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ABSTRACT

Long video understanding remains a fundamental challenge for multimodal large
language models (MLLMs), particularly in tasks requiring precise temporal rea-
soning and event localization. Existing approaches typically adopt uniform frame
sampling and rely on implicit position encodings to model temporal order. How-
ever, these methods struggle with long-range dependencies, leading to critical
information loss and degraded temporal comprehension. In this paper, we propose
Dynamic Absolute Time Enhancement (DATE) that enhances temporal awareness
in MLLMs through the Timestamp Injection Mechanism (TIM) and a semantically
guided Temporal-Aware Similarity Sampling (TASS) strategy. Specifically, we
interleave video frame embeddings with textual timestamp tokens to construct a
continuous temporal reference system. We further reformulate the video sampling
problem as a vision-language retrieval task and introduce a two-stage algorithm
to ensure both semantic relevance and temporal coverage: enriching each query
into a descriptive caption to better align with the vision feature, and sampling key
event with a similarity-driven temporally regularized greedy strategy. Our method
achieves remarkable improvements w.r.t. absolute time understanding and key
event localization, resulting in state-of-the-art performance among 7B and 72B
models on hour-long video benchmarks. Particularly, our 7B model even exceeds
many 72B models on some benchmarks.

When did the strap of his pants slip off when he turned back to dance?

26.4s25.0s0s 11.3s 15.3s 21.0s 29.2s 32.9s 49.9s

The straps of his pants slipped off when he turned his back 

to dance at approximately 10 seconds into the video.

Qwen2.5VL

 (12 frames)

The straps of his pants slipped off when he turned his back 

to dance at around 25 seconds into the video.

Qwen2.5VL

 (256 frames)

The straps of his pants slipped off when he turned his back 

to dance around 26.4 seconds into the video.
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Figure 1: A Real example of our proposed DATE compared with Qwen2.5-VL. It shows DATE with
12 frames beats 256 frames of Qwen2.5-VL.

1 INTRODUCTION

Multimodal large language models (MLLMs)Alayrac et al. (2022); Cheng et al. (2024b); Wang et al.
(2024a) have shown remarkable performance in a wide range of video understanding tasks, including
video captioning, question answering, and event localization. However, when extended to long videos,
these models face fundamental challenges in temporal reasoning and precise event localization. The
essential reason for this limitation lies in the mismatch between rigid input length constraints of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

transformer architectures and the inherently long and continuous nature of real-world video content.
As a result, existing approaches typically resort to uniform frame sampling as a preprocessing step.
Unfortunately, this coarse-grained strategy often leads to the loss of critical visual events, temporal
discontinuity, and the collapse of causality chains, severely limiting the model’s capacity to reason
over spatiotemporal structures. Moreover, there is no ability to perform perception and alignment of
the absolute time and the corresponding frames.

One major obstacle is the inability of current methods to construct explicit representations of absolute
time. Even when time-stamped subtitles are used as prompts, models struggle to align absolute
timestamps with specific video frames. Although models such as Qwen2.5VLBai et al. (2025)
incorporate absolute time information into the temporal position embedding based on Multimodal
RoPEWang et al. (2024a); Su et al. (2024), this approach exhibits critical drawbacks: For short video
clips, time differences within one second remain indistinguishable; for long videos, the continual
growth of positional indices leads to a loss of relative positional perception and eventual degradation
of temporal comprehension. Our diagnostic experiments further confirm that such models do not
solve problems related to absolute time reliably.

Another significant challenge comes from frame sampling itself. Uniform discretizations of frames
lead to sparse observations, especially in long videos where adjacent frames may be separated by
tens of seconds. Such sampling is agnostic to semantic content and fails to adapt dynamically to
user queries, resulting in low recall when critical events are temporally sparse. Recent methods
like Adaptive Keyframe Selection (AKS)Tang et al. (2025) attempt to mitigate this by introducing
query-guided dynamic sampling. However, they suffer from two key issues: (1) they use raw user
questions as CLIPRadford et al. (2021) text encoders, which contradicts CLIP’s training paradigm
centered on descriptive captions, leading to unstable or truncated representations; (2) their sampling
method may still select irrelevant frames (e.g., negative samples with relatively high scores) and often
fails in visually stable segments due to insufficient score variance.

To address these limitations, we proposed DATE, as shown in Fig.2, for absolute time-aware video
understanding and event localization. Our method builds a temporal coordinate system directly within
the multimodal sequence by interleaving explicit timestamp tokens with video frame embeddings.
This timestamp injection preserves visual continuity while allowing for precise and controllable
temporal references. To guide the model towards relevant content, we formulate video sampling as a
text-image retrieval task and employ a two-stage semantic-guided selection strategy: (i) rewriting
user questions into caption-style descriptions for better alignment with CLIP-based vision-language
similarity computation, and (ii) applying a temporally-regularized greedy sampling algorithm that
ensures both high semantic relevance and temporal diversity. Our contributions are three-folds:

(1) We introduce Timestamp Injection Mechanism (TIM) that enables explicit absolute time
modeling without modifying model weights or requiring additional training.

(2) We propose Temporally-Aware Similarity Sampling (TASS), a temporally-regularized greedy
sampling algorithm with semantic-guided caption generation to sample frames, which balance key
events with video continuity.

(3) We show that our method achieves superior spatial perception and event localization, especially
for hour-long video scenarios, which achieve SOTA on 7B models, even surpassing many 72B
models. Moreover, the DATE-72B model achieves state-of-the-art performance.

2 RELATED WORKS

2.1 MULTIMODAL LARGE LANGUAGE MODELS FOR VIDEO UNDERSTANDING

With the widespread success of large language models (LLMs) Achiam et al. (2023); Brown et al.
(2020); Chiang et al. (2023); Chowdhery et al. (2023); Chung et al. (2024); Grattafiori et al. (2024);
Touvron et al. (2023a;b); Ray (2023); Chen et al. (2024c) in natural language processing, researchers
have extended these models to multimodal scenarios, forming multimodal large language models
(MLLMs)Lai et al. (2024); Liu et al. (2023). By incorporating visual encoders, MLLMs are capable
of processing visual inputs such as images or videos, enabling tasks like visual question answering,
video captioning, and visual reasoningMaaz et al. (2023); Alayrac et al. (2022); Chen et al. (2024a);
Wu et al. (2024a); Min et al. (2024); Qian et al. (2024); Wang et al. (2022). Representative models
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A time-lapse sequence of LED 
screens displaying changing 
patterns and colors.

Generated Caption

The time-lapse photography of LED screens is shown in the 
45th second of the video.

Multimodal Large Language Model (MLLM)

Video Sequences 

<video_token> <time_token>

In which second of the video 
that shows the time-lapse 
photography of LED screens?

User Question

LLM-based

Caption Generator

C
L

IP

Vision Encoder &  Projector

<video_token> <time_token> <video_token> <time_token>

…

at 45s

Sampled

Frames

Temporal-Aware 

Similarity Sampling

（TASS)

<45s><15s> <34s> <62s> <101s>

Timestamp Injection 

Mechanism (TIM)

Figure 2: Overview of the proposed framework. For each user input question, using LLM-based
Caption Generator to generate a CLIP-aligned image caption, and calculate the similarity with video
frames. Then, use Temporal-Aware Similarity Sampling (TASS) strategy to sample the frames (The
real sampled frames and orders of this demo could be found in Appendix B). Last, with Timestamp
Injection Mechanism (TIM), we embed timestamps aligned with each frame.

include Video-ChatGPTMaaz et al. (2023); Lin et al. (2023), LLaVA-VideoZhang et al. (2024b),
VideoLLAMAZhang et al. (2023); Cheng et al. (2024b); Zhang et al. (2025), and Qwen-VLWang
et al. (2024a); Bai et al. (2025), which typically encode video frames into visual tokens and feed them
into the model alongside textual tokens. However, due to the inherent context length limitations of
LLMs, these models often rely on fixed frame sampling strategies, resulting in significant information
compression when processing long video dataFu et al. (2024); Wu et al. (2024b); Wang et al. (2024b).
Moreover, long videos present unique challenges such as sparse events and wide semantic spans,
which demand more effective temporal modeling and cross-segment reasoning capabilities. Therefore,
many strategies Shang et al. (2024); Zhang et al. (2024a); Wei & Chen (2024); Chen et al. (2024d);
Wang et al. (2025); Cheng et al. (2024a); He et al. (2024b;a) proposed for longer context.

2.2 TEMPORAL MODELING

Temporal modeling is a fundamental challenge in long video understanding. Existing methods can
be broadly categorized into two groups: ①Using data with timestamps to fine-tune model with time
tokensChen et al. (2024b) or prompts with timestampsRen et al. (2024). These need more data and
training cost. ②Explicit incorporation of time into positional encoding. For example, Qwen2.5VL
introduces MRoPEBai et al. (2025) and Qwen2.5-OmniXu et al. (2025) introduces TMRoPE, which
use absolute time signals into its rotary positional encoding. However, this encoding mechanism
is prone to positional drift in long sequences, where the encoded position values grow too quickly
with sequence length, thereby distorting the relative temporal relationships between frames. This can
reduce the ability of the model to capture temporal causality and duration. More importantly, these
methods often fail to provide a stable temporal awareness, thus limiting the ability of the model to
perceive absolute time.

2.3 FRAME SAMPLING STRATEGY

To mitigate the performance bottleneck caused by limited input length, frame sampling has become
a crucial component in video understanding systems. The most common strategy is uniform sam-
plingBai et al. (2025); Cheng et al. (2024b); Li et al. (2024), which is straightforward but fails
to adaptively select frames based on semantic importance. This often leads to omission of criti-
cal content, especially in videos with dense or uneven event distributions. To address this, some
semantics-aware frame selection methods with VLMs like CLIPRadford et al. (2021) have been
proposed, such as BOLTLiu et al. (2025) and AKSTang et al. (2025), and they proved to be effective
over uniform and topk sampling. However, they all use question to find frames, this is not a good
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Figure 3: The Multimodal RoPE (MRoPE) with our Timestamp Injection Mechanism (TIM) compared
with Qwen2.5-VL’s MRoPE. Qwen2.5-VL: Add 15 since there are 15 seconds betweet frames.
TIM(ours): The temporal dimension T is extended with time token. The spatial dimensions (H,W )
remain aligned with the first frame, ensuring spatial consistency across the whole sequence.

way for CLIP to embed question, since it was not trained with question. Meanwhile, they may also
sample negative frames and loss critical temporal continuity (action, movement, etc.).

3 METHODS

3.1 TIMESTAMP INJECTION MECHANISM (TIM)

To enhance the temporal perception of Multimodal Large Language Models (MLLMs) in video
understanding, especially in long videos requiring absolute time localization, we propose a timestamp
injection mechanism. This mechanism is model-agnostic and compatible with most mainstream
MLLMs. In this work, we take Qwen2.5-VLBai et al. (2025), which incorporates explicit absolute
time encoding, as our baseline method.

Token-Level Timestamp Injection The latest open-source MLLM, Qwen2.5-VL, relies on their
proposed MRoPE (Multimodal RoPE) mechanism to model temporal sequences with time interval in
the position ID of MRoPEWang et al. (2024a), to embed absolute time of video frames. However,
our experiments demonstrate that this approach lacks a true understanding of absolute time.

To address this, we introduce a token-level timestamp injection mechanism. As shown in Fig.3, for
each sampled frame, we construct the input sequence using an interleaved structure of visual and
time tokens:

<video_token><time_token><video_token><time_token> ...<video_token><time_token>

Here, each color represents the combination of video tokens and timestamps of a frame,
<video_token> represents the visual tokens (not one token), and <time_token> is its corre-
sponding textual timestamp (e.g., 01:23 or 83s). This structure preserves visual continuity while
injecting a precise and controllable temporal reference, enabling the language model to perform
time-aware reasoning task such as event ordering and absolute time localization.

Reconstruction of Positional Encoding and Sequential Normalization The MRoPE mechanism
in Qwen2.5-VL introduces absolute time information via position indices in the visual branch.
Although it models temporal order to some extent, it suffers from critical limitations when applied to
long videos due to linearly increasing position indices(IDs):

(1) Sparsity and Resource Inefficiency: Since position IDs grow proportionally, large time gaps
(e.g., 20s between frames) leading to inefficient use of the sequence length and potential index
explosion (e.g., 10,000 in hour-long videos).

(2) Degradation of Relative Positional Awareness: Large gaps between position IDs disrupt the
relative distances between tokens, compromising the ability to capture local temporal structures.

To mitigate these issues, we remove the absolute time alingment from Qwen2.5VL’s MRoPE and
retain only the original Multimodal RoPE (MRoPE) encoding. Specifically, the temporal dimension T

4
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is encoded using a simple sequential indexing strategy, where position indices increment according to
the order of tokens. Furthermore, to preserve the spatial encodings between video frames, we ensure
that only the temporal dimension T is extended along with time token insertion. The spatial encodings
(H,W ) remain aligned with the first frame, ensuring spatial consistency across the sequence.

This design maintains the numerical stability of RoPESu et al. (2024), and preserves the model’s
sensitivity to token order. Meanwhile, absolute time perception is handled independently via the
explicit <time_token>s, resulting in a decoupled and robust time representation framework.
Moreover, as shown in Fig.6, a modality gap between vision tokens and time tokens makes the model
can better locate them key events. As the result of the proof in AppendixB.2, when position encoding
for each frame is less than 6.28, it could perceive relative positions better. Therefore, for ours TIM,
the video tokens use one position id, and the time token use less than four position ids, which uses a
total less than five position ids for each frame.

3.2 TEMPORAL-AWARE SIMILARITY SAMPLING (TASS)

Discretized video frame sampling is a common preprocessing step in multimodal video modeling.
However, in long video scenarios, uniformly spaced sampling strategies exhibit clear limitations.
On the one hand, the temporal gaps between frames may span several seconds to minutes, making
it likely to miss sparse but semantically critical moments. On the other hand, uniform sampling is
task-agnostic, severely undermining the recall of key events.

Sampling directly based on similarity leads to frames with little variation being sampled continuously,
which results in video features collapsing into a single image. Sampling across too large a span would
then lead to problems with key event continuity, difficulty in recognizing object movement, etc., i.e.,
a similar problem to that which would occur with uniform sampling and AKSTang et al. (2025).

Thus, we proposed TASS, a temporally-regularized greedy sampling algorithm that ensures both high
key event continues and temporal diversity. It consists of two main stages: (i) semantic-enhanced
similarity computation, and (ii) similarity-prioritized sampling under temporal constraints.

Semantic Enhancement: From Question to Caption To improve the consistency of the visual-
language alignment, we first convert the user’s query (typically a question) into a more descriptive
caption using a language model, and the prompt of this step can be seen in Appendix H. Unlike raw
questions, captions exhibit a declarative style that aligns better with CLIP’s image-text matching
paradigm, activating more stable and complete semantic representations.

Each video frame vi is embedded using CLIP, and its similarity to the caption c is calculated as:

si = CLIP(vi, c) =
⟨vi, c⟩

∥vi∥ · ∥c∥
(1)

Temporal-Aware Similarity Sampling We first compute a dynamic threshold smean which is the
mean of all similarity scores. Scores below the mean are considered negative samples, as they
contribute little to answering the user’s query and are therefore discarded. To ensure computational
efficiency, we further cap the number of top-ranked candidates by setting an upper bound proportional
to the final number of selected frames, i.e., topk ≤ 4× max_frames.

topk = min (|{i | si > smean}| , α× max_frames) (2)

where α is a controllable coefficient. It denotes the number of frames to be sampled (candidate
frames). For example, Qwen2.5-VL-7B can process up to 256 frames, and we set α = 4 by default,
using our sampling strategy, we can effectively compress and select representative frames from a
sequence of 4 ∗ 256 = 1024 frames. When negative sample filtering is considered, the expected
number of candidate frames for sampling could be 2048.

While many continuous frames are semantically aligned, they often cluster temporally, leading to
redundancy. To ensure temporal diversity while preserving semantic relevance, we introduce a greedy
selection algorithm that is similarity first with enforcing a minimum time interval δ between selected
timestamps. If fewer than Nmax frames are obtained, δ is iteratively decayed until the quota is met.
The pseudo-code is as follows:

5
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Algorithm 1 Temporal-Aware Similarity Sampling (TASS)
Require: Top-K timestamps ItopK, sampled frames Nmax, initial interval δ0
Ensure: Selected timestamps St
1: Initialize St ← ∅, δ ← δ0, decay ratio λ = 0.5
2: while |St| < Nmax do
3: for each tk ∈ ItopK do
4: if ∀tj ∈ St, |tk − tj | ≥ δ or St = ∅ then
5: St ← St ∪ {tk}
6: Remove tk from ItopK

7: if |St| ≥ Nmax then
8: break
9: end if

10: end if
11: end for
12: δ ← δ · λ
13: end while
14: return sorted St

The most relevant work w.r.t. TASS is the Adaptive Keyframe Selection (AKS) proposed by Tang
et al.Tang et al. (2025), which introduces a query-driven sampling mechanism. However, it suffers
from two major issues: (1) It directly uses raw questions as CLIP text inputs, misaligned with CLIP’s
caption-style since it was trained with image-caption pairs but not questions, and prone to semantic
truncation due to the input limitation; (2) Its variance-based sampling strategy tends to include false
positives (i.e., high-scoring frames from negative segments), due to the small magnitude of score
variations, and may miss keyframes in visually smooth regions.

In contrast, our method leverages caption rewriting for better alignment and introduces a temporal
regularization mechanism to ensure broader temporal coverage. This makes sampling more robust
and effective for modeling temporally distributed events in long videos.

4 EXPERIMENTS

4.1 BENCHMARKS

To comprehensively evaluate our proposed DATE on long video understanding, we conduct ex-
periments on three hour-long video benchmarks that emphasize complex temporal reasoning and
long-context modeling:

Video-MMEFu et al. (2024) is a video evaluation benchmark designed for general video understand-
ing. It contains 900 videos (256 hours in total) across various categories and durations, annotated with
2,700 expert-curated multiple-choice QA pairs. The dataset is partitioned into short (<2 min), medium
(4–15 min), and long (30–60 min) subsets, enabling a detailed analysis of temporal scalability.

LongVideoBenchWu et al. (2024b) focuses on long-context multimodal reasoning. It comprises
3,763 videos of up to 1 hour in length and 6,678 annotated questions across 17 categories. The
benchmark emphasizes fine-grained temporal retrieval and localized event reasoning, making it ideal
for evaluating absolute time comprehension.

LVBenchWang et al. (2024b) is one of the most challenging benchmarks for long video understanding,
with an average video length of over 4,000 seconds. It provides 1,549 QA pairs including multiple
tasks such as entity tracking, temporal grounding, and causal reasoning, offering a comprehensive
testbed for temporal-aware video modeling.

Implementation Details We adopt Qwen2.5-VL (7B and 72B)Bai et al. (2025) as our baseline model.
For fair comparison and reproducibility, we utilize the publicly released checkpoints and re-evaluated
all benchmarks following their official technical report. Our DATE also follows the same settings. In
the evaluation, the baseline adopts a uniform sampling rate of 4 FPS, with the resolution set to 448
(longest side) and a maximum of 256 input frames across all benchmarks. All the experiments are
conducted with Nvidia A100-80G GPUs. For our proposed TASS, deepseek-v3Liu et al. (2024) is
used for caption generation. Then, the frames are extracted with 1 FPS for all videos to calculate the
visual-textual similarity score with the generated caption. Visual-textual similarity is computed using
the CLIP ViT-B/32Radford et al. (2021) model to enable the semantic-aware frame filtering. In the

6
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Table 1: Performance comparison on long video benchmark with SOTAs, including Video-MME
(w/o subtitles), LongVideoBench, and LVBench. For fairly comparison, we re-test the model based
on the technical report disclosed by QwenVL team, with all video inputs preprocessed based on
4FPS and 448 resolution. (♠: official reported results. ♣: we re-test results). In the test, we found
that the metric reported by QwenVL team on LongVideoBench were tested at 224 resolution. More
experiments on different model could be found in AppendixC.

Models Size Frames Video-MME (w/o sub) LongVideoB LVBench
Long

(30-60min)
Overall
(0-60m)

val
(8s-3600s)

val
(avg.>4000s)

Closed Video MLLMs
GLM-4V-Plus - 256 - 70.8 - 58.7

GPT-4o - 384 65.3 71.9 66.7 27
Gemini-1.5-Pro - 1/0.5fps 67.4 75 64 33.1

Open-source Video MLLMs>70B
LLaVA-OneVision-72B 72B 32 - 66.2 61.3 -

LLaVA-Video 72B 64 61.5 70.6 61.9 -
Qwen2-VL 72B 768 62.2 71.2 60.4 41.3

InternVL2.5-78B 78B 16-64 - 72.1 63.6 -
InternVL3-78B 78B 16-64 - 72.7 65.7 -

Qwen2.5-VL-72B♠ 72B 768 - 73.3 60.7 47.3
Qwen2.5-VL-72B♣ 72B 256 63.4 72.7 66.9 48.8
DATE-72B(Ours) 72B 256 65.3 73.3 68.1 52.1

Small Video MLLMs
VITA-1.5 7B 16 47.1 56.1 - -

LLaVA-Video 7B 64 - 63.3 58.2 -
NVILA 8B 256 54.8 64.2 57.7 -

ByteVideoLLM 14B 256 56.4 64.6 - -
VideoLLaMA3 7B 180 - 66.2 59.8 45.3
InternVL3-8B 8B 16-64 - 66.3 58.8 -

Qwen2.5-VL-7B♠ 7B 256 - 65.1 56.0224dpi 45.3
Qwen2.5-VL-7B♣ 7B 256 55.4 65.8 61.8448dpi 43.7
DATE-7B(Ours) 7B 256 57.3 67.3 63.3 47.4

Generated Caption:

Lee Chong Wei's expression, body posture, and reaction after hitting the 

shuttlecock.

Question:

How to describe the feeling of Lee Chong Wei at 48:16?

Options:

A. He feels frustrated because he does not catch the shuttlecock from the 

opponent

B. He feels excited because he gets one point

C. He feels frustrated because he beats the buttlecock out of bounds

D. He feels frustrated because he does not beat the shuttlecock cross the net.

Source: LVBench (Hf-n1yfd8II.mp4)

Qwen2.5-VL:  C

DATE (ours):  A

Sampled Frames

Figure 4: A real demo compared DATE-7B with Qwen2.5-VL-7B. The caption is generated with our
method and calculate similiarity scores with frames. The red points are sampled frames with TASS.
More could be found in Appendix.

TASS (Temporal-Aware Similarity Sampling) module, we set the selection ratio coefficient α = 4,
and initialize the temporal interval constraint δ0 to 20 seconds.

4.2 MAIN RESULTS

Comparison with the State-of-the-Art We compare our proposed method, DATE, with a variety
of state-of-the-art closed-source and open-source video MLLMs on multiple long-video benchmarks,
as summarized in Table 4. Compared to other small-scale video MLLMs, DATE achieves consistent
improvements across all benchmarks, outperforming the prior best model (Qwen2.5-VL) by +1.5%
on Video-MME (Overall), +1.5% on LongVideoBench (val), and +2.1% on LVBench (An extremely
long video benchmark). Moreover, our method (256 frames) even outperforms the Qwen2.5-VL-72B

7
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Figure 5: Comparison of performance related
to event-aware tasks in the three benchmarks:
Video-MME, LongVideoBench, and LVBench.

Table 2: Ablation study on two components
of DATE-7B on three long video benchmarks:
Video-MME, LongVideoBench, and LVBench.

TIM TASS V-MME LongVideoB LVB
✗ ✗ 65.8 61.8 43.7
✓ ✗ 66.5 61.9 44.9
✗ ✓ 66.6 62.8 46.7
✓ ✓ 67.3 63.3 47.4

Table 3: Comparisons with latest methods on LVBench. The baseline is the Qwen2.5-VL-7B model
with uniform sampling and their MRoPE. Sampling Strategy: we compared TASS with AKS
(most latest method), and list the computation time for both methods under the same CPU. Time
Embedding: We compared our method TIM with timestamps given in prompt.

Frames Base SamplingStrategy Time Embedding
TASS(Ours) AKSTang et al. (2025) TIM(Ours) Prompt

256 43.7 46.7 21.2s 45.8 21.1s 44.9 42.5
128 40.7 45.8 6.4s 44.6 19.2s 40.2 39.4
64 38.8 42.6 2.7s 43.3 16.4s 37.1 36.9
32 36.8 40.9 1.7s 39.6 13.9s 37.3 35.8
16 33.9 39.8 1.2s 33.8 11.7s 35.7 33.1

(768 frames) model on LongVideoBench and LVBench. These gains demonstrate DATE’s superior
temporal modeling capability, especially in handling extremely long videos. It shows our methods
effectively injects temporal cues and helps the model focus on semantically important moments,
enabling more robust long-range reasoning.

Comparison with Event-aware tasks. To better understand the advantage of DATE in modeling
temporal and event-centric information, we provide a detailed comparison across fine-grained sub-
tasks in Video-MME, LVBench, and LongVideoBench, as shown in Figure 5.

4.3 PRECISE EVENT LOCALIZATION CAPABILITIES

Our DATE shows significant advantages in accurate event localization. As shown in the Fig.1, DATE
can accurately identify the specific time points of events even when only 12 frames are used, and even
accurately samples the critical time with only one frame as shown by the sampling order labeled in the
sampling graph. However, the baseline model still shows significant deviations at 256 frames. This
validates the effectiveness and robustness of our proposed temporal modeling and semantic-driven
sampling strategy for long video understanding. Fig.4 also shows some cases in benchmarks, more
examples can be found in the Appendix.

4.4 ABLATION STUDIES

We conduct comprehensive ablation studies to evaluate the two core components in DATE: Timestamp
Injection Mechanism (TIM) and Temporal-Aware Similarity Sampling (TASS) on Video-MME,
LongVideoBench, and LVBench, which are reported in Table 2.

To further analyze the effectiveness and efficiency of our sampling method, we compare TASS with
Adaptive Keyframe Selection (AKS)Tang et al. (2025), a recent method proposed at CVPR’25, under
large range of frame rates (from 16 to 256). As shown in Table3, TASS consistently outperforms
AKS across nearly all frame settings, especially at lower frame counts (e.g., +6.0% at 16 frames),
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Figure 6: Attention maps of Qwen2.5-VL and
our TIM with 6 times token. Rectangles label the
attention area of each frame’s vision tokens. TIM
binds times to the corresponding frame and lead
to a scope constraint on attentions.

Figure 7: Hyper-parameters analysis of TASS. δ0
is the initial minimum time interval for sampling,
and α controls the candidate sampling frames.

while achieving comparable or even faster sampling times on the same CPU. These results highlight
the efficiency and effectiveness of our sampling design.

Moreover, TIM consistently outperforms the simple "timestamp-in-prompt" method, demonstrating
that directly embedding temporal cues into the token space is a more effective way to inject temporal
awareness into MLLMs than relying on implicit prompt descriptions.

4.5 TIM ATTENTION ANALYSIS

To investigate the impact of temporal information on video understanding, we visualize attention
maps of the baseline and our TIM. This experiment is conducted on the demo from Fig.1, using 12
input frames. Since Qwen2.5-vl merges every 2 frames, a total of 6 timestamp tokens are embedded.

As shown in Fig.6 (left), the baseline exhibits a relatively diffuse attention pattern, indicating that
the model relies mainly on content-based similarity across the sequence. In contrast, the attention
map of DATE (Fig.6, right) reveals a distinct pattern. Notably, video tokens corresponding to the
timestamp receive significantly higher attention, suggesting that timestamp tokens act as temporal
anchors. They enable the model to associate specific moments with the broader video content.

Furthermore, the explicit temporal cues introduced by timestamp tokens appear to improve the ability
to localize frame information. By offering a temporal reference frame for aggregating content across
the sequence, the model enhances its contextual understanding of individual video segments.

4.6 HYPER-PARAMETERS ANALYSIS

As shown in Fig.7 α controls the number of candidate frames, acting as an effective filtering
mechanism to remove distracting information, it achieves the best performance at 4; δ0 constrains the
initial temporal range of sampling, demonstrating the stability of the algorithm, which samples well
no matter how it is initialized, ensuring continuity between frames and enhancing coverage of key
events. Experimental results demonstrate that with appropriate configurations, TASS achieves a good
balance between efficiency and temporal awareness.

5 CONCLUSION

In this work, we propose DATE, designed to enhance absolute time understanding and event local-
ization in long videos for Multimodal Large Language Models (MLLMs). By timestamp tokens
injection mechanism (TIM) and a semantic-driven key event sampling strategy (TASS), our method
constructs an explicit and continuous temporal coordinate model with a Plug-and-Play way. Extensive
experiments on multiple long-video benchmarks demonstrate that DATE significantly improves the
model’s ability to identify and align over temporally grounded events. Our findings highlight the
importance of precise time modeling and open new direction to enhance time awareness for MLLMs.
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6 REPRODUCIBILITY STATEMENT

Our method is a plug-and-play method, so that everyone can reproduce the same results as shown in
the paper.

7 ETHICS STATEMENT

We do not encounter any ethical concerns, as our work is conducted entirely on publicly available
models and benchmarks:

• Benchmark: Video-MME (Allows to used for academic research)
• Benchmark: LongVideoBench (CC-BY-NC-SA 4.0 license)
• Benchmark: LongVideoBench (CC-BY-NC-SA 4.0 license)
• Model: Qwen2.5-VL (Apache-2.0 license)
• Compliance: No private or proprietary assets were used. All usages comply with academic

research standards and ethical guidelines.
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A THE USE OF LARGE LANGUAGE MODELS(LLMS)

We used LLMs to assist in language polishing and grammar checking during the submission of the
manuscript.

B ISSUES OF MROPE AND PROOF

TIM primarily solves the MRoPE issue of Qwen2.5vl in a training-free way, meanwhile enabling the
understanding of absolute time.

1. For intervals shorter than 1 second, it directly rounds the value (e.g., frames corresponding
to 0.5s and 0.6s are encoded sequentially as a, a+ 1), which completely loses the concept
of absolute time.

2. Its absolute time encoding shows almost no capability for absolute time perception. Ad-
ditionally, for long videos, it wastes a large number of position IDs and causes relative
positional ambiguity.

B.1 RELATIVE POSITIONAL AMBIGUITY OF MROPE IN QWEN-2.5VL

In long video understanding, sparse sampling is commonly used to reduce computation, such as
sampling one frame per second. In this case, the position indices are often incremented uniformly
(e.g., at seconds 0, 20, 40, . . .). Therefore, for Qwen2.5VL’s MRoPE, high-frequency dimensions in
RoPE suffer from rotational aliasing, which leads to relative positional ambiguity.

RoPE encodes each position k by rotating its feature vector by an angle:

ϕi(k) = k · θi, where θi = 10000−2i/d

For any two positions k1, k2, the relative positional difference is represented by the angle difference:

∆ϕi = (k2 − k1) · θi = ∆k · θi

For a large position difference ∆k, the frequency parameter θi decreases rapidly with increasing
dimension i, which causes high-frequency dimensions to be more sensitive to position differences.

When the angle difference ∆ϕi exceeds 2π, i.e., when the rotation completes a full cycle, RoPE maps
the positions k1 and k2 to the same phase, leading to a loss of relative positional information.

Let d = 256 and the position interval be ∆k = 20s. We compare two representative dimensions:

Low-Frequency Dimension (i = 127):

θ127 = 10000−
2·127
256 ≈ 10−1.98 ≈ 0.0105

∆ϕ127 ≈ 20 · 0.0105 = 0.21 rad

Since the period of low frequencies is long, it can still be distinguished quite well.
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High-Frequency Dimension (i = 0):
θ0 = 10000−

2·0
256 = 1

∆ϕ0 = 20 · 1 = 20 rad
In this case, the angle difference ∆ϕ0 = 20 rad corresponds to approximately 20

2π ≈ 3.18 full
rotations. This may cause the relative position between two consecutive frames to become blurred.

B.2 CRITICAL VALUE FOR MAINTAINING RELATIVE POSITIONAL RELATIONSHIP

In RoPE, the position encoding is given by rotating the feature vector by an angle ϕi(k) for position
k. The frequency parameter θi for dimension i is defined as:

θi = 10000−2i/d

where d is the total number of dimensions, and i is the index of the current dimension.

For the highest-frequency dimension (i = 0), the frequency is maximum:
θ0 = 100000 = 1

Thus, for i = 0, the rotation angle for a given position difference ∆k is:
∆ϕ0 = ∆k · θ0 = ∆k

The rotation angle ∆ϕ0 must remain within one period, i.e., within 2π radians. Therefore, we require:
∆ϕ0 < 2π

Substituting ∆ϕ0 = ∆k, we get:
∆k < 2π ≈ 6.2832

For long videos, according to the Qwen2.5-vl method, the sampling interval can easily exceed this
limit.

C EXPERIMENTS ON OTHER MODELS

Table 4: Performance comparison on long video benchmark base on different models, including
Video-MME (w/o subtitles), LongVideoBench, and LVBench. For fairly comparison, we re-test the
model, with all video inputs preprocessed based on 4FPS and 448 resolution, and chose the supported
64-frame limit for sampling (both LLAVA-onevision and InternVL3 are up to 64 frames). (♠: official
reported results. ♣: we re-test results). For InternVL3, we use their official inference codes, but it
has a significant gap compared with their reported results

Models Size Frames Video-MME (w/o sub) LongVideoB LVBench
Long

(30-60min)
Overall
(0-60m)

val
(8s-3600s)

val
(avg.>4000s)

LLAVA-onevision-7B♠ 7B 64 - 58.2 56.3 -
LLAVA-onevision-7B♣ 7B 64 47.88 57.90 40.54 57.14

w/ DATE 7B 64 48.11 58.62 45.12 58.56
InternVL3-8B ♠ 8B 64 - 66.3 58.8 -
InternVL3-8B ♣ 8B 64 50.55 61.81 54.90 43.45

w/ DATE 8B 64 53.00 62.44 59.31 46.03

D LIMITATIONS

Although DATE is an effective approach for enhancing absolute temporal understanding, it still
encounters efficiency challenges when dealing with extremely long videos. The reliance on frame-
level similarity computation and greedy selection under temporal constraints leads to an inference
time that grows approximately linearly with video length. This may result in noticeable latency
for hour-long videos—though such delays primarily occur during the initial pass, and subsequent
interactions can leverage cached results for near-instant sampling. While reducing the sampling FPS
can improve speed, it inevitably compromises precision. Future work may explore more scalable
sampling strategies or hierarchical indexing mechanisms to improve runtime efficiency without
sacrificing the model’s ability to locate temporally critical events.
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E TASS DEMO

This is the detail sampling visualization of Fig.2, with 16 sampled red points and sampling orders
labeled.

A time-lapse sequence of LED 
screens displaying changing 
patterns and colors.

Generated Caption

Video Sequences at 45s

Sampled

Frames

45s<15s> <34s> <64s> <100s>

Figure 8: Sampling visualization.
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F QUALITATIVE RESULTS AND ANALYSIS

We present qualitative results to show the abilities of DATE-7B compared with Qwen2.5-VL-7B
across various video understanding benchmarks. Fig.9,10,11,12,13,14 shows qualitative results on
Video-MME, LVBench, and LongVideoBench.

Generated Caption:

A plated dish with a baked item, positioned third in a sequence of foods.

Question:

What is the third baked food in the video?

Options:

A. Scallop.

B. Kobe beef.

C. Bacon.

D. Salmon.

Source: Video-MME (cy40DIzOUow.mp4)

Qwen2.5-VL:  B

DATE (ours):  C

Sampled Frames

Generated Caption:

The home team's score surpasses the guest team's score during a 

segment of the game.

Question:

In which period does the home team overtake the guest team?

Options:

A. 12:56 - 8:13.

B. 5:58 - 2:57.

C. 8:13 - 5:58.

D. 13:10 - 10:37.

Source: Video-MME (cy40DIzOUow.mp4)

Qwen2.5-VL:  C

DATE (ours):  B

Sampled Frames

Generated Caption:

A woman in a blue top is seated, speaking to an interviewer in a 

studio setting.

Question:

In which part of the video is the woman in the blue top interviewed?

Options:

A. Cannot be determined.

B. The beginning of the video.

C. The middle part of the video.

D. The latter part of the video.

Source: Video-MME (tXb_zrHp4H8.mp4)

Qwen2.5-VL:  B

DATE (ours):  D

Sampled Frames

Figure 9: Qualitative Results on Video-MME compared with Qwen2.5-VL-7B (1).
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Generated Caption:

Scholars appear in the video, discussing historical topics.

Question:

Throughout the video, how many scholars in total show up in the video 

and comment on Napoleon?

Options:

A. Two.

B. Three.

C. One.

D. Four.

Source: Video-MME (6DbsOZU8mBM.mp4)

Qwen2.5-VL:  A

DATE (ours):  B

Sampled Frames

Generated Caption:

A cloth with painted designs, some areas showing fine lines, placed in a 

workspace with tools and materials for textile art.

Question:

What is not true about Kyo-yuzen technique based on the video?

Options:

A. It contains 10 stages.

B. The artworks contain very fine lines in some places.

C. It includes the steaming process.

D. Artists paint on the cloth.

Source: Video-MME (aansXcMqnNk.mp4)

Qwen2.5-VL:  D

DATE (ours): A

Sampled Frames

Generated Caption:

The main character tastes a dish with a prominent flavor.

Question:

What is the flavor that the main character tastes the most in the video?

Options:

A. Sour.

B. Sweet.

C. Spicy.

D. Smoky flavor.

Source: Video-MME (IXjkbgrdAkw.mp4)

Qwen2.5-VL:  D

DATE (ours): C

Sampled Frames

Figure 10: Qualitative Results on Video-MME compared with Qwen2.5-VL-7B (2).
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Generated Caption:

Two individuals engage in close interaction, showing physical 

proximity and facial expressions indicating a significant moment.

Question:

What happens from 17:16-17:40?

Options:

A. They quarrel

B. They kiss

C. They talk nicely

D. They hug.

Source: LVBench (xECIRjlxM3U.mp4)

Qwen2.5-VL:  B

DATE (ours):  A

Sampled Frames

Generated Caption:

A presenter on stage holding an envelope, a musical performance in 

progress, and audience members seated in a theater.

Question:

What happens from 41:09-52:20?

Options:
A. The announcement of the Best Supporting Actress and the performance from 

Billie Eilish

B. The announcement of the Best Leading Actress and the performance from Ken

C. The announcement of the Best Supporting Actor and the performance from Ken

D. The announcement of the Best Leading Actor and the performance from Billie 

Eilish.

Source: LVBench (t-RtDI2RWQs.mp4)

Qwen2.5-VL:  B

DATE (ours):  C

Sampled Frames

Generated Caption:

Green numbers displayed on the screen.

Question:

What are the green numbers that appear between 36:05-36:06?

Options:

A. 59.9

B. 9.59

C. 5.95

D. 99.5.

Source: LVBench (_zrgbA3FMVE.mp4)

Qwen2.5-VL:  C

DATE (ours):  B

Sampled Frames

Figure 11: Qualitative Results on LVBench compared with Qwen2.5-VL-7B (1).
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Generated Caption:

A player with a slightly downcast expression, appearing less confident.

Question:

At 06:06, considering the player's facial expressions, whose belief and 

confidence is a little bit down?

Options:

A. Thiago

B. Gomez

C. Alisson

D. Salah.

Source: LVBench (T1yhBv1ytzw.mp4)

Qwen2.5-VL:  B

DATE (ours):  D

Sampled Frames

Generated Caption:

A numerical year appears in the opening caption.

Question:

What year appears in the opening caption of the video?

Options:

A. 1636

B. 1366

C. 1363

D. 1633.

Source: LVBench (xECIRjlxM3U.mp4)

Qwen2.5-VL:  A

DATE (ours):  D

Sampled Frames

Generated Caption:

A banner with decorative text in the background.

Question:

What words are written in the background for an event that involves a 

group of princesses or royal girls?

Options:

A. The contest

B. The decision

C. The conceal

D. The competition.

Source: LVBench (Cm73ma6Ibcs.mp4)

Qwen2.5-VL:  D

DATE (ours):  A

Sampled Frames

Figure 12: Qualitative Results on LVBench compared with Qwen2.5-VL-7B (2).
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Generated Caption:

A man in black wearing sunglasses gestures with a speech bubble in 

the lower right corner.

Question:

The top of the screen shows a red search box, below the search box is left-

aligned text, with bold black characters at the bottom. Some characters in 

the upper right center are on a blue background. In the lower right corner, 

there is a man in black wearing sunglasses explaining something using a 

speech bubble. What is this man doing?

Options:

A. Using the mouse pointer to add a green background to part of the text.

B. Using the mouse pointer to select part of the text on the screen.

C. Using the mouse pointer to add a red background to part of the text.

D. Using the mouse pointer to add a yellow background to part of the text.

E. Using the mouse pointer to add a white background to part of the text.

Source: LongVideoBench (vVRC-0VKPrg.mp4)

Qwen2.5-VL:  D

DATE (ours):  B

Sampled Frames

Generated Caption:

A man in a black hat and white T-shirt raises both hands while talking.

Question:

The individual on the screen is a man wearing a black hat and a white T-

shirt. To his right, there is a photo that shows the back silhouette of a person 

looking at a sculpture. On the left side, there is also a yellow building. What 

is the man in the screen doing?

Options:

A. Raising both hands and facing away from a mirror while talking.

B. Raising both hands and looking up while talking.

C. Raising both hands and nodding while talking.

D. Raising both hands and looking down while talking.

E. Raising both hands and facing a mirror while talking.

Source: LongVideoBench (eDso3zHFxL8.mp4)

Qwen2.5-VL:  E

DATE (ours):  B

Sampled Frames

Generated Caption:

A woman in gray clothes stands in front of brown doors on a white 

wall, near a silver railing and a white lamp.

Question:

Outside the room, there are two brown doors on a white wall. In front of the 

doors, there's a woman in gray clothes and a silver railing. On the wall, 

there's also a lamp emitting white light. What is this woman doing?

Options:

A. walking.

B. dancing.

C. talking.

D. running.

E. reading.

Source: LongVideoBench (d5JlCEDlHGE.mp4)

Qwen2.5-VL:  C

DATE (ours):  A

Sampled Frames

Figure 13: Qualitative Results on LongVideoBench compared with Qwen2.5-VL-7B (1).
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Generated Caption:

A man in black clothes and a woman in a light green dress with vintage 

hair stand on a walkway with hanging lanterns and a large chandelier.

Question:

In the scene, there is a man with black clothes and black hair and a woman 

with vintage hair styled in a court manner and wearing a light green dress. 

Behind them is a walkway with hanging lanterns and a large chandelier. 

What did the two do?

Options:

A. shake hands.

B. embrace.

C. look at each other.

D. hold hands.

E. run.

Source: LongVideoBench (Y5833KeDmp4.mp4)

Qwen2.5-VL:  D

DATE (ours):  C

Sampled Frames

Generated Caption:

A creature in white clothes with a tail lifts a cane on a grassy road 

under a blue-green sky.

Question:

In the animated scene, under the blue-green sky, in the middle of a road 

lined with tall grass on both sides, there is a creature wearing white clothes 

and has a tail. It's lifting a cane, what does it do after lifting the cane?

Options:

A. Stuck the cane into the ground.

B. Kneeled on the ground.

C. Lay down on the ground.

D. Put on a hat.

E. Dropped the cane.

Source: LongVideoBench (HQns-h_82qU.mp4)

Qwen2.5-VL:  E

DATE (ours):  A

Sampled Frames

Generated Caption:

A man in white clothes stands near tombstones, with yellow clothes 

and a black bag on the grass.

Source: LongVideoBench (tWiGnu2BNsY.mp4)

Qwen2.5-VL:  B

DATE (ours):  D

Sampled Frames

Question:

A man wearing white clothes is lying on the grass in a graveyard. Next to him 

are yellow clothes and a black bag. On the grass, there are many standing 

tombstones. Before the man lies down on the grass, what was he doing?

Options:

A. Piloting a plane.

B. Peeling an apple.

C. Cutting a watermelon.

D. Coughing.

E. Opening a wheelbarrow.

Figure 14: Qualitative Results on LongVideoBench compared with Qwen2.5-VL-7B (2).

G BAD CASES

While we obtained good boosts across the three benchmarks, we instead made errors compared to
the baseline predictions in some cases, as shown in Fig.15. We believe this may be due to the fact
that we introduced additional tokens that increased the processing difficulty of the model, bringing it
close to the upper limit of its capacity, thus increasing illusions for certain scenario.
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Question:

Who's in control of our brains in the video?

Options:

A. Genetics, neurochemistry, and inherent brain structure.

B. Conscious decision-making and the influence of the subconscious mind.

C. Environmental factors such as social networks, culture, and education.

D. The answer cannot be inferred.

Source: Video-MME (yQ6VOOd73MA.mp4)

Qwen2.5-VL:  D

DATE (ours):  B

Sampled Frames

Generated Caption:

Murals depicting nomadic tribes and Bronze Age Culture in a 

historical setting.

Question:

Which of the following statements is not correct according to the video?

Options:

A. Prince Dmitri Donskoi defeated the Mongols at the Battle of Kulikovo 

Field in 1380.

B. Before 2000BC, the Russia is inhabited by nomadic tribes and Bronze 

Age Culture.

C. The Grand Principality of Moscow emerged as a powerful rival to the 

Golden Horde.

D. We can guess nomadic tribes and Bronze Age Culture by the murals.

Source: Video-MME (w0Wmc8C0Eq0.mp4)

Qwen2.5-VL:  D

DATE (ours):  A

Sampled Frames

Generated Caption:

A person's brain activity visualized through neural pathways, 

environmental interactions, and decision-making processes.

Question:

Who is the man wearing glasses, a black suit, and a blue patterned tie?

Options:

A. Ma Huateng

B. Jack Ma

C. Li Kaifu

D. Robin Li.

Source: LVBench (5dZ_lvDgevk.mp4)

Qwen2.5-VL:  C

DATE (ours):  D

Sampled Frames

Generated Caption:

A penguin waddles to the edge of a nest, aiming away from eggs, and 

projects feces a significant distance.

Question:

Against a blue background, a man wearing a pair of black-rimmed 

glasses and a white short-sleeved shirt with a small bird pattern is 

explaining something. Which of the following animals can spray 

feces up to 40 cm?

Options:

A. Hamster.

B. Whale.

C. Ostrich.

D. Rabbit.

Source: LongVideoBench (athabNMGceo.mp4)

Qwen2.5-VL:  C

DATE (ours):  B

Sampled Frames

Generated Caption:

A man wearing glasses, a black suit, and a blue patterned tie is speaking.

Figure 15: Bad cases compared with Qwen2.5-VL-7B.
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H CAPTION GENERATION PROMPTS OF TASS

Prompt

You are an image description assistant. Assume you are currently watching a video, and I will
give you a question related to the video.
Your task is to generate potential image caption based on the question, which is able to find the
key image to answer the question.

Core requirements:
1. The output must be concise, objective, and visually observable facts.
2. Exclude subjective judgments, invisible information, and the specific content the question is
asking.
3. Avoid using quantities; use implicit references instead.
4. The question options given are for reference, you can use their commonalities, but not only one
of them.
5. Keep the output within 30 words.

Output format:
Directly output the visual description without any explanations or annotations.

Here is the question: {question}
Output Key Image Caption:

I DEMO WITH DIFFERENT TRAINING-FREE TIME EMBEDDINGS

Figure 16: Compare TIM with MROPE (base), timestamps given in prompts, mark frames and given
timestamps in prompt, TIM with time at the start of the vision tokens, and TIM with time at the end
of the vision tokens. It shows that both at the start/end of the vision segment is available for
MLLM to understand a relatively absolute time.
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