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Abstract

Scanning transmission electron microscopy (STEM) is a powerful tool for explor-
ing structure, composition, and chemical properties on nanometer and atomic level
and hence is a powerful tool for materials discovery. However, the STEM paradigm
is based on use of classical scanning relying on point and grid based spectroscopies
We report the development of the tool for direct control of operational STEM that
enables materials discovery using imaging and spectroscopic modes, following ei-
ther predefined policies of myopic discovery workflows. The latter are illustrated by
human-in-the-loop automated experiments (hAE) with bayesian optimisation (BO),
that allows dynamic control of reward functions while running the microscope.
This is a new paradigm of STEM where we dynamically tune the behaviour of ML
agent rather then directly controlling the instrument. While several studies have
highlighted the potential of human-in-the-loop automated experiments (hAE), there
remains a need for a software interface to facilitate these experiments effectively.
In this work, we developed a web tool that integrates Bayesian optimization with
human intervention capabilities, allowing users to modify scalarizers (also referred
to as reward or target properties) and adjust experimental policy dynamically to
favour exploration or exploitation. The tool also provides flexibility to manipulate
descriptor sizes, thereby capturing the complex structure-property relationships at
nanoscale/atomicscale. We have also provided a simulator version on pre-acquired
data as an educational interface for experimentalist new to automated experiments.
The code is provided as the supplementary material. The simulator can be accessed
live at https://tiny.utk.edu/hAE

1 Introduction

The exploration of materials at the nano and atomic scales has been revolutionized by recent advance-
ments in scanning transmission electron microscopy (STEM)[Williams and Carter, 1996, Crewe,
1974, Stephen J., 2011] combined with electron energy-loss spectroscopy (EELS)[Wu et al., 2018,
Kalinin et al., 2021, Lovejoy et al., 2018], and Energy-dispersive X-ray spectroscopy (EDX)[Thermo
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Fisher Scientific, n.d.]. These technologies enable researchers to probe the structural, chemical, and
electronic properties [Wu et al., 2018, Kim et al., 2023, Bosman et al., 2006, Varela et al., 2012,
Gázquez et al., 2017, Roccapriore et al., 2023, Noircler et al., 2021], of materials with unprecedented
spatial resolution. Despite the power of these techniques, traditional data acquisition methods in
STEM-EELS-EDX rely on static [Pratiush et al., 2024a, Kalinin et al., 2023] sampling approaches,
often constrained by predefined parameters and limited by the inability to adapt dynamically to the
evolving landscape [Liu et al., 2023a,b] of the experiment. The need for real-time decision-making
in STEM-EELS-EDX experiments has spurred the development of human-in-the-loop automated
experiments (hAE) [Pratiush et al., 2024a, Kalinin et al., 2023, Liu et al., 2023a,b]. In these setups,
human operators intervene during the automated process, guiding the exploration based on observed
data patterns. This approach bridges the gap between fully automated systems and human expertise,
allowing for adaptive experimentation that can pivot between exploration of unknown regions and
exploitation of known areas of interest. There have been work on Bayesian optimization [Frazier,
2018, Rasmussen, 2004] particularly deep kernel learning [Ziatdinov et al., 2022a, Valleti et al., 2024,
Ziatdinov et al., 2022b, Kalinin et al., 2023] to conduct automated experiments. However, currently
there is no implementations of hAE[Pratiush et al., 2024a, Kalinin et al., 2023, Liu et al., 2023a]
on live instrument. There is a need of user-friendly interface that seamlessly integrates automated
decision-making with human inputs. The challenge lies in developing a flexible software environment
that allows real-time adjustments to experimental parameters, such as scalarizers (target properties)
and descriptor sizes, while maintaining robust optimization pathways. In this work, we present a web-
based tool designed to facilitate hAE in STEM-EELS-EDX. By leveraging Bayesian optimization,
the tool empowers users to dynamically adjust experimental policies, shifting between exploratory
and exploitative actions based on evolving data. Users can manipulate scalarizer to target specific
material properties and fine-tune descriptor sizes, enhancing the tool’s ability to capture complex
structure-property relationships at the nanoscale. This approach paves the way for a paradigm shift
that redefines the role of human intuition and machine learning in scientific discovery by incorporating
human-machine interaction.

Contribution of this work:

• Developed a tool for Bayesian optimization with intervention in target property, policy, and
other hyperparameters.

• Use case shown on pre-acquired data.
• Use case with live instrument control.

Figure 1: The human-in-the-loop automated experiment (hAE) interface.

2 Methodology

Core Bayesian optimization algorithms, implemented using the gpax [Ziatdinov, n.d.] library,
utilize Gaussian Processes to efficiently explore and exploit the experimental parameter space. The
tool integrates various Python libraries to manage the experiments, with Streamlit [Streamlit, n.d.]
handling the user interface, enabling real-time configuration of experimental parameters and dynamic
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interventions. To complement live instrument operation and account for intermittent accessibility
and for operator training, we provide a Python-based microscope simulator which supports the
testing and demonstration of the tool’s functionality, allowing for the development and validation
of optimization strategies using simulated data, thereby avoiding the need for constant access to
the actual microscope. Pre-acquired datasets16 enable replication and validation of optimization
processes under controlled conditions. For live experiments, the tool interfaces with Autoscript
software developed by ThermoFisher, Inc. and Gatan server [Pratiush et al., 2024b] software to
achieve direct control of the microscope hardware, providing real-time feedback and adjustments to
bridge software optimization and physical data acquisition. This interface can be easily extended to
other manufacturers. The experimental workflow begins with the configuration of initial parameters,
such as descriptor size, scalarizer function, and budget, while supporting dynamic interventions that
allow users to modify policies like the exploration-exploitation balance, step count, and physical
properties of interest. Bayesian optimization guides the selection of measurement points, adapting
continuously to the evolving data landscape and offering visual feedback to facilitate decision-
making. More detailed methodology can be found in paper [Kalinin et al., 2023, Pratiush et al.,
2024a] introducing hAE in electron microscopy.

3 Results: The hAE tool in action

Figure 2: hAE workflow on Pre-Acquired Data: The figure illustrates the workflow of an hAE
experiment conducted on pre-acquired data. Panel (a) shows the overview image of the nanoparticles
under investigation. Panel (b) displays the target property, or scalarizer, selected by the domain expert
based on the EELS spectrum. Panel (c) depicts the initial seed points chosen to initiate the workflow.
Panel (d) presents the first five points selected using a Bayesian optimization approach with a beta
parameter set to 0.25. Finally, panel (e) demonstrates a human intervention in the experimental policy,
where the beta value is adjusted from 0.25 to 1 to alter the exploration-exploitation balance.

Conducting live experiments is costly, especially when the parameter space for exploration is extensive.
To optimize the process, researchers typically start by acquiring a spectral image and analysing it
within the hAE framework before initiating a live experiment. This preliminary analysis helps
to determine the optimal descriptor size, scalarizer (target property), and the appropriate policy
interventions that should be employed during the live experiment. As illustrated in Figure 2, the
workflow begins with selecting seed points and choosing initial parameters based on pre-acquired
data, allowing for informed decision-making and efficient use of live microscopy resources. In Figure
3 we show the hAE workflow on live microscope.
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Figure 3: The hAE workflow on a live microscope with gold nanoparticles is shown as follows: Panel
(a) provides an overview of the nanoparticles, while panel (b) shows the EDX spectrum at a seed point.
Panel (c) marks the initial seed points for the workflow, and panel (d) presents the first five points
selected using Bayesian optimization with a beta of 0.25. Panel (e) demonstrates a human adjustment
in experimental policy, changing the beta from 0.25 to 1 to modify the exploration-exploitation
balance.

4 Relevant Material use cases for the Tool

In this section we will decribe the tool usecase. We are unable to try it on different samples due
to time constraint. In the tool one can set the desired material property (peak in the EDX or EELS
spectrum). So in next iteration the BO chooses a point based on this target property. The policy can
be set by the user to being more exploratory or exploitative based on beta parameter tuning.

4.1 EELS peaks

In lithium battery materials, the Li K-edge at around 55 eV is critical for identifying lithium
compounds, though its low energy requires higher incident electron energies to reduce the background
signal from plasmon excitations. The N K-edge at 400 eV is used to detect nitrogen in steel, with
techniques like iterative averaging and second-differential processing enhancing weak nitrogen
signals. In biological systems, where X-ray analysis risks causing radiation damage, EELS can map
sulfur, phosphorus, and calcium by analyzing their L-shell ionization edges (135 eV for sulfur, 165
eV for phosphorus). For heavier elements in biological specimens like aluminum , K-edges in the
1000-3000 eV range are advantageous due to their strong signal-to-background ratios and reduced
plural scattering, allowing analysis of thicker specimens.

4.2 EDX peaks

EDX is suitable for detecting elements heavier than Na (Sodium), while EELS is more sensitive to
lighter elements Egerton [2011]. By combining EDX and EELS, one can obtain a more comprehensive
understanding of a material. For instance, in the analysis of biological samples, EDX can be used to
detect common elements like Na, K, Mg, Cl, P, and S, while EELS can be used to analyze lighter
elements or investigate specific features like phosphorus distribution in DNA. In materials science,
EDX can provide overall elemental composition, while EELS can be used to study local bonding
environments or valence states at interfaces or defects.

5 Future work

To enhance the versatility and effectiveness of our tool for physics discovery, we plan to implement
several key upgrades. First, by incorporating multi-objective Bayesian optimization, we can
simultaneously optimize multiple material properties, broadening the tool’s flexibility for uncovering
new insights. Additionally, we aim to support real-time tuning of instruments, allowing for dynamic
and responsive adjustments during experiments. Finally, given the broad applicability of our tool’s
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core principles, we plan to extend its use to other microscopy techniques, such as atomic force
microscopy (AFM) and scanning tunneling microscopy (STM), to further broaden its reach and
potential impact.
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