LLMs
often predict all nodes they believe belong to ηgt

m, sometimes accompanied by supporting reasoning.
While not always undesirable, this behavior can be problematic when accurate link forecasting is
required. To better capture the over-generation phenomenon, we introduce penalized MRR (pMRR),
which follows Eq. 3 but slightly modifies the computation of ranksm. Specifically, for all nodes in
ηpred
m \ηgt

m, we assign a score of 1.1 (can be any number> 1) instead of 1. This ensures that incorrectly
predicted nodes are ranked above correctly predicted ones, thereby penalizing over-generation. The
more such nodes appear, the stronger the penalty, resulting in a lower pMRR.

Reasoning Trace Evaluation. LLMs naturally benefit from their text generation ability, making
them well-suited for explainable link forecasting. However, no prior work has systematically evaluated
their reasoning traces, i.e., how prediction labels are derived. Such evaluation is crucial because
a trustworthy forecaster should not only produce accurate predictions but also provide reasonable
justifications. Moreover, predictions outside the ground-truth are not always undesirable if they are
supported by strong reasoning. In real-world forecasting, ground-truth labels are unavailable before
events actually occur, unlike in experimental setups where metrics such as MRR can be computed.
This makes the evaluation of an LLM forecaster’s reasoning quality even more important. The
most reliable way to assess LLM reasoning is to do human evaluation, however, it is not scalable.
Motivated by the recent success of LLM-as-a-Judge (Zheng et al., 2023), we adopt this approach for
quicker and more scalable assessment, focusing on three criteria: faithfulness, logical consistency,
and answer–explanation alignment.

• For faithfulness, we evaluate whether the LLM’s reasoning is supported by the input context
graph Gc. The Judge first splits a reasoning trace into a series of atomic claims, each
describing some aspect of the graph context. It then determines the proportion of claims that
are faithful to Gc, i.e., contain no factual errors in describing it. This proportion is defined as
the faithfulness score δf .

• For logical consistency, we assess whether the reasoning follows a coherent and valid chain.
Here, the Judge disregards faithfulness and focuses solely on whether the LLM’s reasoning
proceeds in a logically sound manner without self-contradiction. The Judge assigns a
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score from {0, 1, 2}, with higher values indicating better consistency. This score is then
normalized to [0, 1] and defined as the consistency score δlc.

• For answer–explanation alignment, we assess whether the predicted answers are justified
by the model’s own reasoning. A predicted node is considered justified if (i) the reasoning
trace contains explicit supporting claims for it, and (ii) those claims are judged as faithful in
the faithfulness evaluation. We define the alignment score δa as the proportion of predicted
nodes that are well-justified.

From another perspective, these three scores can also be viewed as capturing the impact of different
types of hallucinations in LLM reasoning. δf targets factual hallucinations, where the model intro-
duces hallucinated claims about the context graph. δlc addresses logical inconsistency hallucinations,
where the model produces contradictory or incoherent logic chains. δa reflects justification hallucina-
tions, where predictions are made without being grounded in faithful reasoning. By jointly evaluating
these dimensions, our system provides a more comprehensive assessment of LLMs’ reasoning quality
in explainable link forecasting. We use GPT-4.1 mini as a Judge throughout the experiments. See Fig.
4 for the complete prompt, i.e., instruction, for Judge. See the right part of Fig. 1 for an illustration
of the system. We compute the aggregated scores δ̄f , δ̄lc, and δ̄a by averaging over all evaluation
examples, providing an overall measure of reasoning quality.

5 EXPERIMENTS

We fine-tune a Qwen3-4B with ReaL-TG and name our trained model ReaL-TG-4B. We compare
it with several baselines on both seen and unseen graphs using our proposed evaluation protocol.
We first report comparative results on prediction accuracy and reasoning quality, and a performance
comparison between ReaL-TG-4B and traditional TG link forecasting methods (Sec.5.1), followed
by further analysis (Sec.5.2) covering: (i) the influence of base model size on ReaL-TG; (ii) human
evaluation of reasoning traces from ReaL-TG-4B; and (iii) human evaluation of our LLM-as-a-Judge
system. In addition, we include in App.J a qualitative analysis with two case studies demonstrating
how RL improves LLM-based link forecasting.

Experimental Setup. We collect evaluation data from the test sets of 4 TGB datasets used during
training (tgbl-wiki, tgbl-subreddit, tgbl-coin, tgbl-flight) and from the test
sets of 2 unseen TGB datasets (tgbl-uci, tgbl-enron) to assess models’ transferability to
unseen graphs To control evaluation cost, we curate a moderately sized dataset specifically for
assessing LLMs in TG link forecasting. We first select the last 1,000 queries from each of the 6
TGB datasets in reverse chronological order, ensuring that test data are accompanied by abundant

Table 1: Evaluation data statistics. All data are taken from
TGB (Huang et al., 2023) and thus we omit the prefix in
dataset names. Inv. means involved, and T means times-
tamps. Note that we do not reassign node or timestamp
IDs; instead, we directly use the anonymized IDs provided
in TGB.

Dataset # Inv. Nodes # Queries # Inv. Links # Inv. T

wiki 2,844 914 914 17,419
subreddit 8,097 888 888 44,716
coin 9,194 457 482 19,792
flight 5,449 488 952 387
uci 1,227 660 660 8,738
enron 296 839 1,283 3,802

historical information. For each query,
we then extract the temporal context
graph using T-CGS. Finally, we filter
out queries following the same princi-
ples adopted in query skipping when we
construct training data and get in total
4,246 evaluation data. The filtering pro-
cedure is applied consistently across all
datasets, ensuring a fair evaluation that
does not introduce bias in comparing dif-
ferent LLMs’ capabilities. For baselines,
we evaluate several frontier models, in-
cluding non-reasoning models (Gemma
3 4B/12B, Llama 3.3 70B) and reasoning
models (Qwen3-0.6B/4B/8B, GPT5-mini). All models are tested with the same prompts for fair
comparison. For non-reasoning models, we use greedy decoding, while reasoning models are run
with their default configurations. See App. D for further implementation details.

5.1 COMPARATIVE STUDY

Comparison across Language Models: Prediction Accuracy. We report the results of MRR
and pMRR in Table 2. Our main findings are as follows: (i) within the same model family (e.g.,
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Table 2: Comparison across language models: prediction accuracy. The top two results are highlighted
by first and second.

Seen Unseen Combined

Dataset wiki subreddit coin flight uci enron Overall

Model MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR

Qwen3-0.6B 0.338 0.331 0.245 0.238 0.111 0.107 0.121 0.111 0.114 0.108 0.089 0.084 0.171 0.164
Qwen3-4B 0.721 0.682 0.678 0.639 0.368 0.333 0.090 0.072 0.300 0.239 0.174 0.137 0.375 0.339
Qwen3-8B 0.763 0.721 0.731 0.688 0.380 0.343 0.109 0.087 0.364 0.293 0.300 0.243 0.436 0.391
Gemma 3 4B 0.698 0.673 0.686 0.650 0.290 0.235 0.159 0.121 0.328 0.268 0.274 0.223 0.407 0.364
Gemma 3 12B 0.782 0.738 0.718 0.671 0.376 0.302 0.315 0.249 0.390 0.298 0.469 0.381 0.520 0.452
GPT-5 mini 0.714 0.630 0.674 0.596 0.288 0.201 0.286 0.180 0.355 0.266 0.333 0.215 0.456 0.351
Llama3.3-70B 0.759 0.687 0.716 0.644 0.372 0.257 0.323 0.245 0.422 0.347 0.441 0.328 0.521 0.423

ReaL-TG 4B 0.824 0.792 0.765 0.726 0.431 0.401 0.198 0.175 0.607 0.523 0.492 0.435 0.552 0.508

Qwen3-0.6B/4B/8B), larger model size generally leads to better performance on TG link forecasting;
(ii) larger LLMs tend to predict more nodes as answers (with larger difference between MRR and
pMRR), likely because their stronger capacity allows them to consider more candidate predictions,
although this behavior is not always beneficial for link forecasting; (iii) ReaL-TG-4B outperforms
all baselines, including GPT-5 mini and Llama 3.3 70B, across nearly all datasets on both seen and
unseen graphs, demonstrating the effectiveness of the ReaL-TG framework. Although ReaL-TG-4B
trails some baselines on tgbl-flight, we attribute this to the limitations of its base model Qwen3-
4B on this dataset; (iv) ReaL-TG-4B achieves substantial gains over its base model, confirming the
effectiveness of our RL-based training framework.

Comparison across Language Models: Reasoning Quality. We report the reasoning evaluation
results in Table 3. The comparison includes Qwen3-4B/8B, the Gemma 3 family, and Llama 3.3-70B.

Table 3: Results on the quality
of reasoning traces.

Model δ̄f δ̄lc δ̄a

Qwen3-4B 0.683 0.700 0.653
Qwen3-8B 0.792 0.808 0.770
Gemma 3 4B 0.595 0.666 0.558
Gemma 3 12B 0.867 0.928 0.771
Llama 3.3 70B 0.878 0.950 0.820

ReaL-TG-4B 0.885 0.880 0.732

We exclude GPT-5 mini for two reasons: (i) our Judge is GPT-4.1
mini, which may introduce family-bias (Spiliopoulou et al., 2025),
i.e., assigning higher judgment scores to other OpenAI models;
and (ii) the GPT-5 series restricts access to full reasoning traces,
providing only a summary of its reasoning, which prevents accu-
rate evaluation of its actual reasoning behavior. We summarize
our key findings as follows: (i) within the same model family,
larger models are more robust to hallucinations and achieve higher
reasoning quality, suggesting a correlation between prediction
accuracy and reasoning quality; (ii) ReaL-TG-4B demonstrates
substantial improvements over its base model Qwen3-4B in reasoning quality, validating the effec-
tiveness of RL fine-tuning and showing that the ReaL-TG framework enables LLMs to discover
meaningful reasoning patterns useful for TG link forecasting; (iii) despite these gains, ReaL-TG-4B
lags behind larger models in logical consistency and answer–explanation alignment. We attribute
this to the natural advantage of larger models in producing more robust reasoning traces, particularly
in providing consistent logic and sufficient supporting evidence for predictions. This indicates that
applying ReaL-TG to larger base models would be a promising direction in the future.

ReaL-TG-4B vs. Traditional TG Link Forecasting Methods. Table 4 reports results of 3 strong
TGNNs: TGN (Rossi et al., 2020), DyGFormer (Yu et al., 2023) and TNCN (Zhang et al., 2024a),

Table 4: MRR comparison among ReaL-TG-4B
and traditional TG link forecasting methods.

Dataset wiki subreddit coin flight uci enron

EdgeBank 0.425 0.271 0.153 0.179 0.202 0.129
TGN 0.464 0.698 Timeout Timeout 0.050 0.281
DyGFormer 0.847 0.659 Timeout Timeout 0.011 0.341
TNCN 0.732 0.739 Timeout Timeout 0.049 0.263

ReaL-TG 4B 0.824 0.765 0.431 0.198 0.607 0.492

together with the widely used EdgeBank base-
line (Poursafaei et al., 2022). We train TGNNs
separately on the original training set of each
involved dataset on TGB with their default im-
plementation settings and evaluate all models
using MRR. TGNNs formulate TG link forecast-
ing as a binary classification task, where models
are trained to decide whether a potential link
exists, which makes ranking metrics computationally expensive since obtaining a rank requires a
forward pass over every node in the node set (see App. E for details). Besides, it is impossible to
evaluate binary classification-based TGNNs with pMRR because they do not return node IDs directly
as answers. To avoid excessive cost, we control the budget for evaluation with a timeout constraint of
24 hours. Note that for ReaL-TG-4B, tgbl-uci and tgbl-enron are treated as unseen graphs,
whereas for TGNNs, they are trained exclusively on these datasets and are therefore considered seen
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graphs. Our results show that the fine-tuned model outperforms strong traditional methods while
providing explicit reasoning to justify its predictions, demonstrating strong potential. Moreover, by
formulating TG link forecasting as QA, our framework enables low-cost prediction in real-world
applications and eliminates the need to train a model from scratch for new TGs.

5.2 FURTHER ANALYSIS

Influence of Base Model Size on ReaL-TG. To verify our assumption about the influence
of base model size, we also train a separate model, ReaL-TG-0.6B, based on Qwen3-0.6B. We
evaluate its reasoning traces with our LLM-based Judge and compare them against Qwen3-4B

Table 5: Results on the quality of
reasoning traces compared with
ReaL-TG-0.6B.

Model δ̄f δ̄lc δ̄a

ReaL-TG-0.6B 0.702 0.710 0.674
Qwen3-4B 0.683 0.700 0.653
ReaL-TG-4B 0.885 0.880 0.732

and ReaL-TG-4B in Table 5. We find that training from a much
smaller base model results in significantly worse reasoning quality:
even with our RL framework, a 0.6B model is outperformed by
a 4B model substantially. Moreover, we observe a notable case
of reward hacking (Skalse et al., 2022): in many reasoning traces,
the fine-tuned ReaL-TG-0.6B justifies its predictions by claiming

“(uq, vq, tq) has already been seen in the provided graph context”,
which is impossible in a forecasting task. This indicates that
the model attempts to maximize the outcome-based reward by
guessing correct answers while providing a shallow thinking strategy. One major reason is due to the
limited reasoning capacity of a tiny model. During RL training, the fine-tuned model must generate
full responses (rollouts) based on its own reasoning, following a trial-and-error process guided by
the achieved reward. If the base model is too weak, it cannot effectively self-explore more advanced
or reasonable reasoning strategies for TG link forecasting. Our results confirm that using a larger
base model enables much stronger fine-tuned performance. Nonetheless, we also observe that after
fine-tuning with ReaL-TG, the 0.6B model reaches reasoning quality comparable to Qwen3-4B, still
highlighting the effectiveness of our RL framework.

Human Evaluation on the Quality of Reasoning Traces. We recruit five annotators to evaluate
the quality of reasoning traces generated by ReaL-TG-4B. A random sample of 50 data examples is
selected, and annotators provide judgment scores for the three criteria following the same instructions
given to the LLM-based judge. Averaging their annotations yields high scores of 0.885/0.872/0.839
for δ̄f /δ̄lc/δ̄a (maximum score 1), which closely align with the judge’s scores of 0.909/0.890/0.787
(annotation variances are 0.001/0.004/0.001). This strong correlation not only validates our LLM-as-
a-Judge system but also demonstrates the substantial reasoning capability gained through fine-tuning
with ReaL-TG. Further annotation details are provided in App. I.

Human Evaluation on the Quality of the LLM-as-a-Judge System. To directly assess the
reliability of our LLM-based judging system, we use the same 50 samples and collect both the
responses generated by ReaL-TG-4B and the corresponding judgments from the system. We ask
the same five human annotators to evaluate the quality of these judgments. For each of the three
criteria, annotators assign a score from {0,1,2}, with higher values indicating better judging quality.
The resulting average scores are 1.71 for faithfulness, 1.88 for logical consistency, and 1.71 for
answer–explanation alignment (maximum 2, and variances are 0.016, 0.013 and 0.014, respectively),
demonstrating excellent judgment quality. Due to cost constraints, we employ GPT-4.1 mini as the
judge, however, judging quality is strongly tied to the capability of the underlying model (Huang
et al., 2025a) and can be enhanced by switching to a more advanced judge, such as Gemini 2.5 Pro.

6 CONCLUSION

In summary, we present ReaL-TG, the first RL-based framework that enables LLMs to perform
explainable and effective link forecasting on TGs. We further introduce a new evaluation protocol,
featuring a new automated ranking metric coupled with a dedicated LLM-as-a-Judge system. Our
experiments show that ReaL-TG allows LLMs to self-explore reasoning strategies for TG link
forecasting, achieving improvements both in prediction accuracy and in generating well-grounded
reasoning traces. We also conduct human evaluation of both the LLM-as-a-Judge system and the
fine-tuned model, validating the effectiveness of our framework and evaluation methodology.
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ETHICS STATEMENT

Our work applies LLMs to TG link forecasting, and thus inherits the well-known risks associated
with LLMs. For instance, LLMs are prone to hallucination, often producing responses that appear
plausible but are factually incorrect. While we show that ReaL-TG can mitigate hallucination to some
extent, it cannot eliminate it entirely. Therefore, practitioners adopting ReaL-TG should remain aware
of these behaviors and exercise caution in fully trusting LLM outputs, especially in safety-critical
applications where misuse or overreliance could lead to adverse outcomes in ethics.

REPRODUCIBILITY STATEMENT

We have uploaded our source code and curated QA dataset for training, validation, and test in the
Supplementary Material. It also includes detailed instructions for environment setup, training, LLM
generation, evaluation, and LLM judging in an enclosed README.md, enabling readers to reproduce
our experimental results. In addition, we provide details on dataset access from TGB in App.C,
as well as implementation details of ReaL-TG-based LLM training, evaluation, LLM judging, and
TGNNs in App.D.
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A THE USE OF LARGE LANGUAGE MODELS

We use LLMs to assist paper writing by refining the human-written contents. We further use LLMs
to help refine our prompt templates shown in Fig. 3 (Section 3) and 4 (Section 4). LLMs are also
used in App. I to refine the human annotation guideline in Fig. 5.

B LIMITATIONS

The capabilities of LLMs fine-tuned with ReaL-TG are inherently limited by the input temporal
context graph. If key predictive signals lie outside the k-hop historical neighborhood considered in
T-CGS, ReaL-TG may struggle to identify the correct solution. Similar limitations are observed in
many TGNN models, which also rely on temporal neighbor sampling to select the most informative
neighbors for aggregation Rossi et al. (2020); Xu et al. (2020). In addition, LLMs are constrained by
their context window size, which limits the amount of temporal graph information they can process.
For instance, the base model used in our work, Qwen3-4B, has a context window of 32k tokens,
making it infeasible to provide entire real-world TGs as input. We also provide a more detailed
discussion about this problem in App. F.
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C DATASET ACCESS

All datasets used in this work is obtained from the Temporal Graph Benchmark Github repository2.
The TGB package provides download links along with the processed files. Some datasets used
in this work was added in recent updates to TGB such as subreddit, uci and enron. The
download links for the datasets from TGB are as follows: tgbl-wiki3, tgbl-subreddit4,
tgbl-coin5, tgbl-flight6, tgbl-uci7, tgbl-enron8.

D IMPLEMENTATION DETAILS

Training. We train ReaL-TG-4B with Qwen3-4B as the base model. We develop ReaL-TG on top
of verl (Sheng et al., 2024), a strong framework for post-training on language models. Our training is
performed on a compute node with 96 Intel(R) Xeon(R) Platinum 8469C CPU cores and 4 × Nvidia
H100 GPU each with 80GB memory. We provide the training hyperparameters in Table 6.

Table 6: Hyperparameter configurations of ReaL-TG-4B during training.

Model # Epoch Batch Size Mini-Batch Size Learning Rate γ Max Response Length # Rollout (g)

ReaL-TG-4B 3 32 16 2e-6 0.001 16,384 5

Evaluation. All evaluations are conducted on the same compute node as used for training. For the
Qwen3 family, we generate responses using verl, following their official repositories: Qwen3-0.6B9,
Qwen3-4B10, and Qwen3-8B11. The Gemma 3 family is run via Hugging Face Transformers (Wolf
et al., 2019), using their official repositories: Gemma-3-4B-it12 and Gemma-3-12B-it13. We also
evaluate Llama-3.3-70B14 under the same setting. For GPT-5-mini, we use OpenAI’s openai-python
API. The specific release we use in our experiments is gpt-5-mini-2025-08-07. All reasoning models
are executed three times with default hyperparameters, and we report the mean results. Non-reasoning
models are run with temperature fixed to 0 for greedy decoding, while all other hyperparameters
follow their default configurations.

Judge Model. We employ GPT-4.1-mini for our LLM-as-a-Judge system, implemented via Ope-
nAI’s openai-python API. Specifically, we use the gpt-4.1-mini-2025-04-14 release in our experiments.
To ensure reproducibility, the model’s temperature is set to 0, and outputs are constrained to JSON
format for reliable parsing of judgment information.

TGNN Baselines. For training the baseline TGNN models, we use NVIDIA A100 GPUs (80GB
memory) paired with 4 CPU nodes (2.65 GHz, 128MB L3 cache), each equipped with 128GB RAM.
When the experiments runs more than 24 hours, we consider it to reach timeout to avoid excessive
cost. We use the TGB implementation of baselines with their default hyperparameters. Each model
is trained on the complete TGB training set and then validated on the TGB validation set when
searching for the best checkpoint.

2https://github.com/shenyangHuang/TGB
3https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-wiki-v2.zip
4https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-subreddit.zip
5https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-coin-v2.zip
6https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-flight-v2.zip
7https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-uci.zip
8https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-enron.zip
9https://huggingface.co/Qwen/Qwen3-0.6B

10https://huggingface.co/Qwen/Qwen3-4B
11https://huggingface.co/Qwen/Qwen3-8B
12https://huggingface.co/google/gemma-3-4b-it
13https://huggingface.co/google/gemma-3-12b-it
14https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
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E ADVANTAGES OF QA FORMULATION FOR TG LINK FORECASTING

Previous studies typically formulate TG link forecasting as a binary classification task, where models
are trained to determine whether a potential link (uq, vq, tq) exists.

Definition 3 Given a TG G, a source node uq ∈ N , a destination node vq ∈ N , a timestamp tq ∈ T ,
together with the history Htq = {(ui, vi, ti) | ti < tq, (ui, vi, ti) ∈ G}, TG link forecasting aims to
predict whether the interaction (uq, vq, tq) exists.

This makes the computation of ranking metrics such as MRR highly costly. To obtain the rank of a
node e ∈ N , the model must perform a forward pass for every candidate node in N , resulting in a
total of |N | passes that scale with |N | linearly. In contrast, by formulating TG link forecasting as a
QA problem, the model can directly output the predicted nodes in a single forward pass, substantially
reducing computational cost for real-world TGs with large |N |. In TGB (Huang et al., 2023), for
each existing positive link in the evaluation data, Huang et al. sample a set of negative links with
false destination nodes and compare the model scores assigned to them. Their evaluation does not
consider all nodes in |N |. In contrast, in this work, both MRR and pMRR are computed against the
entire node set |N |, which ensures evaluation completeness and efficiency.

F CAN WE INJECT GRAPH CONTEXT IN OTHER WAYS?

A limitation of our approach of injecting graph context purely as text is that the amount of information
is constrained by the LLM’s context window. Several works instead compress graphs into low-
dimensional representations and jointly fine-tune them with language models (Chai et al., 2023; Chen
et al., 2024). While effective for downstream tasks, this strategy faces a key limitation for explainable
link forecasting. In principle, one could compress more graph information—including the entire
historical graph—into such representations, giving LLMs maximal input coverage. Although this
offers an advantage over our text-based method, overly compressed representations make it difficult
for LLMs to distinguish relevant information for prediction from redundant details. Furthermore,
explainable forecasting requires human-readable reasoning traces that depend directly on the input
graph context. If the graph is not provided as text, the LLM must also learn to reconstruct graphs
from encoded representations back into natural language during inference, which is possible but
would require substantial methodological advances. We regard the problem of optimally providing
graph context for LLMs as outside the scope of this work, but an important open direction for future
research.

G T-CGS DETAILS

Parameter Setting of α and β. We choose the values of α and β to balance the selection of
nodes across different historical distances and hop counts from the query node. A larger β makes
it less likely to select nodes from more distant history, while a larger α reduces the likelihood of
selecting nodes from farther hops. We then construct a search grid for α and β with candidate values
{0.1/0.4, 0.3/0.6, 0.5/0.8, 0.7/0.9}. For each setting, we construct context graphs on the last
1000 training samples of tgbl-coin and collect statistics of the selected nodes. The configuration
0.3/0.6 yields the best balance, ensuring that the selected nodes are neither overly concentrated in
very recent history and first-hop neighbors nor excessively dispersed away from them. Thus, we set
α = 0.3 and β = 0.6 for all of our experiments in ReaL-TG.

H FULL PROMPTS

I HUMAN EVALUATION AND ANNOTATION DETAILS

We recruit 5 human annotators to do evaluation on the quality of our LLM-as-a-Judge system as
well as the reasoning traces output by our fine-tuned ReaL-TG-4B. All annotators are either PhD
students or Postdoctoral Researchers in Computer Science with at least full professional proficiency
in English. All of them consent our usage of their data. The annotation guidelines are provided in
Fig. 5.
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Figure 4: Prompt template for LLM-as-a-Judge system.
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Figure 5: Human Annotation guideline. The detailed evaluation procedure is taken from the prompt
template for the LLM-based judging system in Fig. 4.

J QUALITATIVE ANALYSIS: HOW DOES RL HELP?

From Table 2 and 3, we observe consistent improvements of the ReaL-TG-trained model over its
base model. To illustrate what the model has learned through RL that leads to these gains, we provide
a qualitative analysis based on two case studies, comparing ReaL-TG-4B and Qwen3-4B. In Case
1 (Fig. 6 and 7), we observe that after RL, the model no longer exhausts the context window by
repeating the same content. Instead, it predicts the most plausible destination node by leveraging
interaction recency. In Case 2 (Fig. 6 and 8), we observe that after RL, the model is less prone to
getting stuck in iterative self-reflection and demonstrates greater confidence and effectiveness in
applying reasoning strategies to support its predictions. To summarize, exploration during RL, in
which an LLM tries different strategies for forecasting links depending on the observed graph context,
is essential for improving both prediction accuracy and the quality of reasoning traces. Although base
models already show strong abilities in producing plausible reasoning, they still need to learn how to
adjust their reasoning style to the specific context in which it is applied.

K TRAINING CURVES

We provide two curves, Reward vs. Training Step and Validation F1 Score vs. Training Step in Fig. 9
and 10. Our validation is conducted on 500 examples uniformly sampled from the validation sets
of the 4 datasets used for training. We use F1 score as metrics during validation. From Fig. 9, we
observe that the reward increases with training steps and eventually reaches a plateau, indicating
that training has saturated. From Fig. 10, we observe that the validation trend is consistent with the
reward curve, and in our experiments, we select the checkpoint with the best validation performance
as the final model for evaluation.

L QUANTIFICATION OF REWARD HACKING

As mentioned in Sec. 5.2, in many reasoning traces, the fine-tuned ReaL-TG-0.6B justifies its
predictions by claiming something like “(uq, vq, tq) has already been seen in the provided graph
context”, which can be interpreted as a type of reward hacking in a forecasting task. To further
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Case1
Gc:
(3390, 8648, 833529), (3390, 8648, 927657),
(4272, 8929, 1027429), (4272, 8929, 1027461),
(104, 8648, 1093360), (3390, 8648, 1103097),
(3390, 8648, 1103671), (167, 8648, 1266808),
(167, 8648, 1266809), (866, 8648, 1278569),
(4459, 8648, 1335789), (4459, 8648, 1335874),
(3390, 8929, 1344764), (3390, 8648, 1344818),
(3390, 8648, 1344868), (4459, 8648, 1353699),
(4459, 8648, 1353719), (866, 8648, 1389561),
(866, 8648, 1390132), (866, 8648, 1420514), (997,
8929, 1444089), (997, 8929, 1444395), (997,
8929, 1446670), (997, 8929, 1446795), (997,
8929, 1450527), (423, 8648, 1451994), (3390,
8929, 1461814), (3390, 8648, 1463750), (859,
8648, 1504113), (866, 8648, 1517985), (866,
8648, 1518071), (866, 8648, 1518498), (866,
8648, 1519023), (997, 8929, 1522620), (2727,
8648, 1524334), (866, 8648, 1525088), (866,
8648, 1525235), (5522, 8929, 1525556), (2863,
8929, 1533240), (997, 8929, 1534720), (2863,
8929, 1535928), (2863, 8929, 1535943), (4531,
8929, 1536373), (3390, 8929, 1547848), (3390,
8648, 1549002), (233, 8648, 1575061), (4459,
8648, 1590422), (4459, 8648, 1593828), (611,
8648, 1596720), (5937, 8648, 1606417), (5937,
8648, 1606438), (5937, 8648, 1606461), (5938,
8648, 1607964), (5938, 8648, 1608194), (3390,
8648, 1620262), (997, 8929, 1620278), (997,
8929, 1620574), (997, 8929, 1620852), (997,
8929, 1621381), (997, 8929, 1622753), (997,
8929, 1622892), (5522, 8929, 1624366), (5522,
8929, 1624414), (997, 8929, 1624661), (997,
8929, 1628002), (997, 8929, 1657475), (3390,
8929, 1691346), (997, 8929, 1695077), (997,
8929, 1695521), (3390, 8929, 1696857), (6942,
8929, 2061590), (997, 8929, 2062009), (997,
8929, 2133359), (997, 8929, 2133419), (5522,
8929, 2218607), (7458, 8929, 2262998), (7458,
8929, 2264131), (7458, 8929, 2264356), (7458,
8929, 2264753), (7458, 8929, 2265033), (997,
8929, 2283892), (997, 8929, 2283988), (3390,
8929, 2289548), (8173, 8929, 2646640), (8173,
8929, 2646702), (997, 8929, 2648320), (5522,
8929, 2656128), (997, 8929, 2656490), (8192,
8929, 2659851), (8192, 8929, 2659898), (8192,
8929, 2660147), (8192, 8929, 2660185), (17,
8929, 2660187), (997, 8929, 2663130), (997, 8929,
2663161), (8199, 8929, 2664402), (3390, 8929,
2677842)
q: (3390, ?, 2677935)
{vq}: {8929}

Case 2
Gc:
(574, 8552, 1419500), (574, 8552, 1419845),
(1601, 8552, 1420897), (3458, 8552, 1432139),
(5539, 8552, 1448204), (5539, 8552, 1448331),
(1726, 8552, 1458033), (5204, 8552, 1502319),
(1206, 8552, 1505338), (2466, 8852, 2315899),
(221, 9149, 2439895), (7854, 8852, 2460397),
(3138, 9149, 2473041), (1206, 9149, 2473942),
(499, 9149, 2479422), (1206, 8734, 2481811),
(1206, 8852, 2481993), (499, 9149, 2484302),
(221, 9149, 2489612), (4096, 8734, 2501385),
(5528, 8734, 2501601), (4096, 8734, 2501828),
(1942, 8852, 2502029), (1187, 8734, 2508169),
(1206, 8734, 2508797), (1206, 8734, 2509084),
(1206, 8734, 2509168), (1206, 8734, 2509314),
(1206, 8734, 2509471), (221, 9149, 2515672),
(221, 9149, 2516310), (221, 9149, 2517110), (221,
9149, 2518569), (7959, 8734, 2522021), (221,
8734, 2526640), (221, 8734, 2528137), (1221,
8734, 2531985), (1221, 8734, 2532364), (1221,
8734, 2532652), (1343, 8734, 2536121), (1369,
8734, 2539035), (1206, 8734, 2539495), (1206,
8734, 2539603), (2466, 8852, 2561406), (2210,
8734, 2564667), (7914, 8734, 2566838), (8035,
8552, 2567081), (2761, 8552, 2575312), (1680,
8734, 2579425), (1206, 9149, 2586472), (1206,
9149, 2586707), (8035, 8552, 2591725), (1680,
8734, 2593063), (1680, 8734, 2593653), (1680,
8734, 2593703), (1680, 8734, 2594042), (1680,
8734, 2594277), (1680, 8734, 2594499), (4554,
8734, 2597331), (2723, 8852, 2603595), (2723,
8852, 2603688), (2723, 8852, 2603764), (2723,
8852, 2603801), (2723, 8852, 2603995), (221,
8734, 2606232), (1343, 8734, 2614416), (4752,
9084, 2626153), (1973, 9084, 2626233), (1973,
9084, 2626264), (1973, 9084, 2626290), (2425,
9084, 2626614), (8135, 9084, 2626712), (480,
9084, 2626802), (480, 9084, 2626960), (480, 9084,
2627053), (480, 9084, 2627129), (1206, 9084,
2627443), (1206, 8734, 2628541), (1206, 8734,
2628595), (4085, 8552, 2644290), (1206, 8552,
2646542), (4638, 8852, 2657228), (4638, 8852,
2657343), (4638, 8852, 2657416), (4638, 8852,
2658765), (4638, 8852, 2659045), (4638, 8852,
2661840), (4638, 8852, 2662118), (1206, 8852,
2670794), (1206, 8852, 2670884)
q: (1206, ?, 2670969)
{vq}: {8852}

Figure 6: The verbalized temporal context graph, query, and ground truths in Case 1 and 2. The input
prompts to two cases are derived from combining contents in this figure with the prompt template in
Fig. 3.

investigate this issue, we conduct an additional evaluation using GPT-4.1 (temperature is set to 0)
with the prompt shown in Fig. 11. We evaluated all responses across the full evaluation set.
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ReaL-TG-4B
<think>
Okay, let’s tackle this problem. The user is asking for
the most likely destination node for a query where the
source node is 3390 and the timestamp is 2,677,935.
First, I need to look at all the historical interactions
involving node 3390 and see if there’s a pattern
or frequent destination nodes around the query
timestamp. The query timestamp is 2,677,935. Let’s
check each entry where the source node is 3390...
Looking at the list, I see an entry: (3390, 8929,
2677842). The timestamp here is 2,677,842, which
is before the query timestamp... So, this interaction
happened recently. The destination node is 8929...
But maybe there are other interactions where source
is 3390... For example, earlier entries: like (3390,
8648, 1620262), (3390, 8929, 1691346), (3390, 8929,
2677842). So, three interactions where source is 3390.
Let’s check their timestamps. The first is at 1,620,262
(before 2.6m), second at 1,691,346 (before 2.6m),
third at 2,677,842 (just before query time). So, the
most recent is with 8929 at 2.6m. So, the answer
would be 8929.
</think>
<answer>
[8929]
</answer>

Qwen3-4B
<think>
Okay, let’s tackle this problem. The user wants to
predict the next destination node for source node 3390
at timestamp 2677935 based on historical interactions.
First, I need to look at all the historical data provided.
Looking through the list, I notice that 3390 is the
source in several interactions. Let me list those out.
The historical entries where the source is 3390 are:
(3390, 8648, 833529)
(3390, 8648, 927657)
(3390, 8929, 1027429)...
(3390, 8648, 1344868)
(3390, 8648, 1344868)
(3390, 8648, 1344868)
(3390, 8648, 1344868)...

Figure 7: Comparison of reasoning traces on the same evaluation data generated by ReaL-TG-4B
and Qwen3-4B on Case 1. The black bold part indicates the effective reasoning strategy used
by ReaL-TG-4B to obtain the correct prediction, whereas the red bold part marks the low-quality
reasoning produced by Qwen3-4B. Qwen3-4B failed to complete its reasoning and instead filled the
context window by repeatedly generating the same link.

We computed the proportion of cases in which this phenomenon appears for ReaL-TG-0.6B and
ReaL-TG-4B. The 4B model shows a very low rate of 5.6%, whereas the 0.6B model reaches
67.3%. This substantial gap confirms our conclusion that smaller models are more susceptible
to such behavior during RL. We also manually inspected 30 randomly sampled responses from
ReaL-TG-0.6B, ReaL-TG-4B, and the base Qwen3-4B. We found that Qwen3-4B never exhibits this
behavior, which is expected because baseline models are not RL fine-tuned on our task-specific data
and therefore cannot develop this RL-induced pattern. Additionally, the manual inspection results
fully align with GPT-4.1’s judgments, showing strong agreement between human annotation and our
automated evaluation.

Importantly, even when this phenomenon appears, it does not compromise the integrity of our LLM-
as-a-Judge evaluation. In practice, statements such as “(uq, vq, tq) has already been seen” appear
only once or twice in a response and do not dominate the reasoning. Our faithfulness rubric evaluates
all atomic claims, and combines their results together into one score, so isolated improper statements
carry limited weight. Nonetheless, we believe this analysis is a valuable supplement for understanding
how such reward hacking-related behavior emerges under RL.

M DOES REAL-TG HURT REASONING IN OTHER DOMAINS?

To study whether ReaL-TG hurts models’ reasoning capabilities other than TG forecasting, we
evaluate Qwen3-4B and ReaL-TG-4B on GSM8K (Cobbe et al., 2021) and MATH-500 (Hendrycks
et al., 2021), two standard benchmarks for evaluating the mathematical reasoning capabilities of
LLMs. The metric used for both datasets is accuracy. Both models are evaluated with identical hyper-
parameters, including temperature set to 0.6, top-p set to 0.95, and top-k set to 20, as recommended
by the official Qwen3 technical report. We set the maximum output length to 30,000 tokens to ensure
that long-form reasoning is not truncated before producing a final answer. For evaluation, we used

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

EvalScope (Team, 2024), a widely used LLM evaluation framework, which provides standardized
and reproducible evaluation implementations. MATH-500 includes 5 level of problems, so here we
also include level-wise results. The results are presented in the Table 7.

We observe that our fine-tuned model does not sacrifice mathematical reasoning capabilities. In fact,
it even shows slight improvements in most settings. We believe the reason is the following. During
training, we explicitly impose a KL divergence-based loss between the reference model, which is
the original Qwen3, and the fine-tuned model. By inspecting our training logs, we found that at the
final training step the KL loss was as small as 0.00025. This indicates that our model has not drifted
far from the original Qwen3, and therefore should not behave very differently in domains beyond
our training target, namely, temporal graph link forecasting. At the same time, we do not want to
overclaim. We are not proving that our training procedure improves general mathematical reasoning
because the observed gains are small and not the focus of our method. Our motivation is solely to
enhance LLMs for link forecasting, and broader gains are outside our scope. The purpose of this
comparison is simply to provide empirical evidence that our fine-tuning does not harm the model’s
general reasoning ability.

Table 7: Qwen3-4B vs. ReaL-TG-4B on GSM8K and MATH-500.

Dataset Subset # Data Instances Qwen3-4B ReaL-TG-4B
GSM8K Overall 1319 0.948 0.949
MATH-500 Level 1 43 0.954 0.977
MATH-500 Level 2 90 0.978 0.978
MATH-500 Level 3 105 0.971 0.952
MATH-500 Level 4 128 0.953 0.961
MATH-500 Level 5 134 0.903 0.910
MATH-500 Overall 500 0.948 0.950

N CAN MODEL LEARN TEMPORAL GRAPH REASONING FROM STATIC
GRAPHS?

We provide here an additional analysis demonstrating that a dedicated framework for TG reasoning is
crucial. Even when LLMs are fine-tuned with RL to improve their reasoning on static graphs, they
still fail to effectively learn how to reason over TGs.

G1 (Guo et al., 2025) is a notable concurrent work that demonstrates the effectiveness of RL fine-
tuning on static graph reasoning tasks at scale (100k training examples). To show whether such
large-scale static graph training is sufficient for TG forecasting, we tested G1-3B15 and G1-7B16 on
our evaluation set using their default hyperparameters, and compare them with Qwen3-4B and our
ReaL-TG-4B. We report the experimental results in Table 8 and 9.

Table 8: Comparison across Qwen3-4B, G1-3B, G1-7B and ReaL-TG-4B: prediction accuracy. The
top two results are highlighted by first and second.

Seen Unseen Combined

Dataset wiki subreddit coin flight uci enron Overall

Model MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR

Qwen3-4B 0.721 0.682 0.678 0.639 0.368 0.333 0.090 0.087 0.300 0.239 0.174 0.137 0.375 0.339
G1-3B 0.650 0.641 0.642 0.629 0.299 0.286 0.178 0.161 0.376 0.348 0.270 0.246 0.382 0.382
G1-7B 0.794 0.782 0.786 0.770 0.383 0.331 0.193 0.151 0.485 0.445 0.464 0.398 0.523 0.484

ReaL-TG-4B 0.824 0.792 0.765 0.726 0.431 0.401 0.198 0.175 0.607 0.523 0.492 0.435 0.552 0.508

From these experiments, we observe a consistent pattern: (i) static graph RL helps, but does not
solve temporal forecasting. G1-3B improves over Qwen3-4B, showing that RL on graph reasoning
data is indeed useful. However, both G1 models still lag behind ReaL-TG-4B on almost all datasets,

15https://huggingface.co/PKU-ML/G1-3B
16https://huggingface.co/PKU-ML/G1-7B
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Table 9: Results on the quality of reasoning traces compared across Qwen3-4B, G1-3B, G1-7B and
ReaL-TG-4B.

Model δ̄f δ̄lc δ̄a

Qwen3-4B 0.683 0.700 0.653
G1-3B 0.685 0.692 0.600
G1-7B 0.859 0.872 0.750
ReaL-TG-4B 0.885 0.880 0.732

especially on tgbl-uci and tgbl-enron; (ii) even large-scale static graph RL does not transfer to
temporal graphs. Despite using around 100 times more training instances, G1-7B still underperforms
ReaL-TG-4B, which was trained on only 1k TG training instances. This indicates that TGs introduce
reasoning challenges that simply do not arise in static graph settings, and thus cannot be learned
from static graph data alone; (iii) TG RL also improves the quality of reasoning traces. ReaL-TG-4B
achieves comparable or better levels of faithfulness, logical consistency, and alignment than G1-7B.
This highlights the importance of how the environment is designed: how the reasoning problem is
formulated, what temporal dependencies the model must act within, how training data is curated, and
how the reward incentivizes good forecasting behavior over evolving timestamped interactions.

Qualitative Analysis. To further illustrate the temporal-specific challenges and why they cannot be
learned through static graph training alone, we provide a case study below showing a concrete example
where Qwen3-4B and G1-7B fail but ReaL-TG-4B succeeds, particularly in handling time-dependent
interaction patterns and forecasting based on temporal context. We adopt the form presented in
Appendix J and call this case Case 3. From Fig. 12 and 13, we can see that: (i) Qwen3-4B exhibits
low-quality reasoning, repeatedly engaging in self-reflection instead of taking concrete steps toward
deriving the answer; (ii) although G1-7B can list historical interactions, it relies entirely on counting
the frequency of past neighbors of the query node and shows somehow lazy reasoning towards the
temporal scope. In contrast, our method enables the model not only to consider node frequency
but also to make decisions by explicitly checking the recency of interactions. As a result, it avoids
hallucinating spurious nodes and delivers more accurate predictions, enabled by our curated data and
carefully designed reward. This further proves that, during RL fine-tuning on static graph data, the
model cannot effectively learn how to prioritize temporal reasoning in TG link forecasting, where
temporal reasoning is critical and serves as a unique challenge.
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ReaL-TG-4B
<think>
Okay, let’s tackle this problem. The user is asking for
the most likely destination node for a query where the
source node is 1206 and the timestamp is 2,670,969.
They provided a list of historical interactions between
nodes with their timestamps.
First, I need to look at all the historical interactions
involving node 1206 and see if there’s a pattern or
frequent destinations. The latest interaction with
node 1206 is at timestamp 2,670,884 (for destination
8852)... So, the most recent interaction is between
1206 and 8852.
But maybe there are other interactions between
1206 and other nodes that are more frequent? Let
me check all the entries where the source node is
1206.
Looking at the list:
- (1206, 8852, 2670794)
- (1206, 8852, 2670884)
So, the only interaction involving 1206 as the source
is with node 8852, at timestamps 2,670,794 and
2,670,884... So, the answer is just node 8852.
</think>
<answer>
[8852]
</answer>

Qwen3-4B
<think>
Okay, let’s tackle this problem. The user wants to pre-
dict the most likely destination nodes for the source
node 1206 at timestamp 2670969 based on the histori-
cal interactions provided.
First, I need to look at all the historical interactions
involving source node 1206. Let me go through the list
and note down each entry where the source is 1206.
Looking at the data, here are the entries with source
1206:
- (1206, 8734, 2481811)
- (1206, 8852, 2481993)
- (1206, 8734, 2484302)
- (221, 9149, 2489612)
- (1206, 8734, 2498082)
Wait, no, that’s not in the list. Let me check again...
Wait, no. Let me go through each entry step by
step...
Wait, no. Wait, let me check again. The user pro-
vided a long list. Let me parse it correctly. Looking
at the list again, the entries with source 1206:...
Wait, no, that’s not correct. Let me go through the
list again. Looking at the list:...
Wait, no, that’s not correct. Let me check again.
The original list is:...
no, I think I need to check again. Let me look at
the original data again...
no, that’s not in the list. Wait, maybe I’m miscount-
ing. Actually, the original data includes:...
no, I think I’m missing some entries. Let me check
the original data again...
Wait, I think I’m getting confused. Let me go through
the entire list again...
Now, based on the historical interactions, what are
the most common destination nodes for source 1206?
Looking at the historical data for source 1206:
- 8734 appears multiple times.
- 8852 appears multiple times.
- 9149 appears multiple times.
I think I need to stop here and proceed with the data I
have. Assuming that the destination nodes for source
1206 are 8734, 8852, and 9149, and given that the
query is at timestamp 2670969, which is after the
last interaction with 8852 at 2670884, but before
the next interactions with 8852 at 2670794, which
is earlier...
But this is just a guess. Alternatively, if the user has
more entries, but I’m not seeing them. However, the
query is at 2670969, which is after the last interaction
with 8852 at 2670884, so the next possible destination
could be based on the previous interactions.
Given that, the most likely destinations are 8734, 8852,
and 9149.
</think>
<answer>
[8734, 8852, 9149]
</answer>

Figure 8: Comparison of reasoning traces on the same evaluation data generated by ReaL-TG-4B
and Qwen3-4B on Case 2. The black bold part indicates the effective reasoning strategy used
by ReaL-TG-4B to obtain the correct prediction, whereas the red bold part marks the low-quality
reasoning produced by Qwen3-4B. Qwen3-4B is prone to hallucinate incorrect links in the context
graph and becomes entangled in iterative self-reflection, consuming many tokens without making
substantive progress. Ultimately, it abandons the reasoning process and resorts to guessing answers.
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Figure 9: Reward vs. Training Step.

Figure 10: Validation F1 Score vs. Training Step.
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Figure 11: Prompt for reward hacking quantification.
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Case3
Gc:
(393, 3011, 3082176), (1582, 3011, 4275922),
(1285, 3090, 4770778), (1285, 3090, 4770845),
(1285, 3090, 4771892), (393, 3090, 4884301),
(393, 2246, 4982280), (393, 3090, 5039720), (393,
3011, 5055435), (220, 3586, 5059255), (393,
3090, 5059943), (393, 3090, 5127655), (393,
3586, 5216901), (429, 3090, 6314559), (393,
3090, 6329062), (1111, 3090, 6343072), (1713,
3246, 6417904), (1713, 3246, 6418008), (1713,
3246, 6418451), (431, 3246, 6427011), (1713,
3246, 6440867), (431, 3246, 6450718), (1723,
3090, 6451357), (393, 3246, 6453971), (644,
3090, 6500223), (394, 3090, 6515547), (1406,
3090, 6536263), (1111, 3090, 6691162), (394,
3090, 6694175), (1647, 2093, 6770457), (63,
2093, 6796367), (393, 3090, 6803143), (1713,
2149, 6855831), (32, 2149, 6858058), (32, 2149,
6858763), (32, 2149, 6859142), (32, 2149, 6859297),
(1730, 2149, 6861197), (1111, 2149, 6865512),
(1111, 2149, 6865812), (393, 2149, 6873536),
(233, 2093, 6964152), (63, 2093, 6967480), (1434,
2093, 7370377), (843, 2093, 7408145), (233,
2093, 7457407), (843, 2093, 7480675), (233,
2093, 8002100), (233, 2093, 8007001), (118, 2093,
8261303), (1362, 2093, 9277536), (233, 2093,
9452320), (393, 2093, 9565758), (1783, 3485,
9639975), (105, 3485, 9641586), (32, 3185, 9720300),
(468, 3485, 9881207), (1127, 3485, 10046490),
(1771, 3185, 10149715), (1509, 2093, 10236571),
(1792, 3185, 10242323), (1771, 3185, 10249568),
(1792, 3185, 10259113), (1771, 3185, 10312937),
(1792, 3185, 10324933), (101, 2093, 10439919),
(318, 3185, 10469910), (1786, 3485, 10598943),
(1792, 3185, 10659215), (1190, 3185, 10755761),
(1792, 3185, 10756968), (342, 3485, 10759547),
(27, 3185, 10923721), (1332, 3485, 10944026),
(1565, 2093, 11087985), (393, 3185, 11173502),
(105, 3485, 11197989), (105, 3485, 11198130),
(393, 3185, 11204782), (1332, 3485, 11207346),
(1280, 3485, 11209898), (27, 3185, 11234534), (393,
3185, 11287360), (1582, 3485, 11371211), (1669,
3485, 11523875), (1669, 3485, 11555918), (393,
2093, 11757190), (393, 3485, 12890047), (393, 2093,
14389391), (393, 2093, 15001928)
q: (393, ?, 16727038)
{vq}: {2093}

Qwen3-4B
<think>
Okay, let’s tackle this problem... First, I need to look
at all the historical interactions involving source node
393... Looking at the list, the source node 393 has
several interactions. Let me go through them one by
one...
Wait, but the query timestamp is 16727038. Let me
check the latest interactions before that...
Looking at the list, the latest interactions for 393
before 16727038 are... Wait, but the query times-
tamp is 16727038, which is way later than the last
historical timestamp...
Looking at the list, the last entry in the historical data
is... But the query timestamp is 16727038, which is
after that.
Wait, but in the given data, the latest timestamp
is 15001928. However, the query timestamp is
16727038... Therefore, the user is asking for pre-
dictions based on all historical interactions before
16727038.
But in the given data, the last interaction is
15001928. Therefore, the answer must be based
on that.
But wait, maybe I made a mistake in reading the
data. Let me check again...
So, the task is to look at all the historical interactions
where source is 393, and see which destination nodes
are most frequent or have some pattern.
Looking at the list, the destination nodes for 393 are:
3011, 3090, 2246, 3586, 3246, 2149, 2093, 3185,
3485.
But looking at the counts... Now, counting the
number of times 393→3090 occurs. Let’s go
through the list:... Now, count the occurrences of
393→3090:...
Looking at the list.. Let’s count them:... Let me
check: Looking at the list... So, the most frequent
destination is 3090, then 2093, then 3185, then 3586,
3246, etc.
But the query timestamp is 16727038, which is
after the last historical interaction... So, the model
has to predict based on the historical data.
But since 3090 is the most frequent destination for
393, it’s likely that 3090 is the next destination. How-
ever, there might be other nodes... Therefore, the
prediction should be based on the frequency of pre-
vious destinations.
So, the most likely destinations are... So, since all
the destinations that 393 has interacted with are
possible, the answer should include all of them...
So yes, those are all. So the answer should be a list
of these sorted. Therefore, the final answer is [2093,
2149, 2246, 3011, 3090, 3185, 3246, 3485, 3586].
</think>
<answer>
[2093, 2149, 2246, 3011, 3090, 3185, 3246, 3485,
3586]
</answer>

Figure 12: Left: The verbalized temporal context graph, query, and ground truths in Case 3. Right:
The output of Qwen3-4B. The red bold part marks the low-quality reasoning. Qwen3-4B is prone to
be entangled in iterative self-reflection, consuming many tokens without making substantive progress.
It finally reaches the answer without considering temporal dependencies.
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G1-7B
To determine the most likely ‘Query Destination Node‘
for ‘Query Source Node‘ 393 at ‘Query Timestamp‘
16727038, we first need to analyze the historical in-
teractions involving node 393 and identify patterns or
common destinations.
Given the list of interactions, we can observe the
following interactions involving node 393: - (393,
3011, 3082176) - (393, 3090, 4884301) - (393,
2246, 4982280) - (393, 3090, 5039720) - (393,
3090, 5055435) - (393, 3586, 5216901) - (393,
3090, 6329062) - (393, 3090, 6803143) - (393,
2149, 6873536) - (393, 2093, 9565758) - (393, 3185,
11173502) - (393, 3485, 12890047) - (393, 2093,
14389391) - (393, 2093, 15001928)
Since the ‘Query Timestamp‘ is 16727038, we need
to find the most common destination nodes of node
393 that are also present in the interactions before
this timestamp. However, none of the interactions
listed above have a timestamp close to 16727038...
Analyzing the interactions: - Node 3090 appears
multiple times with node 393. - Node 3090 is the
most common destination node for node 393. –
Other nodes like 3011, 3586, 2149, 2093, 3185, and
3485 also appear, but not as frequently as 3090.
Given the data, the most likely destination node for
node 393 at any given time is 3090, as it appears
the most frequently in the interactions.
Therefore, the most plausible ‘Query Destination
Node‘ for ‘Query Source Node‘ 393 at ‘Query Times-
tamp‘ 16727038 is:
<answer>
[3090]
</answer>

ReaL-TG-4B
<think>
Okay, let’s tackle this problem. The user is asking for
the most likely destination node for a query where the
source node is 393 and the timestamp is 16,727,038.
They provided a list of historical interactions between
nodes with their timestamps.
First, I need to look at all the historical interactions
involving node 393 and see if there’s a pattern or
frequent destinations. The latest interaction with
node 393 is at timestamp 15,001,928 (for the en-
try (393, 2093, 15001928)). The query timestamp
is 16,727,038, which is after that, so we only consider
up to that point.
Looking at the historical data, I’ll filter the entries
where the source node is 393. The relevant entries are:
1. (393, 2093, 14389391) 2. (393, 2093, 15001928)
Wait, the second entry is (393, 2093, 15001928). So,
the most recent interaction between 393 and 2093
at timestamp 15,001,928. The query timestamp is
16,727,038, so 15 million is before that. So, the lat-
est interaction is with node 2093. But maybe there
are other interactions where source is 393? Let me
check again. The list provided might have other en-
tries where source is 393. Let me scan through the list
again.
Looking at the list again, there’s another entry: (393,
3485, 12890047), and (393, 2093, 14389391), and
(393, 2093, 15001928). So, another one at (393, 3485,
12890047). So, two interactions: one with 2093 at two
different timestamps (14,389,391 and 15,001,928),
and another with 3485 at 12,890,047. So, the source
393 has interacted with 2093 twice and with 3485
once. So, the most frequent destination is 2093. But
maybe there are others? Let me check again. The
other entries where source is 393: maybe the entry
(393, 3485, 12890047). So, total of three interac-
tions: two with 2093 (at 14.3m and 15m) and one
with 3485 (at 12.8m). So, the answer would be
2093.
</think>
<answer>
[2093]
</answer>

Figure 13: Comparison of reasoning traces generated by G1-7B and ReaL-TG-4B on Case 3. The
black bold part indicates the effective reasoning strategy used by ReaL-TG-4B to obtain the correct
prediction, whereas the red bold part marks the misleading reasoning produced by G1-7B. G1-7B
fails to show how to prioritize temporal reasoning and shows somehow lazy reasoning towards the
temporal scope, while ReaL-TG-4B considers both frequency and temporal recency as a whole in
decision making.
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