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Abstract

We present and analyze a novel regularized form of the gradient clipping algorithm, proving
that it converges to global minima of the loss surface of deep neural networks under the
squared loss, provided that the layers are of sufficient width. The algorithm presented
here, dubbed δ−GClip, introduces a modification to gradient clipping that leads to a first-
of-its-kind example of a step size scheduling for gradient descent that provably minimizes
training losses of deep neural nets. We also present empirical evidence that our theoretically
founded δ−GClip algorithm is competitive with the state-of-the-art deep learning heuristics
on various neural architectures including modern transformer based architectures. The
modification we do to standard gradient clipping is designed to leverage the PL* condition,
a variant of the Polyak-Łojasiewicz inequality which was recently proven to be true for
sufficiently wide neural networks at any depth within a neighbourhood of the initialization.

1 Introduction
In various disciplines, from control theory to machine learning theory, there has been a long history of trying
to understand the nature of convergence on non-convex objectives for first-order optimization algorithms,
i.e. algorithms which only have access to (an estimate of) the gradient of the objective (Maryak & Chin,
2001; Fang et al., 1997). The new incarnation of this question in optimization problems in high dimensions,
which arise in modern machine learning applications (like with neural network training), motivate the need
for finite-time analysis of such algorithms. However, a challenging aspect of these modern use cases is their
reliance on fine tuning of some hyper-parameters, such as the step size, momentum, and batch size. In
the wake of this, the “adaptive gradient” algorithms, such as Adam (Kingma & Ba, 2014) have become
essentially indispensable for deep learning (Sun & Spall, 2019; Melis et al., 2018; Bahar et al., 2017).

∗Work done while a student at the Department of Computer Science, University of Manchester.
†Corresponding author.

1

https://openreview.net/forum?id=ABT1XQLbOx


Published in Transactions on Machine Learning Research (06/2025)

The widespread popularity in deep learning of adaptive gradient methods like Adam arguably stems from
the fact that it seems easy to find task-specific and useful neural nets for which the default settings of these
algorithms work well out of the box. Adam-like methods use as their update direction a vector which is
the image of a linear combination of some (or all) of the gradients seen until the current iterate, under a
linear transformation—often called the “diagonal pre-conditioner”—constructed out of the history of the
gradients. It is generally believed that this “pre-conditioning” makes these algorithms much less sensitive to
the selection of its hyper-parameters. An important precursor to Adam was the AdaGrad algorithm (Duchi
et al., 2011). The far-reaching usefulness of adaptive gradient methods has motivated significant attempts
at their theoretical justifications in the non-convex setting.

However, to the best of our knowledge, there has not been so far a theoretical guarantee for any adaptive
gradient algorithm to converge to the global minima of deep neural network loss surfaces.

On the other hand, in recent times a number of motivations have come to light to consider training algorithms
beyond these conventional adaptive gradient algorithms (Bernstein et al., 2018). In works like Simsekli et al.
(2019) and Zhang et al. (2020b), a number of reasons have been pointed out as to how gradient clipping
based adaptivity is better suited for deep learning. In this kind of adaptivity, the primary interest is on
mechanisms to prevent the algorithm from using arbitrarily large gradients. Gradient clipping has been
successfully deployed in a wide range of problems, particularly in natural language processing tasks such as
GPTs (Brown et al., 2020) and LSTMs (Merity et al., 2018), and more recently in computer vision tasks
(Brock et al., 2021). Clipping the gradient is also known to alleviate the problem of exploding gradients in
recurrent neural networks (Pascanu et al., 2012; 2013), as well as helping to provide privacy guarantees in
differentially private machine learning (Abadi et al., 2016; Ma et al., 2023). However, as for Adam, gradient
clipping, too, has no known theoretical guarantee of training neural nets.

Inspired by the above, in this work we introduce a form of gradient clipping which in experiments we
demonstrate to be competitive with Adam, vanilla stochastic gradient descent (SGD) and standard gradient
clipping, while also being guaranteed to train neural nets of arbitrary depth when training on the squared
loss and when the layers are sufficiently wide. Our proof crucially leverages the novel PL∗ condition that
was proven for such nets in Liu et al. (2022). Thus, we give a first-of-its-kind deep learning algorithm that
is of practical benefit while being rigorously provable to be minimizing loss functions on deep neural nets.

Summary of Results
In Zhang et al. (2020a), the following specific form of gradient clipping (which from here onwards we will
refer to as “standard gradient clipping” or “GClip”) is studied.

Definition 1 (GClip). For any η, γ > 0, the standard gradient clipping (GClip) algorithm for a differentiable
objective function f is defined as

xt+1 = xt − h(xt) ⋅ ∇f(xt),

with h(xt) ∶= η ⋅min{1,
γ

∥∇f(xt)∥
} .

The term γ acts as the gradient norm threshold. To the best of our knowledge, this algorithm has no known
convergence guarantees for deep learning, motivating us to present a modification of GClip, which we refer
to as δ−Regularized-GClip, or δ-GClip for short.

Definition 2 (δ−Regularized-GClip). For δ ∈ (0, 1) and η, γ > 0, the δ−Regularized-GClip (δ-GClip)
algorithm for a differentiable objective function f is defined as

xt+1 = xt − h(xt) ⋅ ∇f(xt),

with h(xt) ∶= η ⋅min{1, max{δ,
γ

∥∇f(xt)∥
}} .

The critical max{δ, ...} term ensures h(xt) ≥ ηδ, thus preventing h(xt) from vanishing as ∥∇f(x)∥ →∞. It
is important to note that, due to this modification, the distance between any two iterates ∥xt+1 −xt∥ is not
bounded as the gradient norm grows.
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Written alternatively, δ−GClip for δ ∈ (0, 1) implements GD with a gradient norm dependent step-length i.e

xt+1 = xt − ht ⋅ ∇f(xt)
s.t

ht =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η, if ∥∇f(xt)∥ ≤ γ
ηγ

∥∇f(xt)∥
if γ < ∥∇f(xt)∥ ≤ γ

δ

ηδ if ∥∇f(xt)∥ > γ
δ

. (1)

Note that setting δ = 0 in the definition of δ-GClip above recovers standard GClip (Definition 1). And at δ = 1,
δ-GClip is the standard GD at a constant step-length. Thus δ-GClip can be viewed as a particular choice
of smoothly interpolating algorithms between gradient clipping and gradient descent — and we will prove
and demonstrate that δ ∈ (0, 1) provides for wanted deep-learning properties not known to be obtainable at
either extremities.

In the experiments given in Section 3 we shall see that, in practice, δ has to be chosen very small; though its
presence is critical for the convergence guarantee that we shall establish in Theorem 2.1, which is the main
theoretical contribution for our algorithm δ-GClip.

The informal description of our key result is as follows: Given a deep neural network that is sufficiently
wide (parametric in δ), δ-GClip will minimize the squared loss to find a zero-loss solution at an exponential
convergence rate, for any training data. To the best of our knowledge, δ-GClip is the first instance of
an adaptive gradient algorithm or GD with a non-trivial learning rate schedule, that provably minimizes
the empirical loss of neural nets at any depth. Additionally, our experiments show that δ-GClip offers
competitive performance when compared against state-of-the-art deep learning optimizers — for architectures
(like transformers) and losses far outside the ambit of the proof given.

=0

Standard Gradient Clipping
Not Proven for Neural Nets

Works Well in Practice

δ =1

Gradient Descent
Provable Trainer at Large Widths

Doesn’t Work Well in Practice

-GClip

Provable Trainer at Large Widths
Competitive in Practice

δ
δ

Figure 1: A Summarized View of δ-GClip.

A stochastic version of δ-GClip will also be considered in Section 2 (cf. Definition 5), which is relevant when
under a certain noisy gradient setup, and we state a convergence result for it in Theorem 2.2.

Organization
In Section 2 we give the formal statements of our convergence theorems for our adaptive gradient method,
δ-GClip. In Section 3 we demonstrate empirically that our algorithm can compete with various popular deep
learning heuristics on benchmark tests with a VAE, ResNet-18, Vision Transformer and a BERT based model.
In Section 4 we review the current literature on provable deep learning optimization algorithms, focusing
on adaptive gradient algorithms. In Section 5 we give the full proof of our main theorem on provable
minimization of the squared loss for deep nets by our δ-GClip when using full gradients. We conclude, in
Section 6, discussing possible future directions of research. Appendix A contains the proof of convergence of
stochastic δ-GClip.

Notation The Euclidean ball centered at w0 ∈ Rm of radius R is B(w0, R) ∶= {w ∈ Rm ∶ ∥w0 −w∥2 ≤ R}.
Unless otherwise stated, ∥.∥ denotes the ℓ2-norm for vectors and the spectral norm for matrices.
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2 The Main Results
This section contains two subsections covering, respectively, theory and experimental evidence for δ-GClip.

2.1 Theory for δ−Regularized-GClip
Towards our main theory result, we recall definitions.

Definition 3 (µ-PL* Condition). A non-negative loss function L is said to satisfy µ-PL* on a set S ⊂ Rm

if ∃µ > 0 such that ∀w ∈ S ∶ ∥∇L(w)∥2 ≥ µL(w).
Next, the L-hidden layer feed-forward neural network architectures are recalled, and their loss setups, which
were within the ambit of considerations in Liu et al. (2022).

Definition 4. A neural network is given by

f(w; x) = α(L+1), α(0) = x, α(l) = σl (
1

√
ml−1

⋅W (l)α(l−1)) for l ∈ [1, L + 1],

where W (l) ∈ Rml×ml−1 is the matrix of connection weights for the l-th layer, ml is the width of the lth
layer with mL+1 = 1, and α(l) is the output from the l-th layer, after the activation σl is applied. Also, the
‘weight vector’ w encompasses all weights across all layers. We assume that the last layer activation σL+1 is
Lσ-Lipschitz continuous and βσ-Lipschitz smooth (βσ-smooth), and satisfies ∣σ′L+1(z)∣ ≥ ρ > 0.

We train the weights of f(w, ⋅) using an n-sample training dataset, {zi = (xi, yi) ∣ i = 1, ..., n}. We write
F(w) = (f(w; x1), ..., f(w; xn)) ∈ Rn for the vector of outputs for all training samples, and y = (y1, . . . , yn).
We use the squared loss L(w) = 1

2∥F(w) − y∥2.

Now we have all the requisite background to state the key theorem pertaining our algorithm δ-GClip.

Theorem 2.1 (δ−Regularized-GClip Provably Trains Wide and Deep Neural Nets). Suppose an
overparametrized neural network f is being trained using the square loss L(w), as specified in Definition 4.
Then ∃ λ0 > 0 s.t for any η, µ, δ > 0 appropriately small enough and δ < 1, if the minimum width of the
network layers satisfies,

m = Ω̃( nR6L+2

(λ0 − µρ−2)2 ) with R =
η
√

2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ ηδµ

, (2)

then one can initialize the weights s.t, w.h.p over initialization, the above loss is µ-PL∗ in the ball B(w0, R)
around initialization w0. Furthermore, let βF be s.t F(w) is locally βF -smooth in B(w0, R). Then, training
such a network using δ−Regularized-GClip, with η <min{ 1

βF
, 1

µ
} results in geometric convergence to a global

minimizer w∗ ∈ B(w0, R) such that L(w∗) = 0 and at a rate given as,

L(wt) ≤ L(w0) (1 −
1
2
⋅ ηδµ)

t

. (3)

Remark. The assumptions of η < 1/µ and δ < 1 imply (1 − 1
2 ⋅ ηδµ) ∈ ( 1

2 , 1), hence lim
t→∞
L(wt) = 0.

This theorem fulfils the theoretical guarantee for our δ-GClip algorithm. The proof is deferred to Section 5.

Next, we consider a stochastic version of our δ-GClip algorithm, defined as follows.

Definition 5 (Stochastic δ−Regularized-GClip). We define the stochastic δ−Regularized-GClip algo-
rithm for a differentiable function L as

wt+1 =wt − h(gt) ⋅ gt,

where h(gt) = η min{1, max{δ,
γ

∥gt∥
}}

and E[gt ∣wt] = ∇L(wt) (4)

for any η, γ > 0, δ ∈ (0, 1), and an arbitrary choice of w1, the initial point.
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Towards analyzing the stochastic version of δ-GClip just defined, we make the following assumptions.

Assumption 1. ∃ θ ≥ 0 s.t. ∀w, ∥g(w) −∇L(w)∥ ≤ θ.

Assumption 2. L is non-negatively lower bounded i.e. minw L = L∗ ≥ 0.

Assumption 3. L is β-smooth.

The following theorem holds for stochastic δ-GClip.

Theorem 2.2 (Convergence of Stochastic δ−Regularized-GClip). Given Assumptions 1, 2 and 3, and
for an arbitrary choice of ϵ > 0, let ϵ′ ∶= ϵ/θ. Then, for β = 1, δ = (1+2ϵ′2)/(1+3ϵ′2), and η = ( 1

4 ⋅ ϵ
′2)/(1+ ϵ′2),

stochastic δ−Regularized-GClip iterates satisfy the following inequality:

for T = θ4

ϵ4 , min
t=1,...,T

E [∥∇L(wt)∥2] ≤ O(ϵ2).

The proof of this theorem is given in Appendix A, where we first prove a slightly more general result.

We note that albeit δ−GClip only partially clips the gradient, the convergence guarantee above does not need
the gradient norms to be bounded as was also the case for standard stochastic gradient clipping, cf. Theorem 7
in Zhang et al. (2020a). Next, we note that the convergence guarantee for standard stochastic clipping does
not immediately hold as stated in Zhang et al. (2020a) for the standard smoothness assumption that is used
here. Lastly, unlike standard clipping, here we can get convergence guarantees in the deterministic (“full
gradient”) setting (Theorem 2.1) as well as the noisy setting (Theorem 2.2), for the same clipping algorithm.

3 Experimental Evidence for The Performance of δ−Regularized-GClip
We split our experimental demonstrations into two segments. In the next subsection we focus on certain
conventional deep-learning models and in the later subsection we focus on transformer based models. The
experiments cover text as well as image data. We note that all the models considered here are outside the
scope of the theory proven previously and hence the success of δ-GClip in such varied scenarios can be seen
to robustly demonstrate its abilities as a deep-learning algorithm. The code for all our experiments can be
found in our GitHub repository 1

3.1 Experiments with a ResNet and a VAE
We demonstrate here that the regularization term in δ−Regularized-GClip helps improve the performance
of standard gradient clipping—which anyway outperforms stochastic gradient descent (SGD)—and is in fact
competitive when compared against the most popular optimizers such as Adam, even surpassing it in some
cases. We test in supervised classification as well as unsupervised distribution learning settings.

We perform four sets of experiments. The first set is on the standard ResNet-18 (He et al., 2016) being trained
on the benchmark CIFAR-10 (Krizhevsky, 2009) dataset, which we recall is a 10-class image classification
task with 50, 000 training images and 10, 000 test images. The second set of experiments is training a VAE
model on the Fashion-MNIST dataset, with 60, 000 training samples and 10, 000 for testing. Further, each
of these is done both with learning rate scheduling—whereby η (or the learning rate) is reduced at certain
points in the training—and without (constant η throughout).

In the (supervised) classification experiments, the training is done using the cross-entropy loss and ReLU
gate nets, and using weight-decay (of 5e−4). Whereas the VAE setup does not have a loss function in the
same conventional sense as considered in the theorems in Section 2. Hence, these experiments demonstrate
the efficacy of regularized gradient clipping (δ-GClip) beyond the ambit of the current theory.

We ran all experiments of this segment using a standard desktop with a GeForce RTX 2060 graphics card.
We built custom implementations of δ−Regularized-GClip and standard GClip and used the standard Py-
torch optimizers for SGD and Adam, which we recall is highly optimized. Hence, we would be demonstrating
performance of our modification in competitions which are a priori skewed in favour of the existing bench-
marks.

1https://github.com/mingfeisun/delta-gclip
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In the legends of the figures, the notation SGD (0.1) stands for stochastic gradient descent with learning
rate η = 0.1, notation δ−GClip (1; 1; 1e−8) stands for δ−Regularized-GClip with η = 1, γ = 1, δ = 1e−8, and
GClip (5; 1) for standard gradient clipping with η = 5, γ = 1. Adam (1) is notation for Adam with η = 1, and
similarly for other hyperparameter choices.

ResNet-18 on CIFAR-10. The ResNet-18 was trained using the full training set using mini-batches
of size 512. We tested all the following hyperparameter combinations: η ∈ {0.0001, 0.001, 0.01, 0.1, 1, 5},
γ ∈ {0.25, 1, 5, 10} and δ ∈ {1e−3, 1e−8} for each optimizer. For Adam, only the learning rate (η) was
modified, the rest were left at the PyTorch defaults (β1 = 0.9, β2 = 0.999, ε = 1e−8). In the case with
scheduling the η value quoted in the legend denotes the η value at epoch 0, i.e. before any reductions by the
scheduling algorithm are done.

Experiments Without Learning Rate Scheduling. In Figure 2 we only plot the best-performing (in
terms of test accuracy) hyperparameter selection for each algorithm.

Figure 2: δ−Regularized-GClip (δ-GClip) is competitive against SOTA heuristics for training ResNet-18 on
CIFAR-10 without learning-rate scheduling.

Experiments With Learning Rate Scheduling. In Figure 3 we show a repeat of the above experiments
and again plot the best-performing hyperparameters. In here, we start at larger η values and divide η by 10
at epochs 100 and 150, following the setup from Zhang et al. (2020a).

For completeness, in Figure 4 we present a version of the experiment above but without weight-decay for
any of the algorithms considered.

We note that the performance of the gradient clipping based algorithms, as well as Adam, do not show
significant changes with the removal of weight decay; however, SGD performs significantly worse.

We draw two primary conclusions from these results.

Firstly, that a very small value of δ in δ−Regularized-GClip does not seem to have a significant effect either
for loss minimization or test accuracy. The results for δ−Regularized-GClip and standard GClip, set to
similar η and γ values, are practically identical in either scenarios for all small enough values of δ tried. As
alluded to in the previous sections, the gradient norm would have to be larger than ηγ/δ for the lower bound
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Figure 3: δ−Regularized-GClip (δ−GClip) outperforms other optimizers for training ResNet-18 on CIFAR-10
with learning-rate scheduling.

Figure 4: δ−Regularized-GClip (δ-GCLip) matches the best heuristics for training a ResNet-18 on CIFAR-10
with learning-rate scheduling, but no weight-decay.

on h(wt) to be attained, and even for the larger setting of δ = 1e−3 and a typical γ = 0.25 setting requires a
gradient norm of over 250, which is only infrequently seen along the optimization trajectory.
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Secondly, though Adam attained the best test accuracy without learning rate scheduling by a margin of
about ∼ 1 percentage point compared to both δ−Regularized-GClip and standard gradient clipping, but all
other optimizers surpassed it by ∼ 3 percentage points when learning rate scheduling was used. The best
performance with scheduling (which is by our regularized gradient clipping) is better than for any algorithm
(ours or not) without scheduling. Interestingly, with learning rate scheduling Adam performed the best in
terms of minimizing the training loss while SGD performed the worst, even though SGD’s solution seems to
generalize significantly better (as shown by the ∼ 3 percentage point higher test accuracy).

The significant ability of δ-regularized gradient clipping to exploit learning rate scheduling motivates an
interesting direction for future exploration in theory.

VAE on Fashion-MNIST. We performed the VAE training experiment both with and without scheduling
when training on the Fashion-MNIST dataset. We tested the following hyperparmeter grid choices: η ∈
{1e−5, 1e−4, 1e−3, 1e−2}, γ ∈ {10, 50, 200, 500}, δ ∈ {0.01, 0.1, 1}. We utilize the same scheduling as in the
ResNet experiment (η division by 10 at epochs 100 and 150), and the results are given in Figure 5.

Figure 5: δ−Regularized-GClip (δ-GClip) is competitive against SOTA heuristics for training a VAE on the
Fashion-MNIST dataset with learning-rate scheduling.

The VAE results with (and without, though not shown here) learning rate scheduling supports our earlier
observations that the added regularization term of δ helps the performance w.r.t that of GClip at the
same values of step-length and clipping threshold, which anyway outperforms SGD. And it is only mildly
underperforming with respect to Adam.

We therefore conclude from our experiments that δ−Regularized-GClip clipping remains competitive with
current optimizers, while offering the significant benefit of provable deep neural network training.

3.2 Evidence for The Performance of δ−Regularized-GClip on Transformers
In this section we focus on benchmark state-of-the-art transformer-based architectures, that are not known
to satisfy the µ-PL* condition — as in the examples of the previous section. Yet, we show that our δ-GClip
proposal continues to be competitive against the widely used heuristic of Adam.
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In Figure 6 we show that starting from random initialization Adam’s ability to train a Vision Transformer
(Dosovitskiy et al., 2020) for the classification task on the CIFAR-10 dataset is matched in train and test
loss and accuracy by our theoretically grounded proposal of δ-GClip at η = 0.2, γ = 1 and δ = 10−6.
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(a) ViT Tiny: embed dim=192, depth=12, num heads=3, MLP ratio=4
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(b) ViT Small: embed dim=384, depth=12, num heads=6, MLP ratio=4

Figure 6: δ-GClip can be seen to be competitive against the SOTA heuristic of using Adam for training a
Vision Transformer on the CIFAR-10 dataset.

Venturing further, we consider a fine-tuning task on a variant of the BERT (Devlin et al., 2019) model
DistilBertForSequenceClassification2 on the dataset of sst23.

On this benchmark we do a hyperparameter search over η and γ values for δ-GClip to decide on the setting of
η = 0.1, γ = 0.1 and as before we set δ = 10−6. As shown in Figure 7, we can see that on the crucial performance
metric of test accuracy, yet again δ-GClip matches the standard heuristic which is a mix of standard gradient
clipping and Adam. Hence in this experiment we see that our proposed δ-GClip can compete the blend of
adaptive gradient algorithms that is usually deployed to train a BERT.

In Table 1 we present further performance comparison between Adam and δ−GClip at different δs are
provided, for training the same ViTs as studied in Figure 6. Similar comparisons are presented in Table
2 for the same BERT variant studied in Figure 7. We note that in all these studies the performance
metrics reported give the averaged results with the respective standard deviations over multiple runs of the
experiment. Thus, from these tables we can robustly conclude that δ−GClip is competitive against Adam in
transformer models where similar convergence guarantees are not yet available for δ−GClip, as was presented
earlier. Lastly, from these tables we also note that the performance of δ−GClip, is extremely stable with
orders of magnitude of variation in δ, in the ranges we consider. Thus the experiments lend themselves to
the interpretation that the introduction of the small δ parameter in standard GClip is a theoretical tool
that “stabilizes” standard clipping in ways that lend it to provable guarantees without making any material
difference to its performance.

2https://huggingface.co/transformers/v3.0.2/model_doc/distilbert.html#distilbertforsequenceclassification
3https://huggingface.co/datasets/stanfordnlp/sst2
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Figure 7: δ-GClip (δ = 10−6) can be seen to be competitive against the SOTA heuristic of using a combination
of Adam and GClip for training a variant of the BERT model. (The shaded area shows the variation about
mean performance over multiple runs.)

Transformer Experiments on the CIFAR-10 Dataset

Model Algorithm Test Accuracy (avg.)
at Last Iterate

Train Error (avg.)
at Last Iterate

Vision Transformer Tiny
embed dim=192, depth=12, num
heads=3, MLP ratio=4

(δ = 0.01) 0.697±0.002 0.700±0.003

(δ = 0.001) 0.701±0.001 0.705±0.002

(δ = 0.0001) 0.701±0.003 0.706±0.002

(δ = 0.00001) 0.694±0.004 0.703±0.002

(Adam) 0.708±0.003 0.848±0.005

Vision Transformer Small
embed dim=384, depth=12, num
heads=6, MLP ratio=4

(δ = 0.01) 0.751±0.003 0.697±0.001

(δ = 0.001) 0.761±0.005 0.693±0.003

(δ = 0.0001) 0.762±0.009 0.695±0.003

(δ = 0.00001) 0.754±0.005 0.694±0.003

(Adam) 0.672±0.004 0.975±0.003

Table 1: Comparison of Performance between δ−Regularized-GClip (at different δ) and Adam for experiments
on Vision Transformers.

4 Related Works
In this section, we will summarize the state-of-the-art literature on standard clipping and provable deep
learning optimization algorithms that are adaptive. At the very outset, we note that the Neural Tangent
Kernel (NTK) approach to provable deep learning at large widths Jacot et al. (2018); Du et al. (2018); Chizat

Transformer Experiments on the sst2 Classification Dataset

Model Algorithm Test Accuracy (avg.)
at Last Iterate

Train Error (avg.)
at Last Iterate

DistillBertforSequenceClassification

(δ = 8 × 10−6) 0.879±0.018 0.045±0.003

(δ = 10−6) 0.879±0.018 0.045±0.003

(δ = 1.25 × 10−7) 0.879±0.018 0.045±0.003

(Adam) 0.871±0.004 0.003±0.003

Table 2: Comparison of Performance between δ−Regularized-GClip (at different δ) and Adam for experiments
on a BERT variant.
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et al. (2019); Allen-Zhu et al. (2019b;a); Zou et al. (2020) is not within the scope of our review since, in
general, they do not use step-length scheduling. Furthermore, it is also known that NTK based predictors
are outperformed by standard deep learning architectures (Chen et al., 2020b; Arora et al., 2019).

Literature Review of Theory for Adam. Adam was proposed in Kingma & Ba (2014) as an adaptive
algorithm which requires hyperparameters β1, β2 ∈ [0, 1) to control the decay rates of exponential moving
average estimates for the gradients and the squared gradients, respectively, In Reddi et al. (2018) it was
proved that, for common hyperparameter choices (β1 <

√
β2), there exists a stochastic convex optimization

problem where Adam does not converge. They presented a modification to Adam that provably converges
for online convex optimization. In De et al. (2018) for the first time the convergence of Adam was established
in the deterministic case, without the use of convexity, but leveraging Lipschitz smoothness and a bounded
gradient norm.

For the same optimization target as above, in Chen et al. (2019), a convergence rate of O(log T /
√

T ) was
shown for Adam-like adaptive gradient algorithms under the assumption of a bounded gradient oracle. Later,
a burn-in stage was added in Staib et al. (2019) to prove a O(1/

√
T ) convergence rate. In Chen et al. (2020a),

a partial adaptive parameter was introduced, and they proved convergence to criticality for a class of adaptive
gradient algorithms, which does not include RMSProp. It was shown in Zou et al. (2019) that generic Adam
(including RMSProp) converges with high probability under certain decaying conditions on β2 and step size,
in contrast to the usual implementations. In Ward et al. (2019), similar convergence results were proved for
AdaGrad, which is a special case of RMSProp.

Review of Theory for Adaptive Gradient Methods Training Neural Nets. In contrast to the
convergence to criticality results mentioned above, there have also been works providing guarantees of con-
vergence to a global minima for adaptive methods in shallow neural network training scenarios. Wu et al.
(2019) provides a proof of the convergence of the AdaLoss adaptive algorithm to global minima on two-layer
network, under widths large enough to be in the NTK regime. Zou et al. (2023) provides a proof of Adam’s
global convergence on two-layer convolutional neural networks to a zero-error solution whilst utilising weight
decay regularization. Further, Zou et al. (2023) provide evidence that although both GD and Adam converge
to zero-error solutions, GD’s solution generalises significantly better. In the context of Generative Adversar-
ial Networks (GANs), Dou & Li (2021) analysed the performance of Adam-like algorithms and proved the
convergence of Extra Gradient AMSGrad to an ε-stationary point under novel assumptions they motivated.

Literature Review of Gradient Clipping. In the smooth non-convex case, Zhang et al. (2020a) proved
the convergence of deterministic gradient clipping to an ε-stationary point under a new smoothness as-
sumption that is strictly weaker than standard Lipschitz smoothness. Their provided iteration complexity
implies that gradient clipping can converge faster than gradient descent (in constants), while achieving
O(ε)-criticality in O(ε−2) steps. They provide a similar analysis in the stochastic case, with the additional
assumption of either a bound on the noise of the stochastic gradient or its distribution being symmetric
sub-Gaussian. It is important to note that the provided stochastic iteration complexity does not supersede
that of SGD in the general case. They had pointed out, possibly for the first time, that gradient clipping
can converge, in deterministic as well as noisy settings, on smooth functions without the need for gradients
to be bounded.

In Zhang et al. (2020b), Lipschitz smoothness is utilized while working with non-convex targets and heavy-
tailed gradient stochasticity to achieve O(1/t 1

4 ) close convergence to criticality in t steps, which matches
that of SGD in the non-heavy-tailed setting. The same work gave a lower bound in the same setting, which
matches up to constants the run-time given above and thus proving that their convergence rate is worst-case
optimal. Furthermore, the said work also considered non-smooth but strongly convex functions with a bound
on the expected norm of the stochastic gradients—which we recall had appeared earlier in Shamir & Zhang
(2013) for non-heavy tailed settings—and achieve the same convergence, implying that the convergence rate
is optimal even in the Lipschitz smooth and strongly convex setting.

We posit that from above kinds of analysis of adaptive algorithms (including GClip), either for depth 2
neural networks or in the more general (non-)convex settings, there is no obvious path towards provable
convergence guarantees in deep neural network training for adaptive gradient algorithms. However, in the
recent work of Liu et al. (2022), convergence guarantees were proven for (S)GD for sufficiently wide, and
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arbitrarily deep neural networks, by leveraging the novel PL∗ condition that the same paper proved to be
true for squared losses for such neural nets. Next we will briefly review those results.

Review of the PL∗ Condition. Our motivation for studying the convergence characteristics of algorithms
under the PL* condition comes from Liu et al. (2022), where it is proved that overparametrized feedforward,
convolutional and residual (ResNet) neural networks can all satisfy the PL∗ condition within a finite radius of
the initialization, given that they are sufficiently wide. In particular, Liu et al. (2022) showed the following.

Theorem 4.1. Consider any neural network of the form described in Definition 4. If weight matrices are
randomly initialized s.t. W

(l)
0 ∼ N (0, Iml×ml−1) for l ∈ [0, L + 1], and defining λ0 ∶= λmin(KF(w0)) > 0 where

KF(w) = DF(w)DF(w)⊺, then for any µ ∈ (0, λ0ρ2) and the minimum layer width of the network being

m = Ω̃( nR6L+2

(λ0 − µρ−2)2 ) , (5)

the µ-PL* condition holds for the square loss in the ball B(w0, R) where R is a finite radius.

Therefore, a path opened up, that by proving that the iterates of our δ−Regularized-GClip algorithm never
leave a ball of finite radius, and proving the convergence of δ−Regularized-GClip on locally smooth µ-PL*
functions, we can argue for the algorithm’s convergence to the loss global minima in such neural nets.

5 Proof of the Main Result
Towards giving the proof of the main theorem for δ-GClip algorithm (Theorem 2.1), we begin with listing
the lemmas needed for that.

5.1 Preparatory Lemmas
Lemma 5.1. Corresponding to constants a, b > 0 and aµ < 1 suppose a loss function L is β-smooth, minL = 0,

and satisfies the µ-PL* condition within a Euclidean ball B(w0, R), with R ≥
b
√

2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ aµ

. Then there

exists a global minimizer w∗ ∈ B(w0, R) of L, such that L(w∗) = 0. Furthermore, given a first order adaptive
step size algorithm of the form

wt+1 =wt − h(wt) ⋅ ∇L(wt), (6)

where h(wt) is a time/iterate-dependent function such that 0 < a ≤ h(wt) ≤ b < min{ 1
β

, 1
µ
}, then the

algorithm will converge with convergence rate

L(wt) ≤ L(w0)(1 −
1
2
⋅ aµ)t. (7)

Lemma 5.2. The δ−Regularized-GClip step size h(w) is bounded ηδ ≤ h(w) ≤ η, given that 0 < δ < 1.

Lemma 5.3. (δ−Regularized-GClip Converges on smooth PL∗ functions.) Corresponding to positive con-
stants η, δ, β, µ such that η < min{1/β, 1/µ} and 0 < δ < 1, suppose there exists a loss function L that
is β-smooth, lower-bounded by 0, and satisfies the µ−PL* condition within an Euclidean ball B(w0, R)
where R ≥ η

√

2β
√

L(w0)

1−
√

1− 1
2 ⋅ηδµ

. Then there exists a global minimizer w∗ ∈ B(w0, R) of L, such that L(w∗) = 0.

Furthermore, δ−Regularized-GClip will converge at rate

L(wt) ≤ L(w0)(1 −
1
2
⋅ ηδµ)t. (8)

The proofs for Lemmas 5.1, 5.2 and 5.3 can be found in Subsection 5.3.

5.2 Proof of Theorem 2.1

Proof. Firstly, we invoke the assumption that the initialization is s.t that the conditions of Theorem 4.1
apply, which we know from therein to be a high-probability event. In particular we conclude that L satisfies
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µ−PL∗ within a finite ball B(w0, R) for some R > 0 and that the tangent kernel at initialization is positive
definite.

If Lσ and βσ are the Lipschitz constant and the Lipschitz smoothness coefficients for the activation σ then
it was shown in Liu et al. (2022), that we have for the prediction map F , its Lipschitz constant,

LF ≤ Lσ (
√
∥KF(w0)∥ +R

√
n ⋅O(R3L/

√
m)) ,

as well as its smoothness constant,

βF ≤ βσLσ (
√
∥KF(w0)∥ +R

√
n ⋅O(R3L/

√
m)) +Lσ ⋅O(R3L/

√
m).

Where KF is the neural tangent kernel (recall that KF = DF(w)DF(w)⊺).
By plugging in the lowerbound on m specified in the theorem, we get that both LF and βF are upper
bounded by a constant and thus m-independent. If HL is the Hessian of the loss function, then by Liu et al.
(2022) we also have that

βL = sup
w∈B(w0,R)

∥HL(w)∥ ≤ L2
F
+ βF ⋅ ∥F(w0) − y∥

By Jacot et al. (2018), we have that ∥F(w0) − y∥ is also m-independent with high probability for the given
size of the net. Therefore, L can be said to be βL-smooth within B(w0, R), where βL is m- and thus R-
independent. Hence, we can say that for every R > 0, for some width which satisfies the given condition, the
loss function is β-smooth (and by Theorem 4.1, µ-PL∗) in B(w0, R) with high probability.

Thus far the argument above was parametric in R. But given that we satisfy all the conditions to invoke
Lemma 5.3 we can compute from it the minimum R value required such that the iterates of regularized
gradient clipping never leave B(w0, R), i.e

R =
η
√

2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ ηδµ

,

and conclude that δ−Regularized-GClip converges to a zero-loss solution within B(w0, R) at a convergence
rate of L(wt) ≤ L(w0)(1 − ηδµ)t.

5.3 Proofs of the Lemmas
Proof. (of Lemma 5.1) We shall prove the theorem by induction and our hypothesis is that, up to step t,
wt ∈ B(w0, R) for the given R, L(wt) ≤ L(w0)(1− 1

2 ⋅ aµ)t and thus up to t the algorithm explored a region
where the µ−PL∗ condition holds. The base case is trivial, when t = 0 then w0 ∈ B(w0, R). Now we set out
to prove that these continue to hold at t + 1 too.

From the assumptions that, L is β-smooth, we have

L(wt+1) −L(wt) −∇L(wt)⊺(wt+1 −wt) ≤
β

2
∥wt+1 −wt∥2. (9)

As h(wt) <min{ 1
β

, 1
µ
}, we have that 1

h(wt)
> β, hence we relax the above inequality to get, L(wt+1)−L(wt)−

∇L(wt)⊺(wt+1 −wt) ≤ 1
2h(wt)

∥wt+1 −wt∥2.

Using the definition of the algorithm, that wt+1 −wt = −h(wt)∇L(wt), we can rearrange the above to get

L(wt+1) −L(wt) ≤ −
h(wt)

2
∥∇L(wt)∥2 (10)

Next, we use the induction hypothesis for the µ-PL* condition at the current iterate, ∥∇L(wt)∥2 ≥ µL(wt),
to get

L(wt+1) −L(wt) ≤ −
h(wt)

2
∥∇L(wt)∥2 ≤ −

h(wt)µ
2
L(wt)
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And the above can be rearranged to

L(wt+1) ≤ (1 −
1
2
⋅ h(wt)µ)L(wt). (11)

Note that for the convergence rate to hold, h(wt) must be bounded such that ∀t, (1 − 1
2 ⋅ h(wt)µ) ∈ (0, 1)

and this follows from the bounds on a, b. We then unroll the recursion to get

L(wt+1) ≤ L(w0) ⋅
t

∏
i=0
(1 − h(wi)µ

2
)

≤ L(w0)(1 −
1
2
⋅ aµ)t+1

(12)

where the last inequality comes from 0 < a ≤ h(wt). Therefore, assuming that the convergence rate holds till
time t implies that it also holds till t + 1.

Next we embark on proving that wt+1 ∈ B(w0, R). From the algorithm’s update equation, the triangle
inequality, and recalling that h(wt) ≤ b, we get

∥wt+1 −w0∥ ≤
t

∑
i=0
∥h(wi) ⋅ ∇L(wi)∥ ≤ b

t

∑
i=0
∥∇L(wi)∥. (13)

We can rearrange the β-smoothness inequality from equation 9 and apply Cauchy-Schwarz, to get

0 ≤ β

2
∥wt+1 −wt∥2 + ∥∇L(wt)∥∥wt+1 −wt∥ +L(wt) −L(wt+1). (14)

We can relax the above inequality by dropping the L(wt+1) term and treating the above as a quadratic in
∥wt+1 −wt∥, to then conclude that the inequality only holds if the discriminant is non-positive, ∥∇L(wt)∥ ≤√

2βL(wt). Substituting this into equation 13 we get

∥wt+1 −w0∥ ≤ b
t

∑
i=0

√
2βL(wi). (15)

Using the assumed convergence rate till the current iterate we get

∥wt+1 −w0∥ ≤ b
√

2β
√
L(w0) ⋅

⎛
⎝

t

∑
i=0

i

∏
j=0
(1 − 1

2
⋅ h(wj)µ)1/2

⎞
⎠

. (16)

Since a ≤ h(wt) < 1/µ, we have, 0 < 1 − 1
2 ⋅ h(wt)µ < 1 − 1

2 ⋅ aµ < 1. Thus we get

∥wt+1 −w0∥ ≤ b
√

2β
√
L(w0) ⋅ (

t

∑
i=0
(1 − 1

2
⋅ aµ)i/2) . (17)

Upper-bounding the above by the closed-form expression for the infinite geometric series, we get

∥wt+1 −w0∥ ≤
b
√

2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ aµ

≤ R. (18)

The last inequality follows by the definition of R and hence we have proven that wt+1 ∈ B(w0, R), and hence
up to time t + 1 the algorithm is still exploring the region within which the µ−PL* condition holds.

Thus induction follows and we have that ∀t, wt ∈ B(w0, R) and L(wt) ≤ L(w0)(1 − 1
2 ⋅ aµ)t.

Proof of δ−Regularized-GClip Having a Bounded Step Size

Proof. (of Lemma 5.2) Utilising δ−Regularized-GClip’s definition for h, we get that if ∥∇L(wt)∥ ≥ γ/δ,
then h(wt) =min{η, ηδ}. Otherwise, if ∥∇L(wt)∥ < γ/δ, then h(wt) =min {η, ηγ/∥∇L(wt)∥}. The smallest
possible h for the above would be if ∥∇L(wt)∥ was as large as it could be, which would result in h(wt) =
min {η, ηδ}. As δ < 1, we conclude 0 < ηδ ≤ h(wt) ≤ η.
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Proof of δ−Regularized-GClip Convergence on Smooth PL∗ Functions

Proof. (of Lemma 5.3) From Lemma 5.2, we know that δ−Regularized-GClip satisfies the condition 0 <
ηδ ≤ h(wt) ≤ η. Therefore, by setting η < min{ 1

β
, 1

µ
} and δ < 1, we can apply Lemma 5.1 and obtain the

convergence rate
L(wt) ≤ L(w0)(1 −

1
2
⋅ ηδµ)t, (19)

as well as that the PL* condition must hold within a ball B(w0, R), where R ≥
η
√

2β
√
L(w0)

1 −
√

1 − 1
2 ⋅ ηδµ

.

6 Conclusion
In this work, we have presented a new adaptive gradient algorithm, δ−Regularized-GClip, that provably
trains deep neural networks (at any depth) with arbitrary data and while training on the squared loss. To
the best of our knowledge, such a guarantee does not exist for any previously known adaptive gradient
method. Additionally, we have also given experimental evidence that our algorithm is competitive with the
deep learning algorithms in current use, and sometimes outperforming them. Our proof critically hinges on
the interplay between the modification we do to standard gradient clipping and the µ-PL* condition that
has previously been shown to be true for squared losses on deep neural nets of sufficient width.

Our work suggests an immediate direction of future research into establishing convergence guarantees for
regularized gradient clipping on other standard losses in use, such as cross-entropy and for nets with ReLU
activation. Further, the demonstrated success of δ−GClip on certain transformer architectures motivates
study of the possible validity of the µ-PL* condition for these models too.

Lastly, we note that recently reported heuristics which are particularly good for LLM training, cf. Liu et al.
(2024), can also be seen as modifications of the clipping algorithm. We envisage exciting lines of investigation
that could open up in trying to explore the efficacy of these new developments crossed with the provably
performant modification of gradient clipping that we have instantiated here.
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A A Proof of Convergence for Stochastic δ−Regularized-GClip
We start by proving a more general result as follows,

Theorem A.1. Given Assumptions 1, 2 and 3, and for an arbitrary choice of ϵ > 0, consider

1 > δ >
(1 + ( ϵ

θ
)2)

(1 + 3 ( ϵ
θ
)2)

and

0 < η <
δ (1 + 3 ( ϵ

θ
)2) − (1 + ( ϵ

θ
)2)

2β(1 + ( ϵ
θ
)2)

,

stochastic δ−Regularized-GClip satisfies the following inequality over any T > 0 iterations,

min
t=1,...,T

E [∥∇L(wt)∥2] ≤ ϵ2 + 1
T
⋅ L(w1)
(η

2 (3δ − 1) − βη2)
.

It’s clear from above that we can choose any ϵ > 0 howsoever small and T > 0 howsoever large and have the
minimum value over iterates of the expected gradient norm be similarly small. To prove Theorem A.1 we
need the following two lemmas.

Lemma A.2.
E [h(gt)2⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] ≤ η2θ∥∇L(wt)∥. (20)

Proof. We begin by employing Cauchy-Schwarz and Assumption 1 to get

E[h(gt)2⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] ≤ E [h(gt)2∥gt −∇L(wt)∥ ∣wt] ∥∇L(wt)∥ ≤ E [h(gt)2 ∣wt] ∥∇L(wt)∥θ
≤ η2θ∥∇L(wt)∥ (21)

where in the last inequality we invoked the fact that h(gt) ≤ η.

Lemma A.3.
E [(−h(gt))⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] ≤ (η − ηδ) ⋅ θ ⋅ ∥∇L(wt)∥

Proof. Because gt is an unbiased gradient estimate we have,

E[(−h(gt)) ⋅ ⟨gt −∇L(wt),∇L(wt)⟩∣wt] = E[(η − h(gt)) ⋅ ⟨gt −∇L(wt),∇L(wt)⟩∣wt]

Noting that 0 ≤ η − h(gt) ≤ η − ηδ, we get,

E[(−h(gt)) ⋅ ⟨gt −∇L(wt),∇L(wt)⟩∣wt] ≤ (η − ηδ) ⋅ θ ⋅ ∥∇L(wt)∥

A.1 Proof of Theorem A.1

Proof. We parameterize the line from wt to wt+1 as κ(t) = twt + (1 − t)wt+1 and applying the Taylor’s
expansion and then Cauchy-Schwarz formula for the loss evaluated at its end-point we get

E[L(wt+1) ∣wt] ≤ E[L(wt) − h(gt)⟨gt,∇L(wt)⟩

+ 1
2 ∫

1

0
(wt+1 −wt)⊺∇2L(κ(s))(wt+1 −wt)ds ∣ wt]

≤ L(wt) −E[h(gt)⟨gt,∇L(wt)⟩ ∣wt]

+ E[∥wt+1 −wt∥2 ∣wt]
2 ∫

1

0
∥∇2L(κ(s))∥ds.
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Invoking ∥wt+1 −wt∥ = h(gt)∥gt∥ and ∥∇2L(κ(s))∥ ≤ β we have

E[L(wt+1) ∣wt] ≤ L(wt) −E[h(gt)⟨gt,∇L(wt)⟩ ∣wt] +
β

2
E [h(gt)2∥gt∥2 ∣wt]

Substituting ∇L(wt) + gt −∇L(wt) for gt in the second and the third term above, we get,

E[L(wt+1) ∣wt] ≤ L(wt) −E[h(gt)⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] −E[h(gt) ∣wt]∥∇L(wt)∥2

+ β

2
E[h(gt)2(∥∇L(wt)∥2 + ∥gt −∇L(wt)∥2 + 2⟨∇L(wt), gt −∇L(wt)⟩) ∣wt]

Recalling that ηδ ≤ h(gt) ≤ η and given that δ ∈ (0, 1),

E[L(wt+1) ∣wt] ≤ L(wt) −E[h(gt)⟨gt −∇L(wt),∇L(wt)⟩ ∣wt]

− ηδ∥∇L(wt)∥2 +
βη2

2
∥∇L(wt)∥2 +

βη2θ2

2
+ βE [h(gt)2⟨gt −∇L(wt),∇L(wt)⟩ ∣wt] .

Now we invoke Lemma A.3 on the second term above and Lemma A.2 on the last term of the RHS above
and take total expectations to get,

E[L(wt+1)] ≤ E[L(wt)] + {η(1 − δ)θ + βη2θ}E[∥∇L(wt)∥] − (ηδ − βη2

2
)E [∥∇L(wt)∥2] +

βη2θ2

2
.

Given a T ∈ Z+, summing the above over all t = 1, . . . , T and recalling that w1 is an arbitrary non-random
initialization, we have,

(ηδ − βη2

2
)

T

∑
t=1

E [∥∇L(wt)∥2] ≤ L(w1) −E[L(wT+1)] + {η(1 − δ)θ + βη2θ}
T

∑
t=1

E[∥∇L(wt)∥] +
βη2θ2

2
T.

Invoking the inequality, θ ⋅ ∥∇L(wt)∥ ≤ 1
2(θ

2 + ∥∇L(wt)∥2), and that L ≥ 0 we get,

(ηδ − βη2

2
)

T

∑
t=1

E [∥∇L(wt)∥2] ≤ L(w1) + {η(1 − δ) + βη2}
T

∑
t=1

E[1
2
⋅ ∥∇L(wt)∥2]

+ (βη2 + η(1 − δ) + βη2

2
) θ2T.

The above implies,

(ηδ − βη2

2
− η(1 − δ) + βη2

2
)

T

∑
t=1

E [∥∇L(wt)∥2] ≤ L(w1) + (
2βη2 + η(1 − δ)

2
) θ2T.

Invoking the assumption that δ > (1+
(

ϵ
θ
)

2
)

(1+3( ϵ
θ
)

2
)

> 1
3 and η < δ(1+3( ϵ

θ
)

2
)−(1+( ϵ

θ
)

2
)

2β(1+( ϵ
θ
)

2
)

< 3δ−1
2β

we get,

min
t=1,...,T

E [∥∇L(wt)∥2] ≤
1
T

T

∑
t=1

E [∥∇L(wt)∥2] ≤
L(w1)

T ⋅ (η
2 (3δ − 1) − βη2)

+
⎛
⎝

2βη2 + η(1 − δ)
2 ⋅ (η

2 (3δ − 1) − βη2)
⎞
⎠

θ2.
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Now for an arbitrary ϵ > 0, we can solve the inequality

η(1 − δ) + 2βη2

η(3δ − 1) − 2βη2 < (
ϵ

θ
)

2

and thus we get,

η ∈
⎛
⎜
⎝

0,
δ (1 + 3 ( ϵ

θ
)2) − (1 + ( ϵ

θ
)2)

2β(1 + ( ϵ
θ
)2)

⎞
⎟
⎠

.

Note that the above upperbound on η is the range of η chosen in the statement. Thus we get the desired
theorem statement.

A.2 Proof of Theorem 2.2
Proof. Substituting the given choices of η, δ and β we get

1
η ⋅ ( 3δ−1

2 − βη)
= 16(1 + ϵ′2)2(1 + 3ϵ′2)

ϵ′2(3ϵ′4 + 9ϵ′2 + 4)

= 4
ϵ′2
+ 11 + ϵ′2

4
+ 51ϵ′4

16
+O(ϵ′6).

Substituting the above into the guarantee of Theorem A.1 along with T = 1 / ϵ′4 we get the result claimed.
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