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ABSTRACT

While forward reasoning (i.e., find the answer given the question) has been explored
extensively in the recent literature, backward reasoning is relatively unexplored.
We examine the backward reasoning capabilities of LLMs on Math Word Problems
(MWPs): given a mathematical question and its answer, with some details omitted
from the question, can LLMs effectively retrieve the missing information?
In this paper, we formally define the backward reasoning task on math word
problems and modify three datasets to evaluate this task: GSM8k, SVAMP and
MultiArith. Our findings show a significant drop in the accuracy of models on
backward reasoning compared to forward reasoning across four SOTA LLMs
(GPT4, GPT3.5, PaLM-2, and LLaMa). Utilizing the specific format of this
task, we propose three novel techniques that improve performance: Rephrase
reformulates the given problem into a forward reasoning problem, PAL-Tools
combines the idea of Program-Aided LLMs to produce a set of equations that
can be solved by an external solver, and Check your Work exploits the availability
of natural verifier of high accuracy in the forward direction, interleaving solving
and verification steps. Finally, realizing that each of our base methods correctly
solves a different set of problems, we propose a novel Bayesian formulation for
creating an ensemble over these base methods aided by a verifier to further boost
the accuracy by a significant margin. Extensive experimentation demonstrates that
our techniques successively improve the performance of LLMs on the backward
reasoning task, with the final ensemble-based method resulting in a substantial
performance gain compared to the raw LLMs with standard prompting techniques
such as chain-of-thought.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; OpenAI, 2023; Anil et al., 2023) have shown
remarkable versatility, excelling in various tasks like sentence completion, question answering, and
summarization. They have been successfully applied to mathematical reasoning, specifically in
solving Math Word Problems (Kushman et al., 2014; Roy & Roth, 2018), where the goal is to produce
the answer given an elementary school-level mathematics question. We refer to this task as Forward
Reasoning. This problem has received significant attention in the recent literature (Lu et al., 2022),
and specific datasets (Cobbe et al., 2021; Roy & Roth, 2015; Patel et al., 2021) have been proposed
to serve as benchmarks for this task. Performance of powerful LLMs such as GPT-4 OpenAI (2023)
with techniques such as Chain-of-Thought (Wei et al., 2022) and Self-Verification (Zhou et al., 2023)
on some of these datasets are more than 90% (Lu et al., 2022).

In this work, we are interested in a slightly different problem, which is the problem of backward
reasoning: given an MWP, with one of the numerical quantities omitted from the question, and the
answer to the original question, what is the value of the omitted numerical quantity? While this
problem of backward reasoning has been studied in the literature in the context of improving the
performance of forward reasoning (Weng et al., 2022), to the best of our knowledge, there is no
existing work that explicitly aims to solve this problem analyzing its hardness and providing solutions
thereof. We believe this is an interesting problem because (1) It is a matter of study that even for
humans, whether forward reasoning and backward reasoning have different complexities (Ramful &
Olive, 2008; Rivera, 2008), and we would like to ask the same question in the context of LLMs (2)
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Assuming we establish that backward reasoning is a harder problem, how can we design techniques
to improve performance on this task, that specifically exploit the problem structure of backward
reasoning and the availability of the forward direction answer? (3) The backward reasoning problem
can be seen as a special case of abduction, with a unique answer, and it is interesting to explore
this connection, since LLMs have not been explored as much for this important class of abductive
reasoning problems (Bhagavatula et al., 2020; Qin et al., 2020; 2022).

In order to establish that backward reasoning is indeed a significantly harder problem than forward
reasoning, we create backward reasoning problems from three benchmark datasets (Cobbe et al.
(2021); Roy & Roth (2015); Patel et al. (2021)), and test the performance of various LLMs on this
task. Table 1 presents the results (see Section 3 for details). We observe a significant drop in the
performance of all the LLMs compared to forward reasoning, the drop being as high as 40% in most
cases. Having established the difficulty of our proposed task, we propose a set of techniques for
improving the performance on this task

Firstly, we propose to rephrase the backward reasoning as a forward reasoning problem since LLMs
are better at forward reasoning compared to backward reasoning. This can be done by substituting
some unknown quantity x in the blank, and then asking LLM to produce the value of x, given the
answer. Next, we combine the idea of Program-Aided-Language Models, with an external solver
since backward reasoning problems have a specific mathematical structure, which is not amenable to
simple forward reasoning. We refer to this method as PAL-Tools. Thirdly, we can use the LLM as a
verifier to check whether the solution to the backward problem is correct. Verification can be done
iteratively until the backward reasoning model produces an answer which is declared correct by the
verifier. We refer to this approach as Check your Work. Finally, we make use of Bayesian modeling
to propose a novel method for ensembling base methods, which exploits the accuracy of each of the
base methods computed on a small hold-out set, to compute answer probability. Further, we use a
high-accuracy verifier based on forward reasoning and compute the probability of the final answer
given the ensemble probability and the confidence of the verifier in the answer.

Our results show the benefit obtained by each of our base methods, with Verify and Reprompting
performing best overall. Finally, we obtain a further improvement of up to 10% using our Bayesian
model, which ensembles techniques using a verifier. The overall gain in accuracy obtained by our
methods touches 45% for some of the datasets, compared to directly running the original backward
problem on the LLM. We perform additional analysis on the models to explain our results.

To summarize our contributions: (1) we create three different datasets for backward reasoning,
establish the difficulty of the backward reasoning problem, and a task of interest in its own right (2)
We propose three different base methods, and one ensemble-based method via the use of a verifier, to
improve the performance on the backward task. (3) We perform additional analysis giving further
insights into the performance of the proposed models.

2 RELATED WORK

A mathematical word problem (MWP) (Lu et al., 2022) consists of a description in natural language
that expresses the relation between various entities and quantities, followed by a query for an unknown
quantity, as shown in Figure 1. One can answer the question by representing the relationship between
the entities and quantities through a set of equations and then solving these equations. Solving MWPs
necessitates a semantic understanding of the natural language description. Initial works (Kushman
et al., 2014; Koncel-Kedziorski et al., 2015; Roy & Roth, 2018) to solve MWPs involve parsing
the natural language description and utilizing statistical learning techniques to identify suitable
templates for generating answers. Subsequently, following the triumph of sequence-to-sequence
(Seq2Seq) neural models (Sutskever et al., 2014) in machine translation and other NLP tasks, the
encoder-decoder framework (Wang et al., 2017; Ling et al., 2017; Li et al., 2020; Shen et al., 2021;
Jie et al., 2022) is employed to directly translate the natural language description in MWPs into
equations.

Recently, the strongest performance on MWPs has been given by large pre-trained language models
like GPT-4 OpenAI (2023), PaLM (Anil et al., 2023), and GPT-3 (Brown et al., 2020). These
models leverage the power of few-shot in-context examples and employ prompting methods like
CoT (Wei et al., 2022), all without requiring any modifications to their parameters. One class of
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Fill in the blank given the
question and answer:
Q. The cafeteria had 23
apples. If they used _____ to
make lunch and bought 6
more, how many apples do
they have?
A. 9

The blank is 14

Solve the following question:
Q. The cafeteria had 23
apples. If they used x to make
lunch and bought 6 more, they
had 9 apples. Find the value of
x.

The value of x is 20

Rephrase Fill in the blank given the
question and answer. Verify
your blank by subsitituting it
and checking if the solution
matches.
Q. The cafeteria had ...
A. 9

Write a program using SymPy
to find the blank:
Q. The cafeteria had ...
A.9

Check your work

PAL-tools

num_apples = 23
num_for_lunch = x
num_bought = 6

eq = Eq(num_apples - 
     num_for_lunch + 
     num_bought, 9)
blank = solve(eq)[0]

20

Final Q: The cafeteria had 23
apples. If they used 18 to
make lunch and bought 6
more, how many apples do
they have?
Check: they have 23 - 18 = 5
apples. After buying 6 more,
they would have 5 + 6 = 11.
The answer is incorrect.

Reprompt...

Final Q: ... If they used 20 more...
Check: ... The answer is correct.

Figure 1: A summary of the prompting techniques we propose

Table 1: Performance of various models on the Math backward reasoning task, compared to their
accuracies on the forward reasoning task of solving the original problem. Figures with † are taken
from Zheng et al. (2023)

GSM8k SVAMP MultiArith

Model forward backward forward backward forward backward

GPT-4 92.8 38.6 90.5† 43.9 97.8† 54.8
GPT-3.5-turbo 58.4 10.8 79.1 20.4 97.0 13.8
PaLM-2 60.5 15.2 73.7 11.2 95.7 6.3
LLaMa-2-70B 37.0 6.8 70.3 20.3 89.2 11.0

techniques (Madaan et al., 2023; Welleck et al., 2023) using LLMs involves verifying the answer
provided by the Language Model, either using the model itself or external verifiers such as compilers
or proof checkers. If the answer is incorrect, the model is re-prompted, optionally with suggestions
on improving its output. This prompting continues until the model generates the correct output. Other
techniques, such as Progressive Hint Prompting (Zheng et al., 2023) iteratively pass the model’s
previous answers to itself as hints. Iterative prompting techniques like (Wang et al., 2023) do not
use a verifier; instead, they sample multiple hypotheses from the model and select the answer using
majority voting.

Our work can be seen as a special case of abductive reasoning with a unique answer. Abductive
reasoning (Bhagavatula et al., 2020; Qin et al., 2020; 2022) involves inferring which of several
explanations is the most plausible. Prior work on abductive reasoning has focused mostly on text-
based reasoning under constraints. In the context of arithmetic reasoning tasks Weng et al. (2022) has
utilized abductive reasoning to enhance forward reasoning accuracy. In contrast, our work addresses
backward reasoning as an independent problem. Our primary interest lies in analyzing the inherent
complexities of backward reasoning and devising more effective solutions to tackle it.

3 BACKWARD REASONING TASK

A forward or the typical Mathematical Word Problem (MWP) consists of a question Qf , which
we call a forward question, and its corresponding answer Af . The forward question is a textual
representation of the MWP. It is typically composed of one or more sentences and encompasses
various elements, including numbers, operations, and textual information, all represented by tokens
within the question. A numeric token is defined as a token that encodes a numeric quantity, such as
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5, 37, or ’half.’ These tokens encode the values 5, 37, and 0.5, respectively. We define a backward
MWP as a tuple (Q,Af ), where Q is obtained from the forward question Qf by replacing one
numerical quantity with a blank. The goal of solving the backward MWP is to find out the value of
the numerical quantity that was blanked out using backward reasoning. By backward reasoning, we
mean the process of using the provided answer Af and the context provided by the question Q to
deduce the missing numerical quantity to arrive at the given answer. Since there is a unique answer
for every question, we measure accuracy on this task by the number of questions on which the model
is able to provide the correct numeric value of the blank.

Table 1 compares the performance of four state-of-the-art (SOTA) language models on forward and
backward reasoning tasks. We observe a significant drop in backward reasoning accuracy compared
to forward reasoning accuracy across all models. The experiments were conducted using the chain of
thought prompts defined in Wei et al. (2022). The few-shot examples used in the chain of thought
prompts were modified for the backward reasoning task following the procedure described above. It
is evident from the results that Large Language Models (LLMs) are not as proficient in backward
reasoning compared to forward reasoning, indicating the difficulty of the task as defined above.

4 PROPOSED APPROACHES

Rephrasing: Our first base method to tackle the challenging backward reasoning problem involves
a problem transformation through rephrasing. This transformation effectively converts the complex
backward reasoning task into a more manageable forward reasoning problem. Consequently, we
employ the LLM to solve this transformed forward reasoning problem instead of the original and
inherently more difficult backward reasoning challenge.

Given a backward MWP (Q,Af ), we ask the language model to produce a rephrased question R,
which incorporates the forward answer Af into the question Q and changes the objective of the
question from finding the answer Af to finding the value of the blank. We then ask the language
model to solve the rephrased problem R instead of the original backward problem.

Our experiments in Table 2 show that converting the backward MWP into an algebraic MWP by
replacing the blank with x and asking the LLM to find the value of x as shown in Figure 1 gives
us better results than converting to a simple MWP which asks us to find the value of the unknown
quantity.

PAL-Tools: The second base method that we propose combines Program-aided language models
(PAL) (Gao et al., 2023) with the techniques of framing equations and solving them using SymPy
(Meurer et al., 2016), (He-Yueya et al., 2023) (referred to hereafter as tools). We observe that PAL
performs very poorly at the backward reasoning task due to the non-sequential nature of the task.
When PAL is used for backward reasoning, LLMs must first rearrange the terms of the equation
instead of merely finding a formula to use given the variables in the problem. By only using
the framing equations, we present the backward reasoning problem to the LLM in a structured
mathematical form, making it easier for them to understand and generate code or solutions based on
the given equations.

Recently, Schick et al. (2023) have shown that LLMs can utilize external tools and APIs to solve
various downstream tasks. Motivated by this, we leverage the LLM’s ability to call SymPy functions
to overcome their inability to manipulate equations to isolate the unknown variable. Our prompt
frames the problem as an equation in x and asks the model to generate code that solves the equation
using Sympy’s solve method, as shown in Figure 1. Parallel work by Zhou et al. (2023), which uses
GPT-4’s code interpreter to both solve and verify solutions with code, shows similar improvements
on the forward task.

Reprompting and Verification: Our third base method Reprompting and Verification is based on
recently proposed framework of SELF-REFINE (Madaan et al., 2023). SELF-REFINE is an iterative
prompting technique that cycles between refinement and feedback until a predetermined condition is
attained. We modify the SELF-REFINE to perform backward reasoning on MWP. We use PAL-tools
as the base model within Self-Refine and refine the programs generated by PAL-tools with feedback
from the language model as was done in (Madaan et al., 2023).
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Table 2: Improvements in accuracy with various prompting strategies

Strategy Shots GSM8kB SVAMPB MultiArithB

CoT 8-Shot 10.77 20.40 14.50
PAL 4-Shot 9.27 20.90 18.17
Tools 3-Shot 31.45 43.50 71.83

Rephrase (Linguistic) 8-Shot 19.65 32.60 40.50
Rephrase (Algebraic) 8-Shot 36.12 37.80 71.67

PAL-tools 2-Shot 37.26 41.00 79.67
PAL-tools (Rephrased) 2-Shot 37.89 42.10 77.67
PAL-tools 4-Shot 37.11 42.70 80.50
PAL-tools (Rephrased) 4-Shot 48.74 51.10 84.50

Self-Refine (Rephrased) 2-Shot 40.17 49.70 77.50
Check your Work (Rephrased) 8-Shot 41.82 47.40 84.83

Our method works as follows:

1. We start by instructing the LLM to solve the backward MWP (Q,Af ) and provide the
numeric value of blank in question Q.

2. In this step, we verify the answer generated by the LLM. To do this, we substitute the blank
in Q with the LLM’s answer, creating a modified question, denoted as Q′. We then instruct
an LLM to generate the answer A′ of this newly formed forward question.

3. We compare the answer A′ obtained from Q′ with the original answer Af . If A′ matches
with Af our method stops.

4. If, upon comparison, the answers A′ and Af do not match, we go back to step 1 and ask
LLM to generate alternate hypotheses by adding the feedback in obtained step 2.

Note that the second step above, which involves verifying the answer, can be performed either by the
same or a more powerful LLM. We refer to this method as Check your work. An illustration of this
process is provided in Figure 1.

5 ENSEMBLING AND VERIFICATION

In this section, we present a simple approach for ensembling the set of base methods described
previously followed by use of verifier to further improve the accuracy. We assume that we are solving
the backward reasoning problem, where given a backward question Q, we are interested in finding
the correct answer A to fill in the blank in the backward question Q.

5.1 COMPUTING THE PRIOR DISTRIBUTION

To create an ensemble, we use the idea of frequency voting. Assume that we are given a set of models
{M1,M2, · · · ,Mk}. Given a model Mi, we run the model Mi on the question Q r times, to get a
multi-set of answers {Aij}rj=1.

We compute the prior probability P (Al |Q) as simply the fraction of times Al appears as the answers
in the union of multiset of answers produced by each model for question Q : P (Al=A | Q) =∑

i,j 1[Aij=A]/kr. This generalizes the idea of majority voting to compute a prior distribution over
all the answers produced by a set of models in a given set of runs. This ensemble can be used for (1)
Simple Voting: Output the answer with the highest probability (2) Sampling: Output an answer based
on its prior probability (3) Prior: Use this as a prior distribution, to compute another posterior with
additional knowledge as described below.
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Solve the following question:
Q. The cafeteria had 23
apples. If they used x to make
lunch ... Find the value of x.

Write a program using SymPy
to find the value of x:
Q. The cafeteria had 23
apples. If they used x to make
lunch ... Find the value of x.

Generate equations in the
peano format to fill in the
blank:
Q. The cafeteria had 23
apples. If they used x to make
lunch ... Find the value of x.

20

12

9

5

9

8

9

20

20

M1 M2 M3 Prior
20 1 0 2 3/9
12 1 0 0 1/9
9 1 1 1 3/9
5 0 1 0 1/9
8 0 1 0 1/9

50%

30%

40%

Verify if the answer to the
given question is correct:
Q. The cafeteria had 23
apples. If they used n to make
lunch ...
A: 9

Post
20 0.55
12 0.03
9 0.28
5 0.01
8 0.16

1. Obtain samples from models

2. Create priors 
over answers 3. Verify obtained answers 4. Update priors &

choose most
probable answer

Figure 2: An illustrative example of how the ensembling of base models works together with a
verifier.

5.2 IMPROVEMENTS USING A VERIFIER

Next, let us assume we have a verifier V , such that given a question Q and an answer Al, V gives a
Boolean output Zl. This output is equal to 1 if Al is the correct answer to the question according to
the verifier, and 0 otherwise. Let P1(Zl|Al=A,Q) denote the distribution over V ’s outputs when
Al=A. Similarly, let P (Zl|Al ̸=A,Q) denote the distribution over V ’s outputs when Al ̸=A. We
estimate these distributions by computing the accuracy of the verifier on the holdout set S′, and
supplying a set of answers produced by the k models, each run r times on each Q ∈ S′, along with
the gold answer A. Please note that we could also use the probability P1(Zl|Al=A,Q) provided by
the verifier, but this probability may not be well calibrated (Jiang et al., 2021; Zhao et al., 2021), i.e.,
the model’s probability estimates may not accurately reflect the true likelihood of the answer being
correct. Therefore, we opted to use the holdout set to estimate these probabilities.

The probability that Al is the correct answer for a question Q, given the prior probability and the
verifier output Zl, by application of Bayes Rule, can be written as

P (Al=A | Zl, Q) =
P (Zl | Al=A,Q) P (Al=A | Q)

P (Zl | Al=A,Q)P (Al=A | Q) + P (Zl | Al ̸=A,Q)P (Al ̸=A | Q)
(1)

The first term in the numerator captures the prior probability over the verifier output given the correct
answer and is computed based on the holdout set as described earlier. The second term is simply the
prior probability as computed in section 5.1. The denominator is simply the normalization constant:
the first term is the same as in the numerator. In the second term, the first sub-term captures the prior
probability of verifier output given an incorrect answer and is obtained from the validation set. The
second sub-term can be computed simply by subtracting the prior distribution over answers. Figure 2
illustrates the process of how ensembling works using an example.

6 EXPERIMENTS

6.1 SETUP

In our experimental setup, we work with three primary datasets: GSM8k (Cobbe et al., 2021),
MultiArith (Roy & Roth, 2015), and SVAMP (Patel et al., 2021). We transform the examples in these
datasets into backward tasks, resulting in the creation of three new datasets: GSM8kB, SVAMPB, and
MultiArithB. We have experimented with four SOTA LLMs: GPT-4, GPT-3.5-Turbo (OpenAI, 2023),
PaLM-2 (Anil et al., 2023) and LLaMa-2 (Touvron et al., 2023). The first three models are utilized
via their official model APIs, while for LLaMa-2, we use the 70-billion-parameter model quantized
to 4-bit using GPTQ (Frantar et al., 2022). Apart from Table 1, all other tables use GPT-3.5-Turbo as
the base model, unless mentioned otherwise.
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Table 3: Results of Ensembling

GSM8k†B SVAMP†
B MultiArith†B

CoT 35.67 37.78 69.60
Tools 41.81 48.11 72.00
PAL-Tools 48.55 45.00 81.50
Ensemble 65.33 66.67 92.60

We work with 4 different prompting techniques: Chain of Thought (Wei et al., 2022), PAL (Gao
et al., 2023), Tools (He-Yueya et al., 2023) and SELF-REFINE (Madaan et al., 2023). Prompts and
in-context examples for the prompting techniques are taken from their original works. The in-context
examples are modified for the backward setting as discussed in Section 4. Examples of the prompts
used are given in Appendix A.2.

6.2 APPROACHES

We test our approaches using GPT-3.5-Turbo as the base model. The results are highlighted in Table
2. We classify the prompts into four categories:

1. Baseline prompts: Prompts whose in-context examples were adapted to the backward task
without changing the technique.

2. Rephrased prompts: Prompts that solve the rephrased question using chain-of-thought
reasoning. Used in proposed base method rephrasing.

3. PAL-Tools prompts: Prompts that use PAL-tools and their variants.

4. Adaptive prompts: Prompts used for resampling another hypothesis from the LLM if the
verification condition is not satisfied in the base method Reprompting and Verification.

For rephrasing, we find that models perform better when the rephrased problem has the blank replaced
with x compared to the baseline prompt This is because the relationship between the missing value
and the equations that models need to frame in order to solve the forward problem is explicit. Also,
for the baseline prompt, the model requires inferring the relationship between the forward answer and
the equations they need to frame to obtain it, which may introduce ambiguity and reduce accuracy.

For programmatic techniques, we see that PAL-Tools is more performant than Pal or Tools taken
separately. We hypothesize that LLMs encounter a larger amount of code in their training data
compared to the Peano solutions that He-Yueya et al. (2023) use in their prompt, and this implies that
they may find it easier to frame equations in a programming language rather than in a domain-specific
language specified via few-shot examples. We find that 4-shot PAL-tools with rephrasing performs
the best on GSM8kB and SVAMPB, while Check your Work prompting marginally outperforms
PAL-tools on MultiArithB. We also see that more in-context examples strongly assist in rephrasing,
as 4-shot rephrased PAL-Tools strongly outperforms 2-shot rephrased PAL-Tools when compared to
the base version without any rephrasing.

Finally, our proposed Check your Work method does marginally better than with our designed
prompts than prompts given the original Self-Refine paper (Madaan et al., 2023), with the added
benefit of much lower cost. While Self-Refine’s feedback prompts are quite large, containing extensive
feedback, check your work only appends the final question and chain of thought for verifying the
final question to the few-shot examples. This reduces cost as well as inference time. We also see
that Self-Refine outperforms the comparable PAL-tools variant, indicating that feedback from the
language model does assist in correcting reasoning.

6.3 ENSEMBLING

For our ensemble experiments, we selected the 100 examples from the datasets as holdout sets to
compute the prior probabilities of the models and the verifier’s accuracy. The models we included
in the ensemble are rephrased versions of three of our strongest single-prompt models: Chain-of-
Thought, Tools, and PAL-Tools. We then evaluated the ensemble on the non-holdout set, which is
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Table 4: Improvements using Rephrasing

Model Shots Rephrased GSM8kB SVAMPB MultiArithB

CoT 8-shot No 10.77 20.4 14.50
Yes 36.12 37.8 71.67

(↑25.35) (↑17.4) (↑57.17)

PAL 4-shot No 9.27 20.9 18.17
Yes 21.38 37.0 55.50

(↑12.11) (↑16.1) (↑37.33)

Tools 3-shot No 31.45 43.5 71.83
Yes 41.43 48.5 73.00

(↑9.98 ) (↑5.0 ) (↑1.17 )

PAL-tools 4-shot No 37.11 42.7 80.50
Yes 48.74 51.1 84.50

(↑11.63) (↑8.4 ) (↑4 )

model

actual positive negative

positive 75.94 24.05
negative 7.39 92.61

Table 5: Confusion matrix for veri-
fying problems and their solutions on
GSM8kB, normalized across rows

0%

10%

20%

30%

GSM8k SVAMP MultiArith

2-shot 4-shot

Figure 3: Relative performance increase
rephrasing brings to PAL-tools when 4 shots
are used compared to 2.

denoted with a † symbol in Table 3 to show the results. We observed that the accuracy on backward
MWP via ensembling surpasses the forward accuracy of Chain-of-Thought by up to 6%.

7 ANALYSIS

How much does rephrasing help? Since rephrasing is a strategy that can be applied across mul-
tiple techniques, we analyze the extent of accuracy gains obtained via rephrasing by applying it
independently to four techniques: CoT, PAL, Tools, and PAL-Tools. The results are shown in Table 4.
Rephrasing improves the accuracy of every technique that it is applied to. We see larger gains with
rephrasing in weaker methods, such as CoT. We also see that rephrasing has higher gains in datasets
where the problems are harder, such as in GSM8k compared to SVAMP.

Is verifying easier than solving? In the third step of the ensembling method, we try to verify
whether the blank provided is correct by solving the resulting forward problem after substituting the
blank. There are two settings in which we can verify this: 1) We ask the model to solve this new
question, and compare whether the answer obtained is same as original answer a. 2) We give the
original answer a to the model and ask it to check whether it is the answer obtained for new question.
To find which method is better at correctly verifying the blank, we check the accuracy of GPT-3.5-
turbo on GSM8k in setting 2. In the first pass, we provide the correct blank and in the second pass,
we provide an incorrect blank formed by multiplying z ∈ {2 . . . 10} with the correct blank. The
confusion matrix obtained is shown in Figure 5. It is observed that the accuracy of setting 2 is higher
than the forward reasoning accuracy of GPT-3.5-turbo. Hence we use that as the verification method
for ensembling.
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Carla just gave birth to identical octuplets.
She dresses 3/4 of them in purple and _____
in blue. If all the blue wearers and 1/3 of the
purple wearers also wear bows, what is the
percentage chance a baby wearing a bow is
wearing purple?

Ian has a board that is 40 feet long. He decides
to make a cut so he can have _____ pieces.
The longer piece is 4 times longer than the
shorter piece. How long is the longer piece?

Table 7: Examples of questions in GSM8kB
that don’t require the answer to find the value
of the blank

58

167

107

133

84

89

213

421Rephrased CoT

Rephrased PAL-Tools

Rephrased
Tools

Figure 4: Venn diagram of the subsets of prob-
lems of GSM8kB different prompts are able
to solve

Does the verifier assist in ensembling? We compare the accuracies obtained by using majority
voting with and without the verifier. We find that using a verifier improves the accuracy on GSM8k†B
and SVAMP†

B by 7% and on MultiArith†B by 0.6%. Since the verifier has a higher accuracy than any
of the models we consider, its inclusion inevitably increases the accuracy of any set of methods we
choose. Even if we use a noisy verifier, updating our priors based on its results using Bayes’ rule
ensures that the priors are not changed significantly.

Do some prompts subsume others? Let prompts M1,M2,M3 be able to solve problems
D1,D2,D3 respectively, where Di ⊆ D. If we choose to ensemble these prompts together, then
|
⋃

j Dj | > |Di| for the ensemble to do better. Figure 4 gives an overview of the subsets of GSM8k
three prompts, namely Rephrased Chain of Thought, Rephrased PAL-Tools and Rephrased Tools can
solve in a single try. We see that even though there is significant overlap between the prompts, the
probability of any one of them giving the right answer is 66.9 %, provided we sample from each
prompt once. The venn diagram also shows that the subsets of problems different prompts cover is
quite disjoint in nature. No prompt can solve all the problems that another prompt can solve.

Can every blank’s answer be determined? There may be cases where the blank does not directly
contribute to the answer, or is irrelevant. In such a case, inferring the value of the blank is not possible
given the answer. Even though Cobbe et al. (2021) claim that less than two percent of problems
have breaking errors, We sample 50 random examples from GSM8kBthat our strongest model solves
incorrectly and find that no such problems in the sample we analyse, leading us to believe that the
probability of such problems existing in our dataset is little to none.

Do all blanks need answers to be solved? In the 50 examples we analyse above, there are 10 ex-
amples where the value of the blank can be obtained simply from reading the question, as the question
makes implicit assumptions or provides further information that can be used to fill in the blank. Two
examples are presented in figure 3. It is surprising that even our strongest model is unable to find the
answer to such questions, either as a consequence of its poor reasoning abilities or because we make
the dependency between requiring the answer to fill in the blank explicit.

8 CONCLUSION

We show that backward reasoning is still a hard problem for large language models, by showing that
their accuracy drops significantly on this task compared to forward reasoning. To augment this, we
propose multiple methods that can improve their accuracy in this setting and are extensible across
preexisting models. We also propose a Bayesian ensembling technique that can combine multiple
models in the presence of a noisy verifier. These techniques combined bring backward performance
on par with forward reasoning performance. Finally, we analyze the fallacies and pitfalls of each of
these techniques and show areas for future improvements.
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A APPENDIX

A.1 DATASET

We consider three datasets of interest: GSM8K (Cobbe et al., 2021), MultiArith (Roy & Roth, 2015)
and SVAMP (Patel et al., 2021). All these datasets consist of grade-school arithmetic word problems
along with their answers.

A.1.1 GENERATION METHODOLOGY

Given a source forward dataset

D = {(Qi, Ai)
n
i=1 | Qi ∈ Σ∗, Ai ∈ R}

we present a method to create a backward dataset

D′
k = {(Q′

i, Ai, (B
0
i , . . . , B

k
i ))

n
i=1 | Q′

i ∈ Σ∗, Ai, B
j
i ∈ R}

To convert Qi (Source question) to Q′
i (blanked out question) and extract blanks B0

i . . . B
k
i , we split

Qi into it’s constitutent tokens based on a delimiter, usually space. We then consider all numeric
tokens, which are defined as tokens that encode a number. Numeric tokens may be alphanumeric,
such as $42, 80% or 3.14, or they may be alphabetic, such as three, twice or half. Using this heuristic
for numeric tokens, we ignore the first numeric token and extract the next k tokens sequentially. If we
are unable to extract k tokens, then we skip that question and answer pair. It is worth noting that for
the datasets we use, k = 1, that is we only consider the problem of backwardly inferring one missing
number in the question, given the answer. Solving the n > 1 case would require first checking if a
unique solution exists and is a topic for future work.
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Dataset N Example

GSM8k 1272* Kylar went to the store to buy glasses for his new apartment. One glass costs
$5, but every second glass costs only 60% of the price. Kylar wants to buy 16
glasses. How much does he need to pay for them?

GSM8kB 1272 Q : Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only _____% of the price. Kylar wants
to buy 16 glasses. How much does he need to pay for them?
A : 64

SVAMP 1000 28 children were riding on the bus. At the bus stop 82 children got on the bus
while some got off the bus. Then there were 30 children altogether on the bus.
How many more children got on the bus than those that got off?

SVAMPB 1000 Q : 28 children were riding on the bus. At the bus stop _____ children got on
the bus while some got off the bus. Then there were 30 children altogether on
the bus. How many more children got on the bus than those that got off?"
A : 2

MultiArith 600 Lana picked 36 tulips and 37 roses to make flower bouquets. If she only used
70 of the flowers though, how many extra flowers did Lana pick?

MultiArithB 600 Q : Lana picked 36 tulips and _____ roses to make flower bouquets. If she
only used 70 of the flowers though, how many extra flowers did Lana pick?
A : 3

Table 7: Sample questions from the datasets we consider

The reason we choose to blank out only numeric tokens rather than an entire phrase or sentence is to
make the task of validation easier. An alternative that was explored was phrase masking. However,
phrase masking would lead to generations that would not be verifiable with perfect accuracy, and
multiple possible generations for each question. The benefit of number masking is that quantities can
be compared to each other without loss of accuracy, and every question-answer pair has a unique
blank.

A.1.2 GENERATION RESULTS

Using the above method, we were able to convert 1272 of the 1319 question and answer pairs in
GSM8k to backward reasoning problems, and all 1000 and 600 pairs in SVAMP and MultiArith
respectively.

A.1.3 DATASET EXAMPLES

Some examples of the datasets under consideration are shown in Table 7. Note that for GSM8k, the
original dataset contains 1319 sample problems but our dataset generation method for the backward
task filters out 47 of them. For comparability with the backward task, we have used the 1272 common
examples of this dataset. We use all the problems in SVAMP and MultiArith.

A.2 PROMPTS

We construct prompts by changing the original examples of the papers we consider. We show one to
two in-context examples of each prompt. The remaining examples may be seen in our code.
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1 Rephrase the given blanked question and answer pairs and then find the
solution to the rephrased question. Give your answer as either a number
or a decimal (no fractions). Follow the format specified in the examples
below:

2

3 Q: There are 15 trees in the grove. Grove workers will plant _____ trees
in the grove today. After they are done, how many trees would be there?

4 A: 21
5 Rephrased: There are 15 trees in the grove. Grove workers will plant x
trees in the grove today. After they are done, there would be 21 trees.
Find the value of x.

6 Answer: There are 15 trees originally, Then there were 21 trees after
some more were planted. So there must have been x = 21 - 15 = 6 trees.
The answer is 6.

7

8 Q: If there are 3 cars in the parking lot and _____ more cars arrive,
how many cars are in the parking lot?

9 A: 5
10 Rephrased: If there are 3 cars in the parking lot and x more cars

arrive, there are 5 cars in the parking lot. Find the value of x.
11 Answer: There are originally 3 cars. x more cars arrive. 3 + x = 5, so x

= 5 - 3 = 2. The answer is 2.
12

13 ...
14

15 Q: {{question}}
16 A: {{answer}}
17 Rephrased:

Figure 5: Rephrasing with x
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1 You are given a math question with a blank value and an answer. Solve it
step b step to find the value of blank. Strictly follow the format given
in the examples below.

2

3 Question: Ben has four boxes with ten basketball cards in each box. Ben
received ______ cards from his mother. If he gives 58 cards to his
classmates, how many cards does he has left?

4 Answer: 22
5

6 Peano solution:
7

8

9 Let a be number of boxes [[var a]]. We have [[eq a = 4]].
10 Let b be number of cards in each box [[var b]]. We have [[eq b = 10]].
11 Let c be number of cards Ben initially has [[var c]]. We have [[eq c = a

* b]].
12 Let d be cards received from mother [[var d]].
13 Let e be cards given to classmates [[var e]]. We have [[eq e = 58]].
14 Let f be cards left [[var f]]. From given Answer, we have [[eq f = 22]].
15 We have [[eq d = f + e - c]]
16 The answer is the value of d [[answer d]].
17

18

19

20

21 Question: Natalia sold _____ clips to her friends in April, and then she
sold half as many clips in May. How many clips did Natalia sell
altogether in April and May?

22 Answer: 72
23

24 Peano solution:
25

26

27 Let a be number of clips Natalia sold in April [[var a]].
28 So number of clips Natalia sold in May are half of a.
29 Let b be number of clips sold altogether [[var b]]. From given Answer,

we have [[eq b = 72]].
30 We have [[eq a = b / (1 + 1/2)]]
31 The answer is the value of a [[answer a]].
32

33 ...
34

35 Q: {{question}}
36 A: {{answer}}
37

38 Peano solution:

Figure 6: Tools
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1 Rephrase the given blanked question and answer pairs and then solve it
step b step to find the value of blank. Strictly follow the format given
in the examples below.

2

3 Question: Ben has four boxes with ten basketball cards in each box. Ben
received ______ cards from his mother. If he gives 58 cards to his
classmates, how many cards does he has left?

4 Answer: 22
5

6 Rephrased: Ben has four boxes with ten basketball cards in each box. Ben
received x cards from his mother. If he gives 58 cards to his
classmates, he has 22 cards left. Find the value of x.

7 Peano solution:
8

9

10 Let a be number of boxes [[var a]]. We have [[eq a = 4]].
11 Let b be number of cards in each box [[var b]]. We have [[eq b = 10]].
12 Let c be number of cards Ben initially has [[var c]]. We have [[eq c = a

* b]].
13 Let x be cards received from mother [[var x]].
14 Let d be total cards with Ben [[var d]]. We have [[eq d = c + x]]
15 Let e be cards given to classmates [[var e]]. We have [[eq e = 58]].
16 Let f be cards left [[var f]]. From given Answer, we have [[eq f = 22]].
17 As cards left are also total cards - cards given to classmates, we have

[[eq f = d - e]]
18 The answer will be the value of x [[answer x]].
19

20

21

22

23

24 Question: Natalia sold _____ clips to her friends in April, and then she
sold half as many clips in May. How many clips did Natalia sell
altogether in April and May?

25 Answer: 72
26

27 Rephrased: Natalia sold clips to x of her friends in April, and then she
sold half as many clips in May. Find the value of x such that she sold a
total of 72 clips altogether in April and May.

28 Peano solution:
29

30

31 Let x be number of clips Natalia sold in April [[var x]]
32 Let a be number of clips Natalia sold in May [[var a]]. We have [[eq a =

x / 2]].
33 Let b be number of clips sold altogether [[var b]]. From given Answer,

we have [[eq b = 72]].
34 As clips sold altogether are also the sum of clips sold in April and

May, we have [[eq b = x + a ]]
35 The answer will be the value of x [[answer x]].
36

37 ...
38

39 Q: {{question}}
40 A: {{answer}}
41

42 Rephrased:

Figure 7: Tools with Rephrasing
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1 Rephrase the given blanked question and answer pairs and then find the
solution to the rephrased question. Write a python function that finds
the value of x by solving step by step. Make sure you name your method
finding_x. A few examples are given below.:

2

3 Question: Ben has four boxes with ten basketball cards in each box. Ben
received ______ cards from his mother. If he gives 58 cards to his
classmates, how many cards does he has left?

4 Answer: 22
5 Rephrased: Ben has four boxes with ten basketball cards in each box. Ben
received x cards from his mother. He gives 58 cards to his classmates.
He has 22 cards left.

6 Program:
7 ‘‘‘python
8 def finding_x():
9 num_boxes = 4
10 cards_per_box = 10
11 # cards_received_from_mother = x - This line is commented because x

is unknown
12 # hence the variable cards_received_from_mother can’t be used in

R.H.S. of any calculation
13 cards_given_to_classmates = 58
14 cards_left = 22
15 cards_in_boxes = num_boxes * cards_per_box
16 total_cards_before_given_to_classmates = cards_given_to_classmates +

cards_left
17

18 cards_received_from_mother = total_cards_before_given_to_classmates
- cards_in_boxes

19 return cards_received_from_mother
20 ‘‘‘
21

22 Question: Olivia has $23. She bought _____ bagels for $3 each. How much
money does she have left?

23 Answer: 8
24 Rephrased: Olivia has $23. She bought x bagels for $3 each. She has $8

left. Find the value of x.
25 Program:
26 ‘‘‘python
27 def finding_x():
28 money_initial = 23
29 # num_of_bagels = x - This line is commented because x is unknown
30 # hence the variable num_of_bagels can’t be used in R.H.S. of any

calculation
31 bagel_cost = 3
32 money_left = 8
33 money_spent = money_initial - money_left
34

35 num_of_bagels = money_spent / bagel_cost
36 return num_of_bagels
37 ‘‘‘
38

39 Question: {{question}}
40 Answer: {{answer}}
41 Rephrased:

Figure 8: PAL with Rephrasing
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1 You are given a math question with a blank value and an answer. Write a
python function called solution() using sympy that assumes the value of
the blank is x and creates an equation in x that is solved by
sympy.solve. Return the value of the blank. You may assume the
neccessary libraries are imported. Strictly follow the format given in
the examples below, as the method will be executed with the same name.

2

3 Q: Ben has four boxes with ten basketball cards in each box. Ben
received _____ cards from his mother. If he gives 58 cards to his
classmates, how many cards does he has left?

4 A: 22
5 Program:
6 ‘‘‘python
7 def solution():
8 num_boxes = 4
9 cards_per_box = 10
10 total_cards_in_boxes = num_boxes * cards_per_box
11 cards_from_mother = x
12 cards_given_to_classmates = 58
13 cards_left = 22
14

15 equation = Eq(cards_from_mother + total_cards_in_boxes,
cards_given_to_classmates + cards_left)

16 blank = solve(equation)[0]
17

18 return blank
19 ‘‘‘
20

21 Q: Natalia sold clips to _____ of her friends in April, and then she
sold half as many clips in May. How many clips did Natalia sell
altogether in April and May?

22 A: 72
23 Program:
24 ‘‘‘python
25 def solution():
26 april_clips = x
27 may_clips = april_clips / 2
28 total_clips = 72
29

30 equation = Eq(april_clips + may_clips, total_clips)
31 blank = solve(equation)[0]
32

33 return blank
34 ‘‘‘
35 ...
36

37 Q: {{question}}
38 A: {{answer}}
39 Program:

Figure 9: PAL-Tools
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1 Rephrase the given blanked question and answer pairs and then write a
python function called solution() to find the value of x in the
rephrased question. Return the value of x. You may assume the neccessary
libraries are imported. Strictly follow the format given in the examples
below, as the method will be executed with the same name.

2

3 Q: Ben has four boxes with ten basketball cards in each box. Ben
received _____ cards from his mother. If he gives 58 cards to his
classmates, how many cards does he has left?

4 A: 22
5 Rephrased: Ben has four boxes with ten basketball cards in each box. Ben
received x cards from his mother. He gives 58 cards to his classmates.
He has 22 cards left. Find the value of x.

6 Program:
7 ‘‘‘python
8 def solution():
9 num_boxes = 4
10 cards_per_box = 10
11 total_cards_in_boxes = num_boxes * cards_per_box
12 cards_from_mother = x
13 cards_given_to_classmates = 58
14 cards_left = 22
15

16 equation = Eq(cards_from_mother + total_cards_in_boxes,
cards_given_to_classmates + cards_left)

17 blank = solve(equation)[0]
18

19 return blank
20 ‘‘‘
21

22 Q: Natalia sold _____ clips to her friends in April, and then she sold
half as many clips in May. How many clips did Natalia sell altogether in
April and May?

23 A: 72
24 Rephrased: Natalia sold x clips to her friends in April, and then she

sold half as many clips in May. Natalia sells 72 clips altogether in
April and May. Find the value of x.

25 Program:
26 ‘‘‘python
27 def solution():
28 april_clips = x
29 may_clips = april_clips / 2
30 total_clips = 72
31

32 equation = Eq(april_clips + may_clips, total_clips)
33 blank = solve(equation)[0]
34

35 return blank
36 ‘‘‘
37

38 ...
39

40 Q: {{question}}
41 A: {{answer}}
42 Rephrased:

Figure 10: PAL-Tools with Rephrasing
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1 Fill in the blank given the question and answer examples below. Give
your answer as either a number or a decimal (no fractions). Check your
work by substituting your answer in the blank, solving the question and
comparing to the original answer. Follow the format specified in the
examples below:

2

3 Q: There are 15 trees in the grove. Grove workers will plant _____ trees
in the grove today. After they are done, how many trees would be there?

4 A: 21
5 Answer: There are 15 trees originally, Then there were 21 trees after
some more were planted. So there must have been 21 - 15 = 6 trees. The
blank is 6.

6 Final question: There are 15 trees in the grove. Grove workers will
plant 6 trees in the grove today. After they are done, how many trees
would be there?

7 Check: There would be 15 + 6 = 21 trees in total. The original answer
was 21. This matches the original answer.

8

9 Q: If there are 3 cars in the parking lot and _____ more cars arrive,
how many cars are in the parking lot?

10 A: 5
11 Answer: There are originally 3 cars. There are finally 5 cars, so 5 - 3

= 2 cars arrived. The blank is 2.
12 Final question: If there are 3 cars in the parking lot and 2 more cars

arrive, how many cars are in the parking lot?
13 Check: There would be 3 + 2 = 5 cars in the parking lot. The original

answer was 5. This matches the original answer.
14

15 ...
16

17 Q: {{question}}
18 A: {{answer}}
19 Answer:

Figure 11: Check your work
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1 Fill in the blank given the question and answer examples below. Give
your answer as either a number or a decimal (no fractions). Check your
work by substituting your answer in the blank, solving the question and
comparing to the original answer. Follow the format specified in the
examples below:

2

3 Q: There are 15 trees in the grove. Grove workers will plant _____ trees
in the grove today. After they are done, how many trees would be there?

4 A: 21
5 Rephrased: There are 15 trees in the grove. Grove workers will plant x
trees in the grove today. After they are done, there would be 21 trees.
Find the value of x.

6 Answer: There are 15 trees originally, Then there were 21 trees after
some more were planted. So there must have been x = 21 - 15 = 6 trees.
The answer is 6.

7 Final question: There are 15 trees in the grove. Grove workers will
plant 6 trees in the grove today. After they are done, how many trees
would be there?

8 Check: There would be 15 + 6 = 21 trees in total. This matches the
original answer.

9

10 Q: If there are 3 cars in the parking lot and _____ more cars arrive,
how many cars are in the parking lot?

11 A: 5
12 Rephrased: If there are 3 cars in the parking lot and x more cars

arrive, there are 5 cars in the parking lot. Find the value of x.
13 Answer: There are originally 3 cars. x more cars arrive. 3 + x = 5, so x

= 5 - 3 = 2. The answer is 2.
14 Final question: If there are 3 cars in the parking lot and 2 more cars

arrive, how many cars are in the parking lot?
15 Check: There would be 3 + 2 = 5 cars in the parking lot. This matches

the original answer.
16

17 ...
18

19 Q: {{question}}
20 A: {{answer}}
21 Rephrased:

Figure 12: Check your work with Rephrasing
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1 You are given a math question with a blank value and an answer. Rephrase
the given blanked question and answer pairs and then write a python
function called solution() to find the value of x in the rephrased
question. Return the value of x. You may assume the neccessary libraries
are imported. Strictly follow the format given in the examples below, as
the method will be executed with the same name.

2

3 Q: Ben has four boxes with ten basketball cards in each box. Ben
received _____ cards from his mother. If he gives 58 cards to his
classmates, how many cards does he has left?

4 A: 22
5 Rephrased: Ben has four boxes with ten basketball cards in each box. Ben
received x cards from his mother. He gives 58 cards to his classmates.
He has 22 cards left. Find the value of x.

6 Program:
7 ‘‘‘python
8 def solution():
9 num_boxes = 4
10 cards_per_box = 10
11 total_cards_in_boxes = num_boxes * cards_per_box
12 cards_from_mother = x
13 cards_given_to_classmates = 58
14 cards_left = 22
15

16 equation = Eq(cards_from_mother + total_cards_in_boxes,
cards_given_to_classmates + cards_left)

17 blank = solve(equation)[0]
18

19 return blank
20 ‘‘‘
21

22

23 Q: Natalia sold _____ clips to her friends in April, and then she sold
half as many clips in May. How many clips did Natalia sell altogether in
April and May?

24 A: 72
25 Rephrased: Natalia sold x clips to her friends in April, and then she

sold half as many clips in May. Natalia sells 72 clips altogether in
April and May. Find the value of x.

26 Program:
27 ‘‘‘python
28 def solution():
29 april_clips = x
30 may_clips = april_clips / 2
31 total_clips = 72
32

33 equation = Eq(april_clips + may_clips, total_clips)
34 blank = solve(equation)[0]
35

36 return blank
37 ‘‘‘
38

39 Q: {{question}}
40 A: {{answer}}
41 Rephrased:

Figure 13: PAL-Tools with Rephrasing and Self-Refine: init prompt
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1 You are given a question-answer pair with a blank, and a chain of
thought (CoT) for filling in the blank. Go through the chain of thought
step by step and point out mistakes, if any. Provide the final corrected
answer as shown below.

2

3 Q: Kelly is grocery shopping at a supermarket and is making sure she has
enough in her budget for the items in her cart. Her 5 packs of bacon
cost $_____ in total and she has 6 packets of chicken which each cost
twice as much as a pack of bacon. She also has 3 packs of strawberries,
priced at $4 each, and 7 packs of apples, each priced at half the price
of a pack of strawberries. If Kelly’s budget is $65 then how much money,
in dollars, does she have left in her budget?

4 A: 5
5 Rephrased: Kelly is grocery shopping at a supermarket and is making sure
she has enough in her budget for the items in her cart. Her 5 packs of
bacon cost a total of x dollars, and she has 6 packets of chicken, each
costing twice as much as a pack of bacon. She also has 3 packs of
strawberries priced at $4 each, and 7 packs of apples, each priced at
half the price of a pack of strawberries. If Kelly’s budget is $65, then
how much money, in dollars, does she have left in her budget?

6

7 Program:
8

9 ‘‘‘python
10 def solution():
11 bacon_cost = x
12 chicken_cost = 2 * bacon_cost
13 strawberry_cost = 4
14 apple_cost = strawberry_cost / 2
15 budget = 65
16 remaining_budget = budget - (5 * bacon_cost + 6 * chicken_cost + 3 *

strawberry_cost + 7 * apple_cost)
17

18 equation = Eq(remaining_budget, 5)
19 blank = solve(equation)[0]
20

21 return blank
22 ‘‘‘
23

24 Correction:
25

26 The rephrased problem does not end with ’Find the value of x’. Instead,
it asks us to find the money Kelly has left in her budget. This is
incorrect.

27

28 Let’s check the program:
29

30 bacon_cost = x
31 chicken_cost = 2 * bacon_cost
32

33 Looks good
34

35 strawberry_cost = 4
36 apple_cost = strawberry_cost / 2
37

38 Looks good
39

40 budget = 65
41 remaining_budget = budget - (5 * bacon_cost + 6 * chicken_cost + 3 *

strawberry_cost + 7 * apple_cost)
42

43 The equation formed is correct, as are the number of packs of bacon,
chicken, strawberry and apples

44

45 equation = Eq(remaining_budget, 5)
46 blank = solve(equation)[0]
47 return blank
48

49 The equation has been equated to the correct answer, and the program
returns the blank.

50

51 The program provided is completely correct!

Figure 14: PAL-Tools with Rephrasing and Self-Refine: feedback prompt
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1 Final Rephrased Problem:
2 Kelly is grocery shopping at a supermarket and is making sure she has
enough in her budget for the items in her cart. Her 5 packs of bacon
cost a total of x dollars, and she has 6 packets of chicken, each
costing twice as much as a pack of bacon. She also has 3 packs of
strawberries priced at $4 each, and 7 packs of apples, each priced at
half the price of a pack of strawberries. If Kelly’s budget is $65, then
she has $5 left in her budget after shopping. Find the value of x.

3

4 Final Program:
5 ‘‘‘python
6 def solution():
7 bacon_cost = x
8 chicken_cost = 2 * bacon_cost
9 strawberry_cost = 4
10 apple_cost = strawberry_cost / 2
11 budget = 65
12 remaining_budget = budget - (5 * bacon_cost + 6 * chicken_cost + 3 *

strawberry_cost + 7 * apple_cost)
13

14 equation = Eq(remaining_budget, 5)
15 blank = solve(equation)[0]
16

17 return blank
18 ‘‘‘
19 ...
20

21 Q: {{question}}
22 A: {{answer}}
23 Rephrased: {{rephrased}}
24 Program:
25 ‘‘‘python
26 {{program}}
27 ‘‘‘
28

29 Correction:

Figure 15: PAL-Tools with Rephrasing and Self-Refine: feedback prompt continued
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