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Abstract

Modern time-series forecasting models often fail to make full use of rich unstruc-
tured information about the time series themselves. This lack of proper conditioning
can lead to "obvious" model failures; for example, models may be unaware of
the details of a particular product, and hence fail to anticipate seasonal surges
in customer demand in the lead up to major exogenous events like holidays for
clearly relevant products. To address this shortcoming, this paper introduces a
novel forecast post-processor — which we call LLMForecaster — that fine-tunes
large language models (LLMs) to incorporate unstructured semantic and contextual
information and historical data to improve the forecasts from an existing demand
forecasting pipeline. In an industry-scale retail application, we demonstrate that
our technique yields statistically significantly forecast improvements across several
sets of products subject to holiday-driven demand surges.

1 Introduction
Time series forecasting has a broad variety of uses across industry today, including in transportation,
weather and retail settings. In modern retail settings, accurate demand forecasts are key to running an
efficient supply chain. Improvements in forecast quality directly affect inventory efficiency, reducing
stockouts, and enhancing customer satisfaction.

In recent years, deep neural networks have become a powerful tool for forecasting at scale. Deep
learning models such as Recurrent Neural Networks (RNNs) [1, 2], Convolutional Neural Networks
(CNNs) [3], and attention-mechanisms [4], have shown promising results as they extract complex
features and adapt to various time series patterns. These architectures are often designed to learn
auto-correlations and cross-correlations from data [5, 6, 7]. These kinds of models have successfully
integrated exogenous features (e.g. past covariates, known future information, and static covariates)
and achieved remarkable success in real-world problems, including traffic forecasting [8, 9], retail
demand prediction [10, 11], power generation prediction [12], and energy consumption modeling [13].
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Figure 1: Aggregated demand and forecast for groups of products: (i) Mother’s Day products; and
(ii) Easter products. The vertical dashed lines mark the week prior to the holiday in question. In
green, we show time segments where the production model anticipates event-driven demand surges
— specifically large shopping events like Christmas. In red, we show time segments where the
production model fails to anticipate event-driven demand surges.

While these models can effectively incorporate numerical or categorical exogenous features, other
valuable features like product descriptions or customer reviews exist only as unstructured text.
Because this information exists only as unstructured text which is difficult to featurize, these sources
of information have been largely neglected or featurized in simple ways [7, 14, 15, 16].

Nonetheless, descriptive and contextual information about the time series may meaningfully enhance
forecast quality. In the retail setting, unstructured text describing the use and design of a product
contains valuable information about whether this product will see surges in demand for upcoming
seasonal events (holidays, back-to-school, etc.). This information is often difficult or impossible to
learn from the time series themselves, for several reasons. Many products are new, with perhaps
only one (or fewer) years of sales history. Sales history at the product level is also noisy, subject to
spurious spikes and stockouts which distort the historical sales. These factors mean that the available
historical sales are often insufficient to predict upcoming seasonal patterns reliably.

In Figure 1, we illustrate this problem, using forecasts from an MQ-Transformer model [10] trained
on a retail dataset. We focus on products which are relevant to two key holiday related seasonal
events: Mother’s Day and Easter. For both groups of products, we see that the existing forecasting
model appropriately anticipates surges in demand during the holiday season (between Black Friday
and Christmas). The model responds reasonably to the holiday season (green bands), where we
see elevated sales across many products, high customer traffic and numerous price discounts. By
contrast, the model fails to anticipate surges in demand during the Mother’s Day and Easter holiday
periods themselves (red bands). Notably, the demand surges during Mother’s Day and Easter are
localized to small groups of products, aggregate customer traffic does not spike, and products are
infrequently discounted. The failure to anticipate these localized surges in demand increases the risk
of stockouts for key products during these events. Today, these defects must be addressed through
human intervention, relying on human analysts to use their judgment and knowledge to identify
products relevant to an upcoming event and adjust the forecasts accordingly.

Recent advancements in Large Language Models (LLMs) offer a promising avenue to address these
challenges, enhancing predictive accuracy by combining rich textual information with traditional
covariates. Gruver et al. [17] first showed that even LLMs with text-based pre-training can perform
impressive zero-shot time series forecasting. Moreover, pre-trained LLMs have the capability to per-
form domain-specific predictive tasks by directly querying them with domain-specific instructions and
knowledge [18, 19, 20, 21]. Xue et al. [22] extended this approach by generalizing prediction tasks to
time series data, incorporating context and semantic information from historical data. LLM4TS[23]
utilizes a two-stage fine-tuning process to improve the model’s ability to handle time series data, even
with limited data availability. Similarly, TEMPO [24] applies a Generative Pre-trained Transformer
(GPT) to time series forecasting, using a prompt-based approach that tailors the model to complex
temporal patterns and non-stationary data. Most existing research in time series forecasting has
focused on using time series data as input to LLMs, exploring methods like tokenization of time
series data [7, 15].
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Despite these advancements, it remains an open question how to develop LLMs to integrate descrip-
tive information about the time series themselves — for example, the description of the product
corresponding to the sales in question. Further, these methods are often stand-alone forecasting
models. This can be powerful, but in other real-world use cases we may already have a “good enough”
forecasting solution in place. In those cases, we do not want to completely replace the existing
solution — instead we only want to modify the forecasts to fix areas where the existing models has
clear deficiencies.

Our work addresses both of these areas. Here we introduce a procedure, the LLMForecaster, to
incorporate unstructured textual information and recommend forecast adjustments to improve the
accuracy of an existing forecasting pipeline. Our procedure utilizes fine-tuned LLMs that incorporate
both historical forecasts as well as unstructured information. This allows us to systematically improve
forecast quality in cases where the existing model fails to anticipate holiday related demand surges.
We show that our approach enhances the accuracy of demand forecasts in retail environments,
empowering businesses to better manage seasonal fluctuations and optimize their operations.

2 Methodology
We introduce the LLMForecaster, designed to automate forecast adjustments to correct biases in
existing demand forecasting models. Here, the existing model is an MQ-Transformer model trained
on a large dataset of retail sales. This existing model generates initial predictions, denoted as fi,t
for product i and target date t. We then train an additional model, incorporating unstructured text
information such as product titles and descriptions (xi,t,text) and numeric features such as the price or
forecast (xi,t,num) via prompts to an LLM. The model architecture is shown in Figure 2.

Figure 2: LLMForecaster incorporates text and numeric information through an LLM to rescale the
raw prediction fi,t, producing a better forecast f∗

i,t.

This additional model is trained to predict the scaling factor λi,t = log(
yi,t

fi,t
), where yi,t represents the

actual observed demand. We choose to predict a scaling factor, as it allows us to make improvements
on top of an existing primary model, and helps deal with heavy-tailed response data. [25]. The model
minimizes the absolute error between the true and predicted scaling factors:

min
λ̂∈Λ

n∑
i=1

∣∣λi,t − λ̂(xi,t,text,xi,t,num)
∣∣ (1)

where n is the number of samples, and Λ is the model space.

We then use this scaling factor to rescale the original predictions fi,t into the adjusted forecast f∗
i,t,

using the following transformation.

f∗
i,t = eλ̂(xi,t,text,xi,t,num)fi,t (2)

The model depends on an input prompt, which contains product information, forecast values, and
other contextual information formatting using a predefined template. An example of such a prompt is
shown in Appendix A.1. The fine-tuned LLM generates an embedding vector, which is then adapted
to the specific forecasting task using Low-Rank Adaptation (LoRA) [26]. This adapted embedding
is concatenated with numerical features and fed into a Multi-Layer Perceptron (MLP) head, which
outputs the scaling factor λ̂i,t. By fine-tuning the LLMForecaster on historical forecasts and demand,
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the model learns to identify patterns in forecast errors and provide accurate adjustments to the primary
model’s predictions, especially for products with significant holiday demand surges.

3 Experiment Results
We apply the LLMForecaster to refine predictions made by the existing global model,
MQ-Transformer (MQT), at a lead time of 12 weeks. This lead time is selected to provide suf-
ficient time to procure inventory in advance of holiday surges. The various features are processed into
a prompt and fed into the pre-trained MPT7b-Instruct model[27], which is further fine-tuned for
the forecasting task. Performance is evaluated using the weighted p50 quantile loss (wQL), defined as:
wQL =

∑
i,t 0.5|fi,t − yi,t|/

∑
i,t yi,t where i is index of product and t is the forecast target date.

In this experiment, we train a single model capable of calibrating demand predictions across multiple
holidays. We focus on five holidays known for strong seasonality: Halloween, Easter, Mother’s Day,
Father’s Day, and Valentine’s Day. The training dataset spans 88 weeks, from August 29th, 2021, to
April 30th, 2023, including both holiday-related and non-holiday products. A holiday-related product
is one with the holiday name in the item name or product description. The test period covers 48
weeks from May 7th, 2023, to March 3rd, 2024, and is divided into five distinct test sets, one for each
target holiday. To ensure the LLM knows when events happen, we use a "Holiday-Encoding Prompt"
that provides the LLM with the proximity of the target date to the relevant holiday (A.2).

Figure 3: Example of aggregated forecasts on Easter products.

Figure 3 compares the aggregated forecasted demand with actual demand for Easter products. It shows
several LLMForecaster models (r16, r64, r128, and r256, representing varying LoRA ranks), the
emb baseline (where we do not apply LoRA fine-tuning) and the original MQT baseline. All iterations
of the LLMForecaster approach anticipate the Easter demand surge, while our two baselines fail to
do so. Table 1 presents wQL improvement results for the 48-week test sets demonstrating that the
fine-tuned LLMForecaster models (r16, r64, r128, and r256) consistently outperform the baseline
MQT and emb models across all five holiday datasets. We also conduct statistical significance testing
of the improvement throughout the year - most of these improvements are statistically significant.
More detailed empirical results are available in Appendix A.3, and discussion about Valentine’s Day
are available in Appendix A.4 .

By contrast, the emb model, in which we do not do the LoRA fine-tuning, shows no improvement over
the MQT baseline. This underscores the importance of the LLMForecaster’s sophisticated fine-tuning
approach, leveraging LoRA fine-tuning to effectively learn the holiday-specific demand patterns.

Table 1: wQL improvement over the MQT baseline (in basis points) for different testsets
Significance Levels: *** p < 0.001, ** p < 0.01, * p < 0.05

Model Halloween Easter Father’s Day Mother’s Day Valentine’s Day
r16 105∗∗∗ 51∗∗∗ 93∗∗∗ 68∗∗∗ 58∗∗∗
r64 103∗∗∗ 60∗∗∗ 88∗∗∗ 70∗∗∗ 33

r128 77∗∗∗ 32∗∗ 39∗∗∗ 10∗∗ 18
r256 70∗∗∗ 34∗ 48∗∗∗ 52∗∗ 17∗

emb 8 -5 11∗∗ -14 -16
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4 Conclusion and Future Work
We introduced the LLMForecaster, a procedure which incorporates unstructured product-level in-
formation into numerical time series forecasts and implements forecast adjustments where they
are likely to add value; and we demonstrated that the LLMForecaster model leads to statistically
significant improvements to product-level demand forecast in large scale backtests in a retail setting.
In future work, we plan to experiment with a broader variety of prompting techniques, as well as
hyperparameter optimization. We are actively exploring similar techniques to use LLMs as a tool to
featurize data as inputs to deep learning models, rather than as a post-processor. We will also explore
multimodal inputs like product images to further enhance forecast accuracy.
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A Appendix

A.1 Prompting details

The following template is used to apply on the provided text features and numerical features. The
part that is being inserted based upon data is indicated with blue square brackets, []. As discussed in
A.2, we also include information if the target date is in the near vicinity of a particular holiday.

Pretend you are a sales analyst preparing for the Halloween season. You need to adjust the current model’s
prediction for a specific product’s sales week of [forecast target date].

### Instruction:

Today’s date: [forecast creation date].

Product Title: [product title]

List Price: $[list price].

Item Created At: [item creation date].

Product Group Type: [product group]

Description: [product description]

Bullet Points: [bullet points]

The current prediction for week [forecast target date]’s sales is [p50] units with a 90th percentile [p90] units.
Please provide your adjusted prediction for next week’s sales volume considering today’s date, the season,
the holiday, and the product. Explain your reasoning.
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Table 2: 48 weeks QL with (✓) and without (✗) holiday-encoding prompt for Easter ASINs

✓ ✗

r16 51 -8
r64 6050 45

### Response Format: - Prediction: [Your Adjusted Prediction] units - Reasoning: [Explanation]

### Response:

A.2 Holiday encoding prompt

To improve the LLMForecaster’s ability to capture holiday-driven demand patterns, we have imple-
mented a "Holiday-Encoding Prompt". This prompt provides the model with contextual information
about the temporal relationship between the target forecast date and surrounding holidays. For
example, for a forecast targeting the week of June 1, 2024, the prompt would include:

The mother’s day at 2024-05-12 is 3 weeks before 2024-06-01.

The father’s day at 2024-06-16 is 2 weeks after 2024-06-01.

By including these details about the proximity of the target date to relevant holidays, we aim to help
the model better identify the appropriate demand patterns. This helps by ensuring the LLM knows
precisely when a given event will take place. This is especially important for "moving holidays"
like Easter, where the exact date can vary by as much as 35 days from year to year. This Holiday-
Encoding Prompt is expected to significantly improve the LLMForecaster’s performance in accurately
predicting sales for various holiday periods. As shown in Figure 4, the proposed LLMForecaster with
the Holiday-Encoding Prompt is able to identify the Easter spike at the end of March 2024, while
removing the prompt fails to capture the Easter-related demand surge.

Figure 4: Total demand and prediction for Easter products with and without Holiday-Encoding
Prompt

A.3 Accuracy results throughout the year

Here we show how the LLMForecaster changes forecast accuracy for different groups of products
throughout the year. First, we show the results from a t-test measuring the weekly change in quantile
loss, over the 48 weeks in the test period. Across the various product sets, we generally see statistically
significant improvements over the MQT baseline. The only exception is for Valentine’s Day products,
which show improvements which are not statistically significant.

Next, we show the change in forecast accuracy from our LLMForecaster model versus the MQT
baseline. Positive numbers indicate weeks in which the LLMForecaster model improved accuracy
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Table 3: pairwise t-tests of wQL for different testsets and models.
Significance Levels: *** p < 0.001, ** p < 0.01, * p < 0.05

Halloween Easter Father’s day Mother’s day Valentine’s day

MQT emb MQT emb MQT emb MQT emb MQT emb

r16 −5.4∗∗∗ −5.5∗∗∗ −3.6∗∗∗ −3.7∗∗∗ −5.0∗∗∗ −3.6∗∗∗ −3.8∗∗∗ −4.2∗∗∗ −3.6∗∗∗ −4.4∗∗∗

r64 −5.3∗∗∗ −5.7∗∗∗ −3.8∗∗∗ −4.1∗∗∗ −4.7∗∗∗ −3.6∗∗∗ −3.7∗∗∗ −4.0∗∗∗ −1.7 −2.2∗

r128 −4.2∗∗∗ −4.4∗∗∗ −3.4∗∗ −3.6∗∗∗ −3.9∗∗∗ −2.3∗ −2.4∗∗ −2.7∗∗ −1.9 −2.7∗∗

r256 −4.2∗∗∗ −4.3∗∗∗ −2.3∗ −2.5∗ −3.5∗∗∗ −2.2∗ −3.5∗∗ −3.9∗∗∗ −2.4∗ −3.1∗∗

emb −1.2 - 0.6 - −3.1∗∗ - 0.2 - 2.0 -

over the existing baseline. For each group examined, the LLMForecaster generally improves accuracy
throughout the year.

Figure 5: Forecast accuracy change for Halloween products

Figure 6: Forecast accuracy change for Mother’s Day products

A.4 Valentine’s Day

The results shown in Tables 1 and 3 indicate a relatively small and sometimes not statistically
significant improvement for the Valentine’s Day products compared to the other holiday categories.
This can be attributed to the unique nature of the Valentine’s Day holiday and its shifting position
within the calendar week. For other holidays like Halloween, Easter, Mother’s Day, and Father’s
Day, the dates are fixed on either Saturdays or Sundays, so the overall demand distribution during the
holiday period remains relatively consistent. By contrast, Valentine’s Day is fixed on February 14th,
which can fall on different days of the week. That means that last-minute shopping, for example,
may take place in the week of Valentine’s Day or the prior week. In this experiment, the training
dataset contained Valentine’s Day falling on Monday or Tuesday - with minimal time to shop during
the week of the holiday, last-minute shopping took place primarily in the prior week. In the test set,
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Figure 7: Forecast accuracy change for Valentine’s Day products

Figure 8: Forecast accuracy change for Father’s Day products

Figure 9: Forecast accuracy change for Easter products

Valentine’s Day occurring on a Wednesday, so consumers had more time to shop for the holiday
during the week itself. When plotting the total prediction and demand on Figure 10, this effect is
clearly observed. While the LLMForecaster models are able to capture the Valentine’s Day demand
spike compared to the baseline models, they tend to over-predict the weeks before Valentine’s Day
and significantly under-predict the demand during the actual Valentine’s Day week in 2024. This
issue could potentially be addressed by training the model with data spanning multiple years, or by
incorporating daily demand patterns into the training process. This would help the LLMForecaster
better account for the shifting position of Valentine’s Day within the calendar week and improve its
ability to accurately predict the associated demand patterns.
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Figure 10: Total demand prediction for Valentine’s Day ASINs
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