

000 MICRO-MACRO RETRIEVAL: REDUCING LONG-FORM 001 HALLUCINATION IN LARGE LANGUAGE MODELS 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Large Language Models (LLMs) achieve impressive performance across many
007 tasks but remain prone to hallucination, especially in long-form generation where
008 redundant retrieved contexts and lengthy reasoning chains amplify factual errors.
009 Recent studies highlight a critical phenomenon: the closer key information ap-
010 pears to the model outputs, the higher the factual accuracy. However, existing
011 retrieval-augmented language models (RALMs) lack effective mechanisms to en-
012 sure this proximity — external evidence is injected into reasoning via multi-turn
013 retrieval, but this cannot ensure key information stays close to the outputs. We
014 propose **Micro-Macro Retrieval (M²R)**, a novel *retrieve-while-generate* frame-
015 work to fill this gap. At the macro level, M²R retrieves coarse-grained evi-
016 dence from external sources; at the micro level, it extracts essential results from
017 a key information repository built during reasoning and reuses them while gen-
018 erating answers. This design directly addresses the key-information-to-output
019 proximity bottleneck, effectively reducing hallucination in long-form tasks. M²R
020 is trained with a curriculum learning-based reinforcement learning strategy us-
021 ing customized rule-based rewards, enabling stable acquisition of retrieval and
022 grounding skills. Extensive experiments across different benchmarks demon-
023 strate the effectiveness of M²R, especially in lengthy-context settings.https://anonymous.4open.science/r/Micro_Macro_Retrieval-E6A9

024 1 INTRODUCTION

025 Large language models (LLMs) have demonstrated remarkable capabilities across a wide spectrum
026 of tasks, from question answering to complex reasoning and generation (Lv et al., 2024a; Zhang
027 et al., 2025; Jin et al., 2025). Despite such impressive progress, even the most capable LLMs,
028 such as OpenAI-o1 (Achiam et al., 2023) and DeepSeek-R1 (Guo et al., 2025), still suffer from
029 knowledge hallucination, i.e., producing factually incorrect yet seemingly plausible content. Recent
030 advances in reasoning-oriented LLMs suggest that explicit reasoning processes can partially mitigate
031 hallucination by enforcing more faithful intermediate steps. Nevertheless, in long-form tasks that
032 require generating multiple sentences or paragraphs, hallucination tends to be further exacerbated
033 (He et al., 2023; Xu et al., 2023; Cheng et al., 2025a).

034 To alleviate hallucination, retrieval-augmented language models (RALMs) have recently emerged
035 as a promising paradigm (Vu et al., 2023; Yu et al., 2023). By incorporating external knowledge in a
036 plug-and-play fashion, RALMs are able to complement the parametric memory of LLMs with accu-
037 rate and up-to-date information. A growing body of work has demonstrated their effectiveness and
038 this mechanism significantly reduces the reliance on potentially outdated or incomplete parametric
039 knowledge, thereby mitigating hallucination (Gao et al., 2023; Wang et al., 2024).

040 However, RALMs are far from solving hallucination in long-form generation (Liu et al., 2025b;
041 Chang et al., 2025b). A key challenge, which we refer to as **Lost in Lengthy Contexts**, arises when
042 key evidence is obscured in long contexts. This challenge manifests in two aspects. First, retrieved
043 results are often lengthy, and the redundant information makes it difficult for the model to capture
044 the key information (**Limitation 1**). Second, long reasoning chains often cause the model to forget
045 earlier intermediate results, leading to errors in the final answer (**Limitation 2**).

046 Recent studies highlight that the *proximity* of key evidence to the final output is crucial for factual
047 reliability: the closer the evidence appears to the final answer, the more likely the model is to remain

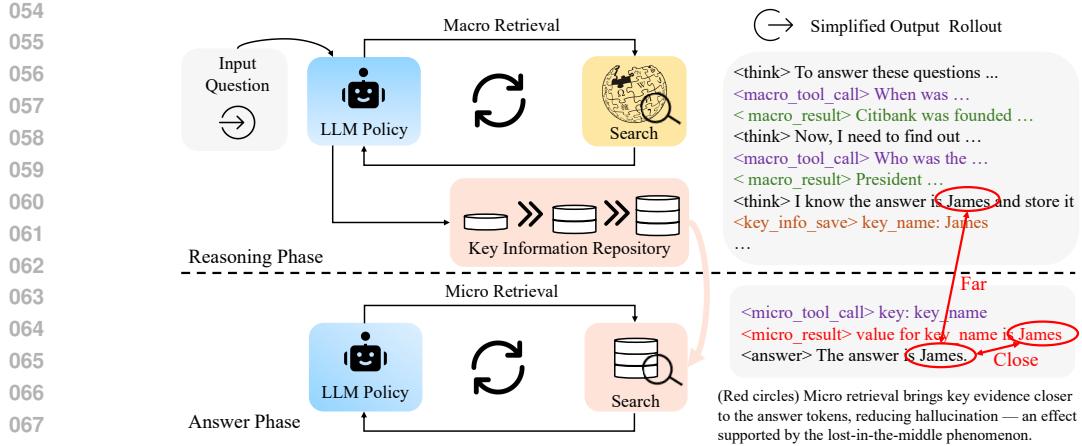


Figure 1: **Overview of the M²R framework.** During the reasoning phase, M²R performs macro retrieval and stores answer-aligned facts into an internal key-information repository. During the answer phase, the model invokes micro retrieval to fetch the stored facts and place them close to the generated answer tokens.

faithful (Liu et al., 2023; Zhang et al., 2024). Additional empirical results and theoretical analysis of this phenomenon are provided in Appendix B. However, existing RALMs lack effective mechanisms to guarantee such proximity — external knowledge is injected into the reasoning process via multi-turn retrieval, but this strategy cannot ensure that essential evidence is retained near the outputs.

To overcome these limitations, we propose a **Micro–Macro Retrieval (M²R)** framework. As shown in Fig. 1, M²R has two components. The first is *macro retrieval*, which follows the traditional paradigm of retrieving relevant passages from external sources during the reasoning phase. Crucially, whenever the reasoning process yields answer-aligned evidence, it is preserved into a structured key–value repository, forming the *key information repository*, and the detection and storage of such key information are performed directly by the model during the *<think>* phase. The second is a novel *micro retrieval* mechanism introduced in the answer phase, which extracts essential results from this repository to ground the final output. By storing key information in a dedicated repository, the model avoids forgetting earlier intermediate results (*addressing Limitation 1*) while establishing a bridge that links macro retrieval with micro retrieval. During answer generation, the model can re-access the saved results and insert them directly before producing the corresponding output tokens. In this way, the proximity between key information and generated outputs is ensured, keeping key information tightly coupled with the answer (*addressing Limitation 2*). Finally, by adopting the retrieve-while-generate paradigm, M²R effectively alleviates hallucination in long-form tasks.

In terms of implementation, we employ a curriculum learning–based (Bengio et al., 2009) reinforcement learning (RL) strategy (i.e., GRPO (Shao et al., 2024)) to train the model to perform the entire micro–macro retrieval process. Customized rule-based rewards are designed to encourage accurate evidence saving and consistent grounding, allowing the model to gradually acquire the retrieval–reasoning skills in a stable manner. We train M²R from scratch on Qwen2.5-3B-Instruct (Hui et al., 2024) and Qwen2.5-7B-Instruct, and conduct extensive experiments on long-form question answering and retrieval-augmented generation benchmarks. Results demonstrate that M²R yields substantial improvements over strong baselines, with particularly pronounced gains under lengthy-context settings. Our contributions are summarized as follows:

- By grounding generation on position-aware key information, we propose the M²R framework. M²R introduces a new retrieve-while-generate mechanism during the answer phase, where retrieval is performed over model-generated key information, and answer generation is constrained by enforcing proximity between the retrieved evidence and the generated tokens.
- By employing a curriculum learning–based reinforcement learning strategy with customized rule-based rewards, M²R gradually acquires the ability to progress from macro retrieval to key information saving and finally to micro retrieval in a stable manner.

108 • By conducting extensive experiments on different open-source benchmarks, M^2R demonstrates
 109 substantial improvements over strong baselines in terms of factual consistency and hallucination
 110 reduction, with particularly pronounced gains under lengthy-context settings.

112 **2 RELATED WORK**

115 LLMs have demonstrated outstanding performance across various tasks. However, in certain spe-
 116 cialised domains or knowledge-intensive tasks, LLMs are prone to hallucinations. Regarding this
 117 problem, many approaches focus on detecting hallucinations in LLMs Wei et al. (2024); Kim et al.
 118 (2024b) Chuang et al. (2024) Zhong & Litman (2025). Recently, numerous methods for detect-
 119 ing hallucinations in LLMs have emerged, specifically targeting scenarios with long context Qin
 120 et al. (2025). Liu et al. (2025a) employed self-generated thoughts derived from preceding utterances
 121 as expressions to induce intrinsic knowledge and comprehend long-context semantics. Park et al.
 122 (2025) achieve hallucination detection by incorporating learnable lightweight and flexible steering
 123 vectors within LLMs.

124 Existing approaches to mitigating hallucinations in large language models can broadly be divided
 125 into two categories. One category comprises retrieval-augmented generation (RAG) Izacard &
 126 Grave (2021); Yu et al. (2024a) Izacard et al. (2023) Shi et al. (2024) Li et al. (2024), which direct
 127 models to retrieve external knowledge, thereby enhancing response accuracy and reducing hallu-
 128 cinations. Numerous approaches have been developed to optimise the retrieval process for LLMs,
 129 thereby enhancing their performance. For instance, approaches such as Trivedi et al. (2023b), Shao
 130 et al. (2023b), and Yu et al. (2024b) introduce iterative retrieval-generation cycles, enabling LLMs
 131 to dynamically refine their retrieval strategies. Xu et al. (2024) and Kim et al. (2024a) enhance the
 132 utilisation of external information, reduce information overload, and improve factual consistency by
 133 optimising LLM generation through summarisation retrieval. Another class of approaches focuses
 134 on stimulating the LLM’s capacity to utilise its internal knowledge. For instance, Li et al. (2023) and
 135 Chen et al. (2024) employ probes or learnable parameters to optimise feature representations within
 136 the LLM. Chang et al. (2025a) imposes constraints on the generative process of LLMs. Cheng et al.
 137 (2025b) implemented a slow-thinking generation process for LLMs through a tree-search-based al-
 138 gorithm, thereby reducing hallucinations during the reasoning process.

138 Prior multi-turn retrieval frameworks such as ReAct (Yao et al., 2023) and Self-RAG (Asai et al.,
 139 2023) interleave retrieval with generation, but they operate only over external documents and cannot
 140 access model-generated intermediate reasoning. In contrast, M^2R retrieves from an internal key-
 141 information repository constructed during the reasoning phase, enabling reuse of model-generated
 142 evidence. Moreover, M^2R explicitly enforces evidence proximity by placing retrieved key facts im-
 143 mediately before answer tokens, mitigating long-context drift, a constraint absent in prior methods.

144 **3 METHOD**

145 Our framework performs *macro retrieval* during reasoning to gather coarse evidence, and *micro*
 146 *retrieval* during answering to query a key-information repository at generation time. With GRPO-
 147 based RL training, the model learns to maintain crucial evidence close to the produced outputs,
 148 improving factual reliability in lengthy contexts.

149 In this section, we first introduce reinforcement learning with integrated micro–macro retrieval
 150 (§3.1). We then detail the micro–macro retrieval process itself, including the design of the train-
 151 ing template and the rule-based reward modeling (§3.2 - §3.3). Finally, we present a curriculum
 152 learning-based training schedule that stabilizes M^2R training (§3.4).

153 **3.1 REINFORCEMENT LEARNING WITH MICRO–MACRO RETRIEVAL**

154 We formulate the RL objective under the proposed micro–macro retrieval framework as follows:

$$\max_{\pi_\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x; \mathcal{R}_{\text{macro}}, \mathcal{R}_{\text{micro}})} \left[r_\phi(x, y) \right] - \beta \mathbb{D}_{\text{KL}} \left[\pi_\theta(y | x; \mathcal{R}_{\text{macro}}, \mathcal{R}_{\text{micro}}) \parallel \pi_{\text{ref}}(y | x; \mathcal{R}_{\text{macro}}, \mathcal{R}_{\text{micro}}) \right], \quad (1)$$

162 where π_θ is the policy LLM, π_{ref} is the reference LLM, r_ϕ is the rule-based reward function, and
 163 \mathbb{D}_{KL} is the KL-divergence regularizer. Here, x denotes input samples from the dataset \mathcal{D} , and y
 164 represents generated outputs conditioned on *macro retrieval* results $\mathcal{R}_{\text{macro}}$ from external sources
 165 and *micro retrieval* results $\mathcal{R}_{\text{micro}}$ from the key information repository constructed during reasoning.
 166

167 Unlike prior retrieval-augmented RL approaches (Chen et al., 2025; Jin et al., 2025), our framework
 168 integrates two-level retrieval directly into the policy with a fixed *macro* → *micro* order:
 169

$$\begin{aligned} \pi_\theta(\cdot | x; \mathcal{R}_{\text{macro}}, \mathcal{R}_{\text{micro}}) &= \pi_\theta^{\text{answer}}(\cdot | x, \mathcal{M}; \mathcal{R}_{\text{micro}}) \circ \pi_\theta^{\text{think}}(\cdot | x; \mathcal{R}_{\text{macro}}), \\ \mathcal{M} &= \text{SaveKey}(\pi_\theta^{\text{think}}(\cdot | x; \mathcal{R}_{\text{macro}})), \end{aligned} \quad (2)$$

172 where \circ denotes **sequential (staged) composition**: the policy first executes the `<think>` phase
 173 with *macro retrieval* to collect coarse-grained evidence and build the key-information repository
 174 \mathcal{M} , and then runs the `<answer>` phase with *micro retrieval* over \mathcal{M} . This staged policy lever-
 175 ages external evidence while keeping key information proximal to the final answer, leading to more
 176 reliable long-form generation.
 177

178 **GRPO with Micro–Macro Retrieval.** We adopt *Group Relative Policy Optimization* (GRPO) as
 179 our RL algorithm. Unlike Proximal Policy Optimization (PPO), which typically trains an auxiliary
 180 value critic, GRPO estimates the baseline from a group of rollouts and therefore avoids an explicit
 181 critic. Given a current policy $\pi_{\theta_{\text{old}}}$ and a fixed reference $\pi_{\theta_{\text{ref}}}$, GRPO draws G rollouts $\{y_i\}_{i=1}^G$ per
 182 input $x \sim \mathcal{D}$. The objective is:
 183

$$\begin{aligned} \mathcal{J}(\theta) &= \mathbb{E}_{x \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | x)} \\ &\quad \frac{1}{G} \sum_{i=1}^G \left[\min \left(\frac{\pi_\theta(y_i | x)}{\pi_{\theta_{\text{old}}}(y_i | x)} A_i, \text{clip} \left(\frac{\pi_\theta(y_i | x)}{\pi_{\theta_{\text{old}}}(y_i | x)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta || \pi_{\theta_{\text{ref}}}) \right], \end{aligned} \quad (3)$$

188 where $A_i = (r_i - \text{mean}(\{r_j\}_{j=1}^G)) / \text{std}(\{r_j\}_{j=1}^G)$ denotes the normalized advantage of the i -th
 189 rollout within the group, ϵ is the clipping threshold, and β is the coefficient for the KL regularization
 190 term. The additional KL penalty prevents the updated policy from drifting too far from the reference
 191 model, stabilizing training and maintaining alignment with the base LLM. In our micro–macro re-
 192 trieval framework, all policy terms in Eq. equation 3 are evaluated under retrieval conditioning; con-
 193 cretely, replace every occurrence of $\pi_\bullet(\cdot | x)$ with $\pi_\bullet(\cdot | x; \mathcal{R}_{\text{macro}}, \mathcal{R}_{\text{micro}})$ (for $\bullet \in \{\theta, \theta_{\text{old}}, \theta_{\text{ref}}\}$).
 194

195 **Rollout with Macro and Micro Retrieval.** Unlike conventional rollouts that contain text-only
 196 reasoning, rollouts in M²R are *staged* as macro → micro. During the `<think>` phase, the policy may
 197 issue multiple macro retrieval calls (e.g., `<macro_tool_call>`) to external sources. Crucially, it
 198 saves *answer-aligned key information* (i.e., the answer to a specific question) into a structured key–
 199 value repository \mathcal{M} using the `<key_info_save>` tag. In the subsequent `<answer>` phase, the
 200 policy performs micro retrieval calls (e.g., `<micro_tool_call>`) by querying \mathcal{M} and conditions
 201 decoding on the returned values so that key information remains proximal to the output tokens and
 202 reduces hallucination in long-form generation.
 203

204 **Retrieval Result Masking.** In standard GRPO, the policy loss is computed over all tokens in a
 205 rollout. In our setting, however, rollouts contain retrieval results that are injected by the environment
 206 (external tools) rather than produced by the policy. To avoid assigning credit to tokens the policy did
 207 not generate, we exclude retrieval-result spans when computing the loss. Concretely, in Eq. 3 we
 208 update gradients only on tokens corresponding to text-based reasoning and the model’s own retrieval
 209 queries, while tokens inside retrieval results are masked out.
 210

211 For implementation, let $m_t \in \{0, 1\}$ be a binary mask (1 for policy-generated tokens; 0 for retrieval
 212 results). We replace sequence log-prob terms with a masked sum,
 213

$$\log \pi_\theta(y | \cdot) \triangleq \sum_t m_t \log \pi_\theta(y_t | y_{<t}, \cdot) / \max(1, \sum_t m_t), \quad (4)$$

214 and analogously form the (masked) log-ratio in Eq. 3. This preserves correct credit assignment,
 215 prevents spurious gradients from environment-injected text, and stabilizes training.
 216

216 **What GRPO Optimizes in M²R.** It is important to clarify that GRPO in M²R does not optimize
 217 the retrieval module itself. Instead, GRPO supervises the model’s generation behavior, teaching it (i)
 218 when to invoke macro- and micro-retrieval, (ii) how to compose and sequence tool calls, (iii) what
 219 key information should be written into the repository during the reasoning process, and (iv) how
 220 retrieved information should be incorporated into the final answer. Since the retrieval component is
 221 not modified by GRPO, M²R remains agnostic to the underlying retrieval system and is compatible
 222 with future improvements in retrieval quality.

223 **3.2 TRAINING TEMPLATE**

224 We describe the training template for both macro and micro retrieval within our framework. The
 225 training process is organized into two stages: macro retrieval in the <think> phase and micro
 226 retrieval in the <answer> phase. The complete prompt template is shown in Table 16.

227 **Macro Retrieval and Key Information Saving.** During the <think> phase, the model issues
 228 multi-turn macro retrieval calls enclosed within <macro_tool_call> tags. The purpose of these
 229 macro calls is to gather coarse-grained evidence from external sources. After retrieving the relevant
 230 information, the model saves the results as key-value pairs using the <key_info_save> tag,
 231 storing them in a structured repository \mathcal{M} , which is accessed later during the <answer> phase.

232 **Micro Retrieval for Final Answer Generation.** In the <answer> phase, the model queries
 233 \mathcal{M} using the <micro_tool_call> tag. The retrieved results are returned within the
 234 <micro_response> tags, which are then used to form the final response. The final answer
 235 must be directly grounded on the results of micro retrieval. This ensures that the answer is based
 236 solely on the key information retrieved, rather than independent reasoning.

237 **3.3 REWARD MODELING**

238 Since there is no supervised reasoning data available, we design a rule-based reward function to
 239 optimize the policy through reinforcement learning. Our reward modeling consists of two primary
 240 components: *format reward* and *answer reward*.

241 • **Format Reward:** The format reward ensures that the model adheres to the predefined structure
 242 specified in the prompt templates for both macro and micro retrievals. Specifically, it checks the
 243 correctness of tag usage (e.g., valid <macro_tool_call> and <key_info_save> during
 244 reasoning, and <micro_tool_call> in the answer phase). It also ensures that every key value
 245 in the final answer is enclosed in \boxed{}.

246 • **Answer Reward:** The answer reward is a combination of three sub-rewards, all of which are
 247 computed using the F1 score:

- 248 – *Final Answer Correctness* (s_{final}): This evaluates the agreement between the model’s final
 249 output (values extracted from \boxed{}) and the ground-truth answer.
- 250 – *Key Information Correctness* (s_{key}): This measures whether the key information stored in
 251 the key-value repository \mathcal{M} aligns with the ground-truth answer, ensuring that only the most
 252 relevant evidence is retained.
- 253 – *Consistency Score* (s_{cons}): This assesses the alignment between the stored key information
 254 and the final output, ensuring that the answer is grounded in the relevant retrieved evidence.

255 The total answer reward is computed as:

$$256 \quad r_{ans} = s_{final} + \alpha s_{key} + \beta s_{cons}, \quad (5)$$

257 Specifically, for the final reward of a rollout:

$$258 \quad r = \begin{cases} r_{ans}, & \text{if F1 score is not 0 and answer is correct,} \\ 259 \quad 0.1, & \text{if F1 score is 0 but format is correct,} \\ 0, & \text{if F1 score is 0 and format is incorrect.} \end{cases} \quad (6)$$

270 3.4 STABILIZING TRAINING WITH CURRICULUM LEARNING
271272 Training a model to integrate macro retrieval, key information saving, and micro retrieval is chal-
273 lenging. In our initial experiments, we found that directly optimizing all components at once often
274 leads to unstable rollouts and poor convergence. To address this issue, we employ a curriculum
275 learning approach, dividing the training into two stages. In the first stage, the model focuses ex-
276clusively on macro retrieval and key information saving, learning to correctly identify relevant in-
277 formation and store it in the predefined structure. In the second stage, we introduce micro retrieval
278 and fine-grained answer grounding, enabling the model to leverage the stored key information when
279 generating the final response.280 This staged training strategy offers several advantages. First, it simplifies the learning process by
281 reducing the complexity at each stage, which leads to improved training stability. Second, it allows
282 the model to progressively build the necessary skills, ensuring that the later micro retrieval steps
283 are built upon a strong foundation of accurate macro retrieval and evidence saving. Finally, this
284 approach encourages the model to generate answers that are not only factually accurate but also
285 grounded in the retrieved evidence, maintaining consistency throughout the reasoning process.286 This staged progression mirrors human reasoning, where individuals typically gather and organize
287 broad information first, and then refine it into precise and reliable answers.288 4 EXPERIMENT
289290 To assess the effectiveness of M^2R , we conduct extensive experiments on multi-hop question an-
291 swering benchmarks that demand multi-step reasoning and repeated retrieval. These settings nat-
292urally induce *Lost in Lengthy Contexts* scenarios. Our method is instantiated on Qwen2.5-3B-
293 Instruct and Qwen2.5-7B-Instruct. Following *ReSearch* (Chen et al., 2025), we train only on the
294 MuSiQue (Trivedi et al., 2022) training split, which offers diverse multi-hop questions curated with
295 fine-grained quality control.296 **Benchmarks** We evaluate M^2R on four standard multi-hop QA benchmarks: HotpotQA (Yang
297 et al., 2018), 2WikiMultiHopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 2022), and Bam-
298 boogle (Press et al., 2023). HotpotQA, 2WikiMultiHopQA, and MuSiQue are automatically con-
299 structed from Wikipedia or Wikidata (Vrandecic & Krötzsch, 2014) with different multi-hop mining
300 strategies and crowd-sourced validation, while Bamboogle is a manually curated set of challenging
301 two-hop questions. For standard evaluation, we use the full development sets of HotpotQA (7,405),
302 2WikiMultiHopQA (12,576), MuSiQue (2,417), and the test set of Bamboogle (125). For the first
303 three benchmarks, we discard the original contexts and only retain question–answer pairs, with re-
304trieval performed from a shared Wikipedia corpus.305 **Baselines** We compare M^2R against several baselines: (1) **No RAG**: directly using the instruction-
306 tuned model to generate answers without retrieval augmentation; (2) **Naive RAG**: a standard
307 retrieval-augmented setup where the retrieved documents are concatenated with the question be-
308fore generation; (3) **Iter-RetGen** (Shao et al., 2023a): an iterative method that interleaves retrieval
309 and generation; (4) **IRCoT** (Trivedi et al., 2023a): an interleaving method, which use retrieval and
310 the chain-of-thought (CoT) guide each other. (5) **COFT** (Lv et al., 2024b): a coarse-to-fine frame-
311 work that highlights key reference contexts to mitigate the problem of getting lost in lengthy inputs.
312 (6) **SURE** (Kim et al., 2024b): generates summaries of retrieved passages for multiple answer can-
313 didates, and then selects the most plausible answer by evaluating and ranking these summaries.
314 (7) **ReSearch** (Chen et al., 2025): a reinforcement learning–based framework that trains LLMs to
315 reason with multi-turn search, serving as a strong baseline.316 **Evaluation Metrics** To assess the correctness of the final answers, we adopt two complementary
317 metrics. First, we report Exact Match (*EM*), which considers a prediction correct only if it exactly
318 matches the ground-truth answer. While straightforward, *EM* is often too rigid for our setting, since
319 the retrieval environment is open-ended and the generated answers are expressed in natural lan-
320guage. To address this limitation, we further employ an LLM-as-a-judge (*LJ*) metric. Specifically,
321 we use `gpt-4o-mini` with a tailored judging prompt to evaluate whether a predicted answer is
322 semantically consistent with the ground truth. The full judge prompt is provided in Appendix C.

324

5 RESEARCH QUESTIONS

325

RQ 1: ANSWER CORRECTNESS

326 *328 Does M^2R improve answer correctness compared to existing RAG methods on multi-hop QA tasks?*329 The main results of baselines and ReSearch are demonstrated in Table 1, and we show the methods based on LLMs with different sizes respectively. Compared with all baseline methods, M^2R 330 consistently achieves superior performance across multi-hop QA benchmarks, demonstrating the 331 effectiveness of integrating both macro and micro retrieval. Specifically, M^2R significantly outper- 332 forms the strongest baseline, *ReSearch*, which performs retrieval solely during the `<think>` phase. 333

334 These results verify that explicitly re-accessing key information through micro retrieval not only 335 improves factual grounding but also enhances the correctness of the final output. 336

337

338 Table 1: Exact Match (EM, %) and LLM-as-a-Judge (LJ, %) results on multi-hop question answer- 339 ing benchmarks. The best results are highlighted in bold.

341 Model	342 HotpotQA		343 2Wiki		344 MuSiQue		345 Bamboogle	
	346 <i>EM</i>	347 <i>LJ</i>	348 <i>EM</i>	349 <i>LJ</i>	350 <i>EM</i>	351 <i>LJ</i>	352 <i>EM</i>	353 <i>LJ</i>
354 <i>Qwen2.5-3B-Instruct</i>								
355 Naive Generation	12.05	18.45	356 10.09	357 19.79	358 2.62	359 6.08	360 5.01	361 8.50
362 Naive RAG	363 21.04	364 37.23	365 13.82	366 23.08	367 4.14	368 10.32	369 14.43	370 20.00
371 Iter-RetGen	372 24.63	373 42.22	374 14.75	375 28.86	376 6.91	377 13.43	378 16.03	379 22.61
380 IRCOT	381 23.63	382 40.60	383 12.50	384 23.54	385 4.39	386 10.83	387 17.60	388 26.13
389 COFT	390 36.17	391 50.88	392 32.82	393 39.76	394 13.49	395 20.11	396 25.30	397 31.38
398 SURE	399 35.44	400 51.23	401 36.20	402 42.38	403 17.24	404 27.61	405 31.20	406 39.95
407 ReSearch	408 38.78	409 55.70	410 38.90	411 47.41	412 19.40	413 31.56	414 38.11	415 48.12
416 M^2R -Qwen-3B-Instruct	417 38.70	418 56.46	419 40.07	420 48.34	421 20.87	422 32.97	423 39.58	424 47.20
425 <i>Qwen2.5-7B-Instruct</i>								
426 Naive Generation	427 19.18	428 30.64	429 25.76	430 27.87	431 3.76	432 10.38	433 10.40	434 22.40
435 Naive RAG	436 31.90	437 49.59	438 25.78	439 29.52	440 6.21	441 12.78	442 20.80	443 32.00
444 Iter-RetGen	445 34.36	446 52.22	447 27.92	448 31.86	449 8.69	450 16.14	451 21.60	452 35.20
453 IRCOT	454 30.33	455 52.06	456 21.57	457 30.65	458 6.99	459 14.19	460 24.80	461 36.80
463 COFT	464 41.08	465 61.71	466 41.86	467 48.70	468 17.12	469 26.28	470 35.71	471 49.23
474 SURE	475 39.56	476 60.16	477 45.65	478 53.93	479 20.87	480 32.24	481 39.58	482 52.81
485 ReSearch	486 43.52	487 63.62	488 47.59	489 54.22	490 22.30	491 33.43	492 42.40	493 54.40
496 M^2R -Qwen-7B-Instruct	497 44.11	498 65.98	499 48.89	500 57.01	501 24.12	502 35.44	503 44.56	504 56.89

362

RQ 2: HALLUCINATION REDUCTION

363 *366 Can M^2R effectively reduce hallucinations under more challenging long-context scenarios?*367 To further stress-test the ability of M^2R , we move beyond standard single-question inference and 368 construct harder evaluation settings on the HotpotQA dataset. Specifically, we concatenate mul- 369 tiple questions into a single inference instance—denoted as HotpotQA-2Q (two questions) and 370 HotpotQA-3Q (three questions)—requiring the model to answer them jointly within one rollout. 371 This setting substantially increases reasoning depth, retrieval calls, and contextual redundancy, 372 thereby amplifying the difficulty of maintaining factual consistency.373 We evaluate this setting with Qwen2.5-3B-Instruct, and results are shown in Figure 2. M^2R 374 consistently outperforms all baselines as the number of questions increases. While naive RAG and 375 ReSearch suffer from rapidly rising hallucination rates, M^2R maintains stable accuracy and substan- 376 tially lower hallucinations. This robustness comes from its retrieve-while-generate paradigm, where 377 micro retrieval continually re-anchors key evidence close to the outputs, making M^2R especially 378 effective in high-redundancy, long-context scenarios.

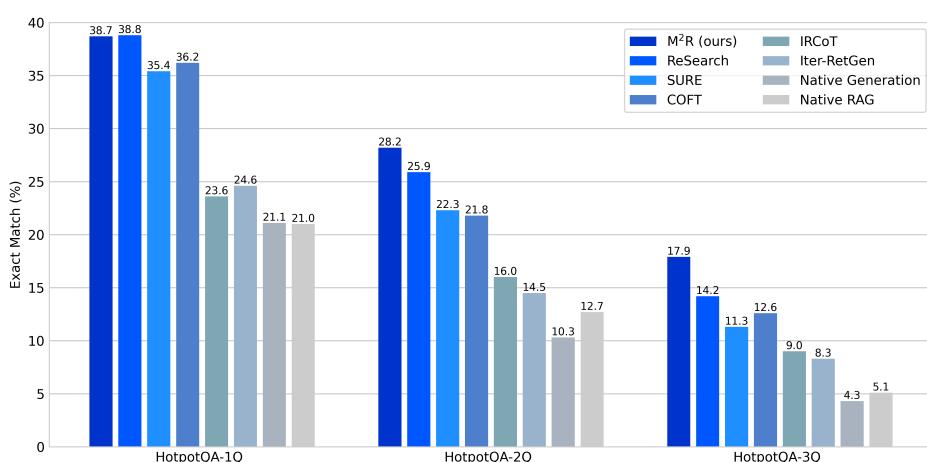


Figure 2: Performance on HotpotQA under multi-question inference settings. Here, HotpotQA-2Q denotes concatenating two questions into a single inference instance.

RQ 3: ABLATION STUDY

How critical is the retrieve-while-generate design in M²R?

To validate the contribution of micro retrieval, we compare our framework with a simplified variant that removes the retrieve-while-generate mechanism. In this baseline, when the model enters the `<answer>` phase, all saved key information from the repository \mathcal{M} is provided to the model at once. The model then generates the full answer based on this one-shot grounding, without invoking micro retrieval during generation. In contrast, M²R performs on-demand micro retrieval: at each step of answer generation, the model can selectively fetch only the relevant key information and re-anchor it immediately before producing the corresponding output tokens.

Results in Table 2 show that one-shot grounding yields weaker factual consistency, as injected evidence can be diluted by redundant reasoning tokens. In contrast, the retrieve-while-generate paradigm achieves more stable performance by inserting evidence precisely where needed. These results confirm that on-demand grounding is crucial for mitigating hallucination in long-form tasks.

RQ 4: REWARD DYNAMICS

How does M²R evolve in terms of reward during reinforcement learning?

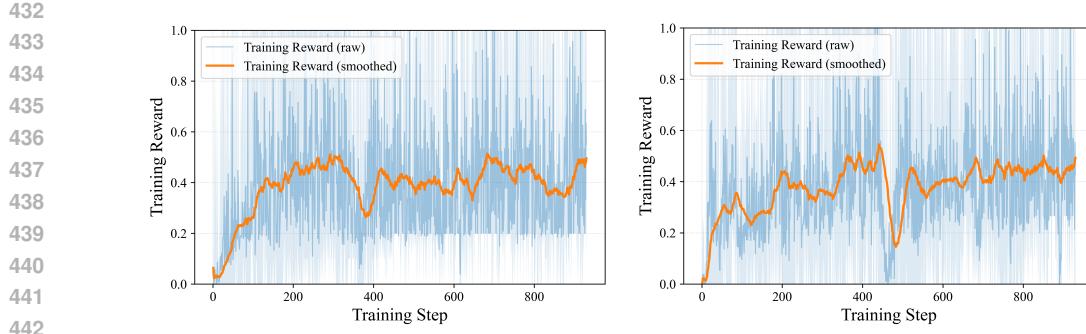
To further understand the training dynamics of M²R, we analyze the reward curves during reinforcement learning, as shown in Figure 3. In the initial stage, the Qwen2.5-7B-Instruct model exhibits a much sharper increase in reward compared to the Qwen2.5-3B-Instruct model, demonstrating its stronger capacity to quickly adapt to the retrieve-while-generate paradigm. However, as training progresses, the reward growth of the Qwen2.5-3B-Instruct model gradually catches up, and both models eventually converge to a similar level. This suggests that while larger models can accelerate early adaptation, the long-term reward dynamics between different scales tend to align.

RQ 5: CASE STUDY

To provide a clearer view of how M²R operates in practice, Table 3 presents a simplified case study drawn from the evaluation set. This example demonstrates the reasoning and retrieval process of Qwen2.5-7B-Instruct under our framework. The text within `<think>` tags reflects the model’s intermediate reasoning, while macro retrieval operations are invoked via `<macro_tool_call>` tags. Key evidence, directly aligned with the target answer, is ex-

Table 2: Ablation study on M²R.

Variant	EM (%)	LJ (%)
Full M ² R	24.12	35.44
- One-shot Grounding	23.38	34.72

(a) Reward curve of M^2R with 3B backbone. (b) Reward curve of M^2R with 7B backbone.Figure 3: Reward dynamics of M^2R during reinforcement learning.Table 3: A simplified case study of M^2R on a test instance.

Question: Guest 101 wants to book any available suite room and needs to know both the total price after VIP discount and the room number with the lowest payable amount.

Answer: 180.0, Room 301

```

<think> First, I need to find an available suite room. Then I will calculate the price
and apply the VIP discount for Guest 101. </think>
<macro_tool_call>
  "name": "get_available_rooms", "room_type": "suite"
</macro_tool_call>
<macro_result> "number": 301, "type": "suite", "price": 200.0, "available": True; "number": 302, "type": "suite", "price": 220.0, "available": True
</macro_result>
<think> Rooms 301 and 302 are available. Their prices are 200.0 and 220.0, re-
spectively. With a 10% VIP discount, the payable amounts would be 180.0 and 198.0.
</think>
<macro_tool_call>
  "name": "get_guest_vip_status", "guest_id": 101
</macro_tool_call>
<macro_result> True </macro_result>
<think> Guest 101 is confirmed as VIP. The lowest final payable amount is 180.0
for Room 301. </think>
<key_info_save>
  "finalPayableAmount": "180.0", "RoomNumber": "301"
</key_info_save>
<think> I have obtained both the final payable amount and the room number with
the lowest cost. I will now proceed to the answering phase. </think>
<answer>
  <micro_tool_call>           "query":           "finalPayableAmount"
  </micro_tool_call>
  <micro_response>"finalPayableAmount":"180.0"</micro_response>
  The requested final payable amount is \boxed{180.0}.
  <micro_tool_call> "query": "RoomNumber" </micro_tool_call>
  <micro_response>"RoomNumber":"301"</micro_response>
  The suite room with the lowest payable amount is \boxed{301}.
</answer>

```

484 plicitly preserved using `<key_info_save>` tags. In the final `<answer>` phase, the model
485 invokes `<micro_tool_call>` to retrieve the stored key values, which are returned in
`<micro_response>` and faithfully incorporated into the output. This case illustrates how M^2R

486 decomposes a question into manageable steps, preserves essential evidence, and grounds the final
 487 prediction through micro retrieval. By positioning the supporting evidence close to the generated
 488 answer, the framework effectively reduces hallucinations and strengthens factual consistency.
 489

490 RQ 6: INFERENCE COST AND EFFICIENCY

492 *What is the inference-time overhead of M^2R , and how efficient is the micro–macro retrieval frame-
 493 work in practice?*

494 To understand the computational cost of M^2R , we measure (1) the number of model invocations per
 495 query, and (2) the end-to-end latency under standard inference settings. We separate the analysis
 496 into the `<think>` (macro retrieval) and `<answer>` (micro retrieval) phases.
 497

498 **Model Invocations.** Table 4 reports the average number of model calls using Qwen2.5-3B-
 499 Instruct. Most invocations originate from the `<think>` phase—a cost shared by all multi-turn
 500 tool-based RAG frameworks. The additional overhead introduced by M^2R is only 1–2 micro-
 501 retrieval calls, corresponding to roughly a 20–30% relative increase. Micro retrieval itself is ex-
 502 tremely lightweight, as it performs a rule-based lookup over a small, local repository.

Dataset	Think	Answer	Total	Min	Max
HotpotQA	3.7	1.4	5.1	3	6
2Wiki	4.5	1.7	6.2	3	10
MuSiQue	5.7	1.9	7.6	4	9
Bamboogle	3.5	1.3	4.8	2	6

509
 510 Table 4: Average number of model invocations per query.
 511

512 **End-to-End Latency.** We benchmark real inference time, including all tool-calling and retrieval
 513 overhead, shown in Table 5. M^2R increases latency by less than 10% on average compared to
 514 ReSearch, while delivering significantly higher answer accuracy.

Dataset	Avg Invocations	Inference Time (s)
HotpotQA	5.1	≈4.7
2Wiki	6.2	≈5.2
MuSiQue	7.6	≈6.8
Bamboogle	4.8	≈4.6

522 Table 5: Measured inference time of M^2R (Qwen2.5-3B + SGLang, 4×A100).
 523
 524

525 6 CONCLUSION AND FUTURE WORK

527 This work introduced Micro–Macro Retrieval (M^2R), a novel retrieve-while-generate framework
 528 that integrates *macro retrieval* during reasoning with *micro retrieval* during answering. By explic-
 529 itely preserving and reusing key evidence close to the outputs, M^2R directly addresses the “Lost in
 530 Lengthy Contexts” problem, leading to substantial gains in factual consistency and reduced hal-
 531 lucination over strong baselines. For future work, one direction is to move beyond simple rule-
 532 based rewards and incorporate learned reward models that better capture factuality, coherence, and
 533 grounding. Another is to further refine micro retrieval, for example by dynamically optimizing the
 534 proximity between evidence and output tokens. Finally, extending M^2R with richer tool use, diverse
 535 external sources, and multimodal capabilities would broaden its applicability and robustness.

536 ETHICS STATEMENT

538 Our work focuses on improving the factual consistency and reliability of LLMs in multi-hop ques-
 539 tion answering and retrieval-augmented generation. All experiments are conducted on publicly

540 available datasets (HotpotQA, 2WikiMultiHopQA, MuSiQue, and Bamboogle), which do not contain personally identifiable information or sensitive human-subject data. We do not introduce new data collection involving human participants. Our research complies with the ICLR Code of Ethics, and we see no direct risks regarding privacy, discrimination, or legal compliance.

545 REPRODUCIBILITY STATEMENT

546 We make extensive efforts to ensure the reproducibility of our results.

- 547 • **Model and Training:** We describe the reinforcement learning setup (GRPO with micro-macro retrieval), training templates, and reward modeling details in Section 3, with additional hyperparameters in Appendix D.
- 548 • **Datasets:** All datasets used (HotpotQA, 2WikiMultiHopQA, MuSiQue, Bamboogle) are publicly available; we detail preprocessing and evaluation protocols in Section 4.
- 549 • **Code and Implementation:** To facilitate reproducibility, we provide an anonymous link to the source code and experimental scripts in the supplementary material.

550 Together, these measures allow independent researchers to reproduce our results and verify the claims made in this paper.

561 REFERENCES

562 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
563 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
564 report. *arXiv preprint arXiv:2303.08774*, 2023.

565 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning
566 to retrieve, generate, and critique through self-reflection, 2023. URL <https://arxiv.org/abs/2310.11511>.

567 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
568 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

569 Yurui Chang, Bochuan Cao, and Lu Lin. Monitoring decoding: Mitigating hallucination via eval-
570 uating the factuality of partial response during generation. In *Findings of the Association for
571 Computational Linguistics: ACL 2025*, pp. 14574–14587, July 2025a.

572 Yurui Chang, Bochuan Cao, and Lu Lin. Monitoring decoding: Mitigating hallucination via eval-
573 uating the factuality of partial response during generation. *arXiv preprint arXiv:2503.03106*, 2025b.

574 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
575 Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
576 ment learning. *arXiv preprint arXiv:2503.19470*, 2025.

577 Zhongzhi Chen, Xingwu Sun, Xianfeng Jiao, Fengzong Lian, Zhanhui Kang, Di Wang, and Cheng-
578 Zhong Xu. Truth forest: toward multi-scale truthfulness in large language models through in-
579 tervention without tuning. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial
580 Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and
581 Fourteenth Symposium on Educational Advances in Artificial Intelligence*, 2024.

582 Xiaoxue Cheng, Junyi Li, Wayne Xin Zhao, and Ji-Rong Wen. Think more, hallucinate less: Mitig-
583 ating hallucinations via dual process of fast and slow thinking. *arXiv preprint arXiv:2501.01306*,
584 2025a.

585 Xiaoxue Cheng, Junyi Li, Xin Zhao, and Ji-Rong Wen. Think more, hallucinate less: Mitigating
586 hallucinations via dual process of fast and slow thinking. In *Findings of the Association for
587 Computational Linguistics: ACL 2025*, pp. 7979–7990, July 2025b.

594 Yung-Sung Chuang, Linlu Qiu, Cheng-Yu Hsieh, Ranjay Krishna, Yoon Kim, and James R. Glass.
 595 Lookback lens: Detecting and mitigating contextual hallucinations in large language models using
 596 only attention maps. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
 597 Language Processing*, pp. 1419–1436, November 2024.

598 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
 599 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
 600 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023.

602 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 603 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 604 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

605 Junqing He, Kunhao Pan, Xiaoqun Dong, Zhuoyang Song, Yibo Liu, Qianguo Sun, Yuxin Liang,
 606 Hao Wang, Enming Zhang, and Jiaxing Zhang. Never lost in the middle: Mastering long-
 607 context question answering with position-agnostic decompositional training. *arXiv preprint
 608 arXiv:2311.09198*, 2023.

610 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A multi-
 611 hop QA dataset for comprehensive evaluation of reasoning steps. In *COLING*, pp. 6609–6625.
 612 International Committee on Computational Linguistics, 2020.

613 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 614 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 615 2024.

616 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
 617 domain question answering. In *Proceedings of the 16th Conference of the European Chapter of
 618 the Association for Computational Linguistics: Main Volume*, pp. 874–880, April 2021.

620 Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
 621 Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: few-shot learning
 622 with retrieval augmented language models. *J. Mach. Learn. Res.*, 24(1), January 2023. ISSN
 623 1532-4435.

624 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 625 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 626 learning. *arXiv preprint arXiv:2503.09516*, 2025.

628 Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang, and Zhicheng Dou. Flashrag: A modular
 629 toolkit for efficient retrieval-augmented generation research. *CoRR*, abs/2405.13576, 2024.

630 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu, Sergey Edunov,
 631 Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
 632 *EMNLP (1)*, pp. 6769–6781. Association for Computational Linguistics, 2020.

634 Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo
 635 Ha, and Jinwoo Shin. Sure: Summarizing retrievals using answer candidates for open-domain
 636 qa of llms. In *International Conference on Representation Learning*, volume 2024, pp. 15213–
 637 15245, 2024a.

638 Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo
 639 Ha, and Jinwoo Shin. Sure: Summarizing retrievals using answer candidates for open-domain qa
 640 of llms. *arXiv preprint arXiv:2404.13081*, 2024b.

641 Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. The
 642 dawn after the dark: An empirical study on factuality hallucination in large language models.
 643 In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
 644 (Volume 1: Long Papers)*, pp. 10879–10899, August 2024.

646 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
 647 time intervention: Eliciting truthful answers from a language model. In *Advances in Neural
 648 Information Processing Systems*, volume 36, pp. 41451–41530, 2023.

648 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 649 Percy Liang. Lost in the middle: How language models use long contexts. *arXiv preprint*
 650 *arXiv:2307.03172*, 2023.

651 Zihang Liu, Jiawei Guo, Hao Zhang, Hongyang Chen, Jiajun Bu, and Haishuai Wang. Long-form
 652 hallucination detection with self-elicitation. In *Findings of the Association for Computational*
 653 *Linguistics: ACL 2025*, pp. 4082–4100, July 2025a.

654 Zihang Liu, Jiawei Guo, Hao Zhang, Hongyang Chen, Jiajun Bu, and Haishuai Wang. Long-form
 655 hallucination detection with self-elicitation. In *Findings of the Association for Computational*
 656 *Linguistics: ACL 2025*, pp. 4082–4100, 2025b.

657 Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine
 658 highlighting: Reducing knowledge hallucination in large language models. *arXiv preprint*
 659 *arXiv:2410.15116*, 2024a.

660 Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine high-
 661 lighting: Reducing knowledge hallucination in large language models, 2024b. URL <https://arxiv.org/abs/2410.15116>.

662 Seongheon Park, Xuefeng Du, Min-Hsuan Yeh, Haobo Wang, and Yixuan Li. Steer lilm latents for
 663 hallucination detection. In *Forty-second International Conference on Machine Learning, ICML*
 664 2025, 2025.

665 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
 666 and narrowing the compositionality gap in language models. In *EMNLP (Findings)*, pp. 5687–
 667 5711. Association for Computational Linguistics, 2023.

668 Chengwei Qin, Wenzuan Zhou, Karthik Abinav Sankararaman, Nanshu Wang, Tengyu Xu, Alexan-
 669 der Radovic, Eryk Helenowski, Arya Talebzadeh, Aditya Tayade, Sinong Wang, Shafiq Joty, Han
 670 Fang, and Hao Ma. Learning auxiliary tasks improves reference-free hallucination detection in
 671 open-domain long-form generation. In *Proceedings of the 63rd Annual Meeting of the Association*
 672 *for Computational Linguistics (Volume 2: Short Papers)*, pp. 1173–1182, July 2025.

673 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
 674 retrieval-augmented large language models with iterative retrieval-generation synergy. In *EMNLP*
 675 *(Findings)*, pp. 9248–9274. Association for Computational Linguistics, 2023a.

676 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
 677 retrieval-augmented large language models with iterative retrieval-generation synergy. In *Find-*
 678 *ings of the Association for Computational Linguistics: EMNLP 2023*, pp. 9248–9274, December
 679 2023b.

680 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 681 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 682 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

683 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 684 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient RLHF framework. *CoRR*,
 685 [abs/2409.19256](https://arxiv.org/abs/2409.19256), 2024.

686 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
 687 Zettlemoyer, and Wen-tau Yih. REPLUG: Retrieval-augmented black-box language models. In
 688 *Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-*
 689 *putational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 8371–8384,
 690 June 2024.

691 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 692 hanced transformer with rotary position embedding, 2021. URL <https://arxiv.org/abs/2104.09864>.

693 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 694 questions via single-hop question composition. *Trans. Assoc. Comput. Linguistics*, 10:539–554,
 695 2022.

702 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 703 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *ACL (1)*,
 704 pp. 10014–10037. Association for Computational Linguistics, 2023a.
 705

706 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 707 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In *Pro-
 708 ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
 709 Long Papers)*, pp. 10014–10037, July 2023b.

710 Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. *Commun.
 711 ACM*, 57(10):78–85, 2014.
 712

713 Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan
 714 Sung, Denny Zhou, Quoc Le, et al. Freshllms: Refreshing large language models with search
 715 engine augmentation. *arXiv preprint arXiv:2310.03214*, 2023.

716 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 717 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *CoRR*,
 718 abs/2212.03533, 2022.
 719

720 Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian Ma, and Yitao Liang. Rat: Retrieval
 721 augmented thoughts elicit context-aware reasoning in long-horizon generation. *arXiv preprint
 722 arXiv:2403.05313*, 2024.

723 Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi
 724 Peng, Ruibo Liu, Da Huang, et al. Long-form factuality in large language models. *Advances in
 725 Neural Information Processing Systems*, 37:80756–80827, 2024.

726 Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
 727 compression and selective augmentation. *arXiv preprint arXiv:2310.04408*, 2023.
 728

729 Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
 730 context compression and selective augmentation. In *International Conference on Representation
 731 Learning*, volume 2024, pp. 43478–43502, 2024.

732 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 733 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 734 answering. In *EMNLP*, pp. 2369–2380. Association for Computational Linguistics, 2018.
 735

736 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 737 React: Synergizing reasoning and acting in language models, 2023. URL <https://arxiv.org/abs/2210.03629>.
 738

739 Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
 740 large language models. *arXiv preprint arXiv:2411.19443*, 2024a.
 741

742 Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
 743 large language models, 2024b. URL <https://arxiv.org/abs/2411.19443>.
 744

745 Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, and Dong Yu.
 746 Chain-of-note: Enhancing robustness in retrieval-augmented language models. *arXiv preprint
 747 arXiv:2311.09210*, 2023.

748 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
 749 Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on hallucination in large
 750 language models. *Computational Linguistics*, pp. 1–46, 2025.
 751

752 Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu,
 753 Zhangyang Wang, et al. Found in the middle: How language models use long contexts better
 754 via plug-and-play positional encoding. *Advances in Neural Information Processing Systems*, 37:
 755 60755–60775, 2024.

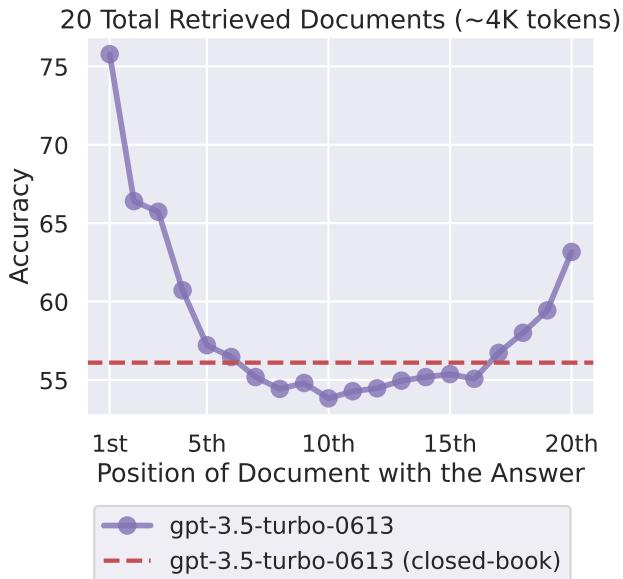
756 Yang Zhong and Diane Litman. Discourse-driven evaluation: Unveiling factual inconsistency in
 757 long document summarization. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of*
 758 *the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational*
 759 *Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 2050–2073, April
 760 2025.

761 762 A USE OF LARGE LANGUAGE MODELS (LLMs)

763 In preparing this work, we used large language models (LLMs) solely for improving the clarity and
 764 readability of the writing. Specifically, LLMs were employed as an assistant for language polishing,
 765 grammar checking, and style refinement. All research ideas, methodology design, experiments,
 766 analyses, and conclusions were conceived, implemented, and validated entirely by the authors with-
 767 out the involvement of LLMs. We take full responsibility for the content of this paper.

768 B A POSITIONAL ENCODING PERSPECTIVE ON KEY- INFORMATION 769 PROXIMITY

770 Empirical studies have shown that large language models often struggle to effectively use informa-
 771 tion located far from the prediction site, a phenomenon sometimes referred to as “lost in the middle”
 772 (Liu et al., 2023). As shown in Figure 4, the accuracy of GPT-3.5 on QA tasks decreases markedly
 773 when the answer-bearing document is positioned in the middle of the context. This observation
 774 underscores that the *proximity of key information to output tokens plays a critical role in ensuring*
 775 *factual reliability*. Motivated by this observation, while the position of early inputs is largely fixed,
 776 we propose to actively adjust the placement of critical evidence closer to the output tokens, which
 777 directly inspired the design of our micro retrieval mechanism.



802 Figure 4: Effect of answer position on model accuracy (figure taken from Liu et al. (2023)). Accu-
 803 racy declines sharply as the answer-bearing evidence appears in the middle of the context.

804 We also provide a theoretical explanation of this effect from a positional encoding perspective.

805
 806 **RoPE and Relative Position Encoding.** Rotary Position Embeddings (RoPE) (Su et al., 2021)
 807 encode relative positions by rotating query and key vectors in the complex plane. For a query at
 808 position m and key at position n , the inner product is:
 809

$$q_m = R_{\theta,m} W_q x_m = R_{\theta,m} q, \quad k_n = R_{\theta,n} W_k x_n = R_{\theta,n} k, \quad (7)$$

$$q_m \cdot k_n = (R_{\theta,m} q)^\top (R_{\theta,n} k) = q^\top R_{\theta,m-n} k, \quad (8)$$

where $R_{\theta,m}$ is a block-diagonal rotation matrix with components

$$R_{\theta_i,m} = \begin{bmatrix} \cos(m\theta_i) & -\sin(m\theta_i) \\ \sin(m\theta_i) & \cos(m\theta_i) \end{bmatrix}, \quad \theta_i = b^{-\frac{2i}{d}}. \quad (9)$$

Spectral Decomposition. The dot product can be decomposed into $d/2$ sinusoidal components with distinct frequencies θ_i :

$$q_m \cdot k_n = \sum_{i=0}^{d/2-1} (q_{2i} k_{2i} \cos(\Delta\theta_i) + q_{2i+1} k_{2i+1} \sin(\Delta\theta_i)), \quad (10)$$

where $\Delta = m - n$ is the relative distance. High-frequency components oscillate rapidly and cancel out when Δ is large, while low-frequency components dominate at shorter distances. This spectral bias makes attention contributions stronger for nearby tokens than for distant ones.

Proposition B.1. *For RoPE-based attention, the expected contribution of evidence tokens decreases monotonically with their distance to the output position. Hence, key information placed closer to the outputs is more likely to be faithfully incorporated into generation, providing a theoretical justification for the effectiveness of key-information proximity.*

Discussion. This analysis shows that proximity is not only an empirical observation but also a theoretical consequence of how positional encoding interacts with attention. Placing key information closer to output tokens mitigates the risk of dilution by redundant context and reduces the chance of being forgotten in long reasoning chains. This provides a formal foundation for the design of our micro–macro retrieval framework, which explicitly manages evidence placement to improve factual consistency.

C PROMPT FOR LLM-AS-A-JUDGE

Table 6 presents the exact prompt we used to evaluate model responses under the LLM-as-a-Judge setting, ensuring consistency and reproducibility of the evaluation process.

D IMPLEMENTATION DETAILS

Implementation Details. We build our reinforcement learning framework upon `ver1` (Sheng et al., 2024). For training, we use the MuSiQue dataset, restricting to the training split (19,938 samples), and train the models for two epochs. The retrieval environment is implemented with FlashRAG (Jin et al., 2024), a standard toolkit for retrieval-augmented generation. Following Research, we adopt E5-base-v2 (Wang et al., 2022) as the dense retriever and use the December 2018 Wikipedia snapshot as the underlying knowledge base (Karpukhin et al., 2020). All document embeddings and indexes are preprocessed by FlashRAG. During both training and evaluation rollouts, we retrieve the top-5 passages for each query. For baseline systems, we directly use the implementations provided by FlashRAG to ensure fairness. In Eq. 5, we set $\alpha = \frac{1}{3}$ and $\beta = \frac{1}{10}$, as these values were found to provide a good balance between final answer correctness, key information preservation, and consistency after empirical validation in preliminary experiments.

To further improve reproducibility and transparency, we provide additional implementation details regarding hardware, environment configuration, and experimental settings. These specifications will also be included in the publicly released code.

Hardware Requirements. All models were trained on $8 \times$ A100 40GB GPUs. All inference experiments were conducted on $4 \times$ A100 40GB GPUs using the SGLang serving framework.

Random Seeds. All experiments were run with a fixed random seed of 42 to ensure determinism and reproducibility where possible.

These details ensure that future researchers can reliably reproduce both the training and inference pipelines of M²R. We show some important parameter settings during training in Table 7.

864

865

Table 6: Prompt for LLM-as-a-Judge.

866

867

Prompt Template

868

869

870

871

872

You will be given a question and its ground truth answer list where each item can be a ground truth answer. Provided a pred_answer, you need to judge if the pred_answer correctly answers the question based on the ground truth answer list. You should first give your rationale for the judgement, and then give your judgement result (i.e., correct or incorrect).

873

Here is the criteria for the judgement:

874

1. The pred_answer doesn't need to be exactly the same as any of the ground truth answers, but should be semantically same for the question.

875

2. Each item in the ground truth answer list can be viewed as a ground truth answer for the question, and the pred_answer should be semantically same to at least one of them.

876

question: {question}

877

ground truth answers: {gt_answer}

878

pred_answer: {pred_answer}

879

The output should in the following json format:

880

```json

881

```
{
 "rationale": "your rationale for the judgement, as a text",
 "judgement": "your judgement result, can only be 'correct' or 'incorrect'"
}
```

882

```

883

Your output:

884

885

886

887

888

889

890

Table 7: Implementation details of M^2R .

891

892

Parameter	Value
Learning Rate	1e-6
Train Batch Size	256
Number of Training Epochs	2
Number of Rollout	5
Rollout Temperature	1.0
KL Loss Coefficient	0.001
Clip Ratio	0.2

893

894

895

896

897

898

899

900

901

E ADDITIONAL EXPERIMENTS

902

E.1 EXTENDED MODEL FAMILIES AND MULTI-QUESTION REASONING BENCHMARKS

903

To further assess the empirical coverage of M^2R , we conduct additional experiments on (1) larger and different model families, and (2) more challenging long-form settings. These results complement the main experiments and address concerns regarding generalizability and training sufficiency.

904

905

906

907

908

909

910

911

We evaluate M^2R on two additional models, Llama-3.1-8B-Instruct and Mistral-7B-Instruct. As shown in Table 8, M^2R consistently outperforms ReSearch across both model families, with an average improvement of 1.03%.

912

913

914

915

916

917

Long-Form Multi-Question Benchmarks. To evaluate the effectiveness of M^2R under longer reasoning chains, we extend each dataset by concatenating multiple questions (3Q and 5Q). As

Llama-3.1-8B-Instruct				
Method	HotpotQA	2Wiki	MuSiQue	Bamboogle
Naive Generation	18.1	24.7	4.4	11.6
Naive RAG	34.2	31.3	9.8	20.9
COFT	38.4	39.5	15.8	32.5
SURE	39.3	42.0	18.7	37.8
ReSearch	42.2	45.8	20.9	43.1
M²R	43.0	47.2	22.1	42.9
Mistral-7B-Instruct				
Method	HotpotQA	2Wiki	MuSiQue	Bamboogle
Naive Generation	21.9	28.8	7.7	12.5
Naive RAG	34.5	31.2	11.3	25.4
COFT	43.5	45.5	18.5	40.3
SURE	42.6	47.7	21.2	42.8
ReSearch	45.0	49.1	23.7	45.5
M²R	45.6	50.0	25.5	46.0

Table 8: Exact Match results on additional model families.

shown in Table 9, M²R achieves the largest gains under these extended settings, validating the benefit of micro retrieval in maintaining localized evidence for deeper reasoning.

Method	HotpotQA-3Q	2Wiki-3Q	MuSiQue-3Q	Bamboogle-3Q
Naive Generation	13.1	17.5	4.3	7.1
Naive RAG	20.6	16.9	5.1	15.2
COFT	24.5	27.2	12.6	22.0
SURE	28.3	31.5	11.3	25.5
ReSearch	30.2	33.9	14.2	28.0
M²R	32.0	35.8	17.9	30.6
Method	HotpotQA-5Q	2Wiki-5Q	MuSiQue-5Q	Bamboogle-5Q
Naive Generation	5.5	4.5	0.7	1.8
Naive RAG	8.2	7.7	2.3	4.5
COFT	9.5	11.1	3.5	9.5
SURE	13.1	14.8	4.8	10.7
ReSearch	13.9	17.0	5.7	12.8
M²R	15.4	18.5	8.4	14.9

Table 9: Performance under multi-question reasoning (3Q and 5Q).

These additional results demonstrate that M²R generalizes robustly across model families and remains effective under substantially longer reasoning chains.

E.2 ADDITIONAL ANALYSIS OF FLASHRAG CONFIGURATION AND RETRIEVAL ABLATIONS

This section provides additional details of the FlashRAG configuration, ablations on retrieval hyper-parameters, and token statistics during inference. These analyses complement the main results and demonstrate that M²R is robust to retrieval settings.

FlashRAG Configuration. To ensure fair comparison and avoid introducing retrieval-side advantages, we strictly follow the official FlashRAG and Re-Search configuration without modification:

- **Knowledge Base:** FlashRAG’s December 2018 Wikipedia snapshot.
- **Chunk Size:** \sim 100-word passages (default).

972 • **Retriever:** E5-base-v2 dense retriever.
 973

974 This ensures that improvements from M^2R stem from its generation-side retrieval mechanism rather
 975 than retrieval tuning.
 976

978 **Ablations on Retrieval Settings.** We ablate two key FlashRAG parameters—retrieve-top- k and
 979 chunk size—on 2Wiki using Qwen2.5-3B. As shown in Table 10, M^2R consistently outperforms
 980 ReSearch across all configurations, demonstrating strong robustness to retrieval hyperparameters.
 981

	Retrieve-Top- k	Naive RAG	ReSearch	M^2R
984	3	13.5	37.2	38.3
985	5 (default)	13.8	38.9	40.1
986	8	13.6	38.0	39.4

	Chunk Size	Naive RAG	ReSearch	M^2R
988	50	13.4	38.1	39.4
989	100 (default)	13.8	38.9	40.1
990	150	13.9	38.4	39.7

993 Table 10: Ablations on retrieve-top- k and chunk size for FlashRAG.
 994
 995
 996

997 **Token Statistics During Inference.** To analyze whether M^2R alleviates long-form reasoning
 998 constraints, we report input and output token statistics in Table 11. “Input Tokens” represent question
 999 tokens only, whereas “Output Tokens” include both reasoning chains and final answers (excluding
 1000 retrieved passages).

1001 Dataset	1002 Input Tokens	1003 Output Tokens (ReSearch)	1004 Output Tokens (M^2R)
1004 HotpotQA	25	416	432
1005 MuSiQue	31	483	505
1006 2Wiki	37	440	478
	Bamboogle	376	389

1008 Table 11: Token statistics during inference. M^2R produces slightly longer outputs due to micro
 1009 retrieval, but the inserted key facts are compact and answer-aligned, improving grounding and final
 1010 accuracy.

1011 Overall, these analyses indicate that M^2R is robust to retrieval configurations and benefits long-form
 1012 reasoning by injecting concise, model-generated key information near the answer generation step.
 1013

1016 E.3 INFERENCE COST AND STORAGE ANALYSIS

1018 We provide additional analysis of the inference latency and storage cost of the key-information
 1019 repository in M^2R . These results complement the main experiments and demonstrate that the micro–
 1020 macro retrieval pipeline introduces only minimal overhead.

1023 **Inference Latency.** The macro-retrieval stage in M^2R follows the same workflow as standard
 1024 RAG, and the key-information saving step stores only a handful of answer-aligned facts (typically
 1025 3–10 items), making its cost negligible. Micro retrieval is also lightweight, as it performs a simple
 1026 dictionary-style lookup over a small local repository.

1026 To quantify the overhead, we report real inference time using Qwen2.5-3B with SGLang on $4 \times$ A100
 1027 40GB GPUs. As shown in Table 12, M^2R increases inference time by less than 10% on average
 1028 compared to ReSearch, while offering substantially larger accuracy improvements.
 1029

	Inference Time (s)	HotpotQA	2Wiki	MuSiQue	Bamboogle
ReSearch	≈ 4.3	≈ 4.8	≈ 6.3	≈ 4.2	
M^2R	≈ 4.7	≈ 5.2	≈ 6.8	≈ 4.6	

1034 Table 12: Measured inference latency of M^2R compared to ReSearch.
 1035

1036
 1037
 1038 **Scaling With Input Complexity.** We also evaluate a multi-question setting by concatenating 2–
 1039 3 HotpotQA questions into a single input (Table 13). Latency grows approximately linearly with
 1040 reasoning complexity, consistent with multi-turn tool-use systems.
 1041

Setting	Avg Invocations	Inference Time (s)
1Q	7.6	≈ 6.8
2Q	13.8	≈ 14.1
3Q	19.7	≈ 22.3

1042 Table 13: Latency scaling under multi-question reasoning.
 1043

1044 Overall, these results show that M^2R introduces only minimal overhead beyond standard RAG sys-
 1045 tems. The micro–macro retrieval pipeline remains efficient even under long-form reasoning.
 1046

1047
 1048 **Storage Cost of the Key-Information Repository.** The key-information repository stores a very
 1049 small number of atomic facts produced during the `<think>` phase. Table 14 reports the measured
 1050 token counts. Across all datasets, the repository remains small (50–150 tokens), which is negligible
 1051 compared with the retrieved passages themselves.
 1052

Dataset	Avg Tokens	Min	Max
HotpotQA	62	24	108
2Wiki	73	28	121
MuSiQue	88	32	139
Bamboogle	55	18	95

1053 Table 14: Size of the key-information repository measured in tokens.
 1054

1055 Overall, these results show that M^2R introduces minimal inference overhead and negligible storage
 1056 cost, while providing substantial improvements in grounding and answer correctness.
 1057

1058 E.4 ABLATION STUDY: IMPORTANCE OF CURRICULUM LEARNING

1059 To further analyze the role of curriculum learning in M^2R , we compare our two-stage training strat-
 1060 egy with direct joint optimization of macro and micro retrieval. This experiment complements the
 1061 main results and provides insight into training stability and optimization difficulty.
 1062

1063 **Accuracy Comparison.** Table 15 reports the Exact Match scores under three training strategies.
 1064 Direct optimization performs poorly across all datasets—even worse than Naive RAG—because the
 1065 model must simultaneously learn macro retrieval, key-information saving, and micro retrieval. This
 1066

1080	Training Strategy	HotpotQA	2Wiki	MuSiQue	Bamboogle
1081	Naive RAG	21.0	13.8	4.1	14.3
1082	Direct Optimization	13.2	8.4	3.9	10.8
1083	Curriculum Learning (ours)	38.7	40.1	20.9	39.6
1084					

Table 15: Comparison of training strategies, showing the importance of curriculum learning.

Table 16: Template for M^2R .

Prompt Template For M^2R

1091 You are a helpful assistant. The assistant first thinks about the reasoning process in the
 1092 mind and then provides the user with the answer.

1093 During the reasoning process, you have access to a set of tools you can use to assist with
 1094 the user query, referred to as **macro retrievals**. These macro retrievals are enclosed within
 1095 `<macro_tool_call></macro_tool_call>` tags. You may conduct multiple rounds of function
 1096 calls, and in each round, you can call one or more functions.

1097 The results of the macro function calls will be given back to you after execution, and you
 1098 can continue to call functions until you get the final answer for the user's question.

1099 Additionally, during the reasoning process, whenever you obtain the answer to the user's
 1100 question, you **must store it as a key-value pair** in a key information dictionary using the
 1101 `<key_info_save></key_info_save>` tag.

1102 • The format must strictly follow JSON, e.g.: `{"target_value": "value"}`
 1103 • The stored key-value pairs must be directly relevant to the final answer.

1104 Finally, once you have obtained the answer and stored the key information, proceed to
 1105 the answering phase. At this stage, do not call any further functions. Before writing the
 1106 final answer sentence, you must first perform **micro retrieval** to fetch the answer from the
 1107 key information dictionary. The final answer must be based only on the results of micro
 1108 retrieval, rather than answering independently.

1109 Notes for micro retrieval:

1110 • Micro retrieval must be enclosed within `<micro_tool_call></micro_tool_call>` tags.
 1111 • You may query multiple items at once or issue requests in batches.
 1112 • The results of micro retrieval will be provided after execution.
 1113 • If the micro retrieval fails, you must simply state that the result could not be retrieved,
 1114 and must not fabricate an answer independently.

1115 Every value from the key information dictionary that appears in the final answer must be
 1116 enclosed in `\boxed{}`.

1119 substantially increases optimization difficulty and prevents the model from obtaining meaningful
 1120 rewards.

1123 **Discussion.** In contrast to direct optimization, curriculum learning decomposes training into two
 1124 tractable stages, allowing the model to first master macro retrieval before learning micro retrieval.
 1125 This staged formulation dramatically stabilizes training, reduces reward sparsity, and yields signifi-
 1126 cantly better end-to-end performance. These findings validate the necessity of curriculum learning
 1127 in effectively training M^2R .

1129 **F PROMPT TEMPLATE FOR M^2R**

1131 The complete prompt template is shown in Table 16.

1132