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ABSTRACT

Recent frontier models employ long-chain-of-thought reasoning to explore solution
spaces in context and achieve stronger performance. While many works study
distillation to build smaller yet capable models, most focus on English and little is
known about language-specific reasoning. To bridge this gap, we first introduce
Language-Mixed CoT, a reasoning schema that switches between English and a
target language, using English as an anchor to excel in reasoning while minimizing
translation artifacts. As a Korean case study, we curate YI-SANG: 5.79M native-
Korean prompts from web Q&A, exams, STEM, and code; 3.7M long reasoning
traces generated from Qwen3-32B; and a targeted 260k high-yield subset. We train
nine models (4B–35B) across six families (Qwen2.5, Llama-3.1, Gemma-3, etc).
Our best model, KO-REAson-35B, achieves state-of-the-art performance, with
the highest overall average score (64.0±2.5), ranking first on 5/9 benchmarks and
second on the remainder. Smaller and mid-sized models also benefit substantially,
with an average improvement of +18.6 points across the evaluated nine benchmarks.
Ablations show Language-Mixed CoT is more effective than monolingual CoT,
also resulting in cross-lingual and multi-modal performance gains. We release our
data-curation pipeline, evaluation system, datasets, and models to advance research
on language-specific reasoning.1

Figure 1: (Left) Thinking styles. Red: monolingual CoT carried out entirely in English. Blue: our proposed
Language-Mixed CoT, which alternates between English (anchor) and Korean (target). (Right) Performance
comparison of KO-REAson-35B (ours, solid line) with DeepSeek-R1-32B, Exaone-Deep-32B, GPT-OSS-
20B, and QwQ-32B. KO-REAson-35B achieves top-tier performance, ranking first or second on all tasks.

1 INTRODUCTION

Test-time scaling amplifies reasoning by allocating more samples or steps, enabling exploration, and
self-correction (Jones, 2021). Recent advances show that large language models can internalize similar

1Data and Model Collection: anonymized
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exploratory behavior (Gandhi et al., 2025) through longer chain-of-thought (CoT) acquired during
training. Specifically, such behaviors stem during the post-training phase through reinforcement
learning with verifiable rewards (RLVR) (OLMo et al., 2024; Guo et al., 2025). Unfortunately, such
methodologies tend to be effective only for strong base models with large parameters (Yang et al.,
2025; Rastogi et al., 2025). Therefore, open efforts have centered on distillation from frontier
teacher models, combining systematic prompt collection with response generation and quality
filtering (Muennighoff et al., 2025; Bercovich et al., 2025; Guha et al., 2025; Hugging Face, 2025).
Such pipelines, however, overwhelmingly target English and, to a lesser extent, Chinese (Liu et al.,
2025a), leaving open how to achieve language-specific reasoning. To bridge this gap, we study how
to construct a reasoning model for a mid-resource language through a focused case study in Korean.

We start from the empirical observation that pipelines relying heavily on translated corpora (lightblue,
2025; Lee et al., 2025a) exhibit degraded response quality from translation artifacts (Park et al.,
2025; Li et al., 2025a) and poor robustness to everyday, colloquial expressions that rarely appear
in translated text. To address this, we propose a two-step approach: (i) data curation, where we
collect 5.79M Korean, user-authored Q&A prompts from the web to ensure broad coverage of
natural, in-the-wild language; and (ii) reasoning supervision, where, when generating long reasoning
traces with Qwen3-32B (Yang et al., 2025), we enforce Language-Mixed CoT, which allows the
model to switch freely during the Think step between an anchor language (English) and the target
language (Korean). This enables the model to leverage the anchor language’s reasoning capabilities
while preserving the semantics of the target language. In our experiments, Language-Mixed CoT
consistently outperforms monolingual CoT, with larger gains on reasoning-heavy tasks relative to
Korean-only, and on cultural understanding-heavy tasks relative to English-only.

The collected dataset, YI-SANG, comprises 5.79M prompts paired with 3.7M long reasoning traces.
To the best of our knowledge, this is the largest publicly documented post-training resource for the
Korean language. To chart an affordable path to strong reasoning models, we conduct over 100
ablations (some scaling to thousands of H100 GPU-hours) covering teacher models, augmentation
schemes, and seed sources, and we iteratively filter patterns that produce loss spikes. This process
yields a downsampled YI-SANG-HQ of 260k high-yield examples, on which we train the KO-
REAson series. As shown in Table 4, KO-REAson-35B outperforms state-of-the-art models trained
on closed data (GPT-OSS-20B (Agarwal et al., 2025), R1-Distill-32B (Guo et al., 2025), QwQ-
32B (Team, 2025), EXAONE-Deep-32B (Research et al., 2025)) on average across nine tasks. We
further demonstrate that these gains are consistent across model families and scales by training nine
models (4B–35B) spanning six families. Finally, we observe cross-lingual and multi-modal gains,
despite training only on Korean text. Taken together, these results indicate that careful prompting and
large-scale data collection can build open-recipes to rival closed systems.

Our contributions are summarized as follows:

• We introduce YI-SANG, the largest publicly documented post-training dataset for Korean to
date, comprising 5.79M prompts and 3.7M long reasoning traces, plus a 260k high-yield
subset (YI-SANG-HQ) distilled via extensive ablations.

• We propose Language-Mixed CoT, a supervision scheme that lets models switch between
an anchor language (English) and the target language (Korean) during the Think step,
yielding significant gains over monolingual CoT baselines.

• We train and release the KO-REAson series (4B–35B across five families) under the
Apache-2.0 license, surpassing closed systems of comparable scale on nine benchmarks.

2 PRELIMINARIES AND RELATED WORKS

Recent work has pushed long reasoning into the mainstream. o1 (Jaech et al., 2024) showed that
extending the ‘thinking length’ of a model improves performance, while R1 (Guo et al., 2025)
revealed how long reasoning traces are structured and how to build models capable of such capability.
DeepSeek also demonstrated that SFT-distilled (e.g., DeepSeek-Distill-R1) variants can inherit much
of this ability from supervised fine-tuning alone. Subsequent efforts span online RL (Yu et al., 2025;
Chen et al., 2025; Luo et al., 2025), offline RL (Research et al., 2025; Wen et al., 2025), and pure
SFT (Muennighoff et al., 2025; Guha et al., 2025). A consistent pattern emerges: successful online
RL from a cold start typically requires (i) a strong base model (often ≥30B, with solid math/coding
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priors) (Yang et al., 2025; Rastogi et al., 2025), (ii) a reliable process or reward model (Liu et al.,
2025c; He et al., 2025), and (iii) large-scale, high-quality data (e.g., Numina-Math (LI et al., 2024)).
These requirements increase cost and brittleness, concentrating progress in high-resource languages
such as English and Chinese.

Much less is known about bootstrapping reasoning models in mid-resource languages. Directly
replicating high-resource pipelines is often infeasible due to weaker base models and limited high-
quality data. Prior works focus on leveraging carefully designed SFT mixtures or learning objectives
to bring non-English representations closer to English (Zhu et al., 2024; Lai & Nissim, 2024; Chen
et al., 2024) or explore cross-lingual transfer either by English training (Yong et al., 2025; Ranaldi &
Pucci, 2025) or small-scale translated datasets (Son et al., 2025; Pipatanakul et al., 2025). Following
such, we first train Qwen2.5-1.5B-Instruct on translated data from OpenThought1 (Guha et al.,
2025). As shown in Table 1, this model achieves improved performance on MATH but suffers a
substantial drop on HAE-RAE Bench (HRB) (Son et al., 2023), a Korean culture benchmark. This
gap motivates us to develop a reliable and practical recipe for building a reasoning model that attains
robust performance across diverse domains, rather than focusing only on mathematical reasoning.

Table 1: Performance of Qwen2.5-1.5B-Instruct be-
fore and after fine-tuning. Fine-tuning on translated
OpenThoughts-114K for five epochs improves perfor-
mance on MATH while degrading on HAE-RAE Bench.

Model HRB MATH

Qwen2.5-1.5B 35.24 25.48
+ TRANSLATED OT 15.34 74.35

Our work differs from previous works by going
beyond translation. We collect native prompts,
systematically curate for quality, and introduce
Language-Mixed CoT as a more effective
supervision signal. By varying only supervi-
sion format (long vs. short; language-mixed
vs. monolingual), we isolate supervision effects
from optimization confounds and provide mid-
size models a stable path to long-reasoning be-
havior without RL. We validate this methodol-
ogy in Korean, an apt testbed: a mid-resource
language with an active LLM research ecosystem, scratch-trained base models (Bak et al., 2025;
Lab, 2025; KISTI, 2024), dedicated general-knowledge (Son et al., 2024; Hong et al., 2025) and
reasoning benchmarks (Ko et al., 2025), and sufficiently large web corpora for data construction.
The proposed dataset, YI-SANG, is not only the largest Korean post-training corpus (Figure 2), but
also a methodological contribution: a pipeline for converting noisy internet prompts into high-quality
supervision. Our empirical results demonstrate its effectiveness and offer a reproducible path for
mid-resource communities to build competitive reasoning models.

3 EXPERIMENTAL SETUP

3.1 TRAINING DETAILS
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Figure 2: An overview of publicly available Korean
datasets. YI-SANG is larger than any fine-tuning dataset
or pretraining corpus, with 6.77B tokens.

Models To ensure robustness in our abla-
tions, we run experiments on two base mod-
els: Gemma-3-4B (Team et al., 2025) and
Kanana-1.5-8B (Bak et al., 2025). After de-
termining the high-yield subset, we evaluate
its efficacy by training across a broader set of
models, including Gemma-3-4B/12B, A.X-3.1-
7B/35B (Lab, 2025), Kanana-1.5-8B, Llama-3.1-
8B (Grattafiori et al., 2024), KONI-Llama-3.1-
8B (KISTI, 2024), and Qwen2.5-7B/14B (Qwen
et al., 2025). All experiments are conducted with
the instruction-tuned versions of the models. See
Appendix B.1 for further details on each model.

Training Settings All training runs use a min-
imum of 50,000 data points unless otherwise
specified. Each experiment (including ablations) is trained for five epochs, except for A.X-3.1-35B,
which we train for three epochs due to computational constraints. For further details on the hyperpa-
rameters used throughout training, see Appendix B.
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3.2 EVALUATION DETAILS

Benchmarks In this work, we divide our evaluation suite into two parts: a held-in set, used for routine
monitoring during training and ablation studies, and a held-out set, evaluated once after all ablations
and final training are complete. This is to support rapid iteration and prevent inadvertent overfitting to
benchmarks during iterative training ablations.

• Held-in consists of four benchmarks. MCLM (Son et al., 2025) is a translated collection of math
problems from MATH500 and AIME2024, originally drawn from Olympiads, designed to test
deep chain-of-thought reasoning rather than surface recall. KMMLU-Redux (Hong et al., 2025) is a
quality-controlled, down-sampled version of KMMLU (Son et al., 2024) that maintains correlations
with the full suite while reducing evaluation cost; importantly, it spans both factual knowledge
(e.g., history, law, medicine) and reasoning-intensive domains (e.g., mathematics, engineering,
science). HAE-RAE Bench (Son et al., 2023) assesses Korean linguistic and cultural competence,
covering vocabulary, reading comprehension, and historical content. For medical ablations, we also
include ClinicalQA, a Korean clinical QA benchmark derived from medical licensing examinations,
consisting of problems based on chief complaints and medical specialties.

• Held-out covers a broader set of benchmarks used only after all training ablation is done. KMMLU-
Hard (Son et al., 2024) is adversarially filtered version of KMMLU for highest difficulty. KMMLU-
Pro (Hong et al., 2025) contains expert-level professional licensure questions across 14 different
categories, including Medicine, Finance, and Law. KSM (Ko et al., 2025) is a set of competition-
style mathematics problems from Korean contests. CLIcK (Kim et al., 2024) aggregates factual
questions from Korean exams and textbooks across 11 categories, providing a measure of Ko-
rean general world knowledge. Finally, KoBALT-700 (Shin et al., 2025) is a linguistics-focused
benchmark of 700 expert-written items that span syntax, semantics, morphology, phonology, and
pragmatics, used to test fine-grained Korean linguistic competence.

Evaluation Setup All evaluations are run with vLLM (Kwon et al., 2023) under the following
configuration: temperature=0.7, top p=0.9, and max tokens=32,768. Models are instructed
to present the final answer wrapped in \boxed{...}, and we use math-verify 2 to validate the
boxed value; outputs without a valid answer are marked incorrect. All ablations use a single evaluation;
for the main experiments, we run three independent trials and report mean ± standard error.3

4 LANGUAGE-MIXED CHAIN-OF-THOUGHT

When constructing multilingual reasoning data in a target language (other than English), a central
question is how to represent the reasoning process: should it be written in the target language or left
in English? Prior work has typically chosen one of two monolingual setups, either entirely in En-
glish (Pipatanakul et al., 2025; Ha, 2025; Son et al., 2025) or entirely in the target language (lightblue,
2025; Lee et al., 2025a). Our initial exploration reveals critical shortcomings in both. Reasoning in
English on Korean prompts introduces translation noise: prompts are often mistranslated, especially
in culture-specific contexts, and over time, errors accumulate, leading the model to drift off topic
once it “forgets” the original Korean wording. Conversely, reasoning in Korean produces notable
drops in reasoning capability (Ko et al., 2025), and extended training in Korean induces distributional
drift in English-pretrained bases (Hong et al., 2024), degrading their original strengths.

To address both issues, we propose Language-Mixed CoT4 (See Figure 1 for example). During
the Think phase, the model code-switches, performing most logical scaffolding in English while
preserving key Korean terms and quotations. This keeps faithfulness to the prompt without sacrificing
reasoning power. To generate Language-Mixed CoT, we prompt the teacher to preserve named
entities, quoted spans, and key terms in Korean while generating the rest of the reasoning in English.
After generation, we apply a regex-based filter to discard samples whose Korean-character ratio lies
outside 5% and 20%. In Table 2, we train five variants: an English and Korean-only model, and
three language-mixed models that combine Korean with English, Chinese, or Russian. The choice

2https://github.com/huggingface/Math-Verify
3See Section C.2 for more details.
4We use the term language-mixing in the same sense as code-switching, that is, alternating between two or

more languages within a single context.

4
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Table 2: Language-Mixed CoT (ours) outperforms monolingual CoTs across models and sizes. Compared
with English- or Korean-only CoT, Language-Mixed CoT yields higher scores for both Gemma (4B) and Kanana
(8B). Highest scores per column are highlighted in green . Abbreviations: HRB = HAE-RAE Bench; KMMLU-R
= KMMLU-Redux.

CoT Lang. Gemma-3-4B Kanana-1.5-8B
HRB MCLM KMMLU-R HRB MCLM KMMLU-R

English 50.3 48.1 52.2 66.2 60.5 64.0
Korean 40.6 25.6 42.5 67.2 31.8 53.4

Language-Mixedru/ko 46.7 22.5 44.1 67.6 28.7 50.4
Language-Mixedzh/ko 48.2 26.3 45.3 68.8 25.6 51.1
Language-Mixeden/ko 54.9 55.8 53.0 74.6 57.4 64.4

of Chinese and Russian follows Qi et al. (2025): Chinese is culturally and historically closer to
Korean, whereas Russian is relatively distant. Notably, language-mixed CoT with English anchoring
outperforms other settings in most cases. Interestingly, Gemma3-4B shows gains on HRB and
KMMLU-R even with Russian- or Chinese-anchored CoT, whereas Kanana-1.5 does not. We suspect
this difference is driven by the pretraining mixtures: Gemma3-4B is a multilingual model that
includes substantial Russian and Chinese data, while Kanana-1.5-8B is pretrained only on English
and Korean. Most importantly, however, improvements on MCLM (math) emerge only when using
English-anchored CoT.

5 YI-SANG INSTRUCT

Despite many efforts to distill frontier models into smaller open models, only a few manage to collect
their own training corpus; most reuse or repackage existing datasets (Ye et al., 2025; Guan et al.,
2025; Hugging Face, 2025; Hu et al., 2025). This pattern is also common in multilingual settings
and materially affects outcomes: models trained through such pipelines lack robustness to everyday
colloquial expressions that rarely appear in translated text. To pursue a more robust multilingual
reasoning, we decided to construct our own dataset. This section describes our instruction collection
(Section 5.1), response generation process (Section 5.2) for building YI-SANG, and presents ablations
used to derive the high-yield subset YI-SANG-HQ (Section 5.3).

5
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(a) Collected Sources
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864.83K
(14.9%)
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(b) Collected Questions

5.79M

1.21M
(32.7%)

694.58K
(18.8%)
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4.0%

(c) Collected Responses

3.7M

Code Exams Legal Korean Science Daily Finance Medical OpenThought

Figure 3: Category distribution across different stages of the dataset collection. (a) Sources (N=54): counts
of the public Q&A and community websites we compiled; categories were manually assigned by the authors
based on contextual review. (b) Questions: after crawling, items inherit the category from their source. (c)
Responses: after response generation, we added OpenThought (Guha et al., 2025) as an additional source. Colors
are shared across panels; centers show total counts.

5.1 INSTRUCTION COLLECTION

Seed Instruction Collection. We curate native Korean prompts from public Q&A and community
websites via a two-step pipeline. (1) Source discovery. Using domain knowledge and targeted search,
the authors compiled 54 candidate sites with user-posted questions and peer answers. Each site
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Figure 4: Average scores across HAE-RAE Bench, MCLM, and KMMLU-Redux for Gemma-3-4B and
Kanana-1.5-8B under three settings. (a) Augmentation. Option and Style are comparable on Gemma-3-4B
(49.3 vs 49.5), while Option has a modest edge on Kanana-1.5-8B (58.8 vs 56.6); neither augmentation is
uniformly superior. (b) Teacher (Long CoT). Qwen3-32B yields higher averages than Qwen3-4B (Gemma:
51.8 > 48.6; Kanana: 63.8 > 56.3). (c) Teacher (Short CoT). With shot CoT, Qwen3-32B tops Gemini-2.5-Pro
(Gemma: 41.8> 39.7; Kanana: 48.5 > 45.9). Overall, Language-Mixed CoT and using Qwen3-32B as the
teacher provide the strongest gains; both augmentation choices offer benefits.

was assigned a license category: A (crawling and redistribution permitted), B (crawling allowed but
commercial use and redistribution prohibited), and C (crawling prohibited). (2) Legal triage and
crawling. We implement site-specific crawlers (one script per site) and exclude C sites, low-volume
sources, heavily obfuscated structures, and near-duplicates. In this stage, we remove 26 websites
from the list. Data from B sites is used for training and analysis but is not redistributed.

Refinement and Filtering. It is common practice to refine web-collected seed instructions either
with templates or LLM rewriting (Mishra et al., 2021; Xu et al., 2023) prior to training. However,
we observe that such normalization removes user artifacts (typos, abbreviations, mixed script, and
internet style) that harm robustness at deployment, so we keep prompts verbatim. We apply only light
automatic filters: discard prompts with a Korean-character ratio below 30%, and drop prompts that
are too short or too long (length < 50 or > 8,192 characters). The Korean threshold was empirically
chosen to exclude fully non-Korean items while retaining mixed-language coding prompts.

Instruction Statistics. Figure 3 illustrates details on the collected sources and prompts. Initially,
roughly 25.9% of our compiled sources were legal websites. However, they tend to be small in
scale or legally restricted, so they contribute only a minor share to the total number of crawled
questions. In contrast, exam and daily communities host extensive, easily crawlable archives and are
overrepresented. Given that long chain-of-thought training primarily improves reasoning capabilities
rather than those tasks involving knowledge retrieval (Yeo et al., 2025; Sprague et al., 2024), we
prioritize STEM/Code/Exam categories in subsequent collection and curation.

Adding the OpenThought dataset. Finally, our web-sourced training mix lacks competition-level
problems that are known to cultivate reasoning ability (Guan et al., 2025). We therefore add prompts
from OpenThought (Guha et al., 2025) by translations through Gemini-2.5-Flash (Comanici et al.,
2025). Earlier attempts with GPT-4o-mini (Hurst et al., 2024), Qwen2.5-72B-Instruct (Qwen et al.,
2025), and Gemini-2.0-Flash (Deepmind, 2024) produced training instabilities.

5.2 RESPONSE GENERATION

SFT over Reinforcement Learning. To build a strong Korean reasoning model, we focus on SFT
in this work. Although recent studies report sizable gains from RL-based preference optimization
(e.g., GRPO (Shao et al., 2024)), particularly for sub-32B models (Rastogi et al., 2025; Guo et al.,
2025), these methods presume access to strong base models (Wang et al., 2025). For Korean, such
strong seeds are scarce, making RL vulnerable to the cold-start problem with unstable reward learning
and poor exploration (Shao et al., 2025). Consequently, we prioritize SFT with curated data to build a
strong base model for subsequent RL efforts. Importantly, SFT has also been proven to be effective in
training reasoning models (Hochlehnert et al., 2025; Ji et al., 2025), making it a reliable first step.

6
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Response Generation Methodology. To build the SFT dataset, we initially consider two strategies:
(a) agreement-sampling, where we sample multiple times from a teacher model and accept the
first that an LLM judge (Zheng et al., 2023) deems consistent with the web-crawled answer, and
(b) hint-based refinement, where we prepend the crawled answer and ask the model to refine it.
However, we find both concerning: (a) is prohibitively compute-intensive; (b) risks leakage, artifacts,
and distribution shift that can hurt generalization. Moreover, web-scraped answers are unreliable, and
the recent strong LLMs have a chance to surpass crowd responses. It should also be noted that several
works (Toshniwal et al., 2024), including OpenThought (Guha et al., 2025), and S1 (Muennighoff
et al., 2025), have empirically shown that response filtering is not necessary, or hardly correlated with
the performance of the downstream model. We, therefore, choose to regenerate all targets from the
prompt alone with a strong teacher, without any web-collected oracle.

Selecting Response Format and Teacher Model. To select the teacher model, we evaluate
two candidates, Qwen3-32B and Qwen3-4B. We also test a short-CoT setting, where the model is
trained on plain instructional responses without explicit reasoning traces, similar to conventional
instruction-tuning outputs. This variant is implemented with Qwen3-32B (reasoning disabled) and
Gemini-2.5-Pro. Figure 4 reports the downstream results across teachers. As expected, Qwen3-32B
with language-mixed CoT delivers the strongest performance. Notably, Qwen3-4B with reasoning
surpasses both Gemini-2.5-Pro and Qwen3-32B without reasoning, highlighting the importance of
explicit reasoning in unlocking LLM capabilities. See Ablation A.4 for more details on training with
different teachers.

Format Augmentation. The Exams category is highly standardized, typically a question with four
options. To improve robustness beyond the fixed template, we apply two augmentations: (a) Style
augmentation. We keep the question unchanged and prepend or append short stylistic directives.5 (b)
Option augmentation. We use a BM25 retriever (Robertson et al., 1995) over the exam pool to find
similar questions and merge their distractor options with the original item. We drop items containing
negation cues to avoid semantic flips, remove near-duplicate items, cap the merged list at 10 options,
and preserve the original correct option as the gold label. As shown in Figure 4, training with either
augmentation alone yields comparable performance, so we adopt both.

5.3 DATASET COMPOSITION

Building on these lessons, we use Qwen3-32B to generate language-mixed CoTs for the 5.79M
prompts and augmentations. After filtering degenerations and enforcing Korean-ratio bounds, we
obtain YI-SANG with 3.7M long-reasoning trajectories. However, while scaling data generally
improves performance, multi-epoch training on our full 3.7M instances is impractical due to limited
compute budget. We therefore run targeted ablations to identify a smaller, high-yield mixture.

What benefit does each category bring? We begin by training on each category at a time. Each
ablation run additionally includes 3,000 items from the Exams category to teach formatting. In Table 3,
we observe that OpenThought delivers the largest gains on MCLM, followed by Science and Code.
Exams are the most effective source for HAE-RAE Bench and KMMLU-Redux. Notably, the Medical
category appears highly specialized: it boosts ClinicalQA but significantly hinders performance
on all other benchmarks. These trends hold across both models, suggesting that the most effective
mixture uses OpenThought and Exams as the foundation and adds Science/Code for additional math
robustness. Additionally, we find that scaling the Daily and Medical subsets has adverse effects on
overall performance, leading us to exclude them from the final training composition. 6

Finalizing the dataset. Finally, we decide to train only with: OpenThought, Code, Exams, and
Science. This approximates about 1.8M instances. To surface data issues, we conduct a one-epoch
shakedown run with a proxy model (Kanana-1.5-2.1B). We define a “loss spike” as an abrupt rise in
loss that does not recover immediately in the subsequent step. When such spikes occur, we locate the
batch, manually inspect the items, implement a rule-based filter to remove the failure pattern from the
entire dataset, and restart the run. This process is repeated until the loss curve stabilizes. During this

5Examples include: “return the final answer in \boxed{} format”, or “output format: answer:<N>”.
6See Section A.4 for details.
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Table 3: Contribution of individual training categories. OpenThought and Exams provide the largest
gains, followed by Code and Science. Medical boosts ClinicalQA but consistently harms performance on other
benchmarks. Each run uses 50k examples from the target category, plus 3k EXAMS items for formatting. Since
SCIENCE has only 37k examples, we use 37k+3k without up-sampling. The highest-scoring model is highlighted
in green and the lowest-scoring model in red . Abbreviations: Clin. = ClinicalQA.

Category Gemma-3-4B Kanana-1.5-8B
HRB MCLM KMMLU-R Clin. HRB MCLM KMMLU-R Clin.

OpenThought 54.9 55.8 53.0 62.1 74.6 57.4 64.4 73.97
Daily 54.2 34.9 51.9 62.4 69.1 36.4 58.7 70.0
Medical 50.5 20.9 49.4 65.6 64.5 28.7 57.0 70.3
Code 53.5 38.8 51.5 59.0 69.4 38.0 59.1 64.4
Exams 56.4 27.9 64.2 60.0 69.5 33.3 67.0 69.9
Science 52.2 37.2 52.1 61.9 68.3 41.1 58.8 67.5

process, we identify three recurring triggers: degeneration cases where responses endlessly repeat
identical phrases; samples that contain multiple <think> ... </think> blocks; and instances in
which the final solution after the </think> tag is written in a non-Korean language. We also find
that a small number of extremely long reasoning traces disproportionately slow training, leading us
to discard any instance exceeding 16k tokens.

Decontamination We decontaminate the training corpus against both held-in and held-out bench-
marks using a 13-gram overlap filter applied to prompts and reasoning traces. Before constructing
n-grams, we perform morphological segmentation and normalization with MeCab-KO (MeCab-KO
Contributors). We then run two passes: (i) build 13-grams over the normalized strings and (ii) build
13-grams over the raw text; any training instance that shares at least one 13-gram with any benchmark
item in either pass is removed, effectively eliminating exact and near duplicates. We intentionally
avoid embedding-based decontamination, as exhaustive semantic matching over 3.7M trajectories
and nine benchmarks would be computationally costly and risks discarding legitimate background
knowledge rather than true leakage. Overall, the 13-gram decontamination removes about 0.7% of
trajectories (∼25.9k). After all filtering steps, the finalized YI-SANG-HQ corpus contains 260k
instances, composed of 62k from OpenThought, 86k from Code, 37k from Science, and 66k from
Exams.

6 RESULTS

Table 4: Comparison of 20B+ reasoning models. KO-REAson-35B (ours) matches state-of-the-art peers of
similar scale while using only openly available data and code. Entries are reported as meanSE over n = 3
independent runs. Bold marks the row-best; underline marks the second-best. When standard-error intervals
overlap, ties are co-highlighted. Exact prompts are provided in the supplementary materials. Math (Ko) and
AIME24 (Ko) are subsets of MCLM.

Category Benchmark GPT-OSS-20B DS-R1-32B EXAONE-Deep-32B QwQ-32B KO-REAson-35B

General
KMMLU-Redux 67.60.1 70.01.6 68.22.2 74.71.0 76.00.4

KMMLU-Pro 42.90.5 45.70.3 43.51.8 51.01.1 47.40.6
KMMLU-Hard 39.00.2 43.31.0 43.51.9 49.01.0 51.40.5

Reasoning
Math (Ko) 82.81.7 85.42.1 84.82.9 82.30.7 87.50.6

AIME2024 (Ko) 71.16.9 51.77.1 58.311.8 53.39.4 66.711.5
KSM 72.14.7 62.85.1 65.717.9 60.514.4 65.78.6

Ko-Specific
HRB 65.10.7 70.80.4 76.10.3 75.51.1 78.90.7

CLIcK 57.20.7 66.60.6 67.60.3 70.90.6 70.90.3

KoBALT-700 31.01.4 33.30.1 32.65.6 37.72.0 34.91.0

Average 58.81.2 56.44.5 57.45.2 59.63.1 64.02.5

YI-SANG-HQ Achieves State-Of-The-Art Performance. KO-REAson-35B, based on A.X-3.1
and trained on YI-SANG-HQ, outperforms state-of-the-art reasoning models of comparable scale,
including GPT-OSS-20B (Agarwal et al., 2025), DeepSeek-R1-32B (Guo et al., 2025), EXAONE-
Deep-32B (Research et al., 2025), and QwQ-32B (Team, 2025). In Table 4, across nine benchmarks,
KO-REAson-35B achieves the best performance on five tasks and ranks second on the remaining
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Table 5: Performance of nine models (4B–35B) trained on YI-SANG-HQ. The benefits of YI-SANG-HQ
are consistent across model families and parameter scales. Results are meanSE over n = 3 independent runs.
Cases where performance drops after training (without overlap of standard errors) are highlighted . Abbreviations:
K.M.-R = KMMLU-Redux; K.M.-P = KMMLU-Pro; K.M.-H = KMMLU-Hard.

Model K.M.-R K.M.-P K.M.-H MATH AIME24 KSM HRB CLIcK KoBALT
<5B Models

Gemma-3-4B 40.71.7 26.71.3 19.40.2 41.925.0 1.72.4 12.86.7 49.15.2 45.94.0 12.02.9
+ YI-SANG-HQ 65.53.5 35.33.6 41.63.2 69.71.4 15.02.4 38.813.9 61.09.9 55.25.1 20.04.1

<10B Models

Qwen-2.5-7B 52.60.3 34.00.1 20.70.2 58.16.4 6.70.0 15.80.3 60.41.1 56.90.6 19.30.8
+ YI-SANG-HQ 72.00.4 44.60.5 46.70.1 77.30.7 41.711.8 49.71.5 65.00.8 61.00.4 24.11.4
A.X-3.1-7B 62.40.5 38.80.3 36.32.0 48.218.9 34.639.6 17.33.5 71.30.7 64.80.4 25.02.3
+ YI-SANG-HQ 70.00.9 39.00.7 45.70.5 82.82.9 33.314.1 53.41.3 72.50.9 62.00.9 23.90.7
KONI-Llama-3.1-8B 20.70.4 16.00.6 9.70.4 18.72.1 3.30.0 4.80.2 21.71.8 21.90.4 0.50.2
+ YI-SANG-HQ 69.60.1 39.60.5 44.70.6 71.71.4 31.77.1 38.30.4 58.30.8 56.51.0 21.40.4
Llama-3.1-8B 40.01.2 23.81.3 19.50.2 29.37.1 1.72.4 5.10.2 43.70.4 41.50.6 8.10.6
+ YI-SANG-HQ 68.90.2 38.60.4 45.30.0 72.20.7 26.714.1 38.70.7 58.30.4 54.90.4 18.90.1
Kanana-1.5-8B 53.74.9 37.70.2 27.20.1 54.50.0 10.00.0 15.00.1 70.38.2 63.50.3 20.60.5
+ YI-SANG-HQ 70.70.5 39.90.7 44.80.5 67.71.4 30.00.0 39.82.1 72.90.9 64.00.4 28.60.5

<20B Models

Gemma-3-12B 59.10.6 39.90.3 29.80.0 73.22.1 15.07.1 28.10.3 69.80.2 62.20.5 26.00.1
+ YI-SANG-HQ 72.70.9 43.21.2 47.10.1 75.30.7 35.07.1 46.16.7 68.80.2 64.60.2 29.60.1
Qwen-2.5-14B 24.41.3 22.70.6 14.01.0 64.62.9 8.32.4 20.70.8 20.79.3 31.50.7 19.80.8
+ YI-SANG-HQ 77.10.7 50.00.2 51.50.6 81.81.4 38.32.4 55.68.4 74.50.2 67.50.5 34.51.3

<30B Models

A.X-3.1-35B 72.20.2 47.30.7 44.20.2 73.12.1 16.73.3 26.80.8 84.00.5 76.60.6 35.50.2
+ YI-SANG-HQ 76.00.4 47.40.6 51.40.5 84.50.6 66.711.5 65.78.6 78.90.7 70.90.3 34.91.0

four, achieving the highest overall average. We note that performance on competition-level math
datasets (AIME2024, KSM) trails GPT-OSS-20B, which we attribute to the relatively small amount
of competition-style reasoning data in our mixture: only ∼ 60k translated OpenThought items after
filtering, compared to nearly 1M competition-style problems in the original OpenThought project
and ∼ 0.5M in Liu et al. (2025b). Nevertheless, KO-REAson-35B ranks second place on both
benchmarks while relying primarily on web-collected data that constitutes the majority of training.
This underscores the quality of the newly collected user prompts. We leave to future work on
incorporating larger volumes of translated competition-style data to push performance further.
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Figure 5: Performance of Gemma3-12B
and its post-trained variant on English
reasoning benchmarks and Korean mul-
timodal benchmarks. KO-REASON-12B,
trained only with text supervision, shows con-
sistent gains across all tasks, indicating both
cross-lingual and multimodal transfer.

YI-SANG-HQ Demonstrates Persistent Gains Across
Model Size and Family. To further validate the efficacy
of YI-SANG-HQ across diverse settings, we train nine
models spanning 4B to 35B parameters from six differ-
ent model families. Improvements are consistent across
both scale and architecture, with especially pronounced
gains on math-intensive benchmarks such as Math (Ko),
AIME2024, and KSM, where models of all sizes benefit
substantially. Korean-specific tasks (HRB1.0, CLIcK, and
KoBALT-700) also show steady improvements, underscor-
ing the value of YI-SANG-HQ’s curated multilingual and
culturally grounded data. General knowledge evaluations
(KMMLU-Redux, KMMLU-Pro, KMMLU-Hard) likewise
improve, further demonstrating the broad coverage of the
dataset. Performance degradation is observed in only two
cases, both with marginal drops of less than two points.
Overall, YI-SANG-HQ proves to be a versatile and widely
applicable training resource, capable of boosting models
across families and scales, and offering substantial value
for future research in multilingual and reasoning-focused
LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Cross-Lingual and Multi-Modal Free Lunch. To in-
vestigate whether post-training on YI-SANG-HQ yields broader generalization, we evaluate Gemma3-
12B and its post-trained variant (KO-REAson-12B) on two English reasoning benchmarks (AIME-
2025, short-form math; GPQA, STEM MCQA (Rein et al., 2024)) and two Korean vision-language
benchmarks (KAIO-2, short-form STEM reasoning (Lee et al., 2025b); HAERAE-Vision, long-form
commonsense reasoning). KO-REAson-12B outperforms the base model on all four, indicating both
cross-lingual and multimodal gains. We attribute the English improvements to two factors: (i) the
benchmarks emphasize largely universal math and science knowledge, which facilitates transfer
across languages, and (ii) our Language-Mixed CoT includes English reasoning steps that push
general reasoning capabilities. English performance gains are consistent over all trained models, see
Table 14 for more details. Additionally, we also observe gains on visual reasoning despite no image
data in post-training, consistent with prior reports of a “multi-modal free lunch.” (Choi et al., 2024;
Rastogi et al., 2025) However, the transfer appears selective, with strong gains on reasoning-heavy
tasks and limited benefit on shallow, factoid-style evaluations. See Appendix D.2 for complete results
and experimental details.

7 CONCLUSION

In this work, we present practical recipes for building reasoning models for mid-resource languages
through a Korean case study. We introduce Language-Mixed CoT and curate 5.9M native-authored
Korean prompts, underscoring the value of better supervision signals and high-quality local data.
Using Qwen3-32B as the teacher, we construct and release YI-SANG, the largest publicly available
Korean training resource. Its high-yield subset, YI-SANG-HQ, delivers consistent gains in general
knowledge and reasoning across six model families spanning 4B–35B parameters, rivaling mod-
els trained on proprietary data. We hope our work benefits Korean practitioners and the broader
multilingual community, offering guidance for training their own reasoning LLMs.
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A ADDITIONAL DETAILS ON YI-SANG.

A.1 ORIGIN

Our dataset takes its name from Yi Sang (1910-1937; pen name of Kim Hae-gyeong), a Korean
modernist and architect, known for his mathematically inflected literature. He employed geometric
notation, numerical sequences, and experimental layouts into Korean literacy works. The name
reflects our focus on formal Korean reasoning. Yi Sang also echoes a Korean noun, meaning “the
most complete state,” consistent with our goal to create the strongest reasoning dataset.

A.2 PROMPTS

Figure 6 presents the system prompt used throughout the paper to generate Language-Mixed CoT
from teacher models. We notice that longer and more detailed instructions are likely to constrain
stylistic diversity of responses. Therefore, we keep the prompt as simple as possible.

Think carefully, do not translate the question while solving. Preserve the question in Korean so that you
keep all details without adding noise. After you finish thinking, state your answer in fluent and coherent
Korean.

Figure 6: System prompt used for dataset generation.

A.3 LICENSE

In Table 6 we detail the license of our trained models. The models will be made available on
HuggingFace. Both datasets YI-SANG and YI-SANG-HQ will be made available under the MIT
License.

Table 6: Summary of Base models, upstream licenses, our trained model names, and release licenses. We
resort to the most open license possible.

Base Model Upstream License Trained Model (ours) Release License

Gemma3-4B Gemma License KO-REAson-G3-4B-0831 Gemma License
Gemma3-12B Gemma License KO-REAson-G3-12B-1002 Gemma License
Llama-3.1-8B Llama3 Community License KO-REAson-L3 1-8B-0831 Llama3 Community License
KONI-Llama-3.1-8B Llama3 Community License KO-REAson-KL3 1-8B-0831 Llama3 Community License
A.X-3.1-Light Apache 2.0 KO-REAson-AX3 1-8B-0831 Apache 2.0
A.X-3.1 Apache 2.0 KO-REAson-AX3 1-35B-1002 Apache 2.0
Qwen2.5-7B Apache 2.0 KO-REAson-Q2 5-7B-0831 Apache 2.0
Qwen2.5-14B Apache 2.0 KO-REAson-Q2 5-14B-1002 Apache 2.0
Kanana1.5-8B Apache 2.0 KO-REAson-K2505-8B-0831 Apache 2.0

A.4 ADDITIONAL ABLATIONS

Training with different Teachers. To investigate whether our LM-CoT distillation pipeline is
agnostic to the choice of teacher, we apply the same procedure using both DEEPSEEK-R1-32B and
QWEN3-32B as teachers, and distill into two students: KANANA-1.5-8B and GEMMA3-4B. Table 7
summarizes the results. For KANANA-1.5-8B, supervision from DEEPSEEK-R1-32B improves
HAE-RAE Bench / MCLM / KMMLU-R from 60.8 / 45.7 / 48.1 to 71.0 / 48.8 / 58.9, while QWEN3-
32B yields even larger gains (74.6 / 57.4 / 64.4). For GEMMA3-4B, DEEPSEEK-R1-32B provides
modest improvements, mainly on MCLM and KMMLU-R, and QWEN3-32B again delivers the
strongest student, raising performance to 54.9 / 55.8 / 53.0. These trends indicate that our pipeline
consistently benefits different base models and teachers, while the absolute student performance
remains bounded by the capability of the chosen teacher.
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Table 7: Teacher and student performance on HAE-RAE Bench, MCLM, and KMMLU-R. Both teachers
DeepSeek-R1-32B (DS) and Qwen3-32B (Q3) yield performance gains, proportionate to their original perfor-
mance.

Models HAE-RAE Bench MCLM KMMLU-R

Student Model Performance
(Base) Kanana-1.5-8B 60.8 45.7 48.1

Supervised by DS-R1-32B 71.0 48.8 58.9
Supervised by Q3-32B 74.6 57.4 64.4

(Base) Gemma3-4B 53.5 43.4 38.7
Supervised by DS-R1-32B 53.3 45.7 49.6
Supervised by Q3-32B 54.9 55.8 53.0

Teacher Model Performance
DeepSeek-R1-32B 71.8 75.2 70.2
Qwen3-32B 75.7 83.7 81.0

Table 8: Size ablation on the Medical subset. Dou-
bling the Medical subset from 50k to 100k leads
to negative performance effects. Reported values
show the change in accuracy; Avg (non-Clin.) is the
unweighted mean of non-clinical benchmarks.

Model ∆ Avg (non-Clin.) ∆ ClinicalQA

Gemma-3-4B −0.76 −2.30
Kanana-1.5-8B +0.09 +0.10

Scaling the Medical subset. To test for emer-
gent gains, we double the Medical subset from
50k to 100k and retrain. Table 8 reports the per-
formance gains relative to 50k. Gemma-3-4B de-
creases on all benchmarks, with the largest drop
on ClinicalQA. Kanana-1.5-8B exhibits near-zero
changes. Therefore, we exclude the Medical cat-
egory from the final training mixture.

Scaling the Daily subset. Table 3 shows that
Daily rarely leads any benchmark. We scale Daily by s ∈ {20, 50, 100}k and mix 15k instances
each from OpenThought and Exams. The two datasets are added to prevent downstream models
from showing deflated scores on the academic benchmarks, since the Daily category is likely to lack
academic value. As reported in Table 9, performance consistently drops as we scale. Therefore, we
also exclude the Daily category.

Table 9: Size ablation on the Daily subset. Overall performance declines as the subset increases in size.
This may partly stem from limited benchmark coverage; nonetheless, the evidence is not enough to tolerate
consistent drops across the remaining benchmarks. The highest-scoring model is highlighted in green .

Data Mix Gemma-3-4B Kanana-1.5-8B
HRB MCLM KMMLU-R HRB MCLM KMMLU-R

2:1.5:1.5 56.2 48.8 54.0 73.1 48.8 60.8
5:1.5:1.5 55.5 48.1 53.0 68.9 45.7 59.7
10:1.5:1.5 55.8 40.3 51.6 69.9 43.4 58.8

Scaling to a bigger dataset. We also investigate the effect of scaling to a larger training set.
We conduct a controlled experiment with a subset of 780k samples, consisting of YiSang-HQ
combined with 500k English OpenThought instances (denoted as YiSang-HQ+OT(en)), and fine
tuned Gemma3-4B on this mixture.

Table 10: Effect of adding 500k English OpenThought samples on benchmark performance.

Benchmark YiSang-HQ YiSang-HQ+OT(en)

KMMLU-Redux 65.3 63.5
HAE-RAE Bench 61.0 59.4
MCLM-Ko 55.0 67.4
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As shown in Table 10, adding a large amount of English OpenThought data leads to a substantial
improvement on MCLM-Ko (from 55.0 to 67.4), a math focused benchmark that particularly benefits
from additional Olympiad style problems. However, this comes at the cost of lower performance
on KMMLU-Redux and HAE-RAE, both of which contain a significant amount of Korean specific
content. In other words, the larger and more math heavy mixture shifts the model toward stronger
mathematical reasoning, while slightly degrading its overall Korean performance. Given that our
primary objective is to build a balanced model for Korean usage, rather than optimizing a specific
subset of reasoning benchmarks, we chose not to adopt this larger mixture in the final training runs.
Nevertheless, for applications that prioritize reasoning performance in math and related benchmarks,
extending the training data with additional English OpenThought style problems, as in YiSang-
HQ+OT(en), appears to be a promising direction.

A.5 ABLATION DETAILS

Table 11 and 12 provide detailed results behind Figure 4.

Table 11: Comparison of two augmentation strategies (style and option); no single method demonstrates
a clear advantage. The highest-scoring model is highlighted in green .

Augmentation Gemma-3-4B Kanana-1.5-8B
HRB MCLM KMMLU-R HRB MCLM KMMLU-R

Style 56.4 27.9 64.2 69.5 33.3 67.0
Option 55.8 30.2 61.9 72.8 37.2 66.5

Table 12: Comparison of different teacher models and response formats. Training on long chain-of-
thought reasoning generated by Qwen3-32B shows the best performance. Performance caps are most
pronounced in the MCLM benchmark, implying its effectiveness in boosting reasoning performance. The
highest-scoring model is highlighted in green .

Teacher Model Gemma-3-4B Kanana-1.5-8B
HRB MCLM KMMLU-R HRB MCLM KMMLU-R

Language-Mixed CoT

Qwen3-32B 54.4 48.1 53.0 73.1 57.4 60.8
Qwen3-4B 48.6 45.0 52.3 67.8 41.9 59.1

Solution Only (Short CoT)

Gemini-2.5-Pro 49.5 25.6 44.1 67.6 24.0 46.2
Qwen3-32B 51.3 28.7 45.3 68.5 23.3 53.7

B ADDITIONAL DETAILS ON MODEL TRAINING.

B.1 MODELS

Gemma-3 (Team et al., 2025) is Google’s third-generation open model family. We use 4B and
12B instruction-tuned variants. Gemma-3 is a multimodal model (text and vision), though in this
work we use it purely for text. The 4B version is pretrained on roughly 4T tokens, and the 12B on
about 12T tokens. It is massively multilingual, covering more than 140 languages without a special
focus on any single one.

Qwen-2.5 (Qwen et al., 2025) is built by Alibaba Cloud and trained on up to 18T tokens. It is
grounded primarily in Chinese and English, but demonstrates solid multilingual capabilities with
decent coverage of Korean (Hong et al., 2025). In our experiments, we use both the 7B and 14B
instruction-tuned variants.
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A.X-3.1 (Lab, 2025) is a family of LLaMA-style models developed by SK Telecom with a particular
focus on Korean. It is trained on approximately 2.1 trillion tokens and achieves top-tier scores on
Korean benchmarks, such as KMMLU, while still performing well in English. We employ both the
8B and 35B variants.

Kanana-1.5-8B (Bak et al., 2025) is a bilingual English–Korean model, trained by Kakao, with
an 8B parameter LLaMA-style transformer. It is trained on about 3T tokens, with more than 10%
Korean content, while the rest is primarily English. The training recipe includes staged pretraining
and efficiency optimizations.

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) is trained on approximately 15T tokens and
designed as a multilingual model but with emphasis on eight major languages, including English,
German, French, Italian, Portuguese, Hindi, Spanish, and Thai. Although it is broadly multilingual, it
remains relatively English-centric.

KONI-Llama-3.1-8B (KISTI, 2024) is a continual pretrained variant of Llama-3.1 developed by
KISTI. It starts from the base Llama-3.1-8B architecture and undergoes continued pretraining on 0.5
trillion tokens of additional Korean text and domain-specific corpora in science and technology.

B.2 HYPERPARAMETERS

Training hardware spans from eight NVIDIA H100 to twenty-four NVIDIA H200 GPUs. Ablations
use 5 epochs, a global batch size of 128, bfloat16 precision, and AdamW (learning rate 2 × 10−5

with 10% warmup; weight decay 1× 10−5). Loss is computed only on reasoning traces and solutions.
We employ PyTorch FSDP, Liger kernels (Hsu et al., 2024), and FlashAttention-2 (Dao et al., 2022).
For the final runs on YI-SANG-HQ we scale the global batch size to 512.

B.3 PACKING

)We train Gemma-3-4B and Kanana-1.5-8B on YI-SANG-HQ under two settings (with vs. without
packing). Although packing provided substantial speedups, as shown in Table 13 we observe measur-
able drops on general-knowledge and reasoning benchmarks; accordingly, all reported models are
trained without packing.

Benchmarks Gemma-3-4B Kanana-1.5-8B
w packing wo packing w packing wo packing

KMMLU-Redux 62.87 64.19 70.06 71.30
HAE-RAE Bench 59.62 55.33 75.88 73.73

MCLM-Ko 55.04 58.91 62.02 65.12

Training Time 576 1728 1296 3360

Table 13: Comparison of model performance with and without packing.

C ADDITIONAL DETAILS ON EVALUATION

C.1 PROMPTS

Figure 7 is the prompt used for evaluation.

문제풀이를마친후,최종정답을다음형식으로작성해주세요: \boxed{N}.

Figure 7: System prompt used for evaluation on Korean benchmarks.
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C.2 PROCESSING DETAILS

We extract each model’s final answer from the first \boxed{...}, that appears after the model’s
hidden “think” (reasoning) content. Any \boxed{...}, strings that occur inside the think section
are ignored. If multiple \boxed{...}, entries appear in the visible answer, we always take the first
one and disregard the rest, even if they contradict one another. An answer is credited only if this first
post-think \boxed{...}, is parsable. If the model fails to produce a parsable \boxed{...},,
the response is marked incorrect, even when the correct value appears elsewhere in plain text.

If a generation runs to the maximum token limit and no parsable \boxed{...}, is produced
(typically due to degeneration), the item is marked incorrect. By contrast, if a generation is interrupted
before reaching the max token limit due to a hardware or runtime failure, we re-run the same prompt
once with the same decoding settings; the score is based on the retry.

D ADDITIONAL RESULTS

D.1 CROSS-LINGUAL GAINS ON ENGLISH BENCHMARKS

Table 14: Performance of nine models (4B–35B) trained on YI-SANG-HQ. Results are meanSE over n=3
runs on AIME24, AIME25, and GPQA. The benefits of YI-SANG-HQ are consistent across model families and
scales.

Model AIME24 AIME25 GPQA

<5B Models

Gemma-3-4B 6.75.8 10.08.8 19.52.9
+ YI-SANG-HQ 23.317.3 22.26.9 32.27.7

<10B Models

Qwen-2.5-7B 6.70.0 7.81.9 27.13.5
+ YI-SANG-HQ 41.11.9 34.43.8 43.11.3
A.X-3.1-7B 13.30.0 13.35.8 25.63.7
+ YI-SANG-HQ 46.75.8 31.11.9 37.72.9
KONI-Llama-3.1-8B 0.00.0 0.00.0 14.11.5
+ YI-SANG-HQ 21.11.9 32.21.9 39.20.8
Llama-3.1-8B 0.00.0 0.00.0 19.20.5
+ YI-SANG-HQ 28.93.8 21.11.9 40.20.8
Kanana-1.5-8B 5.61.9 12.21.9 31.12.5
+ YI-SANG-HQ 25.67.7 27.81.9 38.90.5

<20B Models

Gemma-3-12B 13.30.0 15.61.9 32.01.2
+ YI-SANG-HQ 42.27.7 30.05.8 45.16.7
Qwen-2.5-14B 7.85.1 13.33.3 26.31.3
+ YI-SANG-HQ 41.115.0 42.210.2 51.76.6

<30B / 35B Models

A.X-3.1-35B 15.63.8 15.61.9 37.00.8
+ YI-SANG-HQ 58.916.4 53.312.0 47.85.3

Alongside the results in Table 5, we also observe consistent gains on English reasoning benchmarks
such as AIME2024/2025 and GPQA (Rein et al., 2024). While the improvements are not yet sufficient
to rival state-of-the-art systems of similar scale, it is notable that every model improves across all
English benchmarks despite never seeing English prompts during training. We attribute this to two
factors. First, the math and science benchmarks used here largely test universal knowledge, making
them less dependent on the training language and enabling transfer from the Korean supervision.
Second, the proposed Language-Mixed CoT likely helps models maintain alignment with their
original English distribution, since they continue to practice reasoning partly in English. These
findings highlight promising directions for further study on cross-lingual transfer in reasoning.

D.2 CROSS-MODAL GAINS ON VISUAL LANGUAGE BENCHMARKS
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Figure 8: Accuracy on K-Viscuit, KAIO-2, and
HAERAE-Vision for Gemma3-12B, Gemma3-
27B, and KO-REASON-12B. KO-REASON-12B
is a post-trained variant of Gemma3-12B on YI-
SANG-HQ.

Earlier works have discovered the “multi-modal
free lunch”, noting that Visual Language Models
(VLMs) trained with text-only reasoning data of-
ten improve across a wide range of vision bench-
marks (Choi et al., 2024; Li et al., 2025b). We extend
this line of inquiry by evaluating Gemma3-12B, a
model with a visual encoder but trained solely on
YI-SANG-HQ, across three multimodal benchmarks:
K-Viscuit (knowledge-focused, MCQA) (Park et al.,
2024), HAERAE-Vision (reasoning, long-form)7,
and KAIO-2 (STEM/reasoning, short-form) (Lee
et al., 2025b). As shown in Table 8, KO-REAson-12B
achieves notable gains on reasoning-oriented tasks
despite lacking vision training. Unlike prior reports of
across-the-board improvements (Rastogi et al., 2025),
however, we find that shallow factoid-style bench-
marks such as K-Viscuit see little to no benefit. This
suggests that the free lunch of text-based reasoning
transfers selectively: boosting reasoning-heavy multi-
modal tasks, but not those requiring surface-level factual recall.

D.3 IMPORTANCE OF HELD-IN BENCHMARKS AS PRACTICAL PROXIES.
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Figure 9: Comparison of gains in Held-In/Out
benchmark suites. Each point is a (model, bench-
mark) pair; x-axis shows the baseline score (%),
y-axis shows the improvement after training on
the YI-SANG dataset. Green circles are Held-In
benchmarks; red squares are Held-Out benchmarks
(others). Solid/dashed lines are OLS fits.

While we apply an n-gram filter for decontamination,
our iterative process of retraining to refine subsets
inevitably uses held-in benchmarks as a proxy for
progress. This raises the theoretical concern of gradu-
ally overfitting to held-in metrics. However, we view
this practice as a necessary and near-optimal com-
promise: without a reliable proxy, it would not be
possible to guide dataset construction effectively. Im-
portantly, we do not advocate abandoning the distinc-
tion between held-in and held-out splits; both remain
essential for fair evaluation. In practice (Figure 9),
we find that performance gains are indeed larger on
held-in benchmarks. Still, it should also be noted
that gains are smaller at higher baselines overall, and
part of the difference reflects the greater difficulty
of held-out benchmarks. Crucially, Table 4 and Ta-
ble 5 show that models trained on YI-SANG-HQ
consistently improve across all benchmarks, includ-
ing unseen held-out targets. This confirms that, de-
spite mild contamination risk, our procedure achieves
generalization while ensuring stable progress during
training.

7currently under review, and therefore anonymized

21


	Introduction
	Preliminaries and Related Works
	Experimental Setup
	Training Details
	Evaluation Details

	Language-Mixed Chain-of-Thought
	Yi-Sang Instruct
	Instruction Collection
	Response Generation
	Dataset Composition

	Results
	Conclusion
	Additional Details on Yi-Sang.
	Origin
	Prompts
	License
	Additional Ablations
	Ablation Details

	Additional Details on Model Training.
	Models
	Hyperparameters
	Packing

	Additional Details on Evaluation
	Prompts
	Processing Details

	Additional Results
	Cross-Lingual Gains on English Benchmarks 
	Cross-Modal Gains on Visual Language Benchmarks
	Importance of Held-In Benchmarks as Practical Proxies.


