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ABSTRACT

Large Language Models (LLMs) achieve impressive performance across many
tasks but remain prone to hallucination, especially in long-form generation where
redundant retrieved contexts and lengthy reasoning chains amplify factual errors.
Recent studies highlight a critical phenomenon: the closer key information ap-
pears to the model outputs, the higher the factual accuracy. However, existing
retrieval-augmented language models (RALMs) lack effective mechanisms to en-
sure this proximity — external evidence is injected into reasoning via multi-turn
retrieval, but this cannot ensure key information stays close to the outputs. We
propose Micro–Macro Retrieval (M2R), a novel retrieve-while-generate frame-
work to fill this gap. At the macro level, M2R retrieves coarse-grained evi-
dence from external sources; at the micro level, it extracts essential results from
a key information repository built during reasoning and reuses them while gen-
erating answers. This design directly addresses the key-information–to-output
proximity bottleneck, effectively reducing hallucination in long-form tasks. M2R
is trained with a curriculum learning–based reinforcement learning strategy us-
ing customized rule-based rewards, enabling stable acquisition of retrieval and
grounding skills. Extensive experiments across different benchmarks demon-
strate the effectiveness of M2R, especially in lengthy-context settings.https:
//anonymous.4open.science/r/Micro_Macro_Retrieval-E6A9

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide spectrum
of tasks, from question answering to complex reasoning and generation (Lv et al., 2024a; Zhang
et al., 2025; Jin et al., 2025). Despite such impressive progress, even the most capable LLMs,
such as OpenAI-o1 (Achiam et al., 2023) and DeepSeek-R1 (Guo et al., 2025), still suffer from
knowledge hallucination, i.e., producing factually incorrect yet seemingly plausible content. Recent
advances in reasoning-oriented LLMs suggest that explicit reasoning processes can partially mitigate
hallucination by enforcing more faithful intermediate steps. Nevertheless, in long-form tasks that
require generating multiple sentences or paragraphs, hallucination tends to be further exacerbated
(He et al., 2023; Xu et al., 2023; Cheng et al., 2025a).

To alleviate hallucination, retrieval-augmented language models (RALMs) have recently emerged
as a promising paradigm (Vu et al., 2023; Yu et al., 2023). By incorporating external knowledge in a
plug-and-play fashion, RALMs are able to complement the parametric memory of LLMs with accu-
rate and up-to-date information. A growing body of work has demonstrated their effectiveness and
this mechanism significantly reduces the reliance on potentially outdated or incomplete parametric
knowledge, thereby mitigating hallucination (Gao et al., 2023; Wang et al., 2024).

However, RALMs are far from solving hallucination in long-form generation (Liu et al., 2025b;
Chang et al., 2025b). A key challenge, which we refer to as Lost in Lengthy Contexts, arises when
key evidence is obscured in long contexts. This challenge manifests in two aspects. First, retrieved
results are often lengthy, and the redundant information makes it difficult for the model to capture
the key information (Limitation 1). Second, long reasoning chains often cause the model to forget
earlier intermediate results, leading to errors in the final answer (Limitation 2).

Recent studies highlight that the proximity of key evidence to the final output is crucial for factual
reliability: the closer the evidence appears to the final answer, the more likely the model is to remain
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<think> To answer these questions ... 
<macro_tool_call> When was …
< macro_result> Citibank was founded … 
<think> Now, I need to find out …
<macro_tool_call> Who was the …
< macro_result> President …
<think> I know the answer is James and store it
<key_info_save> key_name: James
…

<micro_tool_call> key: key_name
<micro_result> value for key_name is James 
<answer> The answer is James.

Simplified Output Rollout

(Red circles) Micro retrieval brings key evidence closer 
to the answer tokens, reducing hallucination — an effect 
supported by the lost-in-the-middle phenomenon.

Far

Close

Figure 1: Overview of the M2R framework. During the reasoning phase, M2R performs macro
retrieval and stores answer-aligned facts into an internal key-information repository. During the
answer phase, the model invokes micro retrieval to fetch the stored facts and place them close to the
generated answer tokens.

faithful (Liu et al., 2023; Zhang et al., 2024). Additional empirical results and theoretical analysis of
this phenomenon are provided in Appendix B. However, existing RALMs lack effective mechanisms
to guarantee such proximity — external knowledge is injected into the reasoning process via multi-
turn retrieval, but this strategy cannot ensure that essential evidence is retained near the outputs.

To overcome these limitations, we propose a Micro–Macro Retrieval (M2R) framework. As shown
in Fig. 1, M2R has two components. The first is macro retrieval, which follows the traditional
paradigm of retrieving relevant passages from external sources during the reasoning phase. Cru-
cially, whenever the reasoning process yields answer-aligned evidence, it is preserved into a struc-
tured key–value repository, forming the key information repository, and the detection and storage of
such key information are performed directly by the model during the <think> phase. The second
is a novel micro retrieval mechanism introduced in the answer phase, which extracts essential results
from this repository to ground the final output. By storing key information in a dedicated repository,
the model avoids forgetting earlier intermediate results (addressing Limitation 1) while establishing
a bridge that links macro retrieval with micro retrieval. During answer generation, the model can
re-access the saved results and insert them directly before producing the corresponding output to-
kens. In this way, the proximity between key information and generated outputs is ensured, keeping
key information tightly coupled with the answer (addressing Limitation 2). Finally, by adopting the
retrieve-while-generate paradigm, M2R effectively alleviates hallucination in long-form tasks.

In terms of implementation, we employ a curriculum learning–based (Bengio et al., 2009) rein-
forcement learning (RL) strategy (i.e., GRPO (Shao et al., 2024)) to train the model to perform the
entire micro–macro retrieval process. Customized rule-based rewards are designed to encourage
accurate evidence saving and consistent grounding, allowing the model to gradually acquire the re-
trieval–reasoning skills in a stable manner. We train M2R from scratch on Qwen2.5-3B-Instruct (Hui
et al., 2024) and Qwen2.5-7B-Instruct, and conduct extensive experiments on long-form question
answering and retrieval-augmented generation benchmarks. Results demonstrate that M2R yields
substantial improvements over strong baselines, with particularly pronounced gains under lengthy-
context settings. Our contributions are summarized as follows:

• By grounding generation on position-aware key information, we propose the M2R framework.
M2R introduces a new retrieve-while-generate mechanism during the answer phase, where re-
trieval is performed over model-generated key information, and answer generation is constrained
by enforcing proximity between the retrieved evidence and the generated tokens.

• By employing a curriculum learning–based reinforcement learning strategy with customized rule-
based rewards, M2R gradually acquires the ability to progress from macro retrieval to key infor-
mation saving and finally to micro retrieval in a stable manner.
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• By conducting extensive experiments on different open-source benchmarks, M2R demonstrates
substantial improvements over strong baselines in terms of factual consistency and hallucination
reduction, with particularly pronounced gains under lengthy-context settings.

2 RELATED WORK

LLMs have demonstrated outstanding performance across various tasks. However, in certain spe-
cialised domains or knowledge-intensive tasks, LLMs are prone to hallucinations. Regarding this
problem, many approaches focus on detecting hallucinations in LLMs Wei et al. (2024); Kim et al.
(2024b) Chuang et al. (2024) Zhong & Litman (2025). Recently, numerous methods for detect-
ing hallucinations in LLMs have emerged, specifically targeting scenarios with long context Qin
et al. (2025). Liu et al. (2025a) employed self-generated thoughts derived from preceding utterances
as expressions to induce intrinsic knowledge and comprehend long-context semantics. Park et al.
(2025) achieve hallucination detection by incorporating learnable lightweight and flexible steering
vectors within LLMs.

Existing approaches to mitigating hallucinations in large language models can broadly be divided
into two categories. One category comprises retrieval-augmented generation (RAG) Izacard &
Grave (2021); Yu et al. (2024a) Izacard et al. (2023) Shi et al. (2024) Li et al. (2024), which direct
models to retrieve external knowledge, thereby enhancing response accuracy and reducing hallu-
cinations. Numerous approaches have been developed to optimise the retrieval process for LLMs,
thereby enhancing their performance. For instance, approaches such as Trivedi et al. (2023b), Shao
et al. (2023b), and Yu et al. (2024b) introduce iterative retrieval-generation cycles, enabling LLMs
to dynamically refine their retrieval strategies. Xu et al. (2024) and Kim et al. (2024a) enhance the
utilisation of external information, reduce information overload, and improve factual consistency by
optimising LLM generation through summarisation retrieval. Another class of approaches focuses
on stimulating the LLM’s capacity to utilise its internal knowledge. For instance, Li et al. (2023) and
Chen et al. (2024) employ probes or learnable parameters to optimise feature representations within
the LLM. Chang et al. (2025a) imposes constraints on the generative process of LLMs. Cheng et al.
(2025b) implemented a slow-thinking generation process for LLMs through a tree-search-based al-
gorithm, thereby reducing hallucinations during the reasoning process.

Prior multi-turn retrieval frameworks such as ReAct (Yao et al., 2023) and Self-RAG (Asai et al.,
2023) interleave retrieval with generation, but they operate only over external documents and cannot
access model-generated intermediate reasoning. In contrast, M2R retrieves from an internal key-
information repository constructed during the reasoning phase, enabling reuse of model-generated
evidence. Moreover, M2R explicitly enforces evidence proximity by placing retrieved key facts im-
mediately before answer tokens, mitigating long-context drift, a constraint absent in prior methods.

3 METHOD

Our framework performs macro retrieval during reasoning to gather coarse evidence, and micro
retrieval during answering to query a key-information repository at generation time. With GRPO-
based RL training, the model learns to maintain crucial evidence close to the produced outputs,
improving factual reliability in lengthy contexts.

In this section, we first introduce reinforcement learning with integrated micro–macro retrieval
(§3.1). We then detail the micro–macro retrieval process itself, including the design of the train-
ing template and the rule-based reward modeling (§3.2 - §3.3). Finally, we present a curriculum
learning-based training schedule that stabilizes M2R training (§3.4).

3.1 REINFORCEMENT LEARNING WITH MICRO–MACRO RETRIEVAL

We formulate the RL objective under the proposed micro–macro retrieval framework as follows:

max
πθ

Ex∼D,y∼πθ(·|x;Rmacro,Rmicro)

[
rϕ(x, y)

]
− β DKL

[
πθ(y | x;Rmacro,Rmicro)

∥πref(y | x;Rmacro,Rmicro)
]
,

(1)
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where πθ is the policy LLM, πref is the reference LLM, rϕ is the rule-based reward function, and
DKL is the KL-divergence regularizer. Here, x denotes input samples from the dataset D, and y
represents generated outputs conditioned on macro retrieval results Rmacro from external sources
and micro retrieval results Rmicro from the key information repository constructed during reasoning.

Unlike prior retrieval-augmented RL approaches (Chen et al., 2025; Jin et al., 2025), our framework
integrates two-level retrieval directly into the policy with a fixed macro→micro order:

πθ(· | x; Rmacro,Rmicro) = πanswer
θ (· | x,M; Rmicro) ◦ πthink

θ (· | x; Rmacro),

M = SaveKey
(
πthink
θ (· | x; Rmacro)

)
,

(2)

where ◦ denotes sequential (staged) composition: the policy first executes the <think> phase
with macro retrieval to collect coarse-grained evidence and build the key-information repository
M, and then runs the <answer> phase with micro retrieval over M. This staged policy lever-
ages external evidence while keeping key information proximal to the final answer, leading to more
reliable long-form generation.

GRPO with Micro–Macro Retrieval. We adopt Group Relative Policy Optimization (GRPO) as
our RL algorithm. Unlike Proximal Policy Optimization (PPO), which typically trains an auxiliary
value critic, GRPO estimates the baseline from a group of rollouts and therefore avoids an explicit
critic. Given a current policy πθold and a fixed reference πθref , GRPO draws G rollouts {yi}Gi=1 per
input x ∼ D. The objective is:

J (θ) = Ex∼D,{yi}G
i=1∼πθold (·|x)

1

G

G∑
i=1

[
min

(
πθ(yi|x)
πθold(yi|x)

Ai, clip
(

πθ(yi|x)
πθold(yi|x)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL (πθ||πθref)

]
,

(3)

where Ai =
(
ri − mean({rj}Gj=1)

)
/std({rj}Gj=1) denotes the normalized advantage of the i-th

rollout within the group, ϵ is the clipping threshold, and β is the coefficient for the KL regularization
term. The additional KL penalty prevents the updated policy from drifting too far from the reference
model, stabilizing training and maintaining alignment with the base LLM. In our micro–macro re-
trieval framework, all policy terms in Eq. equation 3 are evaluated under retrieval conditioning; con-
cretely, replace every occurrence of π•(· | x) with π•(· | x; Rmacro,Rmicro) (for • ∈ {θ, θold, θref}).

Rollout with Macro and Micro Retrieval. Unlike conventional rollouts that contain text-only
reasoning, rollouts in M2R are staged as macro→micro. During the <think> phase, the policy may
issue multiple macro retrieval calls (e.g., <macro_tool_call>) to external sources. Crucially, it
saves answer-aligned key information (i.e., the answer to a specific question) into a structured key–
value repository M using the <key_info_save> tag. In the subsequent <answer> phase, the
policy performs micro retrieval calls (e.g., <micro_tool_call>) by querying M and conditions
decoding on the returned values so that key information remains proximal to the output tokens and
reduces hallucination in long-form generation.

Retrieval Result Masking. In standard GRPO, the policy loss is computed over all tokens in a
rollout. In our setting, however, rollouts contain retrieval results that are injected by the environment
(external tools) rather than produced by the policy. To avoid assigning credit to tokens the policy did
not generate, we exclude retrieval-result spans when computing the loss. Concretely, in Eq. 3 we
update gradients only on tokens corresponding to text-based reasoning and the model’s own retrieval
queries, while tokens inside retrieval results are masked out.

For implementation, let mt ∈ {0, 1} be a binary mask (1 for policy-generated tokens; 0 for retrieval
results). We replace sequence log-prob terms with a masked sum,

log πθ(y | ·) △
=

∑
t

mt log πθ(yt | y<t, ·)
/
max(1,

∑
t

mt), (4)

and analogously form the (masked) log-ratio in Eq. 3. This preserves correct credit assignment,
prevents spurious gradients from environment-injected text, and stabilizes training.

4
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What GRPO Optimizes in M2R. It is important to clarify that GRPO in M2R does not optimize
the retrieval module itself. Instead, GRPO supervises the model’s generation behavior, teaching it (i)
when to invoke macro- and micro-retrieval, (ii) how to compose and sequence tool calls, (iii) what
key information should be written into the repository during the reasoning process, and (iv) how
retrieved information should be incorporated into the final answer. Since the retrieval component is
not modified by GRPO, M2R remains agnostic to the underlying retrieval system and is compatible
with future improvements in retrieval quality.

3.2 TRAINING TEMPLATE

We describe the training template for both macro and micro retrieval within our framework. The
training process is organized into two stages: macro retrieval in the <think> phase and micro
retrieval in the <answer> phase. The complete prompt template is shown in Table 16.

Macro Retrieval and Key Information Saving. During the <think> phase, the model issues
multi-turn macro retrieval calls enclosed within <macro_tool_call> tags. The purpose of these
macro calls is to gather coarse-grained evidence from external sources. After retrieving the relevant
information, the model saves the results as key-value pairs using the <key_info_save> tag,
storing them in a structured repository M, which is accessed later during the <answer> phase.

Micro Retrieval for Final Answer Generation. In the <answer> phase, the model queries
M using the <micro_tool_call> tag. The retrieved results are returned within the
<micro_response> tags, which are then used to form the final response. The final answer
must be directly grounded on the results of micro retrieval. This ensures that the answer is based
solely on the key information retrieved, rather than independent reasoning.

3.3 REWARD MODELING

Since there is no supervised reasoning data available, we design a rule-based reward function to
optimize the policy through reinforcement learning. Our reward modeling consists of two primary
components: format reward and answer reward.

• Format Reward: The format reward ensures that the model adheres to the predefined structure
specified in the prompt templates for both macro and micro retrievals. Specifically, it checks the
correctness of tag usage (e.g., valid <macro_tool_call> and <key_info_save> during
reasoning, and <micro_tool_call> in the answer phase). It also ensures that every key value
in the final answer is enclosed in \boxed{}.

• Answer Reward: The answer reward is a combination of three sub-rewards, all of which are
computed using the F1 score:

– Final Answer Correctness (sfinal): This evaluates the agreement between the model’s final
output (values extracted from \boxed{}) and the ground-truth answer.

– Key Information Correctness (skey): This measures whether the key information stored in
the key-value repository M aligns with the ground-truth answer, ensuring that only the most
relevant evidence is retained.

– Consistency Score (scons): This assesses the alignment between the stored key information
and the final output, ensuring that the answer is grounded in the relevant retrieved evidence.

The total answer reward is computed as:

rans = sfinal + α skey + β scons, (5)

Specifically, for the final reward of a rollout:

r =


rans, if F1 score is not 0 and answer is correct,
0.1, if F1 score is 0 but format is correct,
0, if F1 score is 0 and format is incorrect.

(6)

5
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3.4 STABILIZING TRAINING WITH CURRICULUM LEARNING

Training a model to integrate macro retrieval, key information saving, and micro retrieval is chal-
lenging. In our initial experiments, we found that directly optimizing all components at once often
leads to unstable rollouts and poor convergence. To address this issue, we employ a curriculum
learning approach, dividing the training into two stages. In the first stage, the model focuses ex-
clusively on macro retrieval and key information saving, learning to correctly identify relevant in-
formation and store it in the predefined structure. In the second stage, we introduce micro retrieval
and fine-grained answer grounding, enabling the model to leverage the stored key information when
generating the final response.

This staged training strategy offers several advantages. First, it simplifies the learning process by
reducing the complexity at each stage, which leads to improved training stability. Second, it allows
the model to progressively build the necessary skills, ensuring that the later micro retrieval steps
are built upon a strong foundation of accurate macro retrieval and evidence saving. Finally, this
approach encourages the model to generate answers that are not only factually accurate but also
grounded in the retrieved evidence, maintaining consistency throughout the reasoning process.

This staged progression mirrors human reasoning, where individuals typically gather and organize
broad information first, and then refine it into precise and reliable answers.

4 EXPERIMENT

To assess the effectiveness of M2R, we conduct extensive experiments on multi-hop question an-
swering benchmarks that demand multi-step reasoning and repeated retrieval. These settings nat-
urally induce Lost in Lengthy Contexts scenarios. Our method is instantiated on Qwen2.5-3B-
Instruct and Qwen2.5-7B-Instruct. Following ReSearch (Chen et al., 2025), we train only on the
MuSiQue (Trivedi et al., 2022) training split, which offers diverse multi-hop questions curated with
fine-grained quality control.

Benchmarks We evaluate M2R on four standard multi-hop QA benchmarks: HotpotQA (Yang
et al., 2018), 2WikiMultiHopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 2022), and Bam-
boogle (Press et al., 2023). HotpotQA, 2WikiMultiHopQA, and MuSiQue are automatically con-
structed from Wikipedia or Wikidata (Vrandecic & Krötzsch, 2014) with different multi-hop mining
strategies and crowd-sourced validation, while Bamboogle is a manually curated set of challenging
two-hop questions. For standard evaluation, we use the full development sets of HotpotQA (7,405),
2WikiMultiHopQA (12,576), MuSiQue (2,417), and the test set of Bamboogle (125). For the first
three benchmarks, we discard the original contexts and only retain question–answer pairs, with re-
trieval performed from a shared Wikipedia corpus.

Baselines We compare M2R against several baselines: (1) No RAG: directly using the instruction-
tuned model to generate answers without retrieval augmentation; (2) Naive RAG: a standard
retrieval-augmented setup where the retrieved documents are concatenated with the question be-
fore generation; (3) Iter-RetGen (Shao et al., 2023a): an iterative method that interleaves retrieval
and generation; (4) IRCoT (Trivedi et al., 2023a): an iterleaving method, which use retrieval and
the chain-of-thought (CoT) guide each other. (5) COFT (Lv et al., 2024b): a coarse-to-fine frame-
work that highlights key reference contexts to mitigate the problem of getting lost in lengthy inputs.
(6) SURE (Kim et al., 2024b): generates summaries of retrieved passages for multiple answer can-
didates, and then selects the most plausible answer by evaluating and ranking these summaries.
(7) ReSearch (Chen et al., 2025): a reinforcement learning–based framework that trains LLMs to
reason with multi-turn search, serving as a strong baseline.

Evaluation Metrics To assess the correctness of the final answers, we adopt two complementary
metrics. First, we report Exact Match (EM), which considers a prediction correct only if it exactly
matches the ground-truth answer. While straightforward, EM is often too rigid for our setting, since
the retrieval environment is open-ended and the generated answers are expressed in natural lan-
guage. To address this limitation, we further employ an LLM-as-a-judge (LJ) metric. Specifically,
we use gpt-4o-mini with a tailored judging prompt to evaluate whether a predicted answer is
semantically consistent with the ground truth. The full judge prompt is provided in Appendi C.

6
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5 RESEARCH QUESTIONS

RQ 1: ANSWER CORRECTNESS

Does M2R improve answer correctness compared to existing RAG methods on multi-hop QA tasks?

The main results of baselines and ReSearch are demonstrated in Table 1, and we show the meth-
ods based on LLMs with different sizes respectively. Compared with all baseline methods, M2R
consistently achieves superior performance across multi-hop QA benchmarks, demonstrating the
effectiveness of integrating both macro and micro retrieval. Specifically, M2R significantly outper-
forms the strongest baseline, ReSearch, which performs retrieval solely during the <think> phase.

These results verify that explicitly re-accessing key information through micro retrieval not only
improves factual grounding but also enhances the correctness of the final output.

Table 1: Exact Match (EM, %) and LLM-as-a-Judge (LJ, %) results on multi-hop question answer-
ing benchmarks. The best results are highlighted in bold.

Model HotpotQA 2Wiki MuSiQue Bamboogle
EM LJ EM LJ EM LJ EM LJ

Qwen2.5-3B-Instruct
Naive Generation 12.05 18.45 10.09 19.79 2.62 6.08 5.01 8.50
Naive RAG 21.04 37.23 13.82 23.08 4.14 10.32 14.43 20.00

Iter-RetGen 24.63 42.22 14.75 28.86 6.91 13.43 16.03 22.61
IRCoT 23.63 40.60 12.50 23.54 4.39 10.83 17.60 26.13
COFT 36.17 50.88 32.82 39.76 13.49 20.11 25.30 31.38
SURE 35.44 51.23 36.20 42.38 17.24 27.61 31.20 39.95
ReSearch 38.78 55.70 38.90 47.41 19.40 31.56 38.11 48.12

M2R-Qwen-3B-Instruct 38.70 56.46 40.07 48.34 20.87 32.97 39.58 47.20
Qwen2.5-7B-Instruct
Naive Generation 19.18 30.64 25.76 27.87 3.76 10.38 10.40 22.40
Naive RAG 31.90 49.59 25.78 29.52 6.21 12.78 20.80 32.00
Iter-RetGen 34.36 52.22 27.92 31.86 8.69 16.14 21.60 35.20
IRCoT 30.33 52.06 21.57 30.65 6.99 14.19 24.80 36.80
COFT 41.08 61.71 41.86 48.70 17.12 26.28 35.71 49.23
SURE 39.56 60.16 45.65 53.93 20.87 32.24 39.58 52.81
ReSearch 43.52 63.62 47.59 54.22 22.30 33.43 42.40 54.40

M2R-Qwen-7B-Instruct 44.11 65.98 48.89 57.01 24.12 35.44 44.56 56.89

RQ 2: HALLUCINATION REDUCTION

Can M2R effectively reduce hallucinations under more challenging long-context scenarios?

To further stress-test the ability of M2R, we move beyond standard single-question inference and
construct harder evaluation settings on the HotpotQA dataset. Specifically, we concatenate mul-
tiple questions into a single inference instance—denoted as HotpotQA-2Q (two questions) and
HotpotQA-3Q (three questions)—requiring the model to answer them jointly within one rollout.
This setting substantially increases reasoning depth, retrieval calls, and contextual redundancy,
thereby amplifying the difficulty of maintaining factual consistency.

We evaluate this setting with Qwen2.5-3B-Instruct, and results are shown in Figure 2. M2R con-
sistently outperforms all baselines as the number of questions increases. While naive RAG and
ReSearch suffer from rapidly rising hallucination rates, M2R maintains stable accuracy and substan-
tially lower hallucinations. This robustness comes from its retrieve-while-generate paradigm, where
micro retrieval continually re-anchors key evidence close to the outputs, making M2R especially
effective in high-redundancy, long-context scenarios.

7
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Figure 2: Performance on HotpotQA under multi-question inference settings. Here, HotpotQA-2Q
denotes concatenating two questions into a single inference instance.

RQ 3: ABLATION STUDY

How critical is the retrieve-while-generate design in M2R?

Table 2: Ablation study on M2R.
Variant EM (%) LJ (%)

Full M2R 24.12 35.44
- One-shot Grounding 23.38 34.72

To validate the contribution of micro retrieval, we
compare our framework with a simplified variant
that removes the retrieve-while-generate mecha-
nism. In this baseline, when the model enters
the <answer> phase, all saved key information
from the repository M is provided to the model
at once. The model then generates the full answer based on this one-shot grounding, without in-
voking micro retrieval during generation. In contrast, M2R performs on-demand micro retrieval: at
each step of answer generation, the model can selectively fetch only the relevant key information
and re-anchor it immediately before producing the corresponding output tokens.

Results in Table 2 show that one-shot grounding yields weaker factual consistency, as injected
evidence can be diluted by redundant reasoning tokens. In contrast, the retrieve-while-generate
paradigm achieves more stable performance by inserting evidence precisely where needed. These
results confirm that on-demand grounding is crucial for mitigating hallucination in long-form tasks.

RQ 4: REWARD DYNAMICS

How does M2R evolve in terms of reward during reinforcement learning?

To further understand the training dynamics of M2R, we analyze the reward curves during reinforce-
ment learning, as shown in Figure 3. In the initial stage, the Qwen2.5-7B-Instruct model exhibits
a much sharper increase in reward compared to the Qwen2.5-3B-Instruct model, demonstrating its
stronger capacity to quickly adapt to the retrieve-while-generate paradigm. However, as training
progresses, the reward growth of the Qwen2.5-3B-Instruct model gradually catches up, and both
models eventually converge to a similar level. This suggests that while larger models can accelerate
early adaptation, the long-term reward dynamics between different scales tend to align.

RQ 5: CASE STUDY

To provide a clearer view of how M2R operates in practice, Table 3 presents a simplified
case study drawn from the evaluation set. This example demonstrates the reasoning and re-
trieval process of Qwen2.5-7B-Instruct under our framework. The text within <think> tags
reflects the model’s intermediate reasoning, while macro retrieval operations are invoked via
<macro_tool_call> tags. Key evidence, directly aligned with the target answer, is ex-
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(a) Reward curve of M2R with 3B backbone. (b) Reward curve of M2R with 7B backbone.

Figure 3: Reward dynamics of M2R during reinforcement learning.

Table 3: A simplified case study of M2R on a test instance.

Question: Guest 101 wants to book any available suite room and needs to know
both the total price after VIP discount and the room number with the lowest payable
amount.
Answer: 180.0, Room 301

<think> First, I need to find an available suite room. Then I will calculate the price
and apply the VIP discount for Guest 101. </think>
<macro_tool_call>

"name": "get_available_rooms", "room_type": "suite"
</macro_tool_call>
<macro_result> "number": 301, "type": "suite", "price": 200.0, "avail-
able": True; "number": 302, "type": "suite", "price": 220.0, "available": True
</macro_result>
<think> Rooms 301 and 302 are available. Their prices are 200.0 and 220.0, re-
spectively. With a 10% VIP discount, the payable amounts would be 180.0 and 198.0.
</think>
<macro_tool_call>

"name": "get_guest_vip_status", "guest_id": 101
</macro_tool_call>
<macro_result> True </macro_result>
<think> Guest 101 is confirmed as VIP. The lowest final payable amount is 180.0
for Room 301. </think>
<key_info_save>

"finalPayableAmount": "180.0", "RoomNumber": "301"
</key_info_save>
<think> I have obtained both the final payable amount and the room number with
the lowest cost. I will now proceed to the answering phase. </think>
<answer>
<micro_tool_call> "query": "finalPayableAmount"

</micro_tool_call>
<micro_response>"finalPayableAmount":"180.0"</micro_response>
The requested final payable amount is \boxed{180.0}.
<micro_tool_call> "query": "RoomNumber" </micro_tool_call>
<micro_response>"RoomNumber":"301"</micro_response>
The suite room with the lowest payable amount is \boxed{301}.

</answer>

plicitly preserved using <key_info_save> tags. In the final <answer> phase, the model
invokes <micro_tool_call> to retrieve the stored key values, which are returned in
<micro_response> and faithfully incorporated into the output. This case illustrates how M2R

9
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decomposes a question into manageable steps, preserves essential evidence, and grounds the final
prediction through micro retrieval. By positioning the supporting evidence close to the generated
answer, the framework effectively reduces hallucinations and strengthens factual consistency.

RQ 6: INFERENCE COST AND EFFICIENCY

What is the inference-time overhead of M2R, and how efficient is the micro–macro retrieval frame-
work in practice?

To understand the computational cost of M2R, we measure (1) the number of model invocations per
query, and (2) the end-to-end latency under standard inference settings. We separate the analysis
into the <think> (macro retrieval) and <answer> (micro retrieval) phases.

Model Invocations. Table 4 reports the average number of model calls using Qwen2.5-3B-
Instruct. Most invocations originate from the <think> phase—a cost shared by all multi-turn
tool-based RAG frameworks. The additional overhead introduced by M2R is only 1–2 micro-
retrieval calls, corresponding to roughly a 20–30% relative increase. Micro retrieval itself is ex-
tremely lightweight, as it performs a rule-based lookup over a small, local repository.

Dataset Think Answer Total Min Max

HotpotQA 3.7 1.4 5.1 3 6
2Wiki 4.5 1.7 6.2 3 10
MuSiQue 5.7 1.9 7.6 4 9
Bamboogle 3.5 1.3 4.8 2 6

Table 4: Average number of model invocations per query.

End-to-End Latency. We benchmark real inference time, including all tool-calling and retrieval
overhead, shown in Table 5. M2R increases latency by less than 10% on average compared to
ReSearch, while delivering significantly higher answer accuracy.

Dataset Avg Invocations Inference Time (s)

HotpotQA 5.1 ≈4.7
2Wiki 6.2 ≈5.2
MuSiQue 7.6 ≈6.8
Bamboogle 4.8 ≈4.6

Table 5: Measured inference time of M2R (Qwen2.5-3B + SGLang, 4×A100).

6 CONCLUSION AND FUTURE WORK

This work introduced Micro–Macro Retrieval (M2R), a novel retrieve-while-generate framework
that integrates macro retrieval during reasoning with micro retrieval during answering. By explic-
itly preserving and reusing key evidence close to the outputs, M2R directly addresses the “Lost in
Lengthy Contexts” problem, leading to substantial gains in factual consistency and reduced hal-
lucination over strong baselines. For future work, one direction is to move beyond simple rule-
based rewards and incorporate learned reward models that better capture factuality, coherence, and
grounding. Another is to further refine micro retrieval, for example by dynamically optimizing the
proximity between evidence and output tokens. Finally, extending M2R with richer tool use, diverse
external sources, and multimodal capabilities would broaden its applicability and robustness.

ETHICS STATEMENT

Our work focuses on improving the factual consistency and reliability of LLMs in multi-hop ques-
tion answering and retrieval-augmented generation. All experiments are conducted on publicly
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available datasets (HotpotQA, 2WikiMultiHopQA, MuSiQue, and Bamboogle), which do not con-
tain personally identifiable information or sensitive human-subject data. We do not introduce new
data collection involving human participants. Our research complies with the ICLR Code of Ethics,
and we see no direct risks regarding privacy, discrimination, or legal compliance.

REPRODUCIBILITY STATEMENT

We make extensive efforts to ensure the reproducibility of our results.

• Model and Training: We describe the reinforcement learning setup (GRPO with micro–
macro retrieval), training templates, and reward modeling details in Section 3, with addi-
tional hyperparameters in Appendix D.

• Datasets: All datasets used (HotpotQA, 2WikiMultiHopQA, MuSiQue, Bamboogle) are
publicly available; we detail preprocessing and evaluation protocols in Section 4.

• Code and Implementation: To facilitate reproducibility, we provide an anonymous link
to the source code and experimental scripts in the supplementary material.

Together, these measures allow independent researchers to reproduce our results and verify the
claims made in this paper.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we used large language models (LLMs) solely for improving the clarity and
readability of the writing. Specifically, LLMs were employed as an assistant for language polish-
ing, grammar checking, and style refinement. All research ideas, methodology design, experiments,
analyses, and conclusions were conceived, implemented, and validated entirely by the authors with-
out the involvement of LLMs. We take full responsibility for the content of this paper.

B A POSITIONAL ENCODING PERSPECTIVE ON KEY-INFORMATION
PROXIMITY

Empirical studies have shown that large language models often struggle to effectively use informa-
tion located far from the prediction site, a phenomenon sometimes referred to as “lost in the middle”
(Liu et al., 2023). As shown in Figure 4, the accuracy of GPT-3.5 on QA tasks decreases markedly
when the answer-bearing document is positioned in the middle of the context. This observation
underscores that the proximity of key information to output tokens plays a critical role in ensuring
factual reliability. Motivated by this observation, while the position of early inputs is largely fixed,
we propose to actively adjust the placement of critical evidence closer to the output tokens, which
directly inspired the design of our micro retrieval mechanism.

1st 5th 10th 15th 20th
Position of Document with the Answer

55

60

65

70

75

Ac
cu

ra
cy

20 Total Retrieved Documents (~4K tokens)

gpt-3.5-turbo-0613
gpt-3.5-turbo-0613 (closed-book)

Figure 4: Effect of answer position on model accuracy (figure taken from Liu et al. (2023)). Accu-
racy declines sharply as the answer-bearing evidence appears in the middle of the context.

We also provide a theoretical explanation of this effect from a positional encoding perspective.

RoPE and Relative Position Encoding. Rotary Position Embeddings (RoPE) (Su et al., 2021)
encode relative positions by rotating query and key vectors in the complex plane. For a query at
position m and key at position n, the inner product is:

qm = Rθ,mWqxm = Rθ,mq, kn = Rθ,nWkxn = Rθ,nk, (7)
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qm · kn = (Rθ,mq)⊤(Rθ,nk) = q⊤Rθ,m−nk, (8)
where Rθ,m is a block-diagonal rotation matrix with components

Rθi,m =

[
cos(mθi) − sin(mθi)
sin(mθi) cos(mθi)

]
, θi = b−

2i
d . (9)

Spectral Decomposition. The dot product can be decomposed into d/2 sinusoidal components
with distinct frequencies θi:

qm · kn =

d/2−1∑
i=0

(
q2ik2i cos(∆θi) + q2i+1k2i+1 sin(∆θi)

)
, (10)

where ∆ = m− n is the relative distance. High-frequency components oscillate rapidly and cancel
out when ∆ is large, while low-frequency components dominate at shorter distances. This spectral
bias makes attention contributions stronger for nearby tokens than for distant ones.
Proposition B.1. For RoPE-based attention, the expected contribution of evidence tokens decreases
monotonically with their distance to the output position. Hence, key information placed closer
to the outputs is more likely to be faithfully incorporated into generation, providing a theoretical
justification for the effectiveness of key-information proximity.

Discussion. This analysis shows that proximity is not only an empirical observation but also a
theoretical consequence of how positional encoding interacts with attention. Placing key information
closer to output tokens mitigates the risk of dilution by redundant context and reduces the chance of
being forgotten in long reasoning chains. This provides a formal foundation for the design of our
micro–macro retrieval framework, which explicitly manages evidence placement to improve factual
consistency.

C PROMPT FOR LLM-AS-A-JUDGE

Table 6 presents the exact prompt we used to evaluate model responses under the LLM-as-a-Judge
setting, ensuring consistency and reproducibility of the evaluation process.

D IMPLEMENTATION DETAILS

Implementation Details. We build our reinforcement learning framework upon verl (Sheng
et al., 2024). For training, we use the MuSiQue dataset, restricting to the training split (19,938
samples), and train the models for two epochs. The retrieval environment is implemented with
FlashRAG (Jin et al., 2024), a standard toolkit for retrieval-augmented generation. Following Re-
Search, we adopt E5-base-v2 (Wang et al., 2022) as the dense retriever and use the December 2018
Wikipedia snapshot as the underlying knowledge base (Karpukhin et al., 2020). All document em-
beddings and indexes are preprocessed by FlashRAG. During both training and evaluation rollouts,
we retrieve the top-5 passages for each query. For baseline systems, we directly use the implemen-
tations provided by FlashRAG to ensure fairness. In Eq. 5, we set α = 1

3 and β = 1
10 , as these

values were found to provide a good balance between final answer correctness, key information
preservation, and consistency after empirical validation in preliminary experiments.

To further improve reproducibility and transparency, we provide additional implementation details
regarding hardware, environment configuration, and experimental settings. These specifications will
also be included in the publicly released code.

Hardware Requirements. All models were trained on 8×A100 40GB GPUs. All inference ex-
periments were conducted on 4×A100 40GB GPUs using the SGLang serving framework.

Random Seeds. All experiments were run with a fixed random seed of 42 to ensure determinism
and reproducibility where possible.

These details ensure that future researchers can reliably reproduce both the training and inference
pipelines of M2R. We show some important parameter settings during training in Table 7.
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Table 6: Prompt for LLM-as-a-Judge.

Prompt Template
You will be given a question and its ground truth answer list where each item can be
a ground truth answer. Provided a pred_answer, you need to judge if the pred_answer
correctly answers the question based on the ground truth answer list. You should first
give your rationale for the judgement, and then give your judgement result (i.e., correct or
incorrect).
Here is the criteria for the judgement:
1. The pred_answer doesn’t need to be exactly the same as any of the ground truth answers,
but should be semantically same for the question.
2. Each item in the ground truth answer list can be viewed as a ground truth answer for
the question, and the pred_answer should be semantically same to at least one of them.
question: {question}
ground truth answers: {gt_answer}
pred_answer: {pred_answer}
The output should in the following json format:
‘‘‘json
{

"rationale": "your rationale for the judgement, as a text",
"judgement": "your judgement result, can only be ‘correct‘ or ‘incorrect‘"

}
‘‘‘
Your output:

Table 7: Implementation details of M2R.

Parameter Value
Learning Rate 1e-6
Train Batch Size 256
Number of Training Epochs 2
Number of Rollout 5
Rollout Temperature 1.0
KL Loss Coefficient 0.001
Clip Ratio 0.2

E ADDITIONAL EXPERIMENTS

E.1 EXTENDED MODEL FAMILIES AND MULTI-QUESTION REASONING BENCHMARKS

To further assess the empirical coverage of M2R, we conduct additional experiments on (1) larger
and different model families, and (2) more challenging long-form settings. These results comple-
ment the main experiments and address concerns regarding generalizability and training sufficiency.

We evaluate M2R on two additional models, Llama-3.1-8B-Instruct and Mistral-7B-Instruct. As
shown in Table 8, M2R consistently outperforms ReSearch across both model families, with an
average improvement of 1.03%.

Long-Form Multi-Question Benchmarks. To evaluate the effectiveness of M2R under longer
reasoning chains, we extend each dataset by concatenating multiple questions (3Q and 5Q). As
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Llama-3.1-8B-Instruct

Method HotpotQA 2Wiki MuSiQue Bamboogle

Naive Generation 18.1 24.7 4.4 11.6
Naive RAG 34.2 31.3 9.8 20.9
COFT 38.4 39.5 15.8 32.5
SURE 39.3 42.0 18.7 37.8
ReSearch 42.2 45.8 20.9 43.1
M2R 43.0 47.2 22.1 42.9

Mistral-7B-Instruct

Method HotpotQA 2Wiki MuSiQue Bamboogle

Naive Generation 21.9 28.8 7.7 12.5
Naive RAG 34.5 31.2 11.3 25.4
COFT 43.5 45.5 18.5 40.3
SURE 42.6 47.7 21.2 42.8
ReSearch 45.0 49.1 23.7 45.5
M2R 45.6 50.0 25.5 46.0

Table 8: Exact Match results on additional model families.

shown in Table 9, M2R achieves the largest gains under these extended settings, validating the
benefit of micro retrieval in maintaining localized evidence for deeper reasoning.

Method HotpotQA-3Q 2Wiki-3Q MuSiQue-3Q Bamboogle-3Q

Naive Generation 13.1 17.5 4.3 7.1
Naive RAG 20.6 16.9 5.1 15.2
COFT 24.5 27.2 12.6 22.0
SURE 28.3 31.5 11.3 25.5
ReSearch 30.2 33.9 14.2 28.0
M2R 32.0 35.8 17.9 30.6

Method HotpotQA-5Q 2Wiki-5Q MuSiQue-5Q Bamboogle-5Q

Naive Generation 5.5 4.5 0.7 1.8
Naive RAG 8.2 7.7 2.3 4.5
COFT 9.5 11.1 3.5 9.5
SURE 13.1 14.8 4.8 10.7
ReSearch 13.9 17.0 5.7 12.8
M2R 15.4 18.5 8.4 14.9

Table 9: Performance under multi-question reasoning (3Q and 5Q).

These additional results demonstrate that M2R generalizes robustly across model families and re-
mains effective under substantially longer reasoning chains.

E.2 ADDITIONAL ANALYSIS OF FLASHRAG CONFIGURATION AND RETRIEVAL ABLATIONS

This section provides additional details of the FlashRAG configuration, ablations on retrieval hyper-
parameters, and token statistics during inference. These analyses complement the main results and
demonstrate that M2R is robust to retrieval settings.

FlashRAG Configuration. To ensure fair comparison and avoid introducing retrieval-side advan-
tages, we strictly follow the official FlashRAG and Re-Search configuration without modification:

• Knowledge Base: FlashRAG’s December 2018 Wikipedia snapshot.

• Chunk Size: ∼100-word passages (default).
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• Retriever: E5-base-v2 dense retriever.

This ensures that improvements from M2R stem from its generation-side retrieval mechanism rather
than retrieval tuning.

Ablations on Retrieval Settings. We ablate two key FlashRAG parameters—retrieve-top-k and
chunk size—on 2Wiki using Qwen2.5-3B. As shown in Table 10, M2R consistently outperforms
ReSearch across all configurations, demonstrating strong robustness to retrieval hyperparameters.

Retrieve-Top-k Naive RAG ReSearch M2R

3 13.5 37.2 38.3
5 (default) 13.8 38.9 40.1
8 13.6 38.0 39.4

Chunk Size Naive RAG ReSearch M2R

50 13.4 38.1 39.4
100 (default) 13.8 38.9 40.1
150 13.9 38.4 39.7

Table 10: Ablations on retrieve-top-k and chunk size for FlashRAG.

Token Statistics During Inference. To analyze whether M2R alleviates long-form reasoning con-
straints, we report input and output token statistics in Table 11. “Input Tokens” represent question
tokens only, whereas “Output Tokens” include both reasoning chains and final answers (excluding
retrieved passages).

Dataset Input Tokens Output Tokens (ReSearch) Output Tokens (M2R)

HotpotQA 25 416 432
MuSiQue 31 483 505
2Wiki 37 440 478
Bamboogle 21 376 389

Table 11: Token statistics during inference. M2R produces slightly longer outputs due to micro
retrieval, but the inserted key facts are compact and answer-aligned, improving grounding and final
accuracy.

Overall, these analyses indicate that M2R is robust to retrieval configurations and benefits long-form
reasoning by injecting concise, model-generated key information near the answer generation step.

E.3 INFERENCE COST AND STORAGE ANALYSIS

We provide additional analysis of the inference latency and storage cost of the key-information
repository in M2R. These results complement the main experiments and demonstrate that the micro–
macro retrieval pipeline introduces only minimal overhead.

Inference Latency. The macro-retrieval stage in M2R follows the same workflow as standard
RAG, and the key-information saving step stores only a handful of answer-aligned facts (typically
3–10 items), making its cost negligible. Micro retrieval is also lightweight, as it performs a simple
dictionary-style lookup over a small local repository.
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To quantify the overhead, we report real inference time using Qwen2.5-3B with SGLang on 4×A100
40GB GPUs. As shown in Table 12, M2R increases inference time by less than 10% on average
compared to ReSearch, while offering substantially larger accuracy improvements.

Inference Time (s) HotpotQA 2Wiki MuSiQue Bamboogle

ReSearch ≈4.3 ≈4.8 ≈6.3 ≈4.2
M2R ≈4.7 ≈5.2 ≈6.8 ≈4.6

Table 12: Measured inference latency of M2R compared to ReSearch.

Scaling With Input Complexity. We also evaluate a multi-question setting by concatenating 2–
3 HotpotQA questions into a single input (Table 13). Latency grows approximately linearly with
reasoning complexity, consistent with multi-turn tool-use systems.

Setting Avg Invocations Inference Time (s)

1Q 7.6 ≈6.8
2Q 13.8 ≈14.1
3Q 19.7 ≈22.3

Table 13: Latency scaling under multi-question reasoning.

Overall, these results show that M2R introduces only minimal overhead beyond standard RAG sys-
tems. The micro–macro retrieval pipeline remains efficient even under long-form reasoning.

Storage Cost of the Key-Information Repository. The key-information repository stores a very
small number of atomic facts produced during the <think> phase. Table 14 reports the measured
token counts. Across all datasets, the repository remains small (50–150 tokens), which is negligible
compared with the retrieved passages themselves.

Dataset Avg Tokens Min Max

HotpotQA 62 24 108
2Wiki 73 28 121
MuSiQue 88 32 139
Bamboogle 55 18 95

Table 14: Size of the key-information repository measured in tokens.

Overall, these results show that M2R introduces minimal inference overhead and negligible storage
cost, while providing substantial improvements in grounding and answer correctness.

E.4 ABLATION STUDY: IMPORTANCE OF CURRICULUM LEARNING

To further analyze the role of curriculum learning in M2R, we compare our two-stage training strat-
egy with direct joint optimization of macro and micro retrieval. This experiment complements the
main results and provides insight into training stability and optimization difficulty.

Accuracy Comparison. Table 15 reports the Exact Match scores under three training strategies.
Direct optimization performs poorly across all datasets—even worse than Naive RAG—because the
model must simultaneously learn macro retrieval, key-information saving, and micro retrieval. This
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Training Strategy HotpotQA 2Wiki MuSiQue Bamboogle

Naive RAG 21.0 13.8 4.1 14.3
Direct Optimization 13.2 8.4 3.9 10.8
Curriculum Learning (ours) 38.7 40.1 20.9 39.6

Table 15: Comparison of training strategies, showing the importance of curriculum learning.

Table 16: Template for M2R.

Prompt Template For M2R
You are a helpful assistant. The assistant first thinks about the reasoning process in the
mind and then provides the user with the answer.
During the reasoning process, you have access to a set of tools you can use to assist with
the user query, referred to as macro retrievals. These macro retrievals are enclosed within
<macro_tool_call></macro_tool_call> tags. You may conduct multiple rounds of function
calls, and in each round, you can call one or more functions.
The results of the macro function calls will be given back to you after execution, and you
can continue to call functions until you get the final answer for the user’s question.
Additionally, during the reasoning process, whenever you obtain the answer to the user’s
question, you must store it as a key-value pair in a key information dictionary using the
<key_info_save></key_info_save> tag.

• The format must strictly follow JSON, e.g.: {"target_value": "value"}
• The stored key-value pairs must be directly relevant to the final answer.

Finally, once you have obtained the answer and stored the key information, proceed to
the answering phase. At this stage, do not call any further functions. Before writing the
final answer sentence, you must first perform micro retrieval to fetch the answer from the
key information dictionary. The final answer must be based only on the results of micro
retrieval, rather than answering independently.
Notes for micro retrieval:
• Micro retrieval must be enclosed within <micro_tool_call></micro_tool_call> tags.
• You may query multiple items at once or issue requests in batches.
• The results of micro retrieval will be provided after execution.
• If the micro retrieval fails, you must simply state that the result could not be retrieved,

and must not fabricate an answer independently.
Every value from the key information dictionary that appears in the final answer must be
enclosed in \boxed{}.

substantially increases optimization difficulty and prevents the model from obtaining meaningful
rewards.

Discussion. In contrast to direct optimization, curriculum learning decomposes training into two
tractable stages, allowing the model to first master macro retrieval before learning micro retrieval.
This staged formulation dramatically stabilizes training, reduces reward sparsity, and yields signifi-
cantly better end-to-end performance. These findings validate the necessity of curriculum learning
in effectively training M2R.

F PROMPT TEMPLATE FOR M2R

The complete prompt template is shown in Table 16.
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