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Abstract

LLMs excel at few-shot in-context learning (ICL) — learning from a few input-
output examples (“shots”) provided in context at inference, without any weight
updates. Newly expanded context windows allow us to investigate ICL with
hundreds or thousands of examples — the many-shot regime. Going from few-shot
to many-shot, we observe significant performance gains across a wide variety
of generative and discriminative tasks. While promising, many-shot ICL can be
bottlenecked by the available amount of human-generated outputs. To mitigate this
limitation, we explore two settings: (1) “Reinforced ICL” that uses model-generated
chain-of-thought rationales in place of human rationales, and (2) “Unsupervised
ICL” where we remove rationales altogether, and prompt the model only with
domain-specific inputs. We find that both Reinforced and Unsupervised ICL can
be effective in the many-shot regime, particularly on complex reasoning tasks.
Furthermore, we demonstrate that, unlike few-shot learning, many-shot learning
is effective at overriding pretraining biases, can learn high-dimensional functions
with numerical inputs, and performs comparably to fine-tuning. Finally, we reveal
the limitations of next-token prediction loss as an indicator of ICL performance.

1 Introduction

A limiting factor for in-context learning (ICL) in LLMs is the context window, restricting prior
research to the few-shot ICL regime. Many-shot learning — ICL with a large number of shots, for
example, hundreds or thousands — allows for better task specification, can reduce the need for fine-
tuning, and potentially make LL.Ms more versatile and adaptable. Exploring many-shot ICL is now
feasible, given the recent increase in context windows of publicly available LLMs by at least 100 x:
from only a few thousand tokens in GPT-3 [8] and Llama 2 [56] to 1M tokens in Gemini 1.5 Pro [15].

In this paper, we investigate how scaling the number of shots affects ICL performance on a wide vari-
ety of tasks (§2): problem solving using MATH [22] and GSMSK [10], question-answering [GPQA,
51], summarization using XSum [42] and XLSum [19], algorithmic reasoning [BBH, 55], reward
modeling [Code verification, §A.5], low-resource machine translation [FLORES, 17], planning [Lo-
gistics, 53], and sentiment analysis [FP, 39]. Compared to few-shot ICL, many-shot learning performs
significant better across these tasks, using several hundreds or thousands of shots (Figure 1). Further-
more, maximum performance is often achieved only once the number of shots reaches up to hundreds
of thousands of tokens (Figure A.1). Concurrent to our work, recent works explore many-shot ICL to
jailbreak LLMs [2] (up to 256 shots) and tackle NLP classification tasks [6] (up to 80K tokens). In
our work, we focus on a much wider range of tasks, and use a lot more examples (up to 8192 shots),
much longer context lengths (up to 1M tokens). See §A.3 for a detailed discussion of related work.

While many-shot ICL holds significant promise, it can be constrained by the need for high-quality,
human-generated outputs. To overcome this, we introduce reinforced ICL and unsupervised ICL (§3).

*Equal contribution, Core contribution. Correspondence to {rishabhagarwal, singhavi} @ google.com

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



100 Few-Shot ICL Many-Shot ICL +18.2

+7.9
X +5.0 +10.9
cg5 80
- +21.0
va
o
g9 60 +7.9
Ez +364 92 *153 3
o +15.0 5 <
$E 40 e e 8 = 5 .8 5 d
&8 BB g 5 : g .3 24 28 g 8
x= 2 % a M s cHE :cSEl ‘el O Yl B
w20 5% 34 5§ 24 £5 FT& §a& 7 A m
= G 8 = £ ® 9 B S o < <
o &H B & § o -
OV N eQP o0 00 o0 el e x
200 ) AR 2 WO O R o\ @ e
“\«\3‘\1 ?\a‘\;\s“(’c’\ e&@;@ @ 0 \aﬁé\‘;‘cg“‘\code\f 0&«“\\6@‘3g(\‘ae\‘c’\%i\(\s‘e‘\sev““;\s &
o \O se“°\1° [\ QO R e ©° \,\a‘d\ ( N\a\\l

Figure 1: Many-shot vs Few-Shot In-Context Learning (ICL) across several tasks. Many-shot ICL consistently
outperforms few-shot ICL, particularly on difficult non-natural language tasks. Optimal number of shots for
many-shot ICL are shown inside the bar for each task. For few-shot ICL, we either use typical number of
shots used on a benchmark, for example, 4-shot for MATH, or the longest prompt among the ones we tested
with less than the GPT-3 context length of 2048 tokens. Reasoning-oriented tasks, namely MATH, GSM8K,
BBH, and GPQA use chain-of-thought rationales. For translation, we report performance on English to Bemba,
summarization uses XLSum, MATH corresponds to the MATHS00 test set, and sentiment analysis results are
reported with semantically-unrelated labels. See §2, §3, and §4 for more details.

Inspired by the efficacy of model-generated solutions for fine-tuning [54], Reinforced ICL involves
replacing human-written rationales with model-generated ones, filtered via answer correctness, for
in-context learning. Inspired by task-recognition view of ICL [63], we also introduce Unsuper-
vised ICL where we prompt the model with only problems instead of problem-solution pairs. On
problem-solving tasks such as MATH, GPQA and Big-Bench Hard, we find that both reinforced and
unsupervised ICL with many-shots can be more effective than few-shot ICL with human-generated
rationales, with reinforced ICL being more broadly effective.

Finally, we empirically study how the learning dynamics of in-context learning changes from few-shot
to the many-shot regime (§4). We find that with sufficient examples, ICL can overcome pre-training
biases, perform comparably to full fine-tuning, and solve high-dimensional prediction tasks with
numerical inputs, namely sequential parity prediction and linear classification. This suggests the
potential of many-shot ICL to adapt to unseen tasks and domains that might be misaligned with an
LLM’s training data. Surprisingly, the order of examples can influence many-shot performance (§A.6)
Finally, we demonstrate that long-context scaling laws [2, 65, 26] based on next-token prediction loss
may not reliably predict ICL performance on problem-solving and reasoning tasks.

Our key contributions are as follows:

 Scaling ICL (§2): We systematically evaluate ICL performance at different scales of in-context
examples for a wide range of tasks with Gemini 1.5 Pro. Our results indicate large performance
jumps when transitioning from few-shot to many-shot regime.

* Reinforced and Unsupervised ICL (§3): We find that using model-generated rationales or only
problems can reduce the dependence of many-shot ICL on human-generated data.

» Analysing ICL (§4): We show that many-shot ICL can overcome pre-training biases, perform
comparably to fine-tuning, and learn non-NLP prediction tasks, where few-shot ICL struggles.
We also reveal that next-token prediction loss may not be a good predictor of ICL performance.

2 Scaling In-Context Learning

During in-context learning (ICL), the LLM receives a prompt containing a set of input-output
examples, also called shots, that illustrate the desired task. At the end of the prompt, we append a
test input and allow the LM to make a prediction just by conditioning on the prompt and predicting
the next tokens auto-regressively. Recent increase in context windows of LLMs allow using many
more shots for ICL than typically used. To this end, we evaluate the many-shot performance of
Gemini 1.5 Pro? [15] model with 1 million token context length, the largest publicly available so

This corresponds to original version in the Gemini 1.5 Tech Report, released in February 2024. We note
that the Gemini 1.5 Pro API now serves a newer version starting from April 2024.



Many-shot ICL: Machine Translation

—_ English - Bemba
X 45 . L
> English - Kurdish
+
—+ Google Translate (SOTA)
"‘N; 40
6 NLLB (SOTA)
+ 35
@

30

20 21 22 23 24 25 26 27 28 29 210

Number of Shots (K)

Figure 2: Machine Translation (MT). Test Perfor-
mance improves almost monotonically as we increase
the number of MT pairs provided as in-context exam-
ples during inference. Notably, many-shot ICL outper-
forms state-of-the-art chRF2++ scores of 35% (NLLB)
on Bemba and 40% (Google Translate) on Kurdish [52].
We note that 997-shot prompt corresponds to around
85K tokens. See an example prompt in Figure A.7.
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PEGASUS (Fine-tuned on XSum)

mT5 (Fine-tuned on XLSum)

Test ROUGE-L
N w
wv o

N
[=]

GEM-XSum
XLSum (Transfer)

21 23 2° 27 2°
Number of Shots (K)

Figure 3: Summarization. As we increase the num-
ber of shots from XSum dev set, XSum test perfor-
mance improves up to 50 shots and then deteriorates. In
contrast, XL.Sum performance typically improves with
more shots from XSum. The 500-shot prompt corre-
sponds to 205K tokens. PEGASUS [68] and mT5 [19]
are specialized models fine-tuned for summarization.
See an example prompt in Figure A.8.

far. Unless specified otherwise, we use greedy decoding. For reliable results, we randomly sample
in-context examples for each K -shot prompt multiple times using different random seeds and report
average performance, along with some visualization for performance on individual seeds. To ensure
that using more shots provides additional information, any K -shot prompt in our setup includes all
in-context examples from prompts with less than K examples. To reduce the inference cost, we use
KV caching [48]. Now, we study many-shot ICL on typical LLM use-cases (also see §A.5).

2.1 Machine Translation

We consider translation from English to a low-resource target language, where many-shot ICL can
complement the existing knowledge within the LLM. We use the target languages with the largest
gap reported between LLMs and state-of-the-art systems [52], namely Bemba and Kurdish, from
FLORES-200 benchmark [44]. We modify the default 1-shot MT prompt from Gemini Team [14] to
include multiple translation pairs as shots from the FLORES dev split (containing 997 examples).
We evaluate performance on the first 150 sentences from the test set using chrF2++ [49], a standard
metric based on character and word n-gram overlap between generated and reference translation.

See Figure 2 for results. Similar to Robinson et al. [52], we observed small gains in the few-shot
regime from 1-shot to 10-shot, particularly on Kurdish. However, when using the entire dev set for
many-shot ICL, we observe improvements of 15.3% on Bemba and 4.5% on Kurdish, relative to the
1-shot Gemini prompt. Overall, these results establish the new-state-of-art for these language pairs.

2.2 Abstractive Summarization

To investigate how scaling ICL examples can impact the comprehension ability of LLMs, we now
consider abstractive news summarization using XSum dataset from the GEM benchmark [1]. Using
XSum dev set examples containing news articles and summaries, we also evaluate how many-shot
ICL generalizes to XLSum [19]. We report performance on 150 test articles using ROUGE-L [34],
which measures the longest common subsequence between reference and generated summaries.

As depicted in Figure 3, peak performance with many-shot ICL is remarkably close to specialized
models fine-tuned on XSum and XLSum. However, XSum performance declines with more than
50 in-context examples. Surprisingly, we observed the many-shot prompted model occasionally
generating summaries with fabricated dates and times (§A.4), despite the absence of such data in
the in-context summaries. Nonetheless, performance on XLSum monotonically improves with more
shots, demonstrating positive transfer from many-shot learning to a related task.

2.3 Planning: Logistics Domain

Recent work has highlighted shortcomings in planning abilities of LLMs [58]. To this end,
we evaluate whether many-shot ICL can improve their ability to generate simple plans on the
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As shown in Figure 4, we observe significant  Figure 4: In-context Planning. A recent version of 1.5 Pro
improvement in success rate with increas- starts from a high few-shot performance, and its many-shot
ing numbers of ICL shots. While far from performance scales uniformly from 42% to 62%. For an
state-of-the-art planning approaches (e.g., older version, success rate quickly improves with up to 10
Fast-Downward), our results demonstrate shots (37K tokens), followed by saturation. As a reference,
the potential of many-shot ICL to improve we report 1-shot GPT-4 results from Valmeekam et al. [58].

commonsense planning abilities of LLMs.

3 Many-shot Learning without Human-Written Rationales

Many-shot ICL could potentially be limited by the availability of high-quality human-generated
rationales or demonstrations. This is particularly challenging for complex reasoning tasks, such as
GPQA [51], where human-generated rationales require significant resources and expert knowledge.
In this work, we explore two simple approaches for addressing this issue.

Reinforced ICL Recent work [54] proposed a simplified version of Reinforced Self-Training [18],
demonstrating that fine-tuning using model-generated rationales can be more effective than human-
generated rationales to problem-solving tasks. Inspired by their work, we introduce Reinforced ICL,
where we use model-generated rationales for in-context learning. To do so, we use a few-shot or
zero-shot chain-of-thought prompt as a starting point to sample multiple rationales for each training
problem. Then, we select rationales that obtain the correct final answer (we assume access to ground
truth final answers), and arrange them into in-context examples containing (problem, rationale) pairs.

One potential issue with model-generated rationales is that of false positives: it is possible for an
incorrect reasoning chain to lead to the correct final answer, and fine-tuning or prompting using such
a reasoning chain would typically harm performance. Nevertheless, as we discuss in later sections,
we often find model-generated rationales to be at least as effective human-written rationales.

Unsupervised ICL  'We now go one step further than Reinforced ICL: what if we removed rationales
from the many-shot prompt altogether, and prompt the model only with inputs? Specifically, the
Unsupervised ICL prompt consists of: 1) a preamble, such as, “You will be provided questions
similar to the ones below:”, 2) a list of unsolved inputs or problems, and 3) a zero-shot instruction or
a few-shot prompt with outputs for the desired output format. See §A.9 for the exact prompts we use.

One hypothesis for how many-shot unsupervised ICL might surpass few-shot learning with human
demonstrations is that, when the LLM already possesses the required knowledge to solve a task,
any information inserted in the prompt that can narrow down what knowledge is needed for the task
becomes helpful. This would be consistent with the view that ICL simply “locates” latent concepts
(e.g., math problem-solving) the LLM acquired during pre-training [63, 21, 60]. As such, any of the
prompt components — inputs, outputs, and their mapping — can help locate such concepts. While
Unsupervised ICL is broadly applicable, it may not perform well, for example, when outputs are
critical for specifying the task (Figure 7 and A.17).

3.1 Problem-solving: Hendrycks MATH & GSMSK

We evaluate Reinforced and Unsupervised ICL on Hendrycks MATH [22], which consists of challeng-
ing high school competition-level mathematics problems. We use the MATHS500 test set from Light-
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Figure 5: Many-shot Reinforced and Unsupervised ICL for problem-solving generally outperform ICL with
ground-truth MATH solutions. MATH. (Left) The bar plots depict the average performance across five random
seeds on the MATHS500 test set. Each random seed (denoted by the dots) corresponds to a different subset of
problems along with ground truth or model-generated solutions (if any) in the prompt. Transfer to GSM8K.
(Right) We see that the prompt obtained from MATH transfers well to the GSMS8K test split containing 500
problems. Our results with many-shot ICL outperform the 4-shot Minerva prompt, which obtains a test accuracy
of 55.7% on MATH500 and 90.6% on GSMS8K.

man et al. [32] to report performance, and our 4-shot MATH prompt for data generation can be found
in Figure A.12. For Unsupervised ICL, we append this 4-shot prompt after the unsolved problems
(see Figure A.14). For comparison, we also evaluate ICL with human-written solutions (ground-truth)
from the MATH training set, with the same problems used for many-shot prompts.

Our results are shown in the Figure 5 (Ieft). On MATHS00, both Reinforced and Unsupervised ICL
outperforms ICL with ground-truth solutions in both the few-shot and many-shot regime. For ICL,
we observe that the performance improves with more examples in the prompt up to a point, and
then declines (with the peak being at about 125 examples). Performance for Reinforced ICL also
improves with the number of examples, and reaches a plateau at around 25 examples (while being
about 5% higher than ICL), and unlike ICL, we don’t see a significant drop in performance even for
a very large number of examples in the context. Notably, many-shot ICL achieves comparable or
superior performance when using only problems compared to using problems with solutions. This
suggests solutions may be redundant for eliciting problem-solving via in-context learning on this
domain, potentially due to extensive math-related data seen during pretraining.

Can many-shot ICL enable out-of-distribution generalization? Singh et al. [54] found that
fine-tuning a model on model-generated solutions from MATH resulted in improved test performance
on GSMSK [10], which has a different distribution of problems than MATH. Here, we investigate
whether many-shot ICL also improves transfer performance on GSM8K, indicating an improvement
in general problem-solving abilities from in-context learning. Our results in Figure 5 (right) show
that this is indeed the case — Reinforced ICL with MATH prompts excels on GSM8K, outperforming
ICL with ground truth MATH solutions as well as Unsupervised ICL in the many-shot setting with at
least 25 shots. This indicates that model-generated solutions can enable better generalization than
just using problems or combining them with ground-truth solutions for ICL.

3.2 Question Answering: Google-Proof QA (GPQA)

GPQA [51] is a multiple-choice QA benchmark, with difficult questions focused on graduate-level
reasoning in biology, physics, and chemistry. Following Claude-3 [3], we use the diamond split (198
problems) for evaluation. This split focuses on questions where domain experts agree but experts
in other domains struggle despite extended effort and internet access. Remaining 250 questions
in non-diamond split are used for many-shot ICL with and without human-written rationales. For
Reinforced ICL, we use a zero-shot prompt (Figure A.10) to generate multiple rationales on the
non-diamond split, solving 129 problems. We also append this zero-shot prompt after the GPQA
problems for specifying output format for Unsupervised ICL.

As shown in Figure 6, average test accuracy with ground-truth rationales improves substantially from
5 shots to 125 shots, with the best-performing 125-shot prompt nearly matching the accuracy of
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Figure 6: Many-shot Reinforced and Unsupervised ICL for GPQA. The baseline zero-shot prompt, which is
used for generating rationales for Reinforced ICL and appended to the prompt for Unsupervised ICL, obtains
a performance of 38.8%. The average test accuracy with 125-shot prompt with both ground-truth or model-
generated rationales surpass the 40.4% obtained by Claude-3 Sonnet. As we vary the number of shots, while
Unsupervised ICL matches or outperforms the zero-shot prompt, Reinforced ICL consistently outperforms it.

the state-of-the-art Claude-3 Opus. However, we do observe a performance degradation with 250
shots. Moreover, Reinforced ICL results indicate that model-generated rationales on GPQA seem
to be better than ground-truth rationales up to 25 shots, while resulting in similar performance with
more shots. Additionally, Unsupervised ICL does not follow any systematic trend: it sometimes
performs better ICL with ground-truth rationales depending on the number of shots, but generally
underperforms Reinforced ICL. As noted in Anthropic [3], GPQA is a small evaluation dataset and
has an inherent higher variance across different runs, which might explain the non-systematic trends.

3.3 Algorithmic and Symbolic Reasoning: Big-Bench Hard
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Figure 7: BIG-Bench Hard. Reinforced and Unsupervised ICL with varying number of shots, averaged across
five random seeds. We evaluate test performance on a held-out set of 100 problems. The error bars denote
standard deviation. Reinforced ICL outperforms Unsupervised ICL for all tasks, which in turns outperforms the
human-written chain-of-thought (CoT) prompt. Averaged across tasks, CoT prompting using human-written
rationales gets a success rate of 72.1%, Unsupervised ICL obtains 77.1%, while Reinforced ICL gets 83%.

We now evaluate Reinforced ICL and Unsupervised ICL on BIG-Bench Hard [55], a suite of
challenging algorithmic reasoning tasks. To reduce the impact of false positives, we select 8 tasks out
of 23 in BIG-Bench Hard for which the likelihood of getting a false positive is low: either the answer
string is long, or the number of options for each question is large (at least 6). For Reinforced ICL,
we use the standard 3-shot CoT prompt from Suzgun et al. [55] to sample 10 rationales per problem
from a training set of 150 problem at a temperature of 1.0. We filter the rationales based on final
answer correctness and arrange them into prompts containing 3 to 100 (problem, rationale) pairs.

As shown in Figure 7, Reinforced ICL strongly outperforms Unsupervised ICL for almost all tasks,
which in turn outperforms the standard 3-shot CoT prompt. Performance for Reinforced ICL generally
improves monotonically with the number of prompts for 7 out of 8 tasks. These results indicate
the Reinforced ICL is a more robust technique than Unsupervised ICL, especially for tasks in
which the demonstrations contain crucial information about the task. For a few tasks, Reinforced
ICL outperforms the human-written 3-shot prompt even in the 3-shot setting. This result suggests



that model-generated rationales can sometimes outperform human-written rationales even when
controlling for the amount of data, mirroring the results reported by Singh et al. [54] for fine-tuning.

4 Analyzing Many-Shot ICL

4.1 Overcoming Pre-training Biases with Many-Shot ICL
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Figure 8: Overcoming Pre-Training Bias with Many-Shot ICL. (Left) Many-shot ICL overcomes label
flips: Test accuracy for sentiment analysis typically improves with more training shots. Flipped and abstract
labels eventually approaching the performance of default labels. (Right) Confidence shift in overcoming bias.
For flipped and abstract labels, model confidence in its predicted sentiment labels initially drops, then sharply
increases with more training shots to similar value, suggesting a period of overcoming pre-training bias.

While LLMs demonstrate in-context learning of novel tasks, Kossen et al. [29] suggest that ICL may
have difficulty unlearning biases derived from pre-training data. Their experiments, however, focused
mainly on few-shot ICL due to LLM context length limitations. Here, we revisit their study using
many-shot ICL on the Financial PhraseBank (FP) sentiment analysis dataset [39]. Like Kossen et al.
[29], we study label relationships that affect pre-training biases:

* Flipped Labels: Default labels are rotated, that is, [‘negative’, ‘neutral’, ‘positive’] becomes
[‘neutral’, ‘positive’, ‘negative’]. This conflicts with sentiment biases an LLM might have learned.

e Abstract Labels: We use [‘A’, ‘B’, ‘C’], removing any pre-existing sentiment association [61].

For ICL shots, we sample examples from the validation set (with replaced labels) to exhibit the input-
label relationship and report the results in Figure 8. With few shots, test accuracy with replacement
labels is much lower than with default labels. This suggests that with few-shot ICL, the model
struggles to overcome its pre-existing biases from pre-training. However, as the number of shots
increases, performance on flipped and abstract labels dramatically improves, approaching that of
default labels. For default labels, confidence in predicted labels steadily increases with more shots,
as shown in Figure 8 (right). In contrast, for flipped labels, confidence initially drops then sharply
increases before reaching a plateau, suggesting a period of overcoming pre-training bias.

We posit that the initial drop in performance and confidence in the few-shot regime may be attributed
to the “early ascent” phenomenon [46, 35]: a small number of shots may lead to the retrieval of an
incorrect skill, which eventually diminishes as task learning takes effect in the many-shot regime.
Overall, these results indicate that many-shot ICL can overcome pre-training biases.

4.2 Learning Non-Natural Language Tasks: High-Dimensional Functions

We now test many-shot ICL’s ability to learn abstract mathematical functions with numerical inputs,
which let us stress test its generality and applicability to possibly unseen tasks.

Binary Linear Classification in High Dimensions Following the setup from Wei et al. [61], we
create datasets with [V-dimensional inputs vectors and their binary class labels, where each dimension
is a random integer in [1, 1000]. See more details in §A.12. While Wei et al. [61] used only 16 shots
per class, we scale ICL up to 2048 shots per class. As shown in Figure 9, while 2048 shots per class
perform best when N = 16, we observe slight accuracy decrease beyond 512 shots for higher values
of N (Figure 9 C, R). Moreover, many-shot ICL substantially outperforms random-chance accuracy
and nearly matches the accuracy of a strong baseline, namely k-nearest neighbors, indicating that
many-shot ICL can implement nearest-neighbour search over inputs. This is reminiscent of induction
heads that implement prefix matching over sequences [45], a plausible mechanism for ICL abilities.
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Figure 9: In-Context Classification. Test accuracy for 16, 32 and 64 dimensional linear classification problems,
averaged across 5 randomly-generated datasets with 25 points per class for each dataset (250 evaluation points
total). As we increase the number of shots, the accuracy improves and approximately tracks the performance
of the nearest-neighbor baseline trained from scratch on the same data. We use the default implementation of
k-nearest neighbours (with k = 5) from scikit-learn [47]. See Figure A.13 for an example prompt.
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Figure 10: Learning Sequential Parity Function In-context. We report test accuracy over 200 unseen inputs,
averaged across 3 seeds. Error bars denote standard error of the mean. Task Prompt. (Left) Example prompt
with input and output labels of the 20-digit Sequential Parity Function. Test accuracy (Right) Many-shot
ICL performance improves almost monotonically with the number of shots, surpassing performance of GPT-2
Medium sized transformer trained from scratch for 1 forward-backward pass per example on 20x more data.

Sequential Parity Parity is a fundamental Boolean function that determines if a binary input
sequence contains an even or odd number of 1s. Despite their power, transformers trained specifically
for in-context learning, struggle to learn the Parity function over 20-digit sequences [7]. In this work,
we evaluate how well many-shot ICL performs with a pretrained LLM to learn the sequential parity
function f(z) = [f1(z), fo(x), -+, fu(z)], where z € {0,1}" and f;(z) =x1 P as--- B x; Vi€
[1,n]. We report the results in Figure 10. We see consistent improvement in test accuracy as we
increase the number of shots to §192. Performance surpasses a GPT-2 Medium sized transformer [50]
trained from scratch on 20 X more input-output examples (with no repeated examples; §A.13). This
result indicates many-shot ICL can implement computations analogous to gradient descent [59].

4.3 Many-Shot ICL vs. Supervised Fine-Tuning
Many-shot ICL could make task-

. ) . Base Model Supervised FT Many-Shot ICL
specific fine-tuning less'essentlal or, English - Bemba English — Kurdish
even unnecessary, allowing LLMs to S <
tackle a wider range of tasks without 40 - (SN N e B
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paradigm when making use of hun- o
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dreds or thousands of examples, it is § 0
computationally expensive in terms of >50 597 >50 597

training. In contrast, many-shot ICL
does not require any training, however
it has a larger inference cost, which
can be substantially reduced with KV
caching [48]. We compare many-shot
ICL to SFT for machine translation. We run two sets of experiments: one using 250 examples, and
another using the entire dev set (997 examples). Our results in Figure 11 show that SFT and ICL

Number of Examples Number of Examples

Figure 11: SFT vs Many-Shot ICL. We plot mean performance
across 3 seeds. The standard deviation is between 0.1% to 0.5%.
Base model corresponds to 1-shot performance of Gemini 1.5 Pro.



performance is quite close for Bemba, while SFT has a slight edge for Kurdish. Overall, these results
demonstrate that many-shot ICL can be a viable alternative for SFT.

4.4 Computational Cost of Many-Shot ICL

While many-shot ICL increases inference computation time, it can al-

low for quick prototyping and experimentation using just an inference APL
Moreover, being able to spend ad-

Summarization Sequential Parity
ditional inference-time compute to (500-shot = 205K tokens) (8192-shot = 540K tokens)
obtain better performance is a use- £ 52
ful feature to have. With KV 5% 26
caching enabled (default for long- Eg 13
context servers), as shown in Fig- ‘@2065
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a large number of shots, as opposed to  © 032
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bling the number of shots nearly dou-

bles the runtime. However, for a small  Figure 12: Per-Output runtime as we increase shots, averaged
number of shots, runtime is nearly across the test set and multiple seeds, on (left) summarization and
constant. When the number of gen- (right) parity prediction. When computing the next token, we still
erated tokens is much smaller than have to attend to the fixed many-shot prompt, even if KV is cached.
many-shot prompts, each new token

is still linear, which explains our observed runtime for a large number of shots.

4.5 Comparing Many-Shot Abilities of Frontier LLMs

Gemini 1.5 Pro GPT-4-Turbo Claude-3-Opus Gemini 1.5 Flash
Translation: English - Bemba Translation: English - Kurdish
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Figure 13: Many-shot ICL with GPT-4-Turbo, Gemini 1.5 Flash, and Claude-3-Opus on translation (§2.1).

The strong many-shot results with Gemini 1.5 Pro raises the question of whether other long-context
frontier LLMs also benefit from many-shot ICL. To do so, we evaluate GPT-4-Turbo (128K context
length) and Claude-3-Opus [3] (200K context length) on the low-resource translation (§2.1). For both
of these models, many-shot ICL scales favorably on Bemba but do not exhibit much improvement on
Kurdish. Notably, 1.5 Pro starts lower than Claude-3 on Bemba but improves more rapidly, achieving
much higher performance at 997 shots. It also outperforms GPT-4 in few-shot learning and improves
further with more examples. Overall, these results indicate that frontier LLMs exhibit varying degree
of many-shot ICL capability, and even smaller LLMs can benefit from many-shot ICL and outperform
LLMs with stronger few-shot performance with enough shots

To understand the role of model size, we also evaluated the many-shot performance of Gemini 1.5
Flash, a smaller long-context LLM than Gemini 1.5 Pro. On the English — Bemba task, we find
that 1.5 Flash matches Claude-3-Opus and outperforms GPT-4 with 997-shots, despite having much
worse few-shot performance than Claude and GPT. On English — Tamil MT, 1.5 Flash outperforms
Claude-3 in terms of many-shot performance, while lags behind 1.5 Pro. These results suggest that
even smaller LLMs can benefit from many-shot ICL and outperform LLMs with stronger few-shot
performance with enough shots.

4.6 Long-context scaling laws may not predict ICL performance

Prior works [65, 2, 26] have found that the negative log-likelihood (NLL) for ground-truth test outputs
decreases predictably as the context length increases. We confirm this finding for GPQA, Hendrycks
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Figure 14: Negative Log-Likelihood (NLL) as a function of number of shots. We plot NLL on ground truth
test set solutions for GPQA, MATH and GSM8K. For GPQA and MATH, questions for Reinforced ICL and
Unsupervised ICL comes from the training splits of those datasets. We study GSMS8K in the transfer setting, i.e.
questions for Reinforced and Unsupervised ICL come from MATH. The absolute NLL for ICL and Reinforced
ICL are not directly comparable to Unsupervised ICL, since they use different prompt formats.

MATH and GSM8K with many-shot ICL, and report our results in Figure 14. However, we note that
NLL trends are not a strong predictor for downstream task performance. For example, the success rate
for both MATH and GPQA with ICL decreases after 125 shots (Figure 5,6), but we do not observe a
corresponding increase in the NLL in Figure 14.

We also plot NLL curves for Reinforced and Unsupervised ICL, and find them to generally have a
smaller slope when compared to supervised ICL. Interestingly, NLL curves for ICL with ground-truth
outputs is lower than with model-generated outputs, even though the latter often performs better. In
the GSMSK transfer setting (using MATH problems and solutions to score GSM8K solutions), the
change in NLL is close to nil. However, this doesn’t reflect transfer performance on GSM8K, which
continues to improve with more examples (Figure 5).

Overall, NLL is not a reliable proxy when attempting to predict ICL performance for problem-solving
domains. This makes intuitive sense: for any given problem, there are a large number of potentially
correct CoT solutions that the model can generate, and calculating the log-likelihood on only one
such solution may not provide a clear picture for overall model capability. We also explore computing
NLL on a diverse set of model-generated outputs on MATH, and our findings are presented in §A.7.

5 Discussion, Limitations and Future Work

We found significant gains in performance when going from few-shot to many-shot ICL on a wide
range of tasks, including translation, summarization, planning, reward modeling, mathematical
problem solving, question-answering, algorithmic reasoning, and sentiment analysis. To overcome
the challenges of obtaining a large number of high-quality human-written rationales for many-shot
ICL, we introduced two regimes: Reinforced ICL and Unsupervised ICL. Moreover, we demonstrate
that, unlike few-shot ICL, many-shot ICL is effective at overriding pretraining biases, can learn
high-dimensional functions with numerical inputs, and performs comparably to SFT.

One limitation of our work is that it mainly evaluates many-shot ICL with Gemini 1.5 Pro. That
said, concurrent works [2, 6] as well as our preliminary results with GPT-4-Turbo and Claude-3-
Opus (Figure 13) indicate that other LLMSs can also benefit from many-shot ICL. Future work should
focus on evaluating the many-shot abilities of a wide range of long context models, as they become
available. Furthermore, many-shot performance can likely serve as a valuable metric for evaluating
the quality of long-context models, going beyond the prevalent needle-in-a-haystack test [25].

Another limitation of our work is that we don’t completely understand why performance can some-
times degrades with more examples in the prompt (for example, for MATH). Our analysis found that
negative log-likelihood trends are insufficient to explain this degradation, and future work should
investigate new directions to shed light on the matter and improving many-shot ICL capabilities.
Overall, we hope that this work lays a foundation for understanding and optimizing the use of
long-context models for ICL, opening up a new frontier of LLM capabilities.
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A Appendix

A.1 Context Length for Many-shot ICL

Many-Shot ICL: Context Length versus Number of Shots
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Figure A.1: Context Length for best-performing and the maximum number of shots tested for each task. The
horizontal dashed line shows the context length of GPT-3 (2048 tokens), which is representative of typical few-
shot prompts tested in the LLM literature. For several tasks, we observed the best-performing shots correspond
to the maximum number of shots we tested, which was often limited by the number of available examples for
in-context learning. On some tasks (e.g., code verifier, planning), we did observe slight performance deterioration
beyond a certain number of shots.

A.2 Where Do Gains in Many-Shot ICL Stem From?
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Figure A.2: Many-shot performance with distinct examples vs repeating the same 25 examples N times on
low-resource MT. Bars show avg. perf with std across 3 seeds. Most of the benefit of many-shot ICL stems from
adding new information as opposed to increasing context length.

Including more examples has two effects: (1) increasing information when using distinct samples, (2)
but another of increasing the context length. To separate these two effects, we ran an experiment on
low-resource MT by repeating 25 examples several times to create many-shot prompts with up to 1000
examples (shuffled ordering) and added the results in Figure A.2. The performance with repeated
examples stays nearly the same and significantly lags behind many-shot performance with distinct
examples. On this task, the benefit of many-shot ICL mainly stems from adding new information as
opposed to increasing context length

A.3 Related Work

Scaling in-context learning Brown et al. [8] reported improved performance as you increase the
number of examples (up to 64) for in-context learning in LLMs , and later works corroborated this
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finding [38]. However, very few works have explored using a large number of examples (1000 or
above) in the prompt. This is likely due to the fact the context lengths in large language models have
been quite limited until recently [15, 3]. One closely related work to ours is from Li et al. [30], who
scale the number of examples for in-context learning to 2000. However, Li et al. [30] use a custom
model architecture [71] to achieve long context lengths, and only evaluate models of up to 1.3B
parameters, which is several orders of magnitude smaller than state-of-the-art language models, and
are ineffective for complex tasks, such as GPQA [51].

Concurrently to our work, Anil et al. [2] used many-shot prompting (upto 256 shots) to jailbreak
language models. In our work, we focus on a much wider range of tasks, use a lot more examples
(up to 8192 shots) and use models with much longer context lengths (up to 1M tokens). Also, we
explore mitigations for needing many human-generated examples with many-shot ICL. Furthermore,
while Anil et al. [2] use many-shot learning to override preferences learned during RLHF phase to
elicit the biases stemming from pretraining, our results in §4.1 demonstrate that we can also override
pre-training biases themselves. Bertsch et al. [6] also concurrently shows benefits of scaling up
in-context learning to many demonstrations on several classification datasets with up to 151 labels,
albeit also using smaller context windows of up to 80k tokens (using Llama2-80k [12]).

Long-context scaling laws Prior works [65, 2, 26, 15] have reported smaller next-token prediction
loss with longer contexts, which Jeon et al. [24] also show using theoretical analysis. Our findings
confirm this trend for even longer context lengths, but our analysis reveals some of the limitations of
using next-token prediction loss as a metric for evaluating long-context performance, as next-token
prediction loss continues to go down even as overall performance plateaus.

Learning from self-generated data Numerous recent works [18, 67, 54] propose fine-tuning
language models on self-generated data to improve performance. Their approach consists of (1)
generate samples from the model and filter them using binary feedback, (2) fine-tune the model on
these samples, and (3) repeat this process a few times. In this work, we extend this idea to in-context
learning, and study the efficacy of Reinforced ICL in reasoning and problem-solving domains.

Self-generated data and in-context learning Kim et al. [28] propose using self-generated data
for few-shot ICL on classification problems, where they generate demonstrations using the LLM
conditioned on the test input for each possible class label, and including these demonstrations in the
context when performing the final prediction. Li et al. [31] extend this approach to reasoning and
language understanding tasks, where they also generate demonstrations conditioned on the test input.
Consistent with our findings, these works show that model-generated demonstrations can outperform
human-generated demonstrations in the few-shot regime. Another related approach is AutoCoT [70]
that uses a zero-shot CoT prompt to produce model-generated demonstrations for few-shot ICL. To do
so, AutoCoT samples diverse questions one-by-one based on embedding-based clustering followed
by heuristics-based post-processing for selecting demonstrations.

Different from above approaches, Reinforced ICL generates demonstrations using the same procedure
as Singh et al. [54], does not require clustering, post-processing heuristics, or access to the test
inputs for generating demonstrations, and can be applied to any problem for which we can obtain
reliable reward signals. Moreover, our work mainly focuses on the utility of randomly-sampled
model-generated demonstrations for many-shot ICL.

Learning Input-Output Relationships with ICL. Numerous works [40, 29, 66, 35] have inves-
tigated whether LLMs truly learn input-output relationships during in-context learning. Min et al.
[40] found that replacing the ground truth labels in in-context examples with random labels barely
effected final performance. Further investigations by Yoo et al. [66] and Kossen et al. [29] found
that this finding does not necessarily hold across tasks and model sizes. In particular, Kossen et al.
[29], Lin and Lee [35] showed that LLMs can indeed learn input-output relationships via in-context
learning, but require more examples in order to do so well. In our work, we extrapolate the trend
found in those works to much longer context lengths, showing that pre-training biases can be mostly
overcome given enough training examples.

Learning Mathematical Functions with LLMs Several prior works investigate whether mathe-

matical functions can be learned with transformers [13, 69, 64, 7]. All these works train transformers
specifically to perform in-context learning for such functions. In contrast, we demonstrate that
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many-shot ICL can learn high-dimensional functions even with pre-trained LLMs. Concurrent to our
work, Vacareanu et al. [57] demonstrate that pretrained LLMs are able to perform regression tasks,
with performance rivaling that of traditional supervised methods with 500 in-context examples. Our
work complement their findings to other synthetic tasks with a much larger number of in-context
examples. Dinh et al. [11] fine-tuned GPT-3 on synthetic classification tasks and observed similarities
in the decision boundaries learned by the fine-tuned model and kNNs. Our results in Figure 9 show
that many-shot ICL also performs comparably to kNNs on high-dimensional classification tasks.

Comparing ICL with fine-tuning Contrary to task-specific fine-tuning, ICL does not require
optimizing any model weights, allowing LLMs to perform a variety of tasks at inference. As such,
several prior works compare fine-tuning with ICL but in few-shot regime. Liu et al. [36] proposed a
parameter-efficient few-shot fine-tuning (FT) approach for TO that outperforms few-shot ICL with
GPT-3. However, Awadalla et al. [5] argue that few-shot ICL is more robust to distribution shifts
than fine-tuning for question answering tasks. Similarly, Asai et al. [4] show better transfer with ICL
compared to fine-tuning on some tasks. Mosbach et al. [41] fairly compare ICL with FT by using the
same model for both approaches and show that full fine-tuning (FT) generally outperforms ICL in
the few-shot regime with 16 examples. More recently, Lin et al. [33] show that few-shot ICL can
outperform fine-tuning based approaches for aligning LLMs.

Complementary to prior works, we compare full fine-tuning with many-shot ICL with the same
number of examples for low-resource translation. Notably, we find that many-shot ICL performs
comparably to FT. Aligned with our findings, Bertsch et al. [6] concurrently show that many-shot
ICL generally outperforms parameter-efficient fine-tuning (LoRA) on classification tasks. Overall,
many-shot ICL and FT can exhibit comparable behaviors, which we leave for further investigation.

Exemplar vs. Rule-based ICL generalization Chan et al. [9] indicate that ICL tends to generalize
in a more exemplar-based way, compared to rule-based generalization during in-weights learning.
Using a clever experiment with blocked attention, Bertsch et al. [6] also argue that the benefits of
many in-context demonstrations arise from having access to more similar examples. While our results
on in-context linear classification agree with this conclusion, our sequential parity results seem to
contradict it. Strikingly, sequential parity was the task on which we saw the most improvement,
whereas it should be a task that benefits least from seeing similar examples — after all, the nearest
neighbor is always going to give the wrong answer (off by 1 bit). Chan et al. [9] do show that a
transformer’s inductive biases towards exemplar-based generalization can be shifted both by the
training data and the model size, with larger models being less exemplar-based — perhaps this explains
the contradictory findings, given that our work used a larger and much more capable model, though
this remains an open question.

A.4 Many-Shot ICL: Hallucinations on Summarization

Here is an example on XSum showing summaries with halluncinated date and time when increasing
the number of shots for many-shot ICL, discussed in §2.2.

Reference Summary: Russia’s leading independent polling agency has been labelled a "foreign
agent" by the justice ministry and says it cannot now work.

1-shot: The Levada Centre, a Russian organization that conducts political opinion surveys, has been
designated as a "foreign agent" by the government. This label restricts the organization’s ac-
tivities and effectively prevents it from conducting independent polls, particularly in relation
to the upcoming parliamentary elections. Critics view this move as political censorship and
an attempt to suppress dissent.

5-shot: Russia’s leading independent pollster has been labelled a "foreign agent" by the justice
ministry, two weeks before parliamentary elections.

10-shot: A leading Russian opinion pollster has been labelled a "foreign agent" by the authorities,
effectively barring it from conducting any work linked to the upcoming parliamentary
elections.

25-shot: Russia’s leading independent pollster has been labelled a "foreign agent" by the justice
ministry, effectively barring it from conducting election-related work.
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XSum: Hallucination with Many-Shot ICL
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Figure A.3: Hallucinated years in XSum summaries peak at 2016, with most of the years within 2014-2017.
This supports the hypothesis about such dates arising from retrieving header data from webarchive, which likely
was included in the pretraining data.

50-shot: 12 September 2016 Last updated at 14:32 GMT
One of Russia’s last independent pollsters has been designated a "foreign agent" by the
justice ministry.

125-shot: 12 September 2016 Last updated at 14:43 GMT
One of Russia’s last independent pollsters has been branded a "foreign agent" by the justice
ministry.

250-shot: 2016-09-06 Last updated at 14:33 GMT
Russia’s only independent pollster has been branded a "foreign agent" by the justice ministry.

500-shot: 12 September 2016 Last updated at 14:22 GMT
One of Russia’s last independent pollsters has been branded a "foreign agent" by the
government.

A.5 Reward Modelling with Many-Shot ICL: Learning Code Verifiers

A standard approach to improve LLM reasoning is to use test-time verification [10, 43, 23]. Specifi-
cally, an LLM generates multiple candidate solutions for a given problem and a verifier, also known
as an outcome reward model, ranks these solutions and selects the best one. Here, we focus on
learning such verifiers in-context for code verification.

To create in-context verification examples, we utilize correct and incorrect code solutions in Python
generated using Gemini 1.0 Pro [14] on the GSMS8K train set. In the prompt, each (problem,
solution) pair is appended with the question “Is the solution correct?” followed by the Yes or No
token according to ground truth correctness. At inference, we modify each test (problem, solution)
pair in the same way and record the logit of the Yes and No tokens (denoted by Ly.s, Lyo).
To compute the verifier score, we use the normalized probability of the Yes token: IP(Yes) =
exp(Lyes)/ ( exp(Lyes) + exp(L NO)). We evaluate verifier performance using best-of-4 selection
based on the verifier score on 200 problems from GSM8K test set with Gemini 1.0 solutions.

As shown in Figure A.4 (left), best-of-4 accuracy with the few-shot prompted verifier significantly
improves above pass@1 accuracy with 16 or more in-context examples. Along with an accuracy
improvement, the probabilities of the Yes token conditioned on ground-truth correct and incorrect
solutions separate with increasing the number of shots up to 256, as shown in Figure A.4 (right).
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Code Verifier: Best-of-4 Performance Code Verifier: Conditional Probabilities
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Figure A.4: Learning Verifiers In-Context for checking correctness of GSM8K code solutions. Error bars
denotes standard error of mean over 3 seeds. See Figure A.11 for a 2-shot prompt. Best-of-N accuracy. (Left)
Average accuracy of top-ranked code solutions (among 4 solutions) based on the verifier score on 200 GSM8K
test problems. Best-of-4 selection with 128-shot bridges the gap between Pass@1 accuracy of 77.25% and
Pass @4 accuracy of 90% with Gemini 1.0 Pro model. Verifier Confidence. (Right) Conditional Probabilities of
the Yes token IP(Y'es) from the verifier, averaged over all correct and incorrect solutions on test problems.

Overall, these results show a proof-of-concept that the Gemini model becomes better at verifying
correctness of solutions with many-shot ICL.

A.6 Is Many-Shot ICL Sensitive to Example Ordering?

In few-shot in-context learning (ICL), the order of examples within the prompt can signif-
icantly impact model performance [37, 62]. Here, we investigate whether such sensitivity
to prompt ordering observed in few-shot ICL persists in many-shot scenarios, which remains
largely unexplored. Specifically, we evalu-

ate ten different random orderings of fixed MATH500: 50-shot Ordering Sensitivity
50 in-context examples from MATH train-  _ 70.0% 2
. . o
ing split and evaluate performance on the & 65.0%
. o
held-out MATHS500 test set [32]. 3 o ° o
Ce0.0%| °© & g 'y > ®
As Figure A.5 reveals, performance varies § o $ ® g
. . . . 0, @ o
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variation in average performance compared  Figure A.5: Many-Shot Sensitivity To Example Ordering.
to individual subareas. One interesting ex- Each colored data point represents a different random ordering
tension would be to optimize many-shot of 50 in-context examples provided to Gemini 1.5 Pro.
prompts using frameworks like DSPy [27]

that has been successfully applied for opti-

mizing few-shot prompts based a given metric. Overall, these findings highlight a key challenge in
ensuring reliable results with many-shot ICL for long-context models.
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A.7 Negative Log-Likelihood on Model-Generated Data

Negative Log Likelihood (NLL) on Model Generated Test Solutions with L-shot prompt
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Figure A.6: NLL For Model-Generated Data. We compute negative log-likelihood on model-generated
solutions for Hendrycks MATH. We generate solutions using prompts of varying lengths, starting from (model-
generated) 4-shot prompts, and going up to 500-shot prompts. We then score the solutions with (model-generated)
prompts of different lengths, from 4-shot to 500-shot prompts. We see that, for the solutions generated using
the 4-shot prompt, the NLL is lowest for 4-shot and 10-shot scoring prompts, and increases as the length of the
scoring prompt increases. Note that the generation and scoring prompts contain different subsets of examples
from the training sets (and are randomized for each sample). Generally speaking, we see that the NLL is lowest
when the generation and the scoring prompts are of similar lengths, and higher when they are further apart. This
reveals to us that prompts of similar lengths induce similar distributions over the outputs, even when the actual
contents of the prompt are different. Further, we see that correct and incorrect solutions follow similar curves,
and the gap between NLL for correct and incorrect solutions does not follow any specific pattern.
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A.8 Example Prompts

You are an expert translator. I am going to give you one or more example pairs of text snippets where the
first is in English and the second is a translation of the first snippet into Kurdish. The sentences will be
written

English: <first sentence>

Kurdish: <translated first sentence>

After the example pairs, I am going to provide another sentence in English and I want you to translate it
into Kurdish. Give only the translation, and no extra commentary, formatting, or chattiness. Translate the
text from English to Kurdish.

English: Its remnants produced showers across most of the islands, though as of yet, no damage or flooding
has been reported.

Kurdish: Li heréma Serengetiyé, Parka Neteweyi ya Serengetl ya Tanzanyayé, Cihé Parastina Ngorongoro (i
Cihé Parastina Glyanewerén Né¢iré Maswa @i Cihé Parastina Neteweyi ya Masai Mara ya Kendyayé hene.

English: - - -
Kurdish:

Figure A.7: Example prompt with a test input for translation from English to Kurdish on FLORES-MT
benchmark in §2.1.

I will first show a news article and then provide a very short one sentence long summary of it in fluent English.

Summarize the following article: Burberry reported pre-tax profits of £166m for the year to March.

A year ago it made a loss of £16.1m, hit by charges at its Spanish operations.

In the past year it has opened 21 new stores and closed nine. It plans to open 20-30 stores this year worldwide.
The group has also focused on promoting the Burberry brand online.

Sales rose 7% to £1.28bn, with the company recording double-digit sales growth in Europe and Asia Pacific.
Adjusted profit rose 23% to £215m, taking into account one-off items and a favourable exchange rate.

Stores in London in particular benefited from favourable currency movements and increased tourism.

“Looking forward, while mindful of the economic environment, Burberry plans to build on its strong financial position
by accelerating investment in growth initiatives in retail, digital and new markets, while continuing to enhance the
brand,” said chief executive Angela Ahrendts.

Burberry shares were up 7.6% at 659 pence in afternoon trading.

Summary: Luxury fashion designer Burberry has returned to profit after opening new stores and spending more
on online marketing

Figure A.8: Example 1-shot prompt used for summarization on XSum and XLSum in §2.2.
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Please solve the problem:
(define (problem logistics-c2-s1-p1-a2)
(:domain logistics-strips)
(:objects

a0 al

cOcl

t0 tl

10-011-0

pO

)

(:init

(AIRPLANE a0)
(AIRPLANE al)
(CITY c0)

(CITY cl)
(TRUCK t0)
(TRUCK t1)
(LOCATION 10-0)
(in-city 10-0 c0)
(LOCATION 11-0)
(in-city 11-0 c1)
(AIRPORT 10-0)
(AIRPORT 11-0)
(OBJ p0)

(at t0 10-0)

(at t1 11-0)

(at p0 11-0)

(at a0 10-0)

(atal 11-0)

)

(:goal

(and

(at p0 10-0)

)

)

)

Your plan as plain text without formatting:
(load-airplane p0 al 11-0)

(fly-airplane al 11-0 10-0)

(unload-airplane p0 al 10-0)

done.

Please solve the problem:
(define (problem - - -)

Your plan as plain text without formatting:

Figure A.9: An example 1-shot PDDL [16] prompt, with a test example for the Logistics domain in §2.3. Within
a city, the locations are directly linked, allowing trucks to travel between any two of these locations. Similarly,
cities are directly connected to each other allowing airplanes to travel between any two cities. Each city is
equipped with one truck and has a designated location that functions as an airport

You will be given a multiple choice question with different choices such as (A), (B), (C), (D). Think step by step
before giving a final answer to this question. Always finish your answer with ’Final Answer: (X)’, where X is the
correct answer choice. If none of the options match, choose the closest option as the final answer.

Figure A.10: Zero-shot prompt for GPQA.
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# problem:

It starts raining at 7:00 and pours heavily until its stops at 17:00 on a particular day.
On the second day, the rain takes 2 more hours than it took on the first day to stop.

On the third day, the rain pours for twice the amount of time it took on the second day.
Calculate the total time it was raining in the three days.

# solution:
def solution():
"""It starts raining at 7:00 and pours heavily until its stops at 17:00 on a particular day.
On the second day, the rain takes 2 more hours than it took on the first day to stop.
On the third day, the rain pours for twice the amount of time it took on the second day.
Calculate the total time it was raining in the three days."""
first_day_rain_duration = 17 - 7 # 10 hours
second_day_rain_duration = first_day_rain_duration + 2 # 12 hours
third_day_rain_duration = second_day_rain_duration * 2 # 24 hours
total_rain_duration = first_day_rain_duration + second_day_rain_duration + third_day_rain_duration
result = total_rain_duration
return result

# is the solution correct?
Yes

# problem:

Haley is getting ready to watch a comet fly over her house.

She spends two hours shopping for a telescope, half an hour getting everything set up in the backyard,
three times the setup time making snacks, and 20 minutes watching the comet.

What percentage of the total time she spent on all those activities was spent watching the comet,
rounded to the nearest percent?

# solution:
def solution():
"""Haley is getting ready to watch a comet fly over her house.
She spends two hours shopping for a telescope, half an hour getting everything set up in the backyard,
three times the setup time making snacks, and 20 minutes watching the comet.
What percentage of the total time she spent on all those activities was spent watching the comet,
rounded to the nearest percent?"""
shopping_time = 2 # hours
setup_time = 0.5 # hours
snack_time = setup_time * 3 # hours
comet_time = 20 # minutes
total_time = shopping_time + setup_time + snack_time + comet_time
percentage_comet_time = (comet_time / total_time) * 100
rounded_percentage_comet_time = round(percentage_comet_time)
result = rounded_percentage_comet_time
return result

# is the solution correct?
No

Figure A.11: An example 2-shot code correctness verifier prompt on GSM8K. Here, the solutions are generated
using the Gemini 1.0 Pro [14] model. See results in §A.5.
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Problem: Find the domain of the expression g:i

Solution:

I need to find the domain of this expression.

This expression has two square root expressions.

I know the values under each square root must be non-negative.
So let me start by ensuring that.

Iset z — 2 > 0, which simplifies to z > 2.

Then, I set 5 — > 0, which simplifies to x < 5.

But I need to make sure the denominator is not zero.

So, 5 — x must also be greater than zero, which gives me x < 5.

Therefore, the domain of the expression is| [2,5) |

Answer: [2,5).

Final Answer: The final answer is [2,5). I hope it is correct.

Problem: If det A = 2 and det B = 12, then find det(AB).

Solution:

I need to find the determinant of the product of matrices A and B.

I remember that the determinant of the product of two matrices equals the product of their determi-
nants.

So, det(AB) = (det A)(det B) = (2)(12) =[24]

Answer: 24.

Final Answer: The final answer is 24. I hope it is correct.

Problem: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights
instead, how many times must Terrell lift them in order to lift the same total weight?

Solution:

Okay, so Terrell lifts a total of 2 - 12 - 20 = 480 pounds of weight with the 20-pound weights.
Well, if he switches to 15-pound weights, the total weight lifted will be 2 - 15 - n = 30n pounds,
where n is the number of lifts.

I want to find the number of lifts, n, for the total weight lifted to be the same.

I equate 30n to 480 pounds and solve for n.

30n = 480
=  n=1480/30 =
Answer: 16.

Final Answer: The final answer is 16. I hope it is correct.

Problem: If the system of equations

6x — 4y = a,
6y — 9z = b.

has a solution (z, ) where x and y are both nonzero, find ¢, assuming b is nonzero.

Solution:

I’'m given a system of two equations.

I see that if I multiply the first equation by —%, I’ll get another equation that has the same left-hand
side as the second equation, 6y — 9.

Let me try that

3
6y — 92 = —Ea.

Ah, I also know that 6y — 9 = b, so I can equate these two equations.
So,

a 2
—Ca=b=2=|-Z|
“ 3

2 b

Answer: —2.

Final Answer: The final answer is 7%. I hope it is correct.

Figure A.12: 4-Shot Inner Monologue prompt used for MATH and GSMS8K.
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Input: 255 378 650 363 42 447 898 211 104 145 975 6 827 769 977 901
Output: Foo

Input: 111 677 874 692 540 800 771 325 295 106 980 148 275 882 246 136
Output: Foo

Input: 136 215 529 65 265 475 45 639 678 95 460 902 746 919 181 838
Output: Foo

Input: 62 583 498 50 198 277 519 22 935 351 142 369 349 272 880 125
Output: Bar

Input: 101 99 830 735 732 76 243 703 564 3 225 20 136 333 195 441
Output: Bar

Input: 242 430 80 153 39 269 898 6 530 524 89 377 238 697 212 539
Output: Bar

Input: 261 83 244 37 170 277 161 779 544 272 893 535 71 394 64 607
Output: Bar

Input: 402 863 114 193 413 905 894 143 193 288 174 646 411 938 212 285
Output: Bar

Input: 869 365 622 671 191 780 492 836 381 450 184 388 604 79 924 926
Output: Foo

Input: 548 823 66 658 380 81 779 449 641 673 94 130 258 229 299 278
Output: Bar

Input: 700 409 398 375 236 745 32 33 333 173 902 399 176 95 851 897
Output: Foo

Input: 673 211 14 221 508 752 147 309 338 23 827 980 373 861 980 946
Output: Foo

Input: 528 608 334 210 228 186 559 20 302 93 84 436 726 114 785 865
Output: Bar

Input: 117 190 66 628 31 838 183 687 598 11 187 226 381 979 171 39
Output: Bar

Input: 802 730 854 392 529 95 15 987 800 266 551 816 145 390 419 686
Output: Foo

Input: 723 701 860 30 217 633 226 477 720 839 548 880 277 178 512 585
Output: Foo

Input: - - -

Output:

Figure A.13: Example prompt with 8 shots per class for the linear classification in 16 dimensions, discussed in
§4.2. Here, we use semantically-unrelated labels (‘Foo’ and ‘Bar’) following Wei et al. [61].
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A.9 Prompts for Unsupervised ICL

You will be provided Problems similar to the ones below:
Problem: What is the remainder when 369,963 is divided by 6?
Problem: The solution to the inequality

y=—z"+ar+b<0

is (—00, —3] U [5, 00). Find the vertex of the parabola y = —z* + ax + b.

Problem: Let = be an angle such that tanz = ¢ and tan 2z = aLer Then the least positive value of

x equals tan~' k. Compute k.
Problem: Compute sin 0°.
Problem: Let

9z 4+ 4  if z is an integer,
flx) = L ;
x| +5 if z is not an integer.

Find f(1/29).
Now, I am going to give you a series of demonstrations of math Problems and Solutions. When you
respond, respond only with the Solution of the final Problem, thinking step by step.”

Problem: Find the domain of the expression

Solution:

I need to find the domain of this expression.

This expression has two square root expressions.

I know the values under each square root must be non-negative.
So let me start by ensuring that.

Isetx — 2 > 0, which simplifies to z > 2.

Then, I set 5 — x > 0, which simplifies to z < 5.

But I need to make sure the denominator is not zero.

So, 5 — x must also be greater than zero, which gives me x < 5.

5—x”

Ne=y)
N —

Therefore, the domain of the expression is| [2,5) |

Answer: [2,5).

Final Answer: The final answer is [2, 5). I hope it is correct.

Problem: If det A = 2 and det B = 12, then find det(AB).

Solution:

I need to find the determinant of the product of matrices A and B.

I remember that the determinant of the product of two matrices equals the product of their determi-
nants.

So, det(AB) = (det A)(det B) = (2)(12) =[24]

Answer: 24.

Final Answer: The final answer is 24. I hope it is correct.

Problem: Evaluate (x + y)(z — y) when x = 13 and y = 5.

Figure A.14: Prompt used for Unsupervised ICL with MATH and GSMS8K. We first start with a preamble saying
that we are going to list a number of problems, and then we list the problems. We then give another pre-amble to
specify the output format, and include up to 4 examples to fully describe this output format. As we go to the
many-shot setting with hundreds of examples, we only increase the number of problems in the prompt, not the
problem-solution pairs at the end.
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You will be provided questions similar to the ones below:

Question:

A large gene has dozens of exons, of which the central ones code for folded triple helical repeats that connect the cytoskeleton
with sarcolemma and extracellular space. Each exon usually codes for one folded triple alpha helix. The most common mutations
of the gene are central exon deletions that create out-of-frame peptides and progressive degenerative organ waste. A solution is
to deliver a Morpholino that recognizes the 5° end of the out-of-frame exon in pre-mRNA. The molecule prevents binding of the
spliceosome and creates exon skipping and in-frame joining. Several missing exons are well tolerated by an organism. Which
structure below is not involved in the proposed therapy?

(A) antisense

(B) polyA tail

(C) R-loops

(D) lariat

Question:

You will be given a multiple choice question with different choices such as (A), (B), (C), (D). Think step by step
before giving a final answer to this question. Always finish your answer with "Final Answer: (X)’, where X is the
correct answer choice. If none of the options match, choose the closest option as the final answer.

Figure A.15: Unsupervised ICL Prompt for GPQA. We first start with a preamble saying that we are going to
list a number of questions, and then we list the questions. We then give another preamble to specity the output
format. As we go to the many-shot setting with hundreds of examples, we only increase the number of questions
in the prompt.

You will be provided source sentences in English to translate in into Kurdish similar to the ones below:

English: Its remnants produced showers across most of the islands, though as of yet, no damage or flooding
has been reported.

You are an expert translator. I am going to give you one or more example pairs of text snippets where the
first is in English and the second is a translation of the first snippet into Kurdish. The sentences will be
written

English: <first sentence>

Kurdish: <translated first sentence>

After the example pairs, I am going to provide another sentence in English and I want you to translate it
into Kurdish. Give only the translation, and no extra commentary, formatting, or chattiness. Translate the
text from English to Kurdish.

English: Its remnants produced showers across most of the islands, though as of yet, no damage or flooding
has been reported.
Kurdish: Li heréma Serengetiyé, Parka Netewey1 ya Serengeti ya Tanzanyayé, Cih€ Parastina Ngorongoro

Cihé Parastina Giyanewerén Né¢iré Maswa G Cihé Parastina Netewey1 ya Masai Mara ya Kendyay€ hene. English: - - -
Kurdish:

Figure A.16: Unsupervised ICL Prompt for the low-resource MT task. We first start with a preamble saying that
we are going to list a number of source sentences, and then we list the sentences. We then give another preamble
with 1 input-output example to specify the output format. As we go to the many-shot setting with hundreds of
examples, we only increase the number of source sentences in the prompt.
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A.10 Unsupervised ICL on Machine Translation

Translation: English —» Kurdish

Q 45 ICL (Source and Target)
(=)
: —e— Unsupervised ICL (Source Only)
: 40 ) gt ® . o o—<—0—o——o
L.
—_
S
+ 35
7]
Ko,
30

1 5 10 25 50 125250500997
Number of Shots (K)

Figure A.17: Unsupervised ICL does not work for low-resource machine translation. This is expected as
providing only source sentences for translation task doesn’t improve the task specification. See Figure A.16 for
the prompt used for unsupervised ICL for this experiment.

A.11 Reinforced ICL: Data-collection Prompt Sensitivity and Iteration 2
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Figure A.18: Reinforced ICL Hendrycks MATH. We find the performance of model-generated rationales with
4-shot Minerva prompt is generally better or comparable to the ones generated by 4-shot InnerMono. MATH
prompt. Furthermore, another iteration of Reinforced ICL — generating rationales from the best performing
25-shot prompt (with model-generated rationales) on the MATH training set and using the problems which were
not solved in first iteration — seem to further improve many-shot performance.

A.12 Linear Classification: Data Generation

For each classification dataset, we randomly sample another N-dimensional vector as the decision
boundary and a decision threshold. We then provide K N-dimensional points above this threshold
and K points below that same threshold as in-context exemplars, and the model must determine
whether unseen N-dimensional points are above or below the threshold (we do not tell the model the
equation or the threshold). We provide the python code for date generation below.

import numpy as np
def _generate_dataset(minv, maxv, N, k, a, t):
xtrain , ytrain = [], []

count_pos, count_neg = 0, 0

while (count_pos < k) or (count_neg < k):
x_ex = np.random.randint(minv, maxv, size=N)
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label =1
if np.dot(x_ex, a) > t:
if count_pos >= k:

continue
count_pos += 1
else:
if count_neg >= k:
continue
count_neg += 1
label = -1

xtrain .append (x_ex)
ytrain .append(label)
return np.array(xtrain).astype(str), np.array(ytrain)

def GENERATEEVAL(N, k, seed):
"""Generates one evaluation example for N-dimensional linear classification.

Args:
N: Dimensionality of the data.
k: Number of in—-context exemplars per class.

Returns :
xtrain: A list of 2k training examples (k positive, k negative ).
ytrain: A list of corresponding labels for training examples.
xeval: A list of evaluation examples (25 positive, 25 negative)
yeval: Ground—truth labels for evaluation examples.

# Step 2: Generate ground—truth coefficients

np.random.seed (seed)

minv, maxv = 1, 1000

a = np.random.randint (minv, maxv, size=N) # Random integer coefficients

# Step 3: Generate a pivot point
p = np.random.randint(minv, maxv, size=N)

# Step 4: Calculate the classification threshold
t = np.dot(a, p)

# Steps 5: Generate training examples
Xtrain , ytrain = _generate_dataset(minv, maxv, N, k, a, t)

# Steps 6: Generate the evaluation example
xeval , yeval = _generate_dataset(minv, maxv, N, 25, a, t)

return xtrain, ytrain, (xeval, yeval)

Listing 1: Code for Generating Sythetic datasets for Linear Classification in High Dimensions.

A.13 Training GPT-2 from scratch on the sequential parity task
10 Max num examples

0'8 in many-shot ICL UMMAW—V]
'14 N

Performance of
many-shot ICL

Accuracy

0.2
—— best small
0.0 A bl best medium
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Num examples seen le5

Figure A.19: For the sequential parity task, training a transformer from scratch does not meet 8192-shot
ICL performance (dashed lines) until 20 x the number of examples. We trained two transformers on the
sequential parity task (from §4.2). The smaller model was the size of GPT-2 Small, with 12 layers and 768
embedding dimension. The larger model was the size of GPT-2 Medium, with 24 layers and 1024 embedding
dimension. We trained using a linear warmup and square root decay schedule, sweeping max learning rate
values [le-5, 5e-5, le-4, 5e-4, 1-e3] and num warmup steps [50, 100, 500, 1000, 5000]. The best values for both
models (fastest learning) were max_Ir=1e-4, warmup_steps=1000.

30



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims are supported by empirical experiments with Gemini 1.5 Pro.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See discussion in §5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: [NA]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiments are done on public datasets or publicly available LLM APIs.
Main ICL details are provided in §2.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: Unfortunately, our experiments depend on internal infrastructure and code that
can not be made fully public.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Train/ test details are provided within each subsection.
Guidelines:

e The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars are reported for almost all experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

33


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: It is typically not possible to infer details about compute resources as experi-
ments depends on the Gemini 1.5 Pro API. However, the querying cost in terms of money
can be easily estimated using the amount of prompt tokens sent and output tokens generated
for each task.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The work is foundational research and and not tied to particular applications.
Both useful applications (such as better summarization, translation etc) as well as potentially
bad applications such as jailbreaking models [2] are possible. Most of these use-cases need
to be handled by LLM inference API providers on a case-by-case basis.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper uses an already publicly available inference API for Gemini 1.5 Pro
model.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Only publicly available datasets with MIT / CC-BY 4.0 licenses are used for
experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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