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Abstract

Classical planning looks for a sequence of actions that trans-
form the initial state of the environment into a goal state.
Studying whether the effects of an action can be undone by a
sequence of other actions, that is, action reversibility, is ben-
eficial, for example, in determining whether an action is safe5

to apply. This paper deals with action reversibility of non-
deterministic actions, i.e. actions whose application might re-
sult in different outcomes. Inspired by the established notions
of weak and strong plans in non-deterministic (or FOND)
planning, we define the notions of weak and strong reversibil-10

ity for non-deterministic actions. We then focus on the univer-
sality and uniformity of action reversibility, that is, whether
we can always undo all possible effects of the action by the
same means (i.e. policy), or whether some of the effects can
never be undone. We show how these classes of problems can15

be solved via classical or FOND planning and evaluate our
approaches on FOND benchmark domains.

Introduction
Automated planning is a subfield of Artificial Intelligence
dealing with the problem of whether there exists a sequence20

of actions that lead from an initial state to some goal state of
the environment (Ghallab, Nau, and Traverso 2004, 2016).
In Fully Observable Non-Deterministic (FOND) planning,
actions have non-deterministic effects, i.e. if an action is ap-
plied, one of the effects will (randomly) occur and hence the25

formalism can model the uncertainty associated with apply-
ing such actions (Cimatti et al. 2003).

An important research question concerns whether the ef-
fects of an action can be undone by means of other actions.
In the literature, this problem is referred to as action re-30

versibility (Morak et al. 2020). One of the main motivations
of studying action reversibility is that actions identified as
reversible, that is, those whose effects can be undone, are
safe to apply. In other words, if a reversible action is ap-
plied, its application does not lead to a dead-end state (unless35

the action was applied in a state that already was a dead-
end). This property is especially useful in online planning,
where an agent plans and acts w.r.t. a short time horizon, as
it might provide information about safe states (Cserna et al.
2018). Another possible benefit of action reversibility can40

be in post-planning plan optimization in which it might con-
tribute to more efficient computations of redundant “action

cycles” in plans (Med and Chrpa 2022). In FOND planning,
the potential benefits of action reversibility also include de-
termining whether recovery from undesirable effects is pos- 45

sible, which might lead to more efficient generation of strong
cyclic plans (Muise, McIlraith, and Beck 2012; Camacho,
Muise, and McIlraith 2016), or whether we can safely per-
form deterministic replanning in unknown states (cf. FF-
replan (Yoon, Fern, and Givan 2007)). 50

A specific form of action reversibility involving the search
for an inverse action has been investigated (Koehler and
Hoffmann 2000; Chrpa, McCluskey, and Osborne 2012).
The existence of a pair of inverse actions is a special case
of action reversibility, where the reverse plan contains only 55

one action. Eiter, Erdem, and Faber (2008) introduced the
concept of reverse plans that corresponds to the notion of
uniform reversibility established by Morak et al. (2020) re-
ferring to reversibility of action effects by the same means
(i.e., by the same action sequence). A more general notion of 60

(non-uniform) reversibility has been tackled by compilation
of the problem into contingent planning (Daum et al. 2016)
or logic programs (Faber, Morak, and Chrpa 2021). Recent
work of Chrpa, Faber, and Morak (2021) investigates under
which condition we can find universal reverse plans. 65

This paper studies the reversibility of non-deterministic
actions in FOND planning, which is, to the best of our
knowledge, the first work in this area. Inspired by the es-
tablished notions of weak and strong plans (Cimatti et al.
2003) we propose notions of weak and strong reversibility 70

that, in a nutshell, refer to “all effects might be undone” and
“all the effects can always be undone”, respectively. We then
focus on a subclass of the problem concerning universal uni-
form reversibility, that is, whether we can always undo all
effects of a (non-deterministic) action by the same (weak 75

or strong) policy, or whether some of the effects can never
be undone, i.e. they are universally irreversible. We show
how these problems can be compiled into classical planning
(for weak reversibility and irreversibility) or FOND plan-
ning (for strong reversibility). Our approaches are evaluated 80

on a range of FOND benchmark domains.

Preliminaries
We adopt terminology from the Simplified Action Struc-
tures (SAS+) formalism (Bäckström and Nebel 1995) and
the FOND planning (Cimatti et al. 2003). 85



Let v be a variable (or a state variable) and dom(v) be
its domain. A fact (v, x) is a pair that contains a variable
v and its value x ∈ dom(v). The set of all facts over the
set of variables V is denoted as F(V). A set Σ ⊆ F(V)
is called a variable assignment over V if and only if for90

all (v, x) ∈ Σ does not exist y ∈ dom(v) such that y ̸= x
and (v, y) ∈ Σ. The value of the variable v in Σ, denoted
as Σ[v], is equal to x if and only if (v, x) ∈ Σ. The set
of all variables in Σ, denoted as vars(Σ), is defined as
vars(Σ) = {v | (v, x) ∈ Σ}. A variable assignment Σ over95

the set of variables V is called a complete variable assign-
ment if and only if vars(Σ) = V . Otherwise, it is called a
partial variable assignment. The set of all complete vari-
able assignments over V is denoted as S(V).

An action a over a set of variables V is a pair (pre(a),100

eff (a)), where pre(a) is a variable assignment over V rep-
resenting the precondition of the action a, and eff (a) is
a non-empty set of variable assignments over V represent-
ing the set of possible effects of the action a. The action
a is called deterministic if and only if |eff (a)| = 1. A105

determinisation of an action a with respect to the effect
e ∈ eff (a), denoted as ad

e , is an action ade = (pre(a), {e}).
The set of variables related to an action a, denoted vars(a),
is the set of variables vars(pre(a)) ∪

⋃
e∈eff (a) vars(e). We

say that an action a is applicable in a variable assignment Σ110

if and only if pre(a) ⊆ Σ. The set of applicable actions in
the variable assignment Σ from the set of actions A is de-
noted as α(Σ,A). The application of a deterministic ac-
tion a = (pre(a), {e}) in a variable assignment Σ such that
pre(a) ⊆ Σ, denoted as γ(Σ, a), is the variable assignment115

γ(Σ, a) = {(v, x) ∈ Σ | v /∈ vars(e)}∪ e (the application is
undefined if a is not applicable in Σ). Given a deterministic
action a = (pre(a), {e}), we define ha(a) as the variable as-
signment γ(pre(a), a). It is easy to prove ha(a) is the largest
set of facts that satisfies ha(a) ⊆ γ(Σ, a) for all variable as-120

signment Σ that a is applicable in; for this reason, we say
that ha(a) necessarily holds after applying action a.

The application of a (non-deterministic) action a in a
variable assignment Σ, denoted as δ(Σ, a), is the set of
variable assignments δ(Σ, a) = {γ(Σ, ade) | e ∈ eff (a)}.125

A FOND planning domain D is a pair ⟨V,A⟩, where V
is a set of variables, and A is a set of actions over V . An
SAS+ planning domain is a pair ⟨Vd,Ad⟩, where Vd is a
set of variables and Ad is a set of deterministic actions over
Vd.130

A state s of the domain D = ⟨V,A⟩ is a complete vari-
able assignment over the set of variables V .

A FOND (resp. SAS+) planning task T is a triple
⟨D, sI , G⟩, where D = ⟨V,A⟩ is a FOND (resp. SAS+)
planning domain, sI ∈ S(V) is an initial state and G ⊆135

F(V) is a variable assignment representing a goal. When
we refer to a planning task or a domain, we mean a non-
deterministic task or domain, unless stated otherwise.

A sequence of deterministic actions π = ⟨a1, . . . , an⟩,
∀i ∈ N, 1 ≤ i ≤ n : ai ∈ Ad, is called a plan for the SAS+140

planning domain Dd. An application of the plan π = ⟨a1,
. . . , an⟩ in a variable assignment Σ, denoted as γ(Σ, π), is
a variable assignment γ(Σ, π) = γ(γ(Σ, a1), ⟨a2, . . . , an⟩).
If π = ⟨⟩, then γ(Σ, ⟨⟩) = Σ.

A state s is reachable in SAS+ planning task T d if and 145

only if there exists a plan π for the domain Dd such that
γ(sI , π) = s. Otherwise, s is unreachable. We say that T d

is solvable if and only if some goal state sG ⊇ G is reach-
able in the planning task T d. Otherwise, T d is unsolvable.
A plan π is called a goal plan of the SAS+ planning task T d 150

if and only if γ(sI , π) ⊇ G.
A policy Π for the domain D = ⟨V,A⟩ is a binary re-

lation over the set of states S(V) and the set of applicable
actions of A, i.e., Π ⊆ {(s, a) | s ∈ S(V), a ∈ α(s,A)}.
The set of all states related in Π is the set σ(Π) = 155

{s | (s, a) ∈ Π}. The n-step application of Π in a state s,
denoted as δn(s,Π), is the set δn(s,Π) =

⋃
s′∈δn−1(s,Π)⋃

(s′′,a′)∈Π,s′′=s′ δ(s
′, a′) for n ≥ 1 with δ0(s,Π) = {s}.

We say that s′ is reachable from s with a policy Π if and
only if s′ ∈ δi(s,Π) for some i ≥ 0. We say that s′ is a 160

terminal state for Π with respect to a state s if and only if
s′ is reachable from s with Π and s′ /∈ σ(Π). The set of all
terminal states is denoted as τ (Π, s). Note that our policy
definition as a binary relation (i.e., more actions might be
associated with a single state) straightforwardly supports a 165

combination of two (or more) policies together by a union.
A policy Π is called a weak goal policy for T if and only

if τ(Π, sI) ∩ {sG ∈ S(V) | G ⊆ sG} ≠ ∅. A policy Π is
called a strong goal policy for T if and only if τ(Π, sI) ⊆
{sG ∈ S(V) | G ⊆ sG} and for each s ∈ σ(Π) at least one 170

state that satisfies the goal G is reachable by Π. Note that our
definitions coincide with Def. 2.10 of Cimatti et al. (2003).
A task T is called solvable if and only if there exists a weak
goal policy for task T . Otherwise, it is called unsolvable.

Let Ψ be a set of pairs (Σ, a), where Σ is a variable as- 175

signment, and a ∈ A is an action that is applicable in Σ. The
set Ψ is called an implicitly-defined policy for the domain
D. We say that Ψ implicitly defines the policy Π if and only
if Π =

⋃
(Σ,a)∈Ψ{(s, a) | s ∈ S(V),Σ ⊆ s}.

Non-Deterministic Action Reversibility 180

Action reversibility, concerning the problem of whether the
effects of an action can be undone by means of other actions,
has been studied in deterministic settings (see Eiter, Erdem,
and Faber (2008); Daum et al. (2016); Morak et al. (2020)).

In our work, we introduce the concept of action reversibil- 185

ity for non-deterministic actions in the FOND planning for-
malism. Non-deterministic action reversibility, in contrast to
the deterministic variant, has to deal with non-deterministic
actions—not only those whose effects we try to undo, but
also those that have to be considered in the “reverting” pro- 190

cess. In FOND planning, we usually consider two types of
solutions, weak and strong (Cimatti et al. 2003). For a weak
solution, we have a chance to achieve the goal if everything
“goes well”, while for a strong solution, there is a guarantee
that the goal will eventually be achieved. We adopt these no- 195

tions to establish weak and strong action reversibility such
that for weak reversibility we require that there is a chance
to undo all action effects, while for strong reversibility this
has to be guaranteed. Note that in this paper we consider
strong cyclic solutions that guarantee success if each effect 200

of each non-deterministic action has a nonzero chance to oc-



cur if the action is applied (in other words, we consider the
fairness assumption) (Aminof, Giacomo, and Rubin 2020).

Inspired by the work of Morak et al. (2020), we classify
the notion of (non-deterministic) action reversibility into205

three categories, S-reversibility, uniform reversibility and
universal reversibility, which will be now introduced.

S-reversibility
Naturally, it might be useful to study whether an action a is
reversible in some subset of states S ⊆ S(V). That is, for210

each state from S in which a is applicable, we have to find a
sequence of other actions that undoes the effects of a. This
property is called S-reversibility (Morak et al. 2020).

To address non-deterministic actions, we introduce the
notions of weak S-reversibility and strong S-reversibility, in215

the context of work of Cimatti et al. (2003) as described
above. Informally speaking, we call an action weakly S-
reversible if, in each state from S in which the action is ap-
plicable, the action’s effects can be undone by a sequence
of (non-deterministic) actions while assuming the “correct”220

action effect always occurs. We call an action a strongly S-
reversible if, in each state s ∈ S where a is applicable, the
action’s effects are eventually undone by some policy Πs

having precisely s as its terminal state.
We also establish the notion of action S-irreversibility. It225

refers to a situation in which there is no way to undo any of
the action’s effects (even by means of a weak solution). The
following definition formalises the above notions.

Definition 1. Let D = ⟨V,A⟩ be a planning domain, a ∈
A be an action, and S ⊆ S(V) be a set of states of the230

domain D. The action a is called weakly (resp. strongly) S-
reversible in the domain D if and only if for each state s ∈ S,
pre(a) ⊆ s, there exists a policy Π for the domain D such
that for each s′ ∈ δ(s, a) it holds that s ∈ τ(Π, s′) (resp.
{s} = τ(Π, s′) and for each state s′′ that is reachable by Π235

from the state s′ it holds that s is reachable by Π from s′′).
The action a is called S-irreversible in the domain D if and
only if for each state s ∈ S, pre(a) ⊆ s, there does not exist
a policy Π for the domain D such that for each s′ ∈ δ(s, a)
it holds that s ∈ τ(Π, s′).240

Example 1. Let D be a planning domain with two variables
door and window . Let door have domain {open, closed}
and window have domain {open, closed , broken}.

Let vent be a deterministic action with {(window ,
closed)} as its precondition, and {(door , open), (window ,245

open)} as effects. Furthermore, there are two additional
non-deterministic actions: close-door and close-window
with preconditions of a relevant entity being open and
eff(close-window) = {{(window , closed)}, {(window ,
broken)}} and eff(close-door) = {{(door , closed)}, ∅}.250

The policy that applies close-door in a state where both
the door and the window are open and close-window in a
state where the window is open and the door is closed is a
weak {{(window , closed), (door , closed)}}-reverse policy
for the action vent . Similarly, there is a weak {{(window ,255

closed), (door , open)}}-reverse policy for the action vent
that applies close-window in a state where both the door
and the window are open. Therefore, the action vent

is weakly {{(window , closed), (door , closed)}, {(window ,
closed), (door , open)}}-reversible. 260

As the application of both policies may eventually end in
a broken window, neither of them is a strong reverse policy
for the above set of states. Intuitively, close-window action
is irreversible in any state in which the action is applicable
since no action can “fix” the broken window. 265

Now, consider the same domain, except that there
are two variants of the former close-window . First,
close-window -draught-free, which cannot break the win-
dow, and on top of the former action requires that the
door is closed; and second, close-window , on top of the 270

former action requires that the door is open, with the
same effects as the former. In such a domain, the pol-
icy that applies close-door if the door is not closed and
close-window -draught-free if the window is not closed
(and the door is) is a strong {{(window , closed), (door , 275

closed)}}-reverse policy for the action vent .

Uniform Reversibility
A special case of S-reversibility is uniform reversibility,
which refers to the existence of a common solution con-
cept that can undo the effects of the action in question, for 280

each state of S in which the action can be applied (Morak
et al. 2020), i.e. the same solution concept reverses the ef-
fects of the action in question applied in any state from the
set S where the action is applicable. The following defini-
tion formalises the notions of weak and strong uniform S- 285

reversibility for non-deterministic actions.
Definition 2. Let D = ⟨V,A⟩ be a planning domain, a ∈ A
be an action, S ⊆ S(V) be a set of states of the domain D.
The action a is called weakly (resp. strongly) uniformly S-
reversible in the domain D if and only if exists policy Π for 290

the domain D such that for each state s ∈ S, pre(a) ⊆ s, it
holds that for each s′ ∈ δ(s, a) we have s ∈ τ(Π, s′) (resp.
{s} = τ(Π, s′) and for each state s′′ that is reachable by Π
from the state s′ it holds that s is reachable by Π from s′′).

Having a single policy that can undo the effects of an ac- 295

tion in all relevant situations (i.e. states from S in which
a is applicable) is practical as we do not need to consider
multiple state-specific policies. Analogously to the notion
of reverse plan in classical planning (Morak et al. 2020), we
define the notion of reverse policy. 300

Definition 3. Let D = ⟨V,A⟩ be a planning domain and
a ∈ A be an action. A policy Π for the domain D is called
a weak (resp. strong) S-reverse policy for the action a if
and only if the action a is weakly (resp. strongly) uniformly
S-reversible by the policy Π. 305

Example 2. Consider the domain of Example 1. Pol-
icy which applies door -close if the door is open
and close-window if the window is open is a weak
uniform {{(window , closed), (door , closed)}, {(window ,
closed), (door , open)}}-reverse policy (however, the policy 310

relates some states with multiple actions).

Universal Reversibility
Universal reversibility is a specific case of S-reversibility
covering all states, i.e. S = S(V). Informally speaking, if



an action is universally reversible (or irreversible), its effects315

can always (or never) be undone.
Definition 4. Let D = ⟨V,A⟩ be a planning domain and
a ∈ A be an action. The action a is called weakly (resp.
strongly) universally (uniformly) reversible in the domain
D if and only if the action a is weakly (resp. strongly) (uni-320

formly) S(V)-reversible in the domain D. The action a is
called universally irreversible in the domain D if and only
if the action a is S(V)-irreversible in the domain D.
Example 3. Consider the domain of Example 1. The states
with a closed window and the door being open or closed325

are the only states where the action vent is applicable. Re-
call that there is a weak reverse policy for any such state.
Therefore, the action vent is weakly universally reversible.
The common policy of Example 2 proves the weak universal
uniform reversibility of the action vent .330

Example 4. Now, as an example of strong universal uni-
form reversibility, let us consider a domain of well-known
Transport domain (Helmert, Do, and Refanidis 2010). In the
domain, packages have to be transported from one location
to another through various vehicles. Packages can be loaded335

and unloaded into vehicles without restrictions and the load-
ing or unloading process can fail, leaving the package in its
former position (at the location or inside the truck, respec-
tively). The actions of the load and unload “families” are
strongly universally uniformly reversible as if the package340

is successfully loaded or unloaded, respectively, we can al-
ways undo it by unloading, or loading the package back.

Theoretical Properties
Having defined the relevant notions, we will first establish
some theoretical properties that follow from our definitions.345

It can be easily derived that weak or strong (uniform) S-
(ir)reversibility implies weak or strong (uniform) S′-(ir)re-
versibility if S′ ⊆ S. Weak or strong uniform S-reversibility
implies weak or strong S-reversibility, and strong (uniform)
S-reversibility implies weak (uniform) S-reversibility. Fur-350

thermore, we can observe that if an action is weakly (resp.
strongly) S1- and S2-reversible, then it is weakly (resp.
strongly) (S1 ∪ S2)-reversible. However, for uniform re-
versibility such an implication does not hold in general.

A more interesting property of any S-reverse policy is that355

it cannot assign any action to any state of S in which the
action the policy is reverting is applicable.
Example 5. Consider a domain that describes the result
of coin tossing with the only variable with domain {heads,
tails} and toss-coin (without preconditions). The action has360

a strong universal uniform {(coin, head)}-reverse policy
that applies toss-coin as long as the state is {(coin, tails)}.
The same holds symmetrically for tails . Hence, the action is
weakly and strongly universally reversible. However, there
is no weak or strong universal reverse policy, since, e.g., the365

policy of union of mentioned policies has no terminal state
(it relates each state with some action).
Proposition 6. Let D = ⟨V,A⟩ be a planning domain, Π be
a policy for the domain D, and a ∈ A be an action. If Π is
a weak (resp. strong) S-reverse policy for the action a, then370

{s | s ∈ S, pre(a) ⊆ s} ∩ σ(Π) = ∅.

Proof. Proof by a contradiction. Assume that {s′ | s′ ∈
S, pre(a) ⊆ s′} ∩ σ(Π) ̸= ∅. Then, there is a state s ∈ {s′ |
s′ ∈ S, pre(a) ⊆ s′} ∩ σ(Π). According to the assumption
and since {s} ⊆ S, the action a is weakly (resp. strongly) 375

uniformly {s}-reversible by the policy Π. Since s is also in
σ(Π), s cannot be a terminal state of the policy Π. Therefore,
for each s′ ∈ δ(s, a) it holds that s /∈ τ(Π, s′). This is in
contradiction with the assumption of Π being a weak (resp.
strong) S-reverse policy for the action a. 380

An important consequence of Proposition 6 concerns uni-
versal uniform reversibility. It simply follows that when the
set S is equal to the set S(V), then the situation of Proposi-
tion 6 can be simplified to the fact that the universal reverse
policy can contain only the states in which the action we 385

want to reverse is not applicable.
In contrast to deterministic planning which deals with ac-

tion sequences, policies have a different structure as they
assign appropriate actions to apply in relevant states. This
property gives grounds to raise a question of how combin- 390

ing two policies affects S-reversibility of non-deterministic
actions. In the case of weak reversibility, in which reverse
policies are constructed along a sequence of actions, we can
safely combine policies as long as the other policy does not
compromise the assumption of Proposition 6. 395

Theorem 7. Let D = ⟨V,A⟩ be a planning domain, a ∈ A
be an action, Π1 be a weak S-reverse policy for the action
a and Π2 be a policy for the domain D. The policy Π1 ∪Π2

is a weak S-reverse policy for the action a if and only if
{s | s ∈ S, pre(a) ⊆ s} ∩ σ(Π2) = ∅. 400

Proof. The “if” part is proven by a contraposition. Let us
assume that there is some state s′ ∈ {s | s ∈ S, pre(a) ⊆
s} ∩ σ(Π2). Then, as σ(Π2) ⊆ σ(Π1 ∪ Π2), s′ ∈ {s | s ∈
S, pre(a) ⊆ s} ∩ σ(Π1 ∪Π2). That violates the assumption
of Proposition 6 and hence the policy Π1 ∪ Π2 cannot be a 405

weak S-reversible policy for the action a.
For the “only if” part, we can observe that extending a

policy (by adding a pair of some state and some action) does
not affect the reachability of any state that was reachable
before (including the terminal states). From the assumption 410

{s | s ∈ S, pre(a) ⊆ s} ∩ σ(Π2) = ∅ and the fact that
{s | s ∈ S, pre(a) ⊆ s}∩σ(Π1) = ∅ (see Proposition 6), we
get {s | s ∈ S, pre(a) ⊆ s}∩σ(Π1∪Π2) = ∅. Therefore, all
states {s | s ∈ S, pre(a) ⊆ s} are terminal with respect to a
given starting state for the policy Π1∪Π2 (see the definition 415

of terminal states). Hence, the policy Π1 ∪ Π2 is a weak S-
reverse policy for the action a.

Regarding the strong S-reverse policy, since every strong
S-reverse policy is also a weak S-reverse policy, the same
conditions apply in this case as well. However, the condi- 420

tions of Theorem 7 are not sufficient since, if the second
policy assigns an action to a state that is considered by the
first strong S-reverse policy, the union of such policies could
introduce a different terminal state; and this would violate
the definition of strong S-reverse policy. Hence, to combine 425

a strong S-reverse policy with a second one, the latter should
not interfere with the former, as summarised in the following
theorem.



Theorem 8. Let D = ⟨V,A⟩ be a planning domain, a ∈ A
be an action, Π1 be a strong S-reverse policy for the action430

a and Π2 be a policy for the domain D. If σ(Π2) ∩ {s | s ∈
S, pre(a) ⊆ s} = ∅ and σ(Π1) ∩ σ(Π2) = ∅, then Π1 ∪Π2

is a strong S-reverse policy for the action a.

Proof. Let s be a state s ∈ {s′′ | s′′ ∈ S, pre(a) ⊆ s′′}.
From the assumption of Π1 being a strong S-reverse policy435

for the action a, we get {s} = τ(Π1, s
′) for all s′ ∈ δ(s, a).

Let D0 be a set of reachable states from the state s′ by policy
Π1. The set can be divided into two disjoint sets D0∩σ(Π1)
and D0 \ σ(Π1) = τ(Π1, s

′) = {s}.
Now, we show that if we add an arbitrary state-action440

pair (s′′, a′′) ∈ Π2 to the policy Π1, the set of reachable
states D0 from the state s′ by the extended policy remains
unchanged. Therefore, if the policy Π1 is extended by any
state-action pair (s′′, a′′) ∈ Π2, i.e., Π′

1 = Π1 ∪ {(s′′, a′′)},
D0 remains unchanged, because s′′ ̸∈ D0 ∩ σ(Π′

1) (due445

to the fact that σ(Π1) ∩ σ(Π2) = ∅) and neither is in
D0 \ σ(Π′

1) = τ(Π1, s
′) = {s} (due to the fact that

σ(Π2) ∩ {s′′′ | s′′′ ∈ S, pre(a) ⊆ s′′′} = ∅).
Therefore, we can derive that D0 remains the same for

the combined policy Π1 ∪Π2. Furthermore, we can see that450

no other state could become terminal since no other state be-
came reachable, i.e., τ(Π1∪Π2, s

′) ⊆ {s}. From Theorem 7
we know s ∈ τ(Π1 ∪ Π2, s

′). Hence, Π1 ∪ Π2 is a strong
S-reverse policy for the action a.

A practical consequence of the above theorems is that they455

provide conditions under which we can merge two reverse
policies into one. If Π1 is a weak (resp. strong) S1-reverse
policy for some action a and Π2 is a weak (resp. strong)
S2-reverse policy for the action a, Π1 ∪ Π2 is a weak (resp.
strong) (S1 ∪ S2)-reverse policy for a if the conditions of460

Theorem 7 (resp. Theorem 8) are satisfied. We note that the
possibility of combining policies is not applicable for the
deterministic case in which reverse plans are considered se-
quences of actions (Eiter, Erdem, and Faber 2008; Morak
et al. 2020).465

Determining Universal Uniform Reversibility
To determine universal uniform reversibility as well as uni-
versal irreversibility, we took inspiration from the work of
Chrpa, Faber, and Morak (2021) who studied such cases of
reversibility in the deterministic context. In summary, to de-470

termine universal uniform reversibility (for deterministic ac-
tions), it is sufficient to consider only actions that contain
only variables present in the precondition of a “to be re-
versed” action. Such a property is practically very useful,
as it usually (considerably) simplifies the problem.475

However, in the non-deterministic context, the theoreti-
cal findings of Chrpa, Faber, and Morak (2021) can only be
partially adopted. Due to the different nature of policies, we
show that allowing only actions operating over the set of
variables present in the precondition of a “to be reversed”480

action while looking for weak or strong universal reverse
policies is a sufficient but not necessary condition. In other
words, if a strong or weak reverse policy containing only
“restricted” actions is found, then such a policy is universal,

but the opposite implication does not generally hold (as we 485

argue later in this section).

Theoretical Properties
At first, we show that for an action to be strongly universally
uniformly reversible, its effects may modify only variables
that are also present in its preconditions. Note that an anal- 490

ogous claim also holds for the deterministic case (Chrpa,
Faber, and Morak 2021). The intuition behind the claim is
that if a variable is present in action’s effects but not present
in its precondition, then multiple states (each refers to a dif-
ferent value of the variable while assuming that the variable 495

can have at least two different values) “collapse” into a sin-
gle state referring to the value of the variable present in the
action’s effects.

Lemma 9. Let D = ⟨V,A⟩ be a planning domain such
that ∀v ∈ V : |dom(v)| ≥ 2 and a ∈ A be an action. If 500⋃

e∈eff(a) vars(e) ⊈ vars(pre(a)), then the action a is not
strongly universally uniformly reversible.

Proof. Assume there exists a strong universal reverse policy
Π for the action a.

W.l.o.g., let e ∈ eff (a) be an action effect for which there 505

exists v ∈ vars(e) \ vars(pre(a)). Since |dom(v)| ≥ 2, there
exist two distinct states s1, s2 in which a is applicable and
which differ in the value of the variable v. As states s1 and
s2 differ only in the value of the variable v and since the
effect e modifies v, we have s′ = γ(s1, a

d
e) = γ(s2, a

d
e). 510

As we initially assumed, Π is a strong universal reverse
policy for the action a and this implies τ(Π, γ(s1, a

d
e)) =

{s1} and τ(Π, γ(s2, a
d
e)) = {s2} (see Definition 2). How-

ever, since s′ = γ(s1, a
d
e) = γ(s2, a

d
e), we get τ(Π, s′) =

{s1, s2}. This is in contradiction with s1 ̸= s2. 515

In the case of weak universal uniform reversibility, an
analogous claim cannot be made. For a weak universal re-
verse policy Π′, we can derive an analogous claim as we
did in the proof of Lemma 9, that is, τ(Π′, s′) = {s1, s2}.
Such a claim does not contradict the definition of weak uni- 520

form reversibility, as both cases, that is, s1 ∈ τ(Π′, s′) and
s2 ∈ τ(Π′, s′), might be satisfied.

As an example, consider a bowling domain, with a vari-
able bowled with the domain {true, false} and an action that
resets bowling pins that restores any combination of pins 525

being down or standing to all pins standing, and that sets
bowled to false . The action is applicable if and only bowled
is true . The action’s effects contain variables of pins that
are not in its preconditions. There is another action that rolls
the bowling ball, without any preconditions, and which can 530

non-deterministically push over none, some, or all standing
pins, and always sets bowled to true . The rolling action can
weakly universally uniformly undo the reset action, as each
state before the reset can be obtained, but it cannot strongly
universally uniformly undo the reset action, as no state be- 535

fore the reset can be guaranteed to be obtained.
The following theorem shows that if we generate a weak

or strong universal reverse policy in a restricted state and
action space that takes into account only variables that are



present in the precondition of “to be reversed” action, then540

such a reverse policy is universal.

Theorem 10. Let D = ⟨V,A⟩ be a planning domain, a ∈ A
be an action such that

⋃
e∈eff(a) vars(e) ⊆ vars(pre(a)). If

exists an implicitly defined policy Ψ for the domain D such
that ∀ (Σ′, a′) ∈ Ψ : vars(Σ′) ⊆ vars(pre(a)) and that the545

policy Π implicitly defined by Ψ is weak (resp. strong) S-
reverse policy for the action a such that {s | s ∈ S, pre(a) ⊆
s} ≠ ∅ and ∀(s′, a′) ∈ Π : vars(a′) ⊆ vars(pre(a)), then
Π is a weak (resp. strong) universal reverse policy for the
action a.550

Proof. Let s ∈ S be a state such that pre(a) ⊆ s and Π
be a weak (resp. strong) {s}-reverse policy for the action a
implicitly defined by Ψ.

To show that Π is a weak (resp. strong) universal reverse
policy for the action a, we need to prove that for each state555

s′ ∈ S(V) such that pre(a) ⊆ s′ the policy Π is also a
weak (resp. strong) {s′}-reverse policy for the action a. If
there does not exist any other state s′ ∈ S(V) such that
pre(a) ⊆ s′ and s ̸= s′, then the policy Π is a weak (resp.
strong) universal reverse policy for the action a. If there ex-560

ists such a state s′, then we can observe that s′ differs from
s only in values of variables that are not part of vars(pre(a))
(otherwise it would compromise the applicability of a).

Assumption
⋃

e∈eff (a) vars(e) ⊆ vars(pre(a)) states that
any effect e of the action a can modify only the variables565

present in pre(a). Therefore, the values of the variables of
V \ vars(pre(a)) remain unchanged after the application of
the action a regardless of what effect takes place.

As for any state-action pair (sx, ax) ∈ Π it is the case that
vars(ax) ⊆ vars(pre(a)), none of the actions of the policy570

Π can change any variable from V \ vars(pre(a)) or require
a specific value of any of such variables.

From the assumption stating ∀ (Σ′, a′) ∈ Ψ : vars(Σ′) ⊆
vars(pre(a)) it holds that each variable assignment Σ′ does
not contain variables from V \ vars(pre(a)). Therefore, the575

policy Π behaves independently on values of variables V \
vars(pre(a)) which means that Π yields the same outcome
(apart from the values of the variables of V \ vars(pre(a))
that remain constant) from both states s and s′.

According to the other theorem assumption, if we apply580

Π in any state in δ(s, a), we may (resp. have to) return to the
state s, which is terminal. As we have shown that Π and a
can modify only variables present in pre(a), we can derive
that for each state s′ ∈ S(V) in which a is applicable, Π
is weak (resp. strong) {s′}-reverse policy for a. Hence, the585

policy Π is a weak (resp. strong) universal reverse policy for
the action a.

In contrast to deterministic universal uniform reversibil-
ity (Chrpa, Faber, and Morak 2021), the opposite implica-
tion, i.e. there is a weak/strong universal reverse policy for590

an action if Theorem 10’s assumption is true, does not hold.
Regarding weak universal uniform reversibility, Lemma

9 indicates that a “to be reversed” action might modify vari-
ables that are not present in its precondition and still be (po-
tentially) weakly universally uniformly reversible. This ob-595

servation can also be applied to other actions that are part of

the weak universal reverse policy. As an example, we might
have an action whose non-deterministic effects contain all
states in which the “to be reversed” action is applicable.

In the strong universal uniform reversibility case, the issue 600

with the opposite implication of Theorem 10 is in the pos-
sibility of merging policies. If the conditions of Theorem 8
are satisfied, we can merge two strong reverse policies to
obtain another strong reverse policy applicable to the union
of states of the individual policies. Hence, it is possible to 605

obtain a strong universal reverse policy by combining more
specific strong reverse policies.

As an example, let us have a domain where an agent can
move between three locations – A, B, C. However, there is
another variable that determines whether the agent can move 610

from B to A, or from B to C. Moving from A to B and from
C to A is unrestricted. Depending on the value of the other
variable, we undo the effects of moving from A to B by ei-
ther moving directly back to A, or moving through C. These
two reverse policies can be combined, as the states they are 615

operating over are disjoint (because of different values of the
other variable). The combined policy is a strong universal re-
verse policy for the action that moves us from A to B. As the
other variable is involved in the policy and there is no other
strong universal reverse policy, there is no Ψ of Theorem 10. 620

Compilation
Theorem 10 provides us with a blueprint on how classical
(respectively, FOND planning) can be leveraged in finding
weak (resp. strong) universal reverse policies.

The following theorem shows how a weak universal re- 625

verse policy can be generated by means of classical plan-
ning by specifying multiple classical planning tasks (one for
each determinisation of the “to be reversed” action). Since,
for weak reversibility, we need only to consider the “correct”
effects of actions, we replace each non-deterministic action 630

with its respective determinisations. We consider only deter-
minisations that operate only on the variables present in the
precondition of the “to be reversed” action.

Theorem 11. Let D = ⟨V,A⟩ be a planning domain
and a ∈ A be an action such that

⋃
e∈eff(a) vars(e) ⊆ 635

vars(pre(a)). If for each determinisation ade of the action a
a plan πe is a goal plan for the SAS+ planning task T d

e =

⟨⟨vars(pre(a)), {(a′)de | a′ ∈ A, e ∈ eff(e), vars((a′)de) ⊆
vars(pre(a))}⟩, ha(ade), pre(a)⟩, then the action a is weakly
universally uniformly reversible. 640

Proof (Sketch). Each plan πe = ⟨ae1 , . . . , aen⟩ can be trans-
formed into a policy Πe = {(γ(ha(ade), ⟨ae1 , . . . , aei−1⟩),
aei) | i ∈ N, 1 ≤ i ≤ n}. Since for each effect ei de-
termined by the corresponding determinisation aei it is the
case that vars(ei) ⊆ vars(pre(a)), we can observe that 645

none of the variables other than vars(pre(a)) is modified
in the process. Also, each determinisation ade of the action
a modifies only the variables of vars(pre(a)). All poli-
cies resulting from transformed plans that are solutions of
the SAS+ tasks for each determinisation ade contain pre(a) 650

as one of the terminal states. By combining all the poli-
cies into one (meeting the conditions of Theorem 7) we ob-



tain an implicitly-defined policy for the domain ⟨V, {(a′)de |
a′ ∈ A, e ∈ eff (e), vars((a′)de)} ∪ {a}⟩. If we replace
the determinisations by their corresponding stochastic ac-655

tions of A, we obtain an equivalent (from the perspective of
weak reversibility) implicitly-defined policy Ψ for the do-
main ⟨V,A⟩. Then, a policy implicitly defined by Ψ is a
weak universal reverse policy for the action a.

A similar claim can be made about strong universal uni-660

form reversibility, albeit in the context of FOND planning,
since strong universal uniform reversibility needs to guar-
antee that the only terminal state is the state in which a “to
be reversed” action is applied. The compilation of the prob-
lem of finding a strong universal reverse policy to a FOND665

planning task is analogous to the weak universal uniform re-
versibility case. In addition, to be able to merge the found
policies, their sets of related states have to be pairwise dis-
joint, as Theorem 8 suggests.

Theorem 12. Let D = ⟨V,A⟩ be a planning domain670

and a ∈ A be an action such that
⋃

e∈eff(a) vars(e) ⊆
vars(pre(a)). If for each determinisation ade there ex-
ists a strong goal policy Πe for the FOND planning
task T = ⟨⟨vars(pre(a)), {a′ | a′ ∈ A, vars(a′) ⊆
vars(pre(a))}⟩, ha(ade), pre(a)⟩ such that the sets σ(Πe) are675

pairwise disjoint, then the action a is strongly universally
uniformly reversible.

Proof (Sketch). It can be observed that each policy Πe is an
implicitly defined policy that strongly universally uniformly
reverses the determinisation ade . These policies can be com-680

bined (since the sets of related states are pairwise disjoint)
according to Theorem 8. Hence, the resulting policy implic-
itly defined by

⋃
e∈eff (a) Πe is a strong universal reverse pol-

icy for the action a.

We also consider the possibility of identifying universal685

irreversibility. The idea is derived from the work of Chrpa,
Faber, and Morak (2021) that concerns universal irreversibil-
ity of deterministic actions. Informally speaking, if for some
effect of a non-deterministic action, we cannot reachieve the
precondition of that action, then the action is universally ir-690

reversible. We can “project” the problem onto the variables
related to a “to be reversed” action a, i.e., vars(a). In con-
trast to the above theorems, we do not discard actions that
also operate on the other variables, but we project their pre-
conditions and effects to vars(a).695

Let Σ be a variable assignment over the set of variables
V and let V ′ ⊆ V be a set of variables. The projection
of Σ on the set of variables V ′ is a variable assignment
Σ|V′ = {(v, x) ∈ Σ | v ∈ V ′}. Furthermore, the projec-
tion of an action a on the set of variables V ′ is an action700

a|V′ = (pre(a)|V′ , {e|V′ | e ∈ eff (a)}).

Theorem 13. Let D = ⟨V,A⟩ be a planning domain and
a ∈ A be an action. If for any determinisation ade of the
action a the SAS+ planning task ((vars(a), {((a′)de′)|vars(a) |
a′ ∈ A, e′ ∈ eff(a′)}), ha(ade), pre(ade)) is unsolvable, then705

the action a is universally irreversible.

⊈ (¬S) ⊆
Dom. |A| I ? W FM S ? I

A. 5 0 0 4 1 3 1 0
BE. W. 7 0 0 6 2 4 0 1
BL. W. 190 0 185 5 0 5 0 0
B. F. 5 0 0 2 0 2 0 3
C. 3 0 0 0 0 0 0 3
D. 5 4 1 0 0 0 0 0
E. O. 27 0 0 21 0 21 0 6
EL. 41 3 30 8 0 8 0 0
E. BL. 85 35 45 0 0 0 5 0
FA. 51 25 26 0 0 0 0 0
F. R. 46 6 4 22 0 22 8 6
FO. 150 7 119 4 0 4 10 10
I. 24 0 0 20 0 20 0 4
M. 179 0 3 158 0 158 0 18
R. 3 2 0 0 0 0 0 1
S. TI. 211 3 78 124 0 124 6 0
TI. 52 7 1 0 0 0 44 0
TI. T. 24 0 10 10 0 10 0 4
T. TI. 11 3 0 0 0 0 0 8
Z. 740 0 96 504 0 504 140 0

Table 1: Results of identification of action reversibility. The
table headers depict proven action properties: number of ac-
tions in the domain (|A|), weak (resp. strong) universal uni-
form reversibility (W) (resp. S), universal irreversibility (I),
whether

⋃
e∈eff (a) vars(e) ⊆ vars(pre(a)) (⊆ or ⊈), and

“?” indicates “no class of action (ir)reversibility was iden-
tified”. The column labelled as “FM” represents a proven
weak universal uniform reversibility, where uniform strong
reverse policies were found for all determinizations, but due
to the condition on empty related state intersection, we were
unable to merge them. “¬S” stands for actions which are
proven not to be strongly universally uniformly reversible.

Proof. If the specified SAS+ planning task is unsolvable, it
means that the precondition of a is unreachable from some
of its effects. Since we focus only on a subset of variables,
the applicability of actions is more optimistic than in the 710

general case. So, if an abstract task created by projecting into
a subset of variables is unsolvable, then the original task is
unsolvable as well (Helmert, Haslum, and Hoffmann 2007).
Hence, we can derive that if for any determinisation of a, the
specified SAS+ planning task is unsolvable, then a is univer- 715

sally irreversible.

Experiments
The section presents empirical evidence on the existence
of investigated phenomena in many benchmark domains.
Based on the claims of previous sections, we have designed 720

and performed the experiments for the resolution of investi-
gated classes of non-deterministic action reversibility.

We have evaluated our approaches for non-deterministic
action reversibility on 20 FOND domains of two sets of
benchmarks: one from the repository of the PRP plan- 725

ner (Muise, McIlraith, and Beck 2012; Muise, Belle, and
McIlraith 2014; Muise, McIlraith, and Belle 2014), and sec-
ond set proposed by Geffner and Geffner (2018); viz., Acro-
batics (A.), Beam Walk (BE. W.), Blocks World (BL. W.),



Bus Fare (B. F.), Climber (C.), Doors (D.), Earth Obser-730

vation (E. O.), Elevators (EL.), Exploding Blocks World
(E. BL.), Faults (FA.), First Responders (F. R.), Forest (FO.),
Islands (I.), Miner (M.), River (R.), Spiky Tire World
(S. TI.), Tire World (TI.), Tire World Truck (TI. TRU.), Tri-
angle Tire World (TRI. TI.), and Zeno Travel (Z.).735

For each action, we initially check whether they satisfy
the condition

⋃
e∈eff (a) vars(e) ⊆ vars(pre(a)). If the action

does not satisfy the condition, we use Theorem 13 to check
its universal irreversibility. Based on the result, we either
conclude “universally irreversible” or “we have not identi-740

fied anything, besides the action is not strongly uniformly
universally reversible” (since the action does not satisfy the
conditions, from Theorem 10 we know that the action is not
strongly universally uniformly reversible; Theorem 11 is in-
applicable and Theorem 13 is an implication only). If the745

action satisfies the initial condition, we check if it is weakly
universally uniformly reversible (which is a necessary con-
dition for strong reversibility) by leveraging Theorem 11.
Based on the result, strong universal uniform reversibility
or universal irreversibility is checked using the respective750

Theorems 12 and 13, respectively. If all of them “fail”, we
conclude that “we have not identified anything”, which is
denoted in Table 1 as “?”. To check weak reversibility and
irreversibility, we use the LAMA planner (Richter and West-
phal 2010) and to check strong reversibility, we use the PRP755

planner (both planners are built on top of the Fast Downward
planner framework (Helmert 2006)).

All experiments1 ran on a machine with an Intel® Core™
i7-7700HQ processor and 32 GB of DDR4 RAM operat-
ing at a frequency of 2400 MHz. The operating system was760

Ubuntu 22.04.3 in WSL 2 (version 2.0.9.0) of Windows 10.

Results
Table 1 provides an overview of what actions have been
identified as (weakly or strongly) universally uniformly re-
versible, universally irreversible, or unidentified.765

The results indicate that the weakly universally uniformly
reversible actions identified by Theorem 11 are likely also
identified as strongly universally uniformly reversible by
Theorem 12, since this happened in the vast majority of sit-
uations in our experiments. The only exceptions are three770

actions for which we have found strong universal uniform
reverse plans for each determinisation (see Theorem 12), but
we were unable to merge them into a general policy since the
reverse plans had conflicting states.

On average, we were able to identify some class of775

(ir)reversibility in approximately 68.30±33.64% of actions,
with the lowest relative amount of approx. 2.63% in the
BL. W. domain, while in the BE. W., B. F., C., E. O., I., R.
and TRI. TI. domains all the actions were identified in some
class. In domains such as FA., FO. or E. BL., most of the780

actions did not satisfy the “⊆” condition and hence could
not be identified as weakly universally uniformly reversible
through our theoretical study.

Overall, on average, approx. 60.91 ± 40.13% of actions
satisfied the “⊆” condition on action’s preconditions. In an785

1We plan to release the code if the paper gets accepted.

“average” case, approx. 33.49% of actions were identified as
universally irreversible, 34.81% as weakly universally uni-
formly reversible, 32.39% as strongly universally uniformly
reversible, and 31.70% of actions remained undetermined
(columns labeled with the question mark in Table 1) out of 790

which 23.88% is proven not to be strongly universally uni-
formly reversible (with respect to the total number of ac-
tions). The relatively high number of undetermined actions
is caused by the requirement for universality and uniformity.
Although these requirements are practically desirable, ac- 795

tions might not always conform to them. Also, as we have
shown, the methods are not theoretically complete and hence
some cases might not have been identified (as we observed
in the case of universal irreversibility in TI. domain).

On average, the measured mean compilation time per ac- 800

tion in a domain is 7.037 ± 5.748 milliseconds for weak,
7.028 ± 5.772 milliseconds for strong, and 9.113 ± 5.715
milliseconds for irreversibility reformulation with minimal,
resp. maximum values, 0.994, 0.846, 3.031 milliseconds,
resp. 17.337, 17.743, 22.441 milliseconds. As for run- 805

times for solving the reformulations, we have measured
the time required to find a plan or policy, or to decide the
(un)solvability of an abstract SAS+ planning task for all
determinisations. The mean runtimes are 156.111±60.408,
47.712±18.495 and 186.015±81.118 milliseconds to deter- 810

mine weak universal uniform reversibility, strong universal
uniform reversibility and universal irreversibility according
to Theorems 11, 12 and 13, respectively. Minimum val-
ues are 118.091, 22.970, 120.439, and maximum values
are 462.132, 87.549, and 711.832 milliseconds, respectively. 815

The results show the practical viability of our methods.

Conclusion
In this paper, we have conceptualised the notions of weak
and strong reversibility of non-deterministic actions in
FOND planning. These notions are inspired by weak and 820

strong plans in FOND planning (Cimatti et al. 2003) and
share the same meaning, i.e., weak reversibility refers to a
possibility of undoing all effects of an action, while strong
reversibility refers to the certainty of undoing all effects. We
specifically focused on universal uniform cases that refer to 825

the fact that effects of a non-deterministic action can always
be undone by the same reverse policy. We proposed methods
based on compiling the weak and strong universal uniform
reversibility problem into classical or FOND planning, re-
spectively, and we proposed a method for determining uni- 830

versal irreversibility via classical planning.
An experimental evaluation that we conducted on existing

FOND benchmarks has shown that we were able to identify
a type of reversibility for about 56.32% actions and the run-
ning time of any of the methods was in the lower hundreds of 835

milliseconds on average. These results demonstrated practi-
cal usefulness of our methods in spite of their narrow focus.

In the future, we plan to investigate computational com-
plexity of proposed classes of non-deterministic action re-
versibility. We also plan to focus on more general sub- 840

classes of non-deterministic action reversibility (e.g. strong
S-reversibility) and we would also like to generalise the re-
sults for lifted representation of FOND planning tasks.
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