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Abstract

As large language models (LLMs) increas-001
ingly mediate cross-cultural communication,002
their behavior still reflects the distributional003
bias of the languages and viewpoints that004
are over-represented in their pre-training cor-005
pora. Yet, it remains a challenge to model006
and align culture due to limited cultural knowl-007
edge and a lack of exploration into effec-008
tive learning approaches. We introduce a009
cost-efficient, cognitively grounded remedy:010
parameter-efficient fine-tuning on native speak-011
ers’ free word–association norms, which en-012
code implicit cultural schemas. Leveraging013
English-US and Mandarin associations from014
the Small-World-of-Words project, we adapt015
LLAMA-3.1-8B and QWEN-2.5-7B via super-016
vised fine-tuning (SFT) and PPO-based pref-017
erence optimization. SFT boosts held-out as-018
sociation Precision@5 by 16–20 % in English019
and 43–165 % in Mandarin, lifts median con-020
creteness by +0.20, and attains human-level va-021
lence and arousal. These lexical gains transfer:022
on World-Values-Survey questions, fine-tuned023
models shift answer distributions toward the tar-024
get culture, and on a 50-item high-tension sub-025
set, Qwen’s Chinese-aligned responses double026
while Llama’s US bias drops by one-third. Our027
7–8B models rival or beat vanilla 70B baselines,028
showing that a few million culture-grounded029
associations can instill value alignment with-030
out costly retraining. Our work highlights both031
the promise and the need for future research032
grounded in human cognition in improving cul-033
tural alignment in AI models.1034

1 Introduction035

Every culture creates its own unique lens for under-036

standing the world (Boroditsky, 2011). While we037

all share the same basic human brain, the way we038

use it—how we think, feel, and make sense of real-039

ity—is fundamentally shaped by our cultural envi-040

ronment (Park and Huang, 2010). Through years of041

1All code and data will be released upon acceptance.

Figure 1: Example of how cultural word associations
at the lexical level relate to higher-level cultural value
preferences. (1) Word associations show distinct cul-
tural perception around the word of freedom and equal-
ity, with American associations emphasizing individual
liberty and patriotic symbols, versus Chinese associa-
tions focusing on collective harmony and institutional
frameworks. (2) These lexical differences correspond to
opposing value preferences in responses to the survey
question.

immersive experience, culturally specific ways of 042

thinking become internalized (Nisbett and Masuda, 043

2003). These deep mental frameworks automat- 044

ically guide how we interpret concepts, perceive 045

situations, and make decisions. At the same time, 046

this long-term internalization makes cultural knowl- 047

edge difficult to capture systematically. Much of 048

this knowledge operates as common sense within a 049

culture—deeply embedded and rarely articulated 050

(Acharya et al., 2021). While some cultural in- 051

formation exists online, e.g., holidays and tradi- 052

tions, this represents only the visible surface (). 053

The deeper layers of cultural cognition, including 054

unspoken assumptions, subtle social cues, and the 055

implicit ways people naturally connect concepts, 056

remain hidden within the minds of cultural insiders. 057

As large language models (LLMs) become em- 058
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bedded in global communication, they increas-059

ingly engage with users from diverse cultural back-060

grounds. However, most LLMs are trained pri-061

marily on English-language data, leading to an062

over-representation of Western perspectives and063

an under-representation of culturally specific con-064

cepts. (Cao et al., 2023; Naous et al., 2024).065

This bias not only limits their effectiveness in066

culturally grounded applications (Nguyen et al.,067

2024), but also risks ethical issues and inappro-068

priate responses (e.g., suggesting drinking wine069

after Maghrib prayer (Naous et al., 2024)). En-070

suring LLMs are culturally aware is crucial for071

fostering diversity and effective communication072

in today’s AI ecosystem. (Hershcovich et al.,073

2022). Full retraining, however, is prohibitive:074

frontier models consume hundreds of petaFLOPs-075

days and tens of millions of dollars (Hoffmann076

et al., 2022), exacerbating carbon costs and the077

global “AI compute divide” (Faiz et al., 2024).078

Parameter-efficient fine-tuning (LoRA, QLoRA)079

touches <1% of weights and slashes compute de-080

mands, yet still needs culture-rich data (Hu et al.,081

2021; Dettmers et al., 2023).082

Recent work has focused on evaluating cultural083

alignment using survey-based methods (Durmus084

et al., 2024) and adapting models through prompt-085

ing or synthetic data generation (Cao et al., 2024;086

Shi et al., 2024), but without lived-experience cor-087

pora, true cultural grounding remains elusive (Liu088

et al., 2025).089

In response, we turn to native speakers’ free090

word associations—a classic psycholinguistic lens091

on implicit cultural schemas. When prompted with092

red, U.S. respondents offer danger, stop, or anger,093

whereas Chinese respondents give happiness, cele-094

bration, or luck, illustrating how such spontaneous095

links reveal culture-specific cognition absent from096

text corpora. If such lexical links mirror deeper097

values, aligning them should nudge models toward098

culture-consistent judgements.099

We fine-tune Llama-3.1-8B and Qwen-2.5-7B on100

English (SWOW.EN) and Mandarin (SWOW.ZH)101

word associations via SFT and PPO, then test (i)102

how well it regenerates human associations and103

(ii) World-Values-Survey alignment. Our findings104

reveal that (1) vanilla Llama leans toward U.S. as-105

sociations and values, whereas vanilla Qwen leans106

toward Chinese; (2) association-tuned models pro-107

duce markedly more human-like, affective, and108

concrete associations; and (3) this lexical gain trans-109

lates into stronger value alignment with the tar-110

get culture, most notably when the original model 111

lacked that knowledge. 112

This study makes three key contributions: 113

1. We conduct the first head-to-head study 114

of cultural fine-tuning, contrasting LoRA- 115

based supervised fine-tuning with preference- 116

optimized PPO on the same English and 117

Chinese-SWOW corpora, and track their im- 118

pact on valence, arousal and concreteness. 119

2. We show how lexical-level association train- 120

ing shifts models toward target-culture value 121

judgments using a two-tier evaluation. 122

3. We commit to releasing – upon acceptance 123

– the complete training pipeline plus the top- 124

performing LoRA adapters so that anyone can 125

plug US- or CN-specific cultural knowledge 126

into their own LLMs. 127

2 Related Work 128

2.1 Cultural Alignment in LLMs 129

Cultural Bias in LLMs LLMs inherit the skew 130

of their training corpora; the English-heavy web 131

thus pushes models toward Western-centric values 132

(Naous et al., 2024; Adilazuarda et al., 2024). In the 133

absence of broad, authentic datasets, researchers 134

mine proxy sources such as Wikipedia (Nguyen 135

et al., 2023) and online communities (Shi et al., 136

2024), or ask LLMs to fabricate synthetic cultural 137

data (Bhatia and Shwartz, 2023; West et al., 2022). 138

Yet, as Liu et al. (2025) notes, lived-experience 139

corpora remain scarce. We fill this gap by tapping 140

large-scale native word-association norms as a di- 141

rect, culturally grounded resource. 142

Cultural Alignment Evaluation Alignment is 143

typically judged by comparing model outputs with 144

human responses from multiple cultures (Liu et al., 145

2025; Adilazuarda et al., 2024). Researchers draw 146

on cross-cultural surveys such as Hofstede’s di- 147

mensions (Geert et al., 2020), the Pew Global Atti- 148

tudes Survey and the World Values Survey (WVS) 149

(Haerpfer et al., 2020). Recent benchmarks build 150

on WVS to score LLMs across nations (Durmus 151

et al., 2024; Zhao et al., 2024; Giuliani et al., 2024), 152

capitalizing on its large sample sizes, 200-country 153

coverage, and breadth of topics. We likewise adopt 154

WVS for our value-alignment tests in Section 5. 155

2.2 Word Associations and Their Value 156

Word associations and their value Word associ- 157

ation tasks elicit the first responses that come to 158

2



mind for a cue, exposing the spontaneous, affect-159

laden links that structure semantic memory. Large160

normative datasets now exist: the University of161

South Florida norms (Nelson et al., 2004) and the162

crowd-sourced Small-World-of-Words (SWOW)163

corpus, whose English edition spans 12 000 cues164

and 3 M responses (De Deyne et al., 2019). Com-165

pared with distributional embeddings, human asso-166

ciations convey richer affective and multimodal in-167

formation (De Deyne et al., 2021). Parallel SWOW168

collections in Dutch (De Deyne et al., 2013), Span-169

ish (Cabana et al., 2024), Chinese (Li et al., 2024)170

and other languages provide language-specific re-171

sources that ground culture directly in speakers’172

lived experience.173

Word Association and Culture Association174

norms already illuminate cultural contrasts: “food”175

evokes cuisine-specific terms across groups (Guer-176

rero et al., 2010; Son et al., 2014), and “health”177

links to “wealth” in India but to “sick” in the United178

States (Garimella et al., 2017). Large SWOW cor-179

pora further identify culture-defining keywords in180

Spanish, Dutch, English, and Chinese (Lim et al.,181

2024) and recover language-specific moral values182

(Ramezani and Xu, 2024). Whether such lexical-183

level signals can also steer LLMs toward higher-184

level value alignment, however, remains open. We185

tackle this gap by fine-tuning models on cross-186

cultural association data and testing transfer from187

word associations to World-Values-Survey judg-188

ments. While drafting this paper, we noticed a189

concurrent work (Dai et al., 2025) that also uses190

word associations to steer language models via lin-191

ear transformations. Unlike their primary focus on192

culturally aware association generation, our work193

explores different learning approaches to scale and194

transfer from association-level signals to high-level195

value alignment.196

3 Framework Overview197

We aim to investigate the extent to which mod-198

els trained on association-level cultural knowledge199

can transfer to higher-level value alignment. To this200

end, we train language models on language-specific201

human word associations2 using multiple training202

strategies and model families. We then assess each203

model on two tiers: (i) association generation and204

(ii) value alignment via survey questions. This sec-205

2We treat language-specific word associations as cultur-
ally grounded signals, reflecting the conceptual organization
shaped by speakers’ cultural experiences.

tion covers data and training, while the evaluation 206

setups are given in Sections 4 and 5. 207

3.1 Language and Culture Selection 208

We focus on English (US) and Mandarin (CN) be- 209

cause they provide a clear cultural contrast for trans- 210

fer experiments. These cultures differ in individual- 211

ism vs. collectivism, emotional expression norms, 212

and conceptual associations (as shown in our “red” 213

example). 214

Additionally, both languages have large-scale, 215

high-quality native speaker word association 216

datasets available, making this a practically sig- 217

nificant test case for cultural transfer learning. 218

3.2 Word-Association Datasets 219

We train on the largest Small-World-of-Words cor- 220

pora: English SWOW (SWOW.EN; De Deyne 221

et al., 2019) and Mandarin SWOW (SWOW.ZH; 222

Li et al., 2024). SWOW.EN (2011–2019) provides 223

12 k cues and 3.6 M responses from 90 k native 224

speakers in the United States, United Kingdom, 225

Canada, and Australia (≈50 % U.S.). Each cue 226

was answered by 100 participants with three free 227

associations. For our U.S. analyses we retain only 228

respondents whose country and native language 229

are “United States,” calling this subset SWOW.US. 230

SWOW.ZH (2016–2023) comprises 10 k cues and 231

2 M responses from 40 k Mainland Chinese speak- 232

ers. Both SWOW.US and SWOW.ZH are split by 233

cue into 80 % train, 10 % validation, and 10 % test. 234

3.3 Model Selection 235

We choose widely used English-centric and 236

Chinese-centric models as the subjects of our study 237

to examine how language-specific word associa- 238

tions influence a model’s cultural behavior given 239

its initial representations. Specifically, we select 240

Llama3.1-8B-Instruct as the English-centric model 241

and Qwen2.5-7B-Instruct as the Chinese-centric 242

model.3 While the specific proportion of English 243

data in Llama3.1 is unknown, Llama 3 is trained 244

on a dataset comprising approximately 95% En- 245

glish content (Meta AI, 2023), and prior work has 246

shown that it tends to reflect a strong Western cul- 247

tural bias in its outputs (Aksoy, 2025). In contrast, 248

the Qwen2.5 family (Qwen et al., 2025), devel- 249

oped by the Chinese company Alibaba, exhibits 250

more Chinese-centric behavior across a range of 251

3Due to computational resource constraints, we limited
our study to models under 7/8B parameters.
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evaluation tasks in Chinese understanding and rea-252

soning (Guo et al., 2025; Hong et al., 2025).253

3.4 Fine-tuning LLMs on Cultural254

Associations255

To investigate how models acquire culturally256

grounded knowledge from word associations, we257

employ two approaches that leverage different sig-258

nals from human association data. First, the list259

of associations itself captures how native speakers260

understand a word. For example, for the cue word261

country, English associations include nation, state,262

America, and farm. For its Chinese equivalent国263

家, associations include中国 (China),人民 (peo-264

ple),国旗 (flag), and富强 (wealthy and powerful).265

We use supervised fine-tuning (SFT) to train mod-266

els to generate associations that are more aligned267

with these associations. Second, some associations268

are more commonly produced than others in hu-269

man word association data (e.g., nation is more270

frequent than farm), which can serve as a signal of271

human preference. We designed an approach using272

reinforcement learning with PPO (Schulman et al.,273

2017) to train models to rank the importance of274

associated words in a way that aligns with human-275

produced frequency rankings.276

From an imitation-learning perspective, SFT277

aims for broad coverage of the training data dis-278

tribution, whereas PPO fine-tuning is more mode-279

seeking, making it particularly effective for improv-280

ing LLM reasoning capabilities in tasks demanding281

precise and accurate answers (Xiao et al., 2025).282

However, it remains unclear how these ap-283

proaches differ in acquiring cultural knowledge. In284

this study, we compare their effectiveness in learn-285

ing language-specific word associations and their286

impact on downstream cultural alignment. Next,287

we describe the two training approaches and tasks.288

Supervised Fine-tuning We implement the word289

association prediction task directly in the super-290

vised fine-tuning (SFT) framework.4 Given a train-291

ing example x = ⟨c,w⟩, where c is a cue word292

and w = ⟨w1, w2, . . . , wn⟩ is a list of associated293

words, the model is trained to generate the associ-294

ated words w conditioned on the cue word c. The295

objective of SFT is to maximize the likelihood of296

the training data.5297

4We provide more details in Appendix C.
5The details of the hyperparameter setting for SFT are

provided in Appendix F.

PPO Training We formulate PPO training as 298

a ranking task, motivated by the observation that 299

certain associations are more commonly produced 300

than others in human word association data. Given 301

a cue word, the model is tasked with ranking a 302

list of associated words according to their rela- 303

tive prominence based on frequency in the SWOW 304

dataset. Formally, each training example is repre- 305

sented as x = ⟨c,w⟩, where c is the cue word and 306

w = ⟨w1, w2, . . . , wn⟩ is a list of candidate associ- 307

ated words. The ground-truth ranking is denoted as 308

r = ⟨r1, r2, . . . , rn⟩, where ri indicates the empir- 309

ical rank of word wi based on human association 310

frequency. 311

We implement a reward function that reflects 312

human preferences by prioritizing associations 313

that appear more frequently in human responses. 314

Specifically, we compute the Spearman rank cor- 315

relation between the model’s predicted rankings 316

and the ground-truth ranks from SWOW to deter- 317

mine the reward. This reward signal guides policy 318

updates via Proximal Policy Optimization (PPO), 319

encouraging the model to produce association rank- 320

ings that better align with human judgments6. 321

4 Association-level Evaluation 322

We test whether fine-tuning taught the models 323

human-like word associations. For this, we run two 324

complementary evaluations: Intrinsic: Generation 325

accuracy for SFT models and ranking accuracy for 326

PPO models and Extrinsic: Psychological qual- 327

ity of generated associates, measured on valence, 328

arousal and concreteness. 329

4.1 Experimental Setup 330

Data & prompts Each language’s SWOW cor- 331

pus is split by cue into 80 / 10 / 10; the 10 % test 332

cues drive all evaluations, using the same prompt 333

templates as training. 334

Metrics For generation we report Precision@K 335

(overlap with human top-K). For ranking we com- 336

pute Spearman ρ against human frequency ranks. 337

Psychological scoring Following Xiang et al. 338

(2025), we attach ratings from large norms and 339

compare the resulting distributions with the human 340

baseline. English norms: Warriner et al. (13 k lem- 341

mas, 1–9 V/A) and Brysbaert et al. (40 k lemmas, 342

6Initially, we conducted preliminary experiments with mul-
tiple task formats to determine the most effective design for
PPO training. See details in Appendix B and Appendix F
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M Type M Class SWOW P@5 P@10 P@40

Vanilla Llama - 0.754 0.609 0.295
SFT Llama US 0.875 0.773 0.437
Vanilla Qwen - 0.633 0.502 0.238
SFT Qwen US 0.761 0.651 0.327

Table 1: Word Association Generation for English

M Type M Class SWOW P@5 P@10 P@40

Vanilla Llama - 0.260 0.181 0.057
SFT Llama ZH 0.689 0.556 0.277
Vanilla Qwen - 0.481 0.364 0.159
SFT Qwen ZH 0.689 0.559 0.279

Table 2: Word Association Generation for Chinese

M Type M Class SWOW Spearman ρ

Vanilla Llama - 0.241
PPO Llama US 0.270

Vanilla Qwen - 0.292
PPO Qwen US 0.321

Table 3: Results of the Ranking Task in English

M Type M Class SWOW Spearman ρ

Vanilla Llama - 0.211
PPO Llama ZH 0.226

Vanilla Qwen - 0.291
PPO Qwen ZH 0.323

Table 4: Results of the Ranking Task in Chinese

1–5 concreteness). Chinese norms: Xu et al. (11 k343

V/A) and Xu & Li (9.9 k concreteness). Scales are344

min–max or inverted to match the English spans.345

Results Tables 1–2 show generation scores. All346

models score higher in English than in Mandarin,347

and Mandarin- centric Qwen outperforms Llama on348

Chinese cues. Supervised fine-tuning is decisive:349

P@5 jumps by 16–20 % in English and 43–165 %350

in Mandarin. Ranking results (Tables 3, 4) show351

PPO gives minor gains over Vanilla but remains far352

below SFT.353

4.2 Results on Psychological Attributes354

We compute per-cue medians of Valence, Arousal,355

and Concreteness over each model’s top-10 gener-356

ated associations, pairing them with human medi-357

ans via Wilcoxon tests. Tables 5 (English) and 6358

(Chinese) summarize these results. Valence: SFT359

variants (Llama-SFT, Qwen-SFT) reach human360

level in both languages. Valence: SFT variants361

(Llama-SFT, Qwen-SFT) reach human level in362

both languages. Arousal: in English, Vanilla/PPO363

Llama match humans; in Mandarin only SFT364

does.7. Concreteness: SFT raises concreteness 365

by +0.20–0.21 but remains 0.06–0.11 below hu- 366

man medians; non-SFT models stay more abstract. 367

Together with the Precision@K gains, these results 368

show that SFT not only boosts association accuracy 369

but also aligns models with human psycholinguistic 370

profiles. 371

5 Experiment 2: Cultural Value 372

Alignment Evaluation 373

We have shown that fine-tuning on language- 374

specific word associations embeds cultural patterns 375

at the lexical level. However, the key question 376

is whether this internalized knowledge supports 377

higher-order reasoning about cultural values and 378

beliefs. In RQ2, we evaluate this transfer using the 379

World Values Survey (WVS). Successful transfer 380

of association-driven cues to value-based scenarios 381

would demonstrate deeper cultural understanding; 382

failure would imply the need for explicit training on 383

higher-level cultural reasoning tasks. We first mea- 384

sure how well models align with target-culture re- 385

sponses, then analyze prediction shifts on a curated 386

“tension-set” of questions to probe fine-grained cul- 387

tural differences. 388

5.1 Experimental Setup 389

Dataset We evaluate cultural value alignment us- 390

ing the WVS (Haerpfer et al., 2020), focusing on 391

the United States and China—the dominant cul- 392

tures in our training data. Models are tested in the 393

original survey languages (English for US, Chi- 394

nese for China). From the original 290 WVS ques- 395

tions, we removed individual demographic ques- 396

tions (questions 260-290) and retained only ques- 397

tions being asked in both countries, yielding 221 398

questions for evaluation. We adopted the prompts 399

that the WVS was presented to the participants. 400

Evaluation We use vllm with constrained sam- 401

pling to generate answers. For a given question, we 402

constrain the output tokens to be the symbols of 403

the options (e.g., 1,2,3,4) and constrain the output 404

token number to be 1. Then we take the token log- 405

prob across the specified options and re-normalize 406

them to get the distribution of the answer options 407

(Robinson and Wingate, 2023). We measure the 408

alignment using the distance between the model 409

predicted probability distribution and human an- 410

swer distribution. We use two metrics that are 411

7Cue-level violin and box plots for valence, arousal, and
concreteness are in Appendix G
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Metric Human Llamavan Llamappo Llamasft Qwenvan Qwenppo Qwensft

Valence 5.514 5.398 5.403 5.543* 5.337 5.352 5.484*

Arousal 4.244 4.272* 4.238* 4.214 4.192 4.183 4.192
Concreteness 3.644 3.378 3.355 3.582 3.368 3.349 3.535
Emotional % 84.6% 78.2% 77.5% 75.5% 73.5% 73.5% 74.9%
%Conc | %Abs | %Unk 64.3/29.8/5.9 52.8/37.9/9.3 51.1/38.7/10.2 56.8/29.0/14.2 50.5/37.0/12.5 50.4/37.2/12.4 56.7/29.6/13.7

Table 5: Emotion and concreteness scores on SWOW.EN. * Bold indicates no significant difference from human
medians (p ≥ 0.05, Wilcoxon paired test).

Metric Human Llamavan Llamappo Llamasft Qwenvan Qwenppo Qwensft

Valence 5.386 5.341 5.311 5.427* 5.352 5.332 5.411*

Arousal 5.378 5.258 5.270 5.408* 5.233 5.220 5.370*

Concreteness 3.657 3.370 3.394 3.576 3.391 3.412 3.516
Emotional % 53.3% 31.8% 33.8% 41.9% 42.3% 41.6% 47.9%
%Conc | %Abs | %Unk 35.9/15.8/48.3 17.9/12.7/69.4 19.3/13.2/67.5 27.6/13.2/59.2 24.1/16.6/59.3 24.2/15.8/60.0 30.4/15.9/53.8

Table 6: Emotion and concreteness scores on SWOW.ZH. * Bold indicates no significant difference from human
medians (p ≥ 0.05, Wilcoxon paired test).

used separately in prior work (Durmus et al., 2024;412

Zhao et al., 2024) to calculate the distance: (a)413

Jensen-Shannon distance and (b) Earth Mover’s414

distance, which is location-aware—it can’t tell415

whether a prediction is “almost right” or “very416

wrong” if both are confident and equally wrong.417

For a finer comparison, we also measure the align-418

ment by calculating the percentage of questions419

with distances below different thresholds. We use420

the language that is aligned with the target cul-421

ture to prompt the language models (Chinese for422

both the World Values Survey questionnaire and423

the models trained on Chinese SWOW).8424

Approaches We use Vanilla models as our base-425

line to understand to what extent the models are cur-426

rently aligned with the specified culture. We apply427

the same prompts as the Vanilla models on our fine-428

tuned models to understand how the impact of fine-429

tuning on word associations does on transferring430

the cultural values encoded. We also included two431

70B-scale models for zero-shot prompting, which432

allows us to contextualize our results more broadly433

and estimate the potential upper bound that word434

associations can provide.435

5.2 Overall Results436

Table 7 presents our experimental results on the437

World Values Survey. We observe that Vanilla mod-438

els exhibit different degrees of cultural alignment439

with the target populations. In the US setting (En-440

glish), the Llama model shows better alignment441

with the ground-truth human responses compared442

8We collected the English and Chinese WVS questionnaire
from the official website https://www.worldvaluessurvey.
org/WVSDocumentationWV7.jsp

M Type M Class Nation JS EMD

Vanilla Llama US 0.324 0.102
SFT Llama US 0.392 0.114
PPO Llama US 0.288∗ 0.092
Vanilla Qwen US 0.388 0.131
SFT Qwen US 0.355∗ 0.118
PPO Qwen US 0.353∗ 0.125

Vanilla Llama3.1_70b US 0.294∗ 0.094
Vanilla Qwen2.5_72b US 0.262∗ 0.109∗

Vanilla Llama ZH 0.459 0.152
SFT Llama ZH 0.421∗ 0.129∗

PPO Llama ZH 0.445∗ 0.143∗

Vanilla Qwen ZH 0.415 0.139
SFT Qwen ZH 0.325∗ 0.100∗

PPO Qwen ZH 0.412∗ 0.139

Vanilla Llama3.1_70b ZH 0.333∗ 0.100∗

Vanilla Qwen2.5_72b ZH 0.328∗ 0.116∗

Table 7: World Values Survey results. Top: SWOW.EN
fine-tuned; bottom: SWOW.ZH fine-tuned. * indicates
significant improvement over Vanilla (Wilcoxon test).
Survey language matches dataset (EN for US, ZH for
CN).

to Qwen. In contrast, under the ZH setting (Chi- 443

nese), the alignment trend reverses: the Qwen 444

model outperforms Llama, achieving a notably 445

lower alignment score. These findings align with 446

prior work that Llama models tend to be western- 447

value centric and less capable in understanding 448

Chinese (Xiang et al., 2025; Aksoy, 2025), and 449

Qwen is more Chinese-centric. 450

Interestingly, models trained on the Chinese 451

SWOW data (i.e., SWOW.ZH) exhibit consis- 452

tent and significant improvements on the Vanilla 453

models (both Llama and Qwen). Specifically, 454

SWOW.zh supervised fine-tuning improves Chi- 455

nese (ZH) performance for Qwen across both met- 456

6
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Figure 2: Breakdown comparison of model alignment
with cultural values across China and United States
based on the World Values Survey. Results are shown
for the Vanilla and trained (SFT and PPO) versions of
Qwen2.5 and Llama 3.1. The x-axis is the threshold for
what counts as a “good” match, and the y-axis shows
the percentage of questions where the model’s answer
was within that threshold.

rics—achieving the best alignment overall. More-457

over, after fine-tuning, the alignment of the Llama458

model towards Chinese values is closer, even better459

than the Vanilla Qwen model on EMD, suggest-460

ing that training on Chinese word association data461

steers the model towards more of the higher-level462

Chinese value. This highlights the cross-lingual463

transferability of semantic associations when the464

training data has a strong cultural grounding. Mean-465

while, the task used to train models also matters, as466

we can see the improvements from PPO training467

are more on the US while SFT is more on Chinese.468

In English, training on SWOW.EN brings signif-469

icant improvements (except for SFT Llama). The470

best-performing model is PPO Llama, which even471

achieves comparable or better results than the larger472

70B models. We also find that the overall degree473

of improvement on the US set is smaller than that474

on the ZH set, suggesting that English associations475

might provide a weaker cultural signal than Chi-476

nese associations. This might be because the mod-477

els are already highly exposed to English during478

(a) Qwen-7B

(b) Llama-8B

Figure 3: Comparison of shifts after SFT for Qwen-
7B and Llama-8B on SWOW.ZH (ZH prompts). Each
dot = one WVS question; blue (red) indicates that the
question is more towards Chinese (English). Table 8
presents concrete examples that illustrate the shifts.

pre-training and less so to Chinese data, or it could 479

be due to the greater cultural diversity in the US, 480

which makes alignment more challenging. 481

Interestingly, our best-performing trained 7/8B 482

models not only hold their ground against the much 483

larger 70B models, but in some cases even sur- 484

pass them. For English, the PPO-tuned Llama (8B) 485

outperforms the Vanilla Qwen2.5_72B, while in 486

Chinese, the SFT-tuned Qwen (7B) outperforms 487

the Vanilla Llama3.1_70B. Figure 2 further illus- 488

trates how well different models align with human 489

responses, evaluated under varying thresholds of 490

Jensen-Shannon distance. For both US and ZH 491

settings, we include the best-performing fine-tuned 492

model, its vanilla counterpart, and a larger model 493

version. In the US setting, the PPO-tuned model 494

outperforms the vanilla model and even slightly sur- 495

passes the 70B model. In the ZH setting, the SFT 496

model largely improved the vanilla model across 497

thresholds. For example, at a JS distance of 0.3, 498

only about 20% of questions are aligned for the 499

vanilla model, compared to approximately 50% 500

for the SFT model. Notably, the SFT model even 501

outperforms the 72B model under stricter condi- 502

tions (e.g., JS < 0.3). These results are promising, 503

highlighting the powerful potential of culturally 504

grounded fine-tuning as a lightweight yet effective 505

alternative to scaling up. 506
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Id WVS question (full wording +
choice labels)

US CN Qwenvan Qwensft Llamavan Llamasft

Q149 Most people consider both freedom
and equality important, but if you
had to choose between them, which
would you consider more important?
{1: Freedom; 2: Equality}

[77%,23%] [34%,66%] [83%,17%] [33%,67%] [93%,7%] [83%,17%]

Q168 In which of the following do you
believe, if you believe in any? –
Heaven {1: Yes; 2: No}

[65%,35%] [12%,88%] [71%,29%] [18%,82%] [97%,3%] [85%,15%]

Q165 In which of the following do you
believe, if you believe in any? – God
{1: Yes; 2: No}

[79%,21%] [17%,83%] [41%,59%] [29%,71%] [94%,6%] [87%,13%]

Q118 How often do ordinary people in
your neighborhood have to pay a
bribe, give a gift, or do a favor to
local officials/service-providers to
get needed services? {1: Never; 2:
Rarely; 3: Frequently; 4: Always}

[28%,55%,15%,2%] [4%,34%,36%,26%] [33%,55%,10%,2%] [5%,19%,67%,10%] [93%,4%,2%,1%] [77%,9%,8%,6%]

Q166 In which of the following do you
believe, if you believe in any? – Life
after death {1: Yes; 2: No}

[69%,31%] [12%,88%] [90%,10%] [36%,64%] [95%,5%] [87%,13%]

Table 8: WVS questions where SFT on Chinese SWOW shifts Qwen’s distribution toward Chinese responses.
Shaded cells highlight the fine-tuned model’s probabilities.

5.3 Cross-Cultural Value Alignment507

Evaluation508

Beyond comparing a model’s answers to a single509

culture, we examine how its responses shift from510

one culture toward the target culture whose word-511

association data it was fine-tuned on. To do so, we512

evaluate the model’s answers with respect to both513

the US and China. To capture the shifts, we focus514

on WVS questions where Chinese and U.S. partici-515

pants’ responses diverge strongly. We ranked the516

divergence by the average of both Jensen–Shannon517

divergence and Earth Mover’s distance and chose518

the top 50 most divergent questions.9 Concentrat-519

ing on such “high-tension” questions provides max-520

imal sensitivity: even a small cultural shift in the521

model becomes observable, whereas questions an-522

swered similarly by both populations offer little523

diagnostic signal.524

Results Figures 3a (Qwen-7B) and 3b (Llama-525

8B) present the models’ prediction shifts before526

and after training in Chinese.10 For each of the527

50 questions, we compare the model’s response528

distance to U.S. answers (x-axis) against its dis-529

tance to Chinese answers (y-axis). For Qwen-7B,530

we find that Chinese-leaning responses increase531

from 13,/,50 in the Vanilla model to 25,/,50 af-532

ter SFT, indicating a marked shift toward Chinese533

cultural preferences. For Llama-8B, the Vanilla534

model’s predictions are clustered along the diag-535

9The details of selecting the tension-set are provided in
Appendix H.2

10More results in US are provided in Appendix H.3.

onal and skewed toward the U.S., while the SFT- 536

tuned Llama shifts more modestly—still increasing 537

from 20 to 24 Chinese-leaning responses, thereby 538

reducing roughly one-third of its initial U.S. bias. 539

Table 8 presents concrete ‘before-and-after’ exam- 540

ples with human answer distributions (US, ZH) and 541

model prediction distribution, illustrating how su- 542

pervised fine-tuning consistently shifts Qwen (and, 543

to a lesser extent, Llama) away from the US major- 544

ity proportions and toward the Chinese ones. 545

6 Conclusion 546

This study investigates how native speakers’ word 547

associations can serve as a source of cultural knowl- 548

edge. We develop several approaches to train 549

models to learn cultural signals and evaluate their 550

alignment at both the lexical level and in terms of 551

high-level values. We find that fine-tuning mid- 552

sized LLMs on language-specific word-association 553

norms (English and Mandarin SWOW) yields clear 554

improvements in both lexical and value alignment. 555

Fine-tuned models retrieve human associations 556

with higher precision and more closely match hu- 557

man valence, arousal, and concreteness ratings, 558

while their World Values Survey responses shift 559

toward target-culture distributions. These findings 560

demonstrate that grounding LLMs in a few million 561

associative cues can instill deep, cross-lingual cul- 562

tural understanding—enhancing reasoning about 563

values without costly retraining. 564
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7 Limitations565

Focusing on country-level alignment Our eval-566

uation aggregates cultural values at the national567

level (United States vs. China) and does not em-568

ploy persona- or demographic-based prompting.569

While this choice simplifies the analysis, it may570

mask important regional, social, or demographic571

variations within each country.572

Temporal gap between data and model training573

We rely on WVS Wave 7 surveys conducted during574

2017–2022 (Haerpfer et al., 2020), English SWOW575

associations collected in 2011–2018 (De Deyne576

et al., 2019), and Mandarin SWOW data from577

2016–2023 (Li et al., 2024). In contrast, Llama578

3.1 (8B) and Qwen 2.5 (7B) were trained on web579

data up to late 2023/early 2024. This temporal580

mismatch means our human cultural benchmarks581

may not fully reflect the information learned by the582

models, and shifts in cultural values or associations583

after the data collection periods are not captured.584

Limited scope of languages and models We585

focus on two high-resource languages (English and586

Mandarin) and two open-source models (Llama 3.1587

and Qwen 2.5). This narrow selection was chosen588

for tractability but limits the generalizability of589

our findings. Given the positive results from our590

analysis, future work should extend to additional591

languages and model architectures.592
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A Fine-tuning LLMs on Cultural 900

Associations 901

Fine-tuning directly on word association reshapes 902

the model’s behavior by adjusting its weight param- 903

eters. This approach has two key benefits: 904

Independence from external KB: Fine- 905

tuning eliminates the need for an external retrieval 906

system during inference. RAG relies on real-time 907

access to a knowledge base, which may not al- 908

ways be available and can significantly slow down 909

inference due to retrieval latency. In contrast, a 910

fine-tuned model carries its learned associations in- 911

ternally, making it faster and more self-contained. 912

Generalization beyond the dataset: Fine- 913

tuning enables the model to generalize to unseen 914

examples by learning patterns and semantic re- 915

lationships during training. For example, since 916

“gorilla” and “monkey” are close in the word 917

embedding space due to their shared features, a 918

model fine-tuned on “monkey” or other nearby 919

words—whether as cue words or associations—can 920

implicitly infer associations for “gorilla”, even if 921

it’s absent from the dataset. 922

In the following sections, we discuss the types 923

of fine-tuning techniques and the associated task 924

designs we employ for LLMs to learn word associ- 925

ations. 926

A.1 Supervised Fine-tuning 927

To provide context, we consider autoregressive 928

LMs such as the GPT (Brown et al., 2020) and 929

Llama (Grattafiori et al., 2024) series, which gener- 930

ate tokens in a left-to-right, autoregressive manner. 931

Let x< i be the first i− 1 tokens of a sequence x, 932

and let xi be the i-th token. The probability that the 933

LLM predicts token xi at position i can be written 934

as LMθ(x̂i = xi | x< i), where LMθ(·) is the 935

model’s probability distribution over the vocabu- 936

lary, and θ represents the model parameters. 937

We implement a word association prediction 938

task directly in the supervised fine-tuning (SFT) 939

framework. Given a training example x = ⟨c,w⟩, 940

where c is a cue word and w = ⟨w1, w2, . . . , wn⟩ 941

is a list of associated words, the model is trained 942

to generate the associated words w conditioned 943

on the cue word c. The objective of SFT is to 944

maximize the likelihood of the training data, which 945

is formalized as: 946
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J(θ) = max
θ

Ex∼X

 |x|∑
i=1

logLMθ(xi | x<i)


(1)947

where X denotes the training dataset, and |x| is948

the length of the token sequence.949

While this formulation captures the core learning950

objective, in practice we reformat each training in-951

stance into a more natural, instruction-style prompt952

that aligns with how LLMs are typically used. For953

example, we add constraints to the prompt to fur-954

ther guide the model’s generation process, such as955

“do not generate words conditioned on the presence956

of other words, but focus solely on the cue word.”957

See Appendix C for details.958

A.2 PPO training959

To further align LLMs with culturally-informed960

word associations, we explore reinforcement learn-961

ing from human feedback (RLHF), using Proximal962

Policy Optimization (PPO) algorithm (Schulman963

et al., 2017). RLHF has proven to be a powerful964

technique for fine-tuning LLMs by aligning them965

with preferences defined by a reward model, which966

is either trained on human feedback or based on967

predefined rules (Ouyang et al., 2022; DeepSeek-968

AI et al., 2025). Recent studies indicate that RLHF969

surpasses supervised fine-tuning (SFT) in enhanc-970

ing LLMs’ reasoning capabilities, as RLHF encour-971

ages exploration beyond explicit solutions found in972

training data, whereas SFT focuses on broad imita-973

tion of human-provided examples (Havrilla et al.,974

2024; Chu et al., 2025). From an imitation-learning975

viewpoint, RLHF exhibits mode-seeking behavior,976

prioritizing precise modes of response distributions,977

which makes it particularly effective for reasoning978

tasks demanding accuracy (Xiao et al., 2025). For979

further details on the differences between these980

fine-tuning approaches, we refer readers to Xiao981

et al. (2025).982

We use a rule-based reward function designed983

to reflect the fulfillment of designed tasks. Before984

we turn into the task design, we first introduce the985

three components of RLHF framework:986

1. a language model (policy) LMθ generating987

candidate outputs,988

2. a reward model r(q, a) evaluating those out-989

puts, where q is the question and a is the gen-990

erated answer, and991

3. a reinforcement learning algorithm (e.g., PPO) 992

that updates the model to maximize the re- 993

ceived reward. 994

Formally, RLHF fine-tunes the language model 995

LMθ by optimizing the following objective: 996

max
θ

Ea∼LMθ(a|q) [r(q, a)] 997

− βDKL [LMθ(a | q)||LMref(a | q)] (2) 998

where LMref is a frozen reference model (typically 999

the initial SFT model), and β is a scaling factor 1000

controlling the KL penalty that discourages large 1001

divergences from the reference model so as to main- 1002

tain the model stability. 1003

Ranking-based format11 Ultimately, we set- 1004

tled on a ranking task, where the model was asked 1005

to rank a list of association words of a cue word 1006

based on its frequency in the SWOW dataset. This 1007

design offers a middle ground: (1) It is more struc- 1008

tured and constrained than free-form generation, 1009

improving training stability and (2) It is more chal- 1010

lenging than MCQ, providing useful reward gradi- 1011

ents for learning. 1012

The reward function evaluates the alignment be- 1013

tween the model’s ranked list and ground truth 1014

rankings using Spearman’s rank correlation coeffi- 1015

cient. 1016

The objective of PPO is formalized as: 1017

LPPO(θ) = E(c,w)∼πθ

[
min

(
r(w)A, 1018

clip(r(w), 1− ϵ, 1 + ϵ)A
)
− β log q(w)

(3)
1019

where 1020

r(w) =
LMθ(w | c)

LMθ−1(w | c)
, (4) 1021

q(w) =
LMθ(w | c)

LMref(w | c)
, (5) 1022

A = Rspearman(x)− Vcritic(x) (6) 1023

While our main results focus on evaluating cul- 1024

tural alignment in downstream tasks, we also as- 1025

sess the LLMs’ performance on the training tasks 1026

themselves—namely, supervised fine-tuning (SFT) 1027

for word association prediction and PPO training 1028

for ranking tasks. These results provide hints into 1029

whether models have successfully learned word 1030

association patterns during fine-tuning. 1031

11Initially, we conducted preliminary experiments with mul-
tiple task formats to determine the most effective design for
PPO training. See details in Appendix B.
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B Preliminary Experiments on Task1032

Formats for PPO Training1033

One of the important preliminary experiments is to1034

identify suitable task formats for PPO training, en-1035

suring the complexity was balanced — neither triv-1036

ially solvable nor excessively challenging. Tasks1037

that are too easy yield minimal gradients for learn-1038

ing, whereas excessively difficult tasks also prevent1039

LLMs from exploring the correct answer.1040

We considered three task formats: Multiple1041

Choice Questions (MCQ), Free-form Association1042

Word Prediction, and Ranking-based Association1043

Prediction. Below we discuss each format in detail1044

along with our experimental findings.1045

Experiment 1: MCQ Format. We initially de-1046

signed an MCQ-style task to evaluate candidate1047

answers consisting of different categories of word1048

associations. Specifically, the model was presented1049

with a cue word and required to choose the option1050

(a set of associated words) most closely related to it.1051

Each MCQ contained four categories of candidate1052

answers:1053

• Category 1: High-frequency direct associa-1054

tions1055

• Category 2: Low-frequency direct associa-1056

tions1057

• Category 3: Indirect associations (frequent as-1058

sociations of the cue’s frequent associations)1059

• Category 4: Random unrelated words1060

Table 9 provides an illustrative example of this1061

MCQ format.1062

We hypothesized that Category 2 (low-frequency1063

direct associations) and Category 3 (indirect associ-1064

ations) would serve as hard negative distractors, en-1065

hancing task difficulty. However, our experiments1066

revealed that Vanilla LLMs were able to solve these1067

MCQs easily, achieving accuracy consistently near1068

100%. Thus, we concluded that the MCQ format1069

was too simplistic to generate meaningful reward1070

gradients for PPO training.1071

Experiment 2: Free-form Word Prediction.1072

Our next experiment involved training PPO directly1073

on the original word-association prediction task1074

used for supervised fine-tuning (SFT). Here, the1075

model freely generated association words condi-1076

tioned solely on the cue word without explicit con-1077

straints.1078

This task proved to be overly challenging. The 1079

space of potential actions and states was extremely 1080

large, causing PPO training to suffer from poor 1081

convergence. The model rarely explored words 1082

sufficiently close to the ground-truth associations, 1083

leading to sparse reward signals, which hindered 1084

effective training. 1085

Final Selection: Ranking-based Format. Ul- 1086

timately, we selected a ranking-based format (as 1087

described in the main text), where the model ranks 1088

a provided list of association words for each cue 1089

word, ordered by their frequency in the SWOW 1090

dataset. This task strikes a suitable balance be- 1091

tween structured guidance (to avoid sparse reward 1092

signals) and sufficient complexity (to prevent trivial 1093

performance), enabling effective gradient signals 1094

to guide PPO optimization. 1095

C Prompts for Supervised Fine-tuning 1096

We reformat each training instance into a more 1097

natural, instruction-style prompt that aligns with 1098

how LLMs are typically used. Below is a sam- 1099

ple prompt for the cue word “mosquito” and its 1100

associated words: 1101

Supervised Fine-tuning Example for En-
glish SWOW word association prediction

[CONTEXT]
You are a sophisticated language model
designed to explore word associations
comprehensively.
Given a cue word, your task is to
generate a comprehensive list of words
associated with the cue word. Aim
to cover as many relevant contexts,
uses, and meanings as possible without
repeating similar concepts. List a
target of [LOWER BOUND SIZE] to [UPPER
BOUND SIZE] words that together provide
a broad and insightful representation
of all significant associations. Focus
on revealing both common and unique
aspects related to the cue word
to ensure a balanced and thorough
exploration of potential associations.
Words should be distinct from each
other. Your response shall only be
the list of associated words. Do
not generate words conditioned on the
presence of other words but rather
focus on the cue word itself.
[CUE WORD]
mosquito
[ASSOCIATED WORDS]
bite, bug, itch, buzz, malaria, insect,
blood, net, fly, annoying, pest, summer,
ouch, itchy, buzzing, repellent, small,
swat, irritating, gnat, netting,

1102
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Category Example Words (Cue: apple)

High-frequency fruit, red, pear, tree
Low-frequency stem, sauce, farm, healthy
Indirect association internet, mouse, machine (from word computer)
Random house, planet, justice, notebook

Table 9: An example illustrating MCQ task categories.

camping, midge, proboscis, river,
pain, lump, sting, flight, disease,
spray, slap, swamp, fever, allergy,
annoyance, worthless, nest, crunchy,
smack, huge in canada, dead, amazonian,
insect bite, awake, tropical, water,
female, anopheles, coast, valentine,
doug, tent, jungle, whine, bumblebee,
bored, nozzle, blood sucker, noisy,
nasty, skin, vampire, torment, hawk,
ear, itchy welt, pinch, needle, dengue,
africa, bloodsucker, annoying bug,
mosquito net, australia, horrible, kill,
ugly, genetics

1103

Supervised Fine-tuning Example for Man-
darin SWOW word association prediction

[CONTEXT]
您是一款专为全面探索词语关联而设计的高级
语言模型。给定一个提示词，你的任务是生成
一个与该提示词相关联的全面词汇列表。目标
是尽可能涵盖所有相关的语境、用法和含义，
避免重复相似的概念。列出目标数量为[LOWER
BOUND SIZE] 到[UPPER BOUND SIZE]个词，这
些词共同提供对所有重要关联的广泛而深刻的
表示。专注于揭示与提示词相关的常见和独特
的方面，以确保对潜在关联进行平衡而彻底的
探索。词语应彼此不同。你的回答只能是相关
联的词语列表。不要生成受其他词语存在影响
的词语，而是专注于提示词本身。
[CUE WORD]
狱警
[ASSOCIATED WORDS]
监狱，警察，警棍，囚犯，制服，罪犯，犯
人，凶，看守，坐牢，严厉，警犬，暴力，很
凶，手铐，监管，刑警，局长，公安，强悍，
抹布，铁窗泪，打架，叮当作响，囚服，斯雷
因，管理，刑罚，敬业，可怕，辛苦，工作，
黑暗，霸王，钥匙，牢饭，SM，冷漠，凶恶，
逃狱，逃跑，强壮，酷刑，狱都市变，坏人，
凶悍，男人，刑法，条纹服，黑猫警长，铁
牢，卓别林，狱卒，反派，美剧，狱中杂记，
法律，僻静，虐待，劳改，悔恨，棍棒，牢
房，殴打，性虐待，女警，典狱长，警装，严
格，帅哥，肉文，铁棍，警服，电网，高墙，
严肃，警司，很辛苦，害怕，抓人，阳光，美
国，斯坦福大学，越狱

1104

To prevent overfitting and pattern memorization1105

during training, we randomly set the lower and1106

upper bounds for the number of associated words1107

required in each training instance. The associated1108

words are not shuffled; instead, they are ordered by1109

frequency from the SWOW dataset, with the most 1110

frequent words listed first. This ordering introduces 1111

an inductive bias, encouraging the model to think 1112

of the most common associations first. 1113

D Prompts for PPO training 1114

The task for PPO training is to rank a list of associ- 1115

ation words of a cue word based on its frequency 1116

in the SWOW dataset. The prompt for PPO train- 1117

ing is similar to that of SFT, but with a different 1118

instruction. 1119

PPO training Example for English SWOW
ranking task

[CONTEXT]
You are a sophisticated language model
designed to explore word associations
comprehensively.
Given the cue word, rank the following
associated words from the most strongly
related (rank 1) to the least strongly
related (rank 10).
Important Notes: 1. Rank ONLY
the provided associated words from
strongest (1) to weakest (10) in
relation to the cue word. 2. Do
NOT introduce any new words that aren’t
in the provided list.
Think step by step, comparing each
associated word to the others to
determine their relative strength of
association with the cue word.
**Your final answer should at the end
of the response and be in the following
format:**
Final Ranking: Rank 1: [Associated
Word] Rank 2: [Associated Word] ...
Rank 10: [Associated Word]
[CUE WORD]
dislike
[TARGET ANSWER]
Rank 1: detest
Rank 2: orange
Rank 3: flavor
Rank 4: displeasure
Rank 5: be well
Rank 6: kid refusing to eat
Rank 7: ugh
Rank 8: boss
Rank 9: peeve
Rank 10: gas

1120
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E Reward function details1121

1 % def compute_reward(queries, prompts, labels):
2 """
3 Computes reward scores for PPO training based on

Spearman's rank correlation↪→
4 between predicted and ground-truth word association

rankings.↪→
5
6 Args:
7 queries: List of model responses (each includes

both prompt and response).↪→
8 prompts: List of prompt texts.
9 labels: List of ground-truth ranked word lists.

10
11 Returns:
12 A tensor of Spearman correlation scores, one per

example.↪→
13 """
14 rewards = []
15 for query, prompt, label in zip(queries, prompts,

labels):↪→
16 # Extract the response by removing the prompt part
17 response = query[len(prompt) - 1:]
18
19 # Parse predicted rankings (e.g., "1: cat, 2: dog,

...")↪→
20 predicted_words = parse_ranked_words(response)
21
22 # Normalize and filter ground truth
23 ground_truth = [w.lower() for w in eval(label)]
24 predicted_filtered = [w for w in predicted_words

if w.lower() in ground_truth]↪→
25
26 # Convert to rank indices
27 pred_ranks, gt_ranks =

map_to_rank_indices(predicted_filtered,
ground_truth)

↪→
↪→

28
29 # Compute Spearman correlation
30 score = spearmanr(pred_ranks,

gt_ranks).correlation↪→
31 rewards.append(score if not pd.isnull(score) else

-1.0)↪→
32
33 return torch.tensor(rewards, dtype=torch.float32)

F Experiment Settings1122

The experiments were conducted using two com-1123

pute nodes equipped with 4 NVIDIA A100 GPUs1124

per node. For SFT, we used Llama Factory library.1125

The hyperparameters are provided in Table 10.1126

Hyperparameters Value

Fine-tuning method LoRA
LoRA Rank 64
LoRA Alpha 256
Learning rate 1.0e-5
Scheduler Cosine (warmup ratio=0.1)
Batch size per GPU 18
Gradient accumulation 2
Number of epochs 1.5
Precision bf16
Max sequence length 2048

Table 10: Hyperparameters for SFT Training

For PPO training, we used OpenRLHF library.1127

The hyperparameters are provided in Table 11.1128

Hyperparameters Value

Actor learning rate 5e-7
Critic learning rate 9e-6
Initial KL coefficient 0.1
Micro train batch size 8
Train batch size 32
Micro rollout batch size 16
Rollout batch size 64
Max training samples 1,000,000
Max epochs 1
Prompt max length 1024
Generation max length 1024
Zero optimization stage 3
Precision bf16
Gradient checkpointing Enabled
Optimizer offload Adam offload
Attention implementation Flash attention
VLLM tensor parallel size 2

Table 11: Hyperparameters for PPO Training

G Evaluation on the Emotions and 1129

Concreteness 1130

Psychological Norms For English, we evaluate 1131

the emotions in associations using the Valence, 1132

Arousal, Dominance (VAD) dataset (Warriner et al., 1133

2013) with 13,915 English lemmas. A score close 1134

to 1 suggests that the concept tends to evoke a re- 1135

laxed, bored, or sleepy emotional state, indicating 1136

a low arousal response, whereas a score near 8 sig- 1137

nifies that the concept tends to be associated with 1138

feelings of excitement, happiness, or high arousal. 1139

Concreteness score is obtained from a lexicon with 1140

40K English word lemmas (Brysbaert et al., 2014). 1141

Highly concrete concepts (a score within the range 1142

of 4 to 5) are defined as those that can be directly 1143

experienced through the senses, such as objects, 1144

actions, or sensations that are easily experienced. 1145

For Chinese, we use a lexicon with 11K simpli- 1146

fied Chinese words for the Valence and Arousal 1147

(Xu et al., 2022). For valence ratings, each word 1148

is rated on a seven-point scale: “–3” = extremely 1149

negative, “0” = neutral, and “+3” = extremely pos- 1150

itive. For arousal ratings, each word is rated on 1151

a five-point scale: “0” = very low arousal and “4” 1152

= very high arousal. For concreteness in Chinese, 1153

we use a lexicon of 9877 Two Character Chinese 1154

words (Xu and Li, 2020). Each word is mapped 1155

into a 1 to 5 score, where “1” = “very concrete” 1156

and “5” = “very abstract”. 1157

Pre-processing 1158

• Token cleaning: d-case, strip punctuation; 1159

English tokens are WordNet-lemmatised us- 1160

ing NLTK (Bird, 2006), while Mandarin to- 1161

kens remain in surface form after Chinese 1162
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punctuation removal.1163

• Lexicon look-up: tokens are matched against1164

the English VAD norms (Warriner et al., 2013)1165

and concreteness norms (Brysbaert et al.,1166

2014), or the corresponding Mandarin lexi-1167

cons (Xu et al., 2022; Xu and Li, 2020). To-1168

kens absent from a lexicon are ignored for that1169

metric.1170

Hypothesis testing1171

Cue-level medians are compared with a paired1172

Wilcoxon signed-rank test to determine whether1173

the model’s lexical profile is indistinguishable from1174

that of humans.1175

We test whether a model’s typical score is1176

statistically indistinguishable from the human1177

baseline, so the null states “no difference” while1178

the alternative states “some difference”.1179

1180

Null hypothesis H0: x̃model = x̃human (as-1181

sumes equality).1182

Alternative H1: x̃model ̸= x̃human (assumes a1183

non-zero gap).1184

1185

Cells with p ≥ 0.05 (i.e. we fail to reject1186

H0) are highlighted in bold.1187

Cue-level Valence, Arousal and Concreteness 1188

(Complex prompt) 1189

(a) English: association concreteness (1 = abstract, 5 =
concrete).

(b) Mandarin: association concreteness on the rescaled 1–5
range.

Figure 4: Violin + box plots of per-cue concreteness medians
for the Complex prompt. Left: English (1 = abstract, 5 =
concrete); Right: Mandarin (rescaled to 1–5).

(a) English: association valence (1 = unpleasant, 9 = pleas-
ant).

(b) Mandarin: association valence, rescaled to the English
1–9 range.

Figure 5: Violin + box plots of per-cue valence medians for
the Complex prompt. Left: English (1 = unpleasant, 9 =
pleasant); Right: Mandarin (rescaled to 1–9).
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Metric Human Vanilla Llama Llama PPO Llama SFT Qwen Vanilla Qwen PPO Qwen SFT

Valence 5.514 5.495* 5.489* 5.572 5.543* 5.544* 5.614*

Arousal 4.244 4.292 4.281 4.276* 4.247* 4.250* 4.181*

Concreteness 3.644 3.478 3.460 3.573* 3.419 3.415 3.762
Emotional % 84.6% 80.0% 78.7% 69.3% 80.6% 80.1% 72.3%
%Conc | %Abs | %Unk 64.3/29.8/5.9 53.9/35.3/10.7 52.5/35.5/12.0 51.6/26.9/21.5 53.3/36.7/10.0 53.5/36.5/10.1 59.1/23.4/17.4

Table 12: Emotional and concreteness metrics for the Simple prompt on U.S. SWOW English. * Bold cells indicate
no significant difference from human medians (p ≥ 0.05, Wilcoxon paired test).

Metric Human Vanilla Llama Llama PPO Llama SFT Qwen Vanilla Qwen PPO Qwen SFT

Valence 0.290 0.316* 0.320* 0.348 0.377 0.367 0.327*

Arousal 2.189 2.164 2.174* 2.198* 2.173* 2.172* 2.183*

Concreteness 2.343 2.449 2.479 2.423 2.572 2.541 2.429
Emotional % 53.3% 35.4% 38.9% 37.3% 52.0% 52.7% 40.2%
%Conc | %Abs | %Unk 35.9/15.8/48.3 22.8/11.4/65.8 24.9/12.8/62.4 24.5/11.8/63.7 30.7/19.7/49.6 31.7/19.5/48.7 25.7/13.0/61.3

Table 13: Emotional and concreteness metrics for the Simple prompt on Mandarin SWOW. * Bold cells indicate no
significant difference from human medians (p ≥ 0.05, Wilcoxon paired test).

(a) English: association arousal (1 = calm, 9 = excited).

(b) Mandarin: association arousal, rescaled to the English
1–9 range.

Figure 6: Violin + box plots of per-cue arousal medians for
the Complex prompt. Left: English (1 = calm, 9 = excited);
Right: Mandarin (rescaled to 1–9).

Cue-level Valence, Arousal and Concreteness 1190

(Simple prompt) 1191

(a) English: concreteness (1 = abstract, 5 = concrete).

(b) Mandarin: concreteness, rescaled to 1–5.

Figure 7: Violin + box plots of per-cue concreteness medians
for the Simple prompt. Left: English (1 = abstract, 5 = con-
crete); Right: Mandarin (rescaled to 1–5).
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(a) English: valence (1 = unpleasant, 9 = pleasant).

(b) Mandarin: valence, rescaled to 1–9.

Figure 8: Violin + box plots of per-cue valence medians for the
Simple prompt. Left: English (1 = unpleasant, 9 = pleasant);
Right: Mandarin (rescaled to 1–9).

(a) English: arousal (1 = calm, 9 = excited).

(b) Mandarin: arousal, rescaled to 1–9.

Figure 9: Violin + box plots of per-cue arousal medians for
the Simple prompt. Left: English (1 = calm, 9 = excited);
Right: Mandarin (rescaled to 1–9).

H Evaluation results on the world values 1192

survey 1193

H.1 Breakdown results on EMD 1194
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(a) WVS-us under Jensen Shnnon
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(b) WVS-zh performance under Jensen Shannon

Figure 10: Breakdown comparison of model alignment
with cultural values across China and United States
based on the World Values Survey. Results are shown
for the Vanilla and trained (SFT and PPO) versions of
Qwen2.5 and Llama 3.1.

H.2 Tension Set Selection 1195

Given the participants’ answer distributions for 1196

China (q) and the United States (p), we first nor- 1197

malise each to a probability vector i.e. we divide 1198

each count by the total number of respondents for 1199

that question so the values now represent proba- 1200

bilities (fractions between 0 and 1). Divergence is 1201

then measured with a hybrid score that averages 1202

an entropy-sensitive component (Jensen–Shannon 1203

divergence, JS) and an ordinal component (nor- 1204

malised Earth-Mover distance, EMD∗): 1205

combo(p, q) = 1
2 JS(p, q) + 1

2 EMD∗(p, q). 1206

Sorting the WVS questions by this score and 1207

retaining the top 50 yields our fixed tension set. 1208

H.3 Cross-Cultural Value Alignment 1209

Evaluation (EN Prompts) 1210

Beyond Mandarin prompts, we also evaluate cul- 1211

tural shifts with English prompts. Figures 11a 1212

and 11b mirror the same layout used for Chinese 1213
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(a) Qwen-7B: SFT on US SWOW does not shift the cloud
substantially.

(b) Llama-8B: minimal movement after SFT on US SWOW.

Figure 11: Shifts after SFT on US SWOW (EN
prompts). Each dot = one WVS question; colour =
bias (CN–US).

prompts: hybrid distances to U.S. answers (x-axis)1214

and Chinese answers (y-axis) are plotted across 501215

high-tension WVS questions.1216

– Qwen-7B. The vanilla model already ex-1217

hibits strong alignment with U.S. responses;1218

fine-tuning on U.S. SWOW slightly reduces1219

this alignment (from 30 to 26 U.S.-aligned1220

points).1221

– Llama-8B. Supervised fine-tuning in-1222

creases U.S. alignment, shifting the number1223

of U.S.-aligned points from 31 to 36.1224

These results suggest that for English prompts,1225

vanilla models—particularly Qwen—may already1226

exhibit strong U.S. alignment, reducing the effect1227

of SFT on US SWOW.1228

H.4 WVS Answer Shifts Across Topics1229

To examine fine-grained cultural effects, we group1230

WVS questions into twelve topical domains and1231

compare alignment before and after SFT on Chi-1232

nese SWOW. Figures 12 and 13 (below) visual-1233

ize Jensen–Shannon and Earth Mover’s distances1234

by topic. Fine-tuning improves alignment in five1235

domains—ethical values, political engagement, re-1236

ligious beliefs, social capital, and safety percep-1237

tions—while it slightly reduces alignment for eco-1238

nomic values and corruption perceptions. This drop1239

may reflect a mismatch between model training1240

distributions and the nuanced economic attitudes 1241

Chinese respondents hold. 1242
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Figure 12: Jensen–Shannon distance by WVS topic
(Vanilla vs. SFT Qwen-7B on ZH prompts).
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Figure 13: Earth Mover’s distance by WVS topic
(Vanilla vs. SFT Qwen-7B on ZH prompts).

Table 14 presents concrete examples of distri- 1243

bution shifts from the vanilla Qwen-2.5 model to 1244

the SFT Qwen-2.5 model. For example, in the 1245

domain of religious values, the vanilla model’s 1246

predictions are either overly dispersed or peak 1247

at culturally incongruent options, whereas fine- 1248

tuning realigns the predicted distributions with 1249

human responses. When asked “Do you believe 1250

in Heaven?”, the vanilla model strongly predicts 1251

“Yes” (0.70), while the fine-tuned model shifts 1252

to “No” (0.84), closely matching the actual dis- 1253

tribution from Chinese participants (0.89 “No”). 1254

Notably, although the SFT model rejects Western 1255

religious imagery like “Heaven,” it also captures 1256

Chinese-specific spiritual concepts such as “Life 1257

after death.” In the SWOW–ZH associations for死 1258

亡 (death), responses like轮回 (reincarnation) and 1259

新生 (new life) reflect how Chinese speakers con- 1260

ceptualize death, illustrating how association-based 1261

fine-tuning contributes to value prediction. 1262

20



Question
(ZH)

Prompt (EN) Survey Qvan Qsft JS JS–SFT EMD EMD–SFT Type

您 是 否
认 为 有 天
堂？

In which of the fol-
lowing do you be-
lieve, if you believe
in any? – Heaven (1:
Yes; 2: No)

[12%,88%][71%,29%] [18%,82%] 0.437 0.061 0.173 0.062 Religious

您 是 否 相
信 死 后 有
来生？

In which of the fol-
lowing do you be-
lieve, if you believe
in any? – Life af-
ter death (1: Yes; 2:
No)

[12%,88%][90%,10%] [36%,64%] 0.596 0.208 0.020 0.246 Religious

您 是 否 信
仰 佛 祖/上
帝/真 主/神
明？

In which of the fol-
lowing do you be-
lieve, if you believe
in any? – God (1:
Yes; 2: No)

[17%,83%][41%,59%] [29%,71%] 0.182 0.100 0.232 0.119 Religious

您 是 否
认 为 有 地
狱？

In which of the fol-
lowing do you be-
lieve, if you believe
in any? – Hell (1:
Yes; 2: No)

[11%,89%][47%,53%] [16%,84%] 0.288 0.049 0.359 0.047 Religious

Table 14: Comparison of survey distributions and model outputs (vanilla vs. SFT) for five religious-belief WVS
items. Highlighted cells show metrics after SFT.
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