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Abstract001

Low-rank adaptation (LoRA) is a widely used002
parameter-efficient fine-tuning (PEFT) method003
that learns weight updates ∆W = AB for pre-004
trained weights W through low-rank adapters005
A and B. While LoRA ensures hardware effi-006
ciency, its low-rank weight updates limit adap-007
tation performance. In this paper, we pro-008
pose low-rank interconnected adaptation across009
layers (Lily), a novel PEFT method that in-010
troduces an interconnected framework with011
locally shared A and globally shared B ex-012
perts. This structure eliminates redundant per-013
layer AB pairs, enabling higher-rank ∆W with014
equal or fewer parameters. To enhance expres-015
siveness, we use data-dependent routers to de-016
termine A-B interconnections, preventing B017
experts from converging to the same behavior018
and improving representational power across019
domains. Experiments across modalities, archi-020
tectures, and model sizes demonstrate Lily’s021
superior performance and efficiency.022

1 Introduction023

Fine-tuning foundation models like Transformers024

(Vaswani et al., 2017) on downstream tasks is com-025

mon but costly, especially for large models like026

LLMs, which incur high computational and storage027

demands and risk catastrophic forgetting (Bider-028

man et al., 2024). Linear probing alleviates these029

issues by fine-tuning only the final modules, but030

suffers from performance loss due to frozen back-031

bone weights. To address this, parameter-efficient032

fine-tuning (PEFT) freezes the backbone and intro-033

duces lightweight modules for task-specific learn-034

ing. Among PEFT methods, Low-rank Adaptation035

(LoRA (Hu et al., 2021)) is widely used, particu-036

larly for LLMs. LoRA introduces low-rank pro-037

jection matrices, A and B, to approximate weight038

updates ∆W , achieving significant savings in com-039

putation and storage while outperforming linear040

probing by updating the backbone weights.041
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Figure 1: Dynamics of LoRA and Lily. In this 6-layer
example with a fixed overall parameter budget, LoRA
allocates the same parameter budget to each layer, re-
sulting in small rank updates for the weights. Lily over-
comes this by employing a small number of shared
adapters with a much larger rank, achieving higher-rank
updates while using the same or even a smaller parame-
ter budget. Considering the different characteristics, and
to make the adaptation more dynamic, the adapters are
mixed according to a data-dependent router, represented
by R.

However, LoRA and its subsequent improve- 042

ments (Miles et al., 2024; Zhang et al., 2023; Zhong 043

et al., 2024) face a limitation: the learned weight 044

updates ∆W are constrained to be low-rank, limit- 045

ing model performance. A key issue is that LoRA 046

allocates the same parameter budget to each layer, 047

regardless of their importance (Fig. 1). As a re- 048

sult, the rank of each adapter is constrained by the 049

fixed budget, raising the critical question: Can we 050

enable more dynamic, expressive adaptation with 051

high-rank weight updates under the same parame- 052

ter budget? 053

In this paper, we propose Low-rank 054

interconnected adaptation across layers (Lily), 055

a novel framework for more expressive and 056

efficient PEFT. Specifically, we decouple A and 057

its corresponding upward B, eliminating their 058

tight coupling. Each A is connected to all Bs, and 059
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vice versa, as illustrated in Fig. 1. This creates060

a hierarchical structure where locally-shared As061

perform downward projections at specific layers,062

while globally-shared Bs perform upward projec-063

tions across all layers. To enhance dynamism, we064

selectively connect each A with Bs based on layer065

features. A extracts features from the current layer,066

and a selective mixture of Bs is performed based067

on these features, enabled by routers (Shazeer068

et al., 2017) that generate data-dependent weight069

distributions for B experts.070

The interconnected structure makes the adapta-071

tion process more dynamic and flexible, with rich072

interactions between adapters. By reducing the073

number of adapters and increasing their rank, Lily074

achieves higher-rank weight updates than LoRA075

while using the same or fewer parameters. Ad-076

ditionally, Lily enables comprehensive information077

access and learning by allowing adapters at each078

layer to collaborate, share knowledge, and model079

dependencies across layers. Our key contributions080

include:081

• We propose Lily, a novel PEFT framework082

that introduces interconnected adapters, effec-083

tively overcoming the limitations of low-rank084

weight updates in LoRA under the same pa-085

rameter constraints.086

• Lily utilizes routers to dynamically select and087

connect an adapter A with multiple adapter B088

experts, enabling richer information flow and089

more expressive adaptation dynamics.090

• Extensive experiments are conducted across091

diverse modalities, architectures, and model092

scales, demonstrating Lily’s superior perfor-093

mance and efficiency in a wide range of sce-094

narios.095

2 Related Work096

Parameter Efficient Fine-Tuning Foundation097

models are typically pre-trained on large datasets098

and fine-tuned on downstream tasks. Parameter-099

efficient fine-tuning (PEFT) seeks to fine-tune mod-100

els efficiently with minimal parameters while main-101

taining performance and preserving learned knowl-102

edge. It effectively addresses limitations of conven-103

tional fine-tuning techniques, like full fine-tuning104

or linear probing. Current PEFT approaches can be105

divided into two categories: 1) adapter-based meth-106

ods (Hu et al., 2021), (Chen et al., 2022), (Pfeif-107

fer et al., 2020a), (Jie and Deng, 2023), (Houlsby108

et al., 2019a) and 2) prompt-based methods (Tu 109

et al., 2023a), (Tu et al., 2023b). Adapter-based 110

methods insert lightweight adapters into the Multi- 111

Head Self-Attention (MHSA) or Feed-Forward 112

Network (FFN) blocks of the Transformer archi- 113

tecture, while prompt-based methods add trainable 114

tokens to the input sequence. 115

Among these, low-rank adaptation (LoRA (Hu 116

et al., 2021)) is a well-known technique. It in- 117

troduces projection matrices A and B for each 118

adaptation target W , where A projects input x to 119

a low-dimensional space and B restores it to the 120

original dimension. The product of these matrices 121

approximates the weight update ∆W in full fine- 122

tuning (FFT). However, this limits the update to a 123

low-rank subspace, which may affect performance. 124

Additionally, A and B are tightly coupled, restrict- 125

ing the adaptation process to information from the 126

current layer, which may hinder the modeling of 127

dependencies across layers. 128

Mixture of Experts Mixture of Experts (MoE) 129

is an active research area that has received sig- 130

nificant attention, especially in the field of large 131

language models (LLMs). Conditional computa- 132

tion, which activates different parts of the network 133

on a per-example basis, has been proposed to en- 134

hance model capability without increasing com- 135

putation (Davis and Arel, 2013) (Bengio et al., 136

2013) (Eigen et al., 2013) (Almahairi et al., 2016). 137

The sparsely-gated MoE layer is introduced to 138

implement this idea, consisting of numerous sub- 139

networks (Shazeer et al., 2017). A trainable gating 140

network (router) determines the combination of ex- 141

perts for each example. There are already PEFT 142

methods like MoLORA (Zadouri et al., 2023) and 143

MOLA (Gao et al., 2024a) that apply the MoE 144

design concept to PEFT. However, these methods 145

simply treat the adapters A and B combined in 146

LoRA as a single expert. Concurrent research Wu 147

et al. (2024) utilizes A and B sub-spaces as the 148

experts but fails to overcome the limitation dis- 149

cussed in the previous section. Another concurrent 150

work, HydraLoRA Tian et al. (2024), explores an 151

asymmetric design for LoRA. Unlike our work, we 152

consider the interconnection across layers and de- 153

ploy a model-wide asymmetric design to enable 154

cross-layer connections. This enables the use of 155

adapters of higher rank than a typical LoRA setup 156

while using the same or fewer overall parameters. 157
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3 Methodology158

3.1 Downward Projection and Selective159

Weight Allocation160

The process is illustrated in the right half of Fig.161

1. Initially, we use an A to project the input162

x ∈ RN×Cin into its low-dimensional representa-163

tion x′ ∈ RN×d, where N is the sequence length:164

x′ = xA (1)165

To enable more parameter efficiency, the num-166

ber of As can be set to less than the number of167

layers in the model by sharing the same A across168

neighboring layers, as illustrated in Fig. 1 and169

discussed in A. Inspired by the Mixture of Experts170

(MoE) paradigm, we employ a router R ∈ RNe×d171

to selectively assign weights to all B experts based172

on their relationship to the current layer’s features173

(x′), where Ne represents the number of B experts.174

A weight set S ∈ RNe is obtained as:175

S = softmax

(
N∑
i=1

(x′RT )i

)
(2)176

The router selectively mixes the experts based on177

this data-dependent weight distribution, enabling178

information integration and expressive adaptation.179

3.2 Weighted Mixture of Experts and Upward180

Projection181

Once we obtain the low-dimensional input x′, we182

combine information from all layers using the183

model-wide shared B experts. One intuitive ap-184

proach is to feed x′ into each B expert and com-185

bine their outputs to obtain the additional knowl-186

edge x∆ ∈ RN×Cout . However, to address effi-187

ciency concerns discussed in Appendix A.2, we188

propose an alternative implementation that is math-189

ematically equivalent but significantly reduces the190

computational burden, described as follows:191

x∆ = x′

(
Ne∑
i=1

Si ·Bi

)
(3)192

where S is the set of weight scores for the B ex-193

perts, obtained through selective weight allocation.194

Since each Si is a scalar value, the calculation in195

Eq. 3 is mathematically equivalent to the intuitive196

method but with significantly improved efficiency.197

Therefore, the complete computation flow, with in-198

put x ∈ RN×Cin and output y ∈ RN×Cout , for an199

adaptation target module is:200

y = xW0 + s · x∆ (4) 201

where s is a scaling factor. By selectively allo- 202

cating weights and mixing B experts, Lily enables 203

access to all levels of information during adapta- 204

tion. Each layer’s target adaptation modules can 205

consider the status and knowledge from all other 206

layers, resulting in a more expressive and com- 207

prehensive adaptation. Meanwhile, thanks to its 208

interconnectivity, Lily can break the low-rank up- 209

date constraint of LoRA by simply employing a 210

smaller number of adapters with higher ranks. 211

4 Experiments 212

We validate the effectiveness of Lily across dif- 213

ferent domains, model sizes (from ViT to LLM), 214

and architectures (Transformers, Mamba), demon- 215

strating its generally strong adaptation capability. 216

Concurrently, we conduct a comprehensive anal- 217

ysis of Lily’s intrinsic mechanisms, providing a 218

thorough understanding of how it works. All ex- 219

periments are conducted on a single RTX 4090 220

GPU. Additionally, multiple analyses are provided 221

in Appendix C, D, E, F, G, H, I, and J. 222

4.1 Common Sense Reasoning 223

Implementation: We evaluate Lily on common- 224

sense reasoning with LLMs. For the implemen- 225

tation, we utilize LLaMA3-8B (AI@Meta, 2024) 226

and Falcon-Mamba-7B (Zuo et al., 2024) as back- 227

bones. LLaMA3 is a near-SOTA open-source 228

large language model, while Falcon-Mamba is an 229

open-sourced large language model based on the 230

Mamba architecture. Using these models allows 231

us to validate the effectiveness of Lily for fine- 232

tuning LLMs and assess whether this effective- 233

ness can be transferred to architectures beyond 234

Transformers (Mamba, in this case). We fine-tune 235

these models on Commonsense170K (Hu et al., 236

2023) and evaluate the adaptation results on eight 237

multiple-choice problem tasks, including BoolQ 238

(Clark et al., 2019), PIQA (Bisk et al., 2020), 239

SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 240

2019), WinoGrande (Sakaguchi et al., 2021), ARC- 241

e, ARC-c (Clark et al., 2018), and OBQA (Mi- 242

haylov et al., 2018). The compared methods are 243

LoRA for Falcon-Mamba and LoRA (Hu et al., 244

2021), PiSSA (Meng et al., 2024), and MiLoRA 245

(Wang et al., 2024) for LLaMA3. We only com- 246

pare LoRA for Falcon-Mamba because tailored 247
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Table 1: Commonsense reasoning results for Falcon-Mamba-7B across eight tasks. Bold represents the highest
performance for each dataset utilizing PEFT methods.

Model PEFT Params BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

Falcon-Mamba-7B
LoRA 3.7M 6.5 30.5 40.6 14.9 56.4 42.2 31.8 38.4 32.7

Lily (∆ + in) 3.7M 44.9 66.8 65.0 10.5 57.1 78.7 64.6 68.2 57.0
Lily (in) 3.3M 60.2 61.0 67.3 12.9 61.5 80.0 67.5 65.8 59.5

Table 2: Commonsense reasoning results for LLaMA3-8B across eight tasks. † represents results taken from Liu
et al. (2024) and (Wang et al., 2024). Bold denotes the highest performance scores for each dataset among different
PEFT methods.

Model PEFT Params BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA3-8B

LoRA† 56M 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA† 83.8M 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4

MiLoRA† 56.6M 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
Lily 1.2M 72.9 85.6 77.8 92.7 83.3 89.7 77.6 82.8 82.8

PEFT methods for Mamba-based LLMs have not248

yet been proposed, which is beyond the scope of249

this paper. Detailed hyper-parameter settings and250

dataset information are reported in Appendix B.1.1251

and Appendix B.2.1.252

Results We report the accuracy in Tables 2 and 1.253

Based on these results, it can be observed that Lily254

outperforms the other compared PEFT methods255

with a smaller parameters budget. Specifically, Lily256

surpasses LoRA by a significant margin on Falcon-257

Mamba and, on LLaMA3, outperforms both LoRA258

and MiLoRA. This demonstrates Lily’s superior259

adaptation capability and parameter efficiency in260

handling commonsense reasoning tasks. Addition-261

ally, although performance on Falcon-Mamba is no-262

tably lower than that of the baseline and LLaMA3,263

we believe this discrepancy stems from the inherent264

limitations of the model rather than any deficiency265

in Lily, as Lily still significantly outperforms LoRA266

on Falcon-Mamba while demonstrating robust per-267

formance on LLaMA3. These findings also high-268

light that current state of Mamba-based LLMs gen-269

erally exhibits inferior performance compared to270

Transformer-based LLMs such as ChatGPT and271

LLaMA on many tasks.272

4.2 Natural Language Understanding273

Implementation We evaluate Lily on natural lan-274

guage understanding (NLU) tasks. For the im-275

plementation, we use RoBERTa Base (Liu et al.,276

2019) and RoBERTa Large as the backbones and277

fine-tune them on tasks from the GLUE bench-278

mark (General Language Understanding Evalua-279

tion (Wang et al., 2018)), which consists of mul-280

tiple NLU tasks, including single-sentence clas-281

sification, similarity and paraphrase, and natural 282

language inference tasks. We compare Lily against 283

several competitive PEFT methods, including Bit- 284

Fit (Zaken et al., 2021), Adapter-Tuning (Rücklé 285

et al., 2020; Houlsby et al., 2019b; Lin et al., 2020; 286

Pfeiffer et al., 2020b), LoRA (Hu et al., 2021), 287

DyLoRA (Valipour et al., 2022), and AdaLoRA 288

(Zhang et al., 2023). Additionally, we utilize full 289

fine-tuning (FFT) as the baseline. Specific hyper- 290

parameters and dataset information are provided in 291

Appendix B.1.2 and B.2.2. 292

Results The results are shown in Table 3. From 293

the table, we can clearly observe that Lily surpasses 294

all the compared PEFT methods by a significant 295

margin, demonstrating its ability to tackle NLU 296

tasks. Among the six tasks, Lily surpasses FFT 297

on four of them when using RoBERTa Base and 298

RoBERTa Large, showcasing its strong approxima- 299

tion ability and high parameter efficiency. 300

4.3 Subject-driven Image Generation 301

Implementation We conduct experiments on fine- 302

tuning text-to-image diffusion models for the 303

subject-driven generation task. As the backbone, 304

we use SDXL and fine-tune it using both LoRA 305

and Lily. First, we fine-tune the model on im- 306

ages paired with text prompts (e.g., “A photo of 307

a [v] duck toy”), each of which includes a unique 308

identifier. Afterward, text prompts containing the 309

identifier are used to generate customized images. 310

Results The results are presented in Fig. 2 fol- 311

lowing the format in Gao et al. (2024b) and Wu 312

et al. (2024). From these results, we observe that 313

the images generated by Lily generally align better 314

with the text prompts. For instance, when asked 315
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Table 3: Various fine-tuning methods applied to RoBERTa Base and RoBERTa Large are evaluated on six datasets
from the GLUE benchmark. We present the Matthews correlation coefficient (MCC) for CoLA, the Pearson
correlation coefficient (PCC) for STS-B, and accuracy (Acc.) for the remaining tasks. The highest performance for
each dataset is highlighted in bold, with all metrics favoring higher values across the six datasets.

Model & Method # Trainable
Parameters

SST-2
(Acc.)

MRPC
(Acc.)

CoLA
(MCC)

QNLI
(Acc.)

RTE
(Acc.)

STS-B
(PCC)

Avg.

RoBbase(FFT) 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
RoBbase(BitFit) 0.1M 93.7 92.7 62 91.8 81.5 90.8 85.4
RoBbase(AdptD) 0.3M 94.2 88.5 60.8 93.1 71.5 89.7 83.0
RoBbase(AdptD) 0.9M 94.7 88.4 62.6 93.0 75.9 90.3 84.2
RoBbase(LoRA) 0.3M 95.1 89.7 63.4 93.3 78.4 91.5 85.2
RoBbase(AdaLoRA) 0.3M 94.5 88.7 62.0 93.1 81.0 90.5 85.0
RoBbase(DyLoRA) 0.3M 94.3 89.5 61.1 92.2 78.7 91.1 84.5
RoBbase(Lily) 0.3M 95.0 90.2 66.0 92.5 81.6 90.8 86.0

RoBlarge(FF) 356M 96.4 90.9 68 94.7 86.6 92.4 88.2
RoBlarge(AdptH) 0.8M 96.3 87.7 66.3 94.7 72.9 91.5 84.9
RoBlarge(LoRA) 0.8M 96.2 90.2 68.2 94.8 85.2 92.3 87.8
RoBlarge(Lily) 0.5M 95.6 90.9 68.4 94.8 88.4 91.9 88.4

to generate an image of a duck toy floating on wa-316

ter, Lily’s output accurately depicts the designated317

environment, whereas LoRA’s does not. Addition-318

ally, when asked to generate an image of a wolf319

plushie in the snow, Lily precisely captures the320

snow around the wolf, while LoRA fails to do so.321

These observations demonstrate Lily’s excellent322

performance in text-to-image generation with more323

expressive adaptation. Additional generated results324

are provided in Appendix I.325

4.4 Visual Adaptation Benchmark326

Implementation We assess Lily on the Visual Task327

Adaptation Benchmark (VTAB-1K (Zhai et al.,328

2019)), a suite of 19 visual tasks spanning diverse329

domains and semantics, to test its general visual330

adaptation capability. Tasks are categorized into331

Natural, Specialized, and Structured, and are all for-332

mulated as classification problems for consistent333

model evaluation. We conduct two sets of exper-334

iments: one focusing on adaptation effectiveness335

on the Vision Transformer (ViT (Dosovitskiy et al.,336

2020)) and the other on Vision Mamba (Vim (Zhu337

et al., 2024)), demonstrating Lily’s architecture-338

agnostic capabilities. For ViT, we use ViT-B pre-339

trained on ImageNet-21K (Deng et al., 2009), and340

for Vim, we use Vim-s pre-trained on ImageNet-341

1K. To fairly compare ViT and Vim architectures,342

we implement LoRA (Hu et al., 2021) and Adapt-343

Former (Chen et al., 2022) on ViT-B pre-trained on344

ImageNet-1K. In the ViT experiments, we compare345

Lily with LoRA, AdaptFormer, FourierFT (Gao346

et al., 2024b), and MoRA (Jiang et al., 2024); in347

the Vim experiments, we focus on contrasting archi- 348

tectural differences and, therefore, use only LoRA 349

as the baseline. All experiments include full fine- 350

tuning (FFT) and linear probing as baselines. For 351

Vim, we implement two versions of Lily: Lily-S 352

(Small) and Lily-L (Large), with different hyper- 353

parameter settings to either reduce the parameter 354

count (Lily-S) or maximize performance (Lily-L). 355

For Lily on ViT, the reported results are obtained 356

from adapting both the self-attention and the MA 357

module in the Transformer. Regarding the per- 358

formance of the fine-tuned module, we conduct 359

additional experiments in Appendix D. Detailed 360

experimental settings and dataset information are 361

provided in Appendix B.1.3 and B.2.3. 362

Results The results are shown in Tables 4 and 363

5. For ViT, Lily significantly outperforms all com- 364

pared PEFT methods while also offering improved 365

parameter efficiency. In contrast, the performance 366

on the Vim backbone is generally lower than that 367

on ViT; for instance, LoRA on ViT performs bet- 368

ter than LoRA on Vim. We argue that this dif- 369

ference is due to variations in architecture design 370

and overall model size. However, Lily’s strong 371

adaptation performance allows it to match or ex- 372

ceed the performance of other PEFT methods on 373

ViT and to significantly outperform LoRA on Vim 374

(with both Lily-S and Lily-L surpassing LoRA by 375

a significant margin). This demonstrates Lily’s 376

architecture-agnostic capability, highlighting its po- 377

tential across various model architectures. Overall, 378

Lily achieves excellent visual adaptation perfor- 379

mance while maintaining architecture-agnosticity 380
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Input images A [v] duck toy floating on top of water

LoRA Lily
A [v] duck toy on top of the sidewalk

 in a crowded street

LoRA Lily

Input images

Input images A [v] wolf plushie in the jungle

A [v] wolf plushie in the snow

LoRA Lily

A [v] robot toy on a cobble stone street

LilyLoRA

LoRA

A [v] robot toy on a beach

Lily

Input images
A [v] monster toy with

a city in the background

LoRA Lily

LoRA Lily

A purple [v] monster toy

LoRA Lily

Figure 2: Qualitative results of subject-driven generation. Lily’s results align better with prompts, featuring more
accurate color, environment, and shape.

Table 4: Full results of Lily on ViT-B pre-trained on ImageNet-21K for the VTAB-1K benchmark, with averages
computed based on group-wise results. Bold indicates the best performance.
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Conventional Fine-Tuning
FFT 86 68.9 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
LP 0 57.6 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2
PEFT methods
AdaptFormer 0.588 76.8 74.0 92.2 71.7 99.3 91.7 88.9 56.4 87.2 95.1 85.7 75.9 84.2 62.2 53.0 81.0 87.1 53.6 35.3 42.3
Bi-LoRA 1.180 76.7 72.1 91.7 71.2 99.1 91.4 90.2 55.8 87.0 95.4 85.5 75.5 83.1 64.1 52.2 81.3 86.4 53.5 36.7 44.4
LoRA 1.180 76.4 72.5 91.5 71.9 99.1 91.4 89.6 56.0 87.6 95.3 84.0 75.0 83.6 64.3 51.6 80.9 86.0 51.8 36.8 42.3
FourierFT 0.936 72.7 69.1 88.8 71.9 99.0 91.0 79.0 55.6 84.9 93.0 83.2 74.9 70.7 61.1 45.2 74.8 78.0 53.0 24.8 30.8
MoRA 1.058 75.4 72.1 90.0 71.7 99.2 91.1 90.1 56.0 87.1 94.8 85.1 75.4 76.7 62.3 49.7 78.3 83.1 53.0 34.5 34.5
Lily 0.318 77.3 73.9 93.0 72.9 99.3 91.6 89.0 56.6 87.9 95.2 84.9 75.7 83.9 65.4 53.4 81.6 88.2 54.5 37.0 45.4

and high parameter efficiency.381

4.5 Understanding Lily382

4.5.1 Does It Have High-Rank Weight383

Updates?384

The interconnected and asymmetric structure of385

Lily enables a flexible allocation of the parame-386

ter budget, thereby allowing weight updates with387

higher ranks across all layers. To validate this388

claim, we provide an empirical analysis, as shown389

in Fig. 3. Specifically, we run four tasks from390

the NLU experiment and measure the rank of the391

weight updates for Wq in the first three layers. We392

use a small number of matrices A and B (2 or 3)393

with a rank of 32 to match the parameter count of394

LoRA, which uses adapters with a rank set to 8. 395

Specific hyperparameter settings can be found in 396

Appendix B.1.2. 397

From the results, we observe that the rank of 398

the weight updates from Lily is generally notably 399

larger than that of LoRA when using a similar num- 400

ber of parameters. Meanwhile, the weight updates 401

from Lily still exhibit a higher rank compared to 402

those of LoRA even when using only 16.7% of 403

LoRA’s parameters. This empirical analysis essen- 404

tially validates our claim that Lily achieves high- 405

rank updates with the same parameter budget. We 406

attribute this to the model-wide sharing and the 407

cross-layer asymmetric design, which facilitate a 408

flexible allocation of the parameter budget. 409
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Table 5: Full results of Lily on Vim-S pre-trained on ImageNet-1K for the VTAB-1K benchmark, with averages
calculated within each group. * denotes linear probing results from Tu et al. (2023a). For fair comparison, we also
use ViT-B pre-trained on ImageNet-1K. Bold indicates best performance among Vim-based PEFT methods.
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Figure 3: Actual rank of the weight updates. The weight
updates are of shape 768× 768. We run 20 epochs for
COLA, MRPC, and STS-B, and 3 epochs for SST-2. It
can be easily observed that the weight updates from Lily
have notably higher rank than those from LoRA.

4.5.2 What’s the Influence of Adapter410

Granularity?411

The number of experts in the model-wide B mod-412

ule can be freely set, and the number of As can413

also be flexibly determined by sharing across the414

same level of layers, as introduced in Appendix415

A.1. Therefore, we analyze the impact of these416

choices on performance. We denote the number417

of A experts and B experts as ne_1 and ne_2, re-418

spectively. For simplicity, we set them equal in419

the experiments and denote this common value as420

ne. We refer to the number of layers each expert421

attends to as adapter granularity. As the value of422

ne increases, the adapter granularity becomes finer.423

As shown in Fig. 4, the results from the VTAB-424

1K benchmark indicate different patterns. For in-425

stance, on the DTD dataset, the best performance 426

is achieved when ne is 4, while on sNORB-Azim, 427

performance increases as ne increases. Increas- 428

ing ne leads to more parameters and finer adapter 429

granularity; however, finer adapter granularity does 430

not necessarily translate to better overall perfor- 431

mance. For example, on Resisc45, DTD, Cifar100, 432

sNORB-Ele, dsPr-LoC, Flowers102, and EuroSAT, 433

the negative impact of increasingly finer adapter 434

granularity eventually outweighs the benefits of the 435

additional parameters, leading to a decrease in over- 436

all performance. In other tasks, different patterns 437

may occur because the positive effect of adapter 438

granularity on performance is consistently strong, 439

or its negative effect is insufficient to offset the ben- 440

efits of increased parameters, resulting in generally 441

improved performance with higher ne. This phe- 442

nomenon provides an important insight: for most 443

tasks, simply increasing the number of parameters 444

may not lead to better performance. Instead, only 445

when adapter granularity and the number of param- 446

eters reach an optimal trade-off can we achieve the 447

best performance. 448

4.5.3 Does It Exhibit Selectivity? 449

Lily uses routers to assign varying weights to dif- 450

ferent B experts, thereby achieving selective infor- 451

mation combination. We illustrate this selectivity 452

in Fig. 6. We use a setup with three B experts 453

and select three layer levels (1, 13, 22) to calcu- 454

late the total weight assigned to each expert. The 455

results reveal clear selectivity: for different layers, 456

the router assigns significantly different weights 457
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Figure 4: Impact of attention granularity (i.e., the choice of how many As and Bs) on the performance. We choose
12 out of 19 tasks from VTAB-1K for a comprehensive understanding.
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Figure 5: Hardware efficiency of Lily compared to
LoRA. We run 10 epochs for COLA. We report the
training time and memory consumption. It can be ob-
served that Lily generally performs on par with LoRA
in terms of hardware efficiency.
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Figure 6: Visualization of accumulated assigned weight
for B experts by a router across various layers. Exam-
ple here uses layer of index 2, 13 and 22 to represent
shallow, middle and deep layers.

to the B experts. For instance, on Cifar100, the458

middle layer is predominantly dominated by B 2,459

whereas the deep layer is primarily dominated by460

B 1 and B 2. In contrast, on Retinopathy, both461

the middle and deep layers are dominated by B 3.462

This selectivity ensures that, even when different463

layers share information, the inherent differences464

between layers are still taken into account, making465

the adaptation more flexible and comprehensive.466

4.5.4 What’s the Hardware Efficiency? 467

The dynamics of Lily obviously introduce com- 468

plexity to the design of LoRA. In this section, we 469

analyze how this affects the hardware efficiency of 470

Lily compared to LoRA. We use the COLA task 471

from the NLU experiments with RoBERTa-Base 472

and run for 10 epochs. Additionally, we also report 473

the runtime and GPU memory consumption in the 474

Falcon-Mamba experiment. 475

The results are shown in Fig. 5, from which we 476

can observe that the hardware efficiency of Lily 477

is comparable to LoRA. Specifically, Lily slightly 478

underperforms LoRA in the NLU experiment but 479

performs on par with LoRA in the LLM experiment. 480

In general, the introduced complexity of Lily does 481

not prevent it from being an more effective PEFT 482

method that is also hardware-friendly. 483

5 Conclusion 484

In this paper, we propose Low-Rank Interconnected 485

Adaptation (Lily), a novel framework for efficient 486

fine-tuning via the interconnectivity of adapters. 487

Lily enables each layer to access information from 488

others during adaptation through a hierarchical 489

structure. Additionally, it successfully overcomes 490

the low-rank update limitation of LoRA, enabling 491

high-rank updates and, therefore, better adapta- 492

tion capability under the same parameter budget. 493

Our approach consistently improves performance 494

across various modalities, model sizes, and archi- 495

tectures, surpassing existing methods while main- 496

taining enhanced efficiency. In summary, Lily’s 497

versatility and efficiency make it a promising ap- 498

proach for a wide range of applications. 499
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6 Limitations500

Although Lily has been experimentally evaluated501

in a wide range of scenarios, we have not explored502

all possible applications where PEFT could be used.503

These potential areas are left as directions for future504

work.505

7 Ethics Statement506

This work is an improvement upon LoRA. How-507

ever, it could potentially be used for fine-tuning508

diffusion models or large language models (LLMs)509

for generating malicious content.510
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miş, Acyr Locatelli, and Sara Hooker. 2023. Pushing725
mixture of experts to the limit: Extremely parameter726
efficient moe for instruction tuning. arXiv preprint727
arXiv:2309.05444.728

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-729
berg. 2021. Bitfit: Simple parameter-efficient730
fine-tuning for transformer-based masked language-731
models. arXiv preprint arXiv:2106.10199.732

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali733
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a734
machine really finish your sentence? arXiv preprint735
arXiv:1905.07830.736

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,737
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip738
Djolonga, Andre Susano Pinto, Maxim Neumann,739
Alexey Dosovitskiy, et al. 2019. The visual task740
adaptation benchmark.741

Qingru Zhang, Minshuo Chen, Alexander Bukharin,742
Pengcheng He, Yu Cheng, Weizhu Chen, and743
Tuo Zhao. 2023. Adaptive budget allocation for744
parameter-efficient fine-tuning. In International Con-745
ference on Learning Representations. Openreview.746

Zihan Zhong, Zhiqiang Tang, Tong He, Haoyang Fang,747
and Chun Yuan. 2024. Convolution meets lora: Pa-748
rameter efficient finetuning for segment anything749
model. arXiv preprint arXiv:2401.17868.750

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong751
Wang, Wenyu Liu, and Xinggang Wang. 2024. Vi-752
sion mamba: Efficient visual representation learning753
with bidirectional state space model. arXiv preprint754
arXiv:2401.09417.755

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem,756
Ilyas Chahed, Younes Belkada, Guillaume Kunsch,757
and Hakim Hacid. 2024. Falcon mamba: The first758
competitive attention-free 7b language model.759

11

arxiv.org/abs/2406.11909


Appendix760

A More discussion about Lily761

A.1 Model Structure and Design Intuition of762

Lily763

Within the overall framework of Lily, we delve into764

specific implementation details and model design765

insights. First, we establish the relationship be-766

tween A and B: A is confined to specific levels767

of layers, capturing features that enable the router768

to selectively assign weights to the B experts. In769

contrast, B is a model-wide module comprising770

multiple experts, each of which contains informa-771

tion from a particular level of layers.772

We highlight several key aspects that are not773

heavily discussed in the methodology section:774

A.1.1 Number of As775

Since A is limited to specific layers, the simplest776

approach would be to place an A at each layer of777

the module to be adapted (e.g., the query transfor-778

mation in MHSA). However, this setup may not be779

necessary, as the importance of each layer varies,780

and many layers have significantly lower impor-781

tance than others (Zhang et al., 2023).782

To achieve greater parameter efficiency, we can783

use fewer As, with each A focusing on a level of784

layers rather than a single layer. For example, an785

A can focus on shallow layers (e.g., layers 0, 1, 2,786

etc.) or deep layers. To enable a single A to handle787

multiple layers, we can share an A across multiple788

layers. By doing so, we eliminate the redundancy789

of placing an A at each layer, reduce the number790

of parameters, and improve efficiency.791

This is exactly the strategy adopted in most792

of the experiments.793

A.1.2 Number of B Experts794

Regarding B, the number of experts can be set ar-795

bitrarily, allowing for more flexible configurations.796

In our experiments, for the sake of simplicity, we797

set the number of B experts equal to the number of798

As, thereby equating the granularity of A and B.799

A.1.3 Routers Setup800

There are multiple possible configurations for the801

router. First, we can bind the router to B, resulting802

in only one router per model. However, since the803

number of parameters in the router is relatively804

small, having only one router per model may not805

provide significant selectivity. Therefore, we can806

also bind the router to A, configuring a separate 807

router for each A. 808

Most of our experiments use the latter setup. 809

However, in the vision experiments on Vim, we 810

adopt the single-router and no-lp-sharing setup to 811

evaluate its effectiveness. The results indicate that 812

this setup also performs well. 813

As future work, we can further verify the ef- 814

fectiveness of the latter setup on Vim, which may 815

potentially lead to superior performance. 816

A.1.4 Hyperparameters 817

We detail the hyperparameters used in Lily. Specif- 818

ically, we use Lily_r to represent the hidden di- 819

mension of the projectors: As and Bs. It serves 820

the same function as r in LoRA. We use Lily_s to 821

represent the scaling factor used by Lily, which is 822

primarily searched within the range {0.01, 0.1, 1.0, 823

10.0, 100.0}. 824

We use ne_1 to denote the number of As used 825

in the model. Since As can be shared, as discussed 826

in the previous section, ne_1 does not necessarily 827

equal the number of layers in the model. Similarly, 828

we use ne_2 to represent the number of B experts 829

in the model-wide B module. 830

In our experiments, we set ne_1 = ne_2 to en- 831

hance parameter efficiency and maintain simplicity. 832

A.1.5 Design Intuition 833

Lily employs a hierarchical structure to enable up- 834

dates with higher ranks than LoRA. However, sim- 835

ply connecting all Bs equally to As does not yield 836

the best performance. From the perspective of 837

feature and information utilization across layers, 838

merely aggregating all Bs for an A ignores the 839

distinctiveness of features from the current layers. 840

Meanwhile, this approach reduces the variability 841

in the combinations of gradient projection matrices 842

(since Si and Ci,j become constants), making the 843

rank of the weight update higher than that of LoRA 844

(as multiple distinct random matrices are used), 845

but still not high enough for optimal performance 846

due to the lack of variability in the combination 847

process. 848

To address this, we introduce selectivity into the 849

interconnectivity, as discussed below, making the 850

combination of Bs data-dependent. This ensures 851

that each Si is unique across time steps, enabling 852

updates with even higher ranks. This approach is 853

similar to that of Hao et al. (2024), where a random 854

matrix is constantly resampled to maintain high- 855

rank updates. We further analyze this in Appendix 856
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G.857

A.2 Efficient Implementation for Weighted858

Combination859

A straightforward implementation of the weighted860

combination in Lily is to pass the inputs through all861

the experts and then sum the results. This approach862

requires Ne matrix multiplications, Ne scalar mul-863

tiplications, and Ne matrix additions. Despite its864

intuitive nature, the computational burden of this865

method is quite substantial.866

However, Eq. 3, which is adopted in Lily, re-867

quires only Ne scalar multiplications, Ne matrix868

additions, and a single matrix multiplication. This869

optimization eliminates approximately Ne matrix870

multiplications, which can significantly reduce871

computational costs as the model size and the num-872

ber of adaptation targets increase.873

For an input x′ of size RN×d and a projection874

matrix PH ∈ Rd×C , the floating-point operations875

(FLOPs) of these two implementations are:876

FLOPs =
Ne∑
i=1

(2NdC) +

Ne∑
i=1

(dC) +

Ne∑
i=1

(NC)

= Ne × (2NdC + dC +NC),

FLOPs = 2

Ne∑
i=1

(dC) + 2NdC

= 2dC × (N +Ne),
(5)877

From this, we can easily observe that the ap-878

proach adopted by Lily requires fewer computa-879

tions, thereby improving both speed and efficiency880

during the fine-tuning process. Under the set-881

ting of N = 1024, d = 16, C = 768, Ne = 4,882

the FLOPs for the intuitive approach amount to883

0.104 GFLOPs, whereas for Lily, it is merely 0.025884

GFLOPs, potentially leading to a 4× speedup.885

A.3 Actual Implementation of Lily886

We present the actual implementation of Lily in887

Fig. 7. In this example, we showcase its implemen-888

tation for visual adaptation tasks, specifically in the889

VTAB-1K benchmark. For large language mod-890

els (LLMs), the implementation is slightly more891

complex due to modifications to the Hugging Face892

PEFT library (Mangrulkar et al., 2022), but the893

fundamental adaptation process remains the same.894

Specifically, given an input, we first use the895

corresponding A of the current layer to project it896

into a low-dimensional representation. This low- 897

dimensional representation is then used to selec- 898

tively assign weights to the B experts. Once the 899

weights for all experts are obtained, we proceed 900

to combine these B experts accordingly, as dis- 901

cussed in Appendix A.2. After the weighted com- 902

bination, the combined B is used to project the 903

low-dimensional representation back into a high- 904

dimensional space, thereby incorporating the addi- 905

tional knowledge gained through adaptation. 906

B Experimental Settings 907

B.1 Hyperparameters 908

A detailed description of the hyperparameters used 909

in Lily is provided in Appendix A.1. 910

B.1.1 Commonsense Reasoning 911

The hyperparameters used in commonsense rea- 912

soning experiments for MiLoRA and PiSSA are 913

provided in Tables 7 and 6. The settings for Lily 914

and LoRA using Falcon-Mamba as the backbone 915

are presented in Tables 9 and 8. 916

Notably, Lily achieves the best performance 917

by adapting only the multi-head self-attention 918

(MHSA) module in LLaMA3-8B, whereas other 919

compared methods adapt all modules, including 920

MA. Moreover, Lily utilizes the fewest parameters, 921

demonstrating its superior adaptation capability in 922

low-parameter-budget scenarios. 923

B.1.2 Natural Language Understanding 924

The specific hyperparameter settings for Lily on 925

the GLUE benchmark are provided in Table 10. We 926

fix the learning rate of both the backbone and the 927

head at 5×10−3 and instead tune the scaling factor 928

Lily_s, where Lily_s ∈ {0.01, 0.1, 1.0}. The rank 929

r is fixed at 32, and the random seed is set to 0. 930

The baseline results are taken from FourierFT (Gao 931

et al., 2024b). 932

B.1.3 Visual Task Adaptation Benchmark 933

We provide the hyperparameters for Lily on the 934

VTAB-1K benchmark in Table 11. Specifically, 935

we fix the learning rate at 1× 10−3 with a weight 936

decay of 1 × 10−4. For ViT, we tune the scaling 937

factor Lily_s ∈ {0.01, 0.1, 1.0, 10.0} to maximize 938

performance, following Jie et al. (2023) and Jie 939

and Deng (2023). For Vim, we fix Lily_s to 1.0. 940

Additionally, we search for the hyperparameters 941

ne_1 and ne_2 within the range {2, 3, 4}, as these 942

numbers divide the number of layers in the ViT 943

model (12 in ViT-B). 944
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PRIME AI paper

1 class lily_adapter(nn.Module):
2 """
3 Implementation of a Lily adapter for an adaptable target. For symplicity, we assume that the

number of hp expert is equal to the number of LPs.↪→
4

5 args:
6 hidden_dim: hidden dimension
7 ne: number of experts
8 lp: low-dimensioanl projector
9 hps: high-dimensioanl projector experts

10 mlp: whether the adpatation target is located in MLP
11 """
12 def __init__(self, hidden_dim, ne, lp, hps, mlp=False):
13 super().__init__()
14 self.hps = hps
15 self.ne = ne
16 self.lp = lp
17 self.router = nn.Linear(hidden_dim, ne, bias=False)
18 if mlp:
19 self.non_linear = nn.ReLU()
20 else:
21 self.non_linear = nn.Identity()
22 def forward(self, x):
23 hidden = self.non_linear(self.lp(x))
24 router_logits = self.router(hidden) # [B, N, num_of_experts]
25 router_probability = F.softmax(router_logits, dim=-1) # [B, N, ne]
26 expert_probabilities = router_probability.mean(dim=(0, 1))
27 combined_hp = torch.einsum("e,eio->io", expert_probabilities, self.hps)
28 return torch.matmul(hidden, combined_hp)

1

Figure 7: Implementation of Lily in the VTAB-1K benchmark.

For Vim, we use the implementation discussed945

in Section A.1, which does not share As across946

layers. Therefore, ne_1 in this setting is fixed to947

the number of layers in Vim (22 in this case), while948

we search for ne_2 in {3, 6} and {5, 6, 17} sepa-949

rately for Lily-S and Lily-L. Note that ne is only950

set for the input projection in Vim. For the delta951

transformation, we use only a single B expert to952

reduce the parameter cost.953

In the ViT experiments, the rank r is fixed at 16.954

Meanwhile, in Vim’s setting, we tune the ranks r955

for the delta transformation module and the input956

projection module separately. We use (4, 4) and957

(4, 8) separately for Lily-S and Lily-L.958

B.2 Datasets959

B.2.1 Commonsense Reasoning960

We provide a short description of each datasets961

used in commonsense reasoning experiments in962

Table 12.963

B.2.2 Natural Language Understanding964

We provide detailed information about datasets in965

the GLUE benchmark in Table 13.966

B.2.3 Visual Adaptation Benchmark967

We provide detailed information about all the tasks968

from VTAB-1K benchmark in Table 14.969

C Does Sharing As Result in Inferior 970

Performance? 971

As mentioned earlier, we adopted a strategy of shar- 972

ing the A across most of our experiments, ensuring 973

that the number of As and B experts is consistent. 974

This approach offers two key benefits: simplicity 975

and enhanced parameter efficiency. By sharing the 976

A, we eliminate the need to set a separate A for 977

each layer, thereby reducing the overall parameter 978

count. 979

Our decision to share the A is based on the obser- 980

vation of overall redundancy among layers. Specif- 981

ically, different layers have varying levels of impor- 982

tance (Zhang et al., 2023), and some less important 983

layers do not require a dedicated A. By not setting 984

a separate A for these layers, we avoid introduc- 985

ing unnecessary parameter overhead while main- 986

taining negligible impact on performance. To test 987

whether sharing A results in inferior performance, 988

we conducted experiments without A sharing on 989

the VTAB-1K benchmark. The results, shown in 990

Table 15, indicate that the best overall performance 991

(77.3%) is the same as in the A-sharing setting. 992

This suggests that even when we employ one A 993

for each layer, the performance gain is negligible, 994

and many of the parameters are, in fact, redun- 995

dant. However, not sharing As leads to additional 996
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Table 6: Hyperparameter configuration from the MiLoRA paper.

MiLoRA hyperparameters

Rank r 32
α of LoRA 64
α of PiSSA 32

Dropout 0.05
Optimizer AdamW

LR 3e-4
LR Scheduler Linear

Batch Size 16
Warmup Steps 100

Epochs 3
Placement query, key, value, MA up, MA down

Table 7: Hyperparameter configuration from the PiSSA paper.

PiSSA hyperparameters

α Same as rank r
Dropout 0.0

Optimizer AdamW
LR 2e-5

LR Scheduler cosine
Batch Size 128

Warmup Ratio 0.03
Epochs 1

Placement query, key, value, output, gate, MA up, MA down

Table 8: Hyperparameter configuration for LoRA using
Falcon-Mamba as backbone.

LoRA hyperparameters

Rank r 2
α 16

Dropout 0.05
Optimizer AdamW

LR 3e-4
LR Scheduler Linear

Batch Size 16
Epochs 1

Placement input, delta

parameter overhead, which reduces the parameter997

efficiency of Lily. Therefore, A-sharing is an ef-998

fective strategy to eliminate redundancy among As999

and enhance the parameter efficiency of Lily.1000

D Where to Apply Lily in Transformers? 1001

E Performance Analysis on VTAB-1K 1002

Benchmark with Lily on Transformer 1003

Modules 1004

PEFT methods have been predominantly explored 1005

on the Transformer architecture, which consists 1006

of multi-head self-attention (MHSA) and multi- 1007

layer perceptron (MA) as its core modules. In 1008

this section, we analyze the impact of fine-tuned 1009

modules on performance using Lily. Specifically, 1010

we compare Lily’s performance on the VTAB-1K 1011

benchmark under four settings: 1012

• Applying Lily solely to the query and value 1013

transformation module in MHSA (denoted as 1014

"qv"). 1015

• Applying Lily solely to the MA module (de- 1016

noted as "mlp"). 1017

• Applying Lily to both the query and value 1018

transformation module in MHSA and the MA 1019

module (denoted as "qvmlp"). 1020
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Table 9: Best Hyperparameter configuration for Lily using Falcon-Mamba and LLaMA3 as backbones.

Falcon-Mamba LLaMA3

Rank r 40 16
ne_1 4 4
ne_2 4 4

Dropout 0 0
Optimizer AdamW AdamW

LR 3e-4 3e-4
LR Scheduler Linear Linear

Batch Size 16 16
Epochs 1 3

Placement input query, key, value

Table 10: Hyperparameter of Lily on GLUE benchmark.

Hyperparameter STS-B RTE MRPC CoLA SST-2 QNLI MNLI QQP

Optimizer AdamW
LR Schedule Linear
Learning Rate (Lily) 5e-3
Learning Rate (Head) 5e-3
Max Seq. Len 512 512 512 512 512 512 512 512
Lily_s 0.1 0.1 0.1 0.01 0.01 0.01 0 0
ne_1 2 3 2 4 2 2 0 0
ne_2 2 3 2 4 2 2 0 0
Batch Size 64 32 50 64 32 32 0 0

• Applying Lily to both the key and value trans-1021

formation module in MHSA and the MA mod-1022

ule (denoted as "kvmlp").1023

To ensure a fair comparison, we tune the hyper-1024

parameters to maintain a similar parameter count1025

across all settings. Additionally, to further investi-1026

gate whether sharing the low-rank projection (A)1027

affects performance, we do not share A in this ex-1028

periment.1029

The results are presented in Table 15. We ob-1030

serve that the "kvmlp" setting achieves the best per-1031

formance, with an average accuracy of 77.3%. In1032

contrast, adapting only the MHSA module ("qv")1033

yields the worst performance. Furthermore, we1034

note that adapting both the MHSA and MA mod-1035

ules (qvmlp and kvmlp) generally leads to superior1036

results compared to adapting only one specific mod-1037

ule (qv and mlp). This suggests that both MA and1038

MHSA play crucial roles in overall model perfor-1039

mance, and adapting both is essential for effective1040

adaptation.1041

Notably, even when applying Lily solely to the1042

MHSA module, which results in the worst perfor-1043

mance among the four settings (76.9%), it still out- 1044

performs LoRA by a significant margin (0.5%). 1045

This underscores the efficiency of Lily, as it uses 1046

fewer parameters than LoRA, even without A shar- 1047

ing. 1048

F Where to Apply Lily in Mamba? 1049

Nearly all previous PEFT method studies have fo- 1050

cused on Transformers, while Mamba is a relatively 1051

new architecture, and therefore, there has been lit- 1052

tle research on PEFT methods for Mamba. In this 1053

section, we briefly analyze the pros and cons of 1054

adapting Mamba’s modules. A Mamba block con- 1055

sists of regular linear projection layers and a core 1056

component, the SSM module (Gu and Dao, 2023), 1057

(Zhu et al., 2024). Specifically, in the SSM mod- 1058

ule, Mamba utilizes parameters (∆, A, B, C) to 1059

transform an input sequence x(t) into an output 1060

sequence y(t) using a hidden state h(t). The dis- 1061

cretization process converts A and B into Ā and 1062

B̄, respectively, using the time step size parame- 1063

ter ∆. Structured state space models, inspired by 1064

continuous systems, can be computed similarly to 1065
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Table 11: Hyperparameter configuration for Lily on VTAB-1K benchmark.

Vision Transformer Vision Mamba

Optimizer AdamW AdamW
Batch Size 64 64

Learning Rate 1E-3 1E-2
Weight Decay 1E-4 1E-3

# Epochs 100 100
LR Decay cosine cosine

Table 12: Details of the datasets used in our commonsense reasoning tasks.

Benchmark Description # Test Questions

ARC-c Multiple-choice science 2376
ARC-e Multiple-choice science 1172
OBQA Multi-step reasoning 500
SIQA Social implications 1954
WinoG Fill-in-a-blank 1267
PIQA Physical commonsense 1830
BoolQ Yes/no questions 3270
HellaS Commonsense NLI 10042

Table 13: Information about datasets in the GLUE benchmark, with STS-B being a regression task and all other
tasks falling into the categories of single-sentence or sentence-pair classification.

Corpus Metrics Task # Train # Val # Test # Labels

Single-Sentence Tasks

CoLA Matthews Corr. Acceptability 8.55k 1.04k 1.06k 2
SST-2 Accuracy Sentiment 67.3k 872 1.82k 2

Similarity and Paraphrase Tasks

MRPC Accuracy/F1 Paraphrase 3.67k 408 1.73k 2
STS-B Pearson/Spearman Corr. Sentence similarity 5.75k 1.5k 1.38k 1
QQP Accuracy/F1 Paraphrase 364k 40.4k 391k 2

Inference Tasks

MNLI Accuracy NLI 393k 19.65k 19.65k 3
QNLI Accuracy QA/NLI 105k 5.46k 5.46k 2
RTE Accuracy NLI 2.49k 277 3k 2

RNNs or in the form of global convolution due to1066

their linear time invariance (LTI) property. Mamba1067

introduces a selective property to the structured1068

state space model, tying parameters to the current1069

input. This breaks the LTI property and hinders par-1070

allel training. To address this, Mamba employs a1071

hardware-aware algorithm, enabling its SSM mod-1072

ule to possess the selective property while perform-1073

ing parallel training.1074

To be specific, the discretization process can be1075

expressed as: 1076

Ā = exp(∆A)

B̄ = (∆A)−1(exp(∆A)− I) ·∆B
(6) 1077

After that, the calculation in Mamba can be ex- 1078

pressed as: 1079

ht = Āht−1 + B̄xt

yt = Cht
(7) 1080

where ht is the hidden state at time t and xt is 1081
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Table 14: Detailed information about the datasets in VTAB-1K benchmark.

Dataset Train Val Test #Classes

VTAB-1k

CIFAR100

800/1,000 200

10,000 100
Caltech101 6,084 102
DTD 1,880 47
Oxford-Flowers102 6,149 102
Oxford-Pets 3,669 37
SVHN 26,032 10
Sun397 21,750 397
Patch Camelyon 32,768 2
EuroSAT 5,400 10
Resisc45 6,300 45
Retinopathy 42,670 5
Clevr/count 15,000 8
Clevr/distance 15,000 6
DMLab 22,735 6
KITTI-Dist 711 4
dSprites/location 73,728 16
dSprites/orientation 73,728 16
SmallNORB/azimuth 12,150 18
SmallNORB/elevation 12,150 18

Table 15: Performance on VTAB-1K benchmark when applying Lily to various modules in Transformer. The
implementation here does not share A for simplicity (i.e., each layer has one A).
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the corresponding input token. Delta projection1082

is a module in SSM that’s learnable and tasked1083

with transforming the parameter ∆. Since adapting1084

the delta projection alone can indirectly adapt the1085

entire SSM module (i.e., Ā and B̄ are determined1086

by ∆), it is the most critical component of the SSM1087

module.1088

We investigate the performance of two adapta-1089

tion strategies: adapting only the input linear pro-1090

jection layer (denoted as "in") and adapting both1091

the input linear projection layer and the SSM (de-1092

noted as "∆ + in" since we only adapt the delta pro-1093

jection in the SSM module). Our results, as shown1094

in Table 1, indicate that applying Lily solely to1095

the input projection yields better performance than1096

applying it to both the input and delta projection1097

modules. This suggests that when adapting Mamba-1098

based models under the paradigm of low-rank adap- 1099

tation, it is optimal to adapt only the input projec- 1100

tion module outside the SSM module. These find- 1101

ings highlight the need for further research into the 1102

impact of fine-tuned modules in Mamba on overall 1103

performance. Additionally, developing PEFT meth- 1104

ods specifically tailored to Mamba-based models, 1105

whether for vision or language foundation models, 1106

is also a promising direction for future work. 1107

G Performance with Different Learning 1108

Rates 1109

Since we only tuned the learning rate in the com- 1110

monsense reasoning experiment, we provide the 1111

performance of commonsense reasoning under dif- 1112

ferent learning rates in Table 16. 1113
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Table 16: Commonsense reasoning results of Lily under various leanring rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA3-8B

1e-3 70.7 84.6 77.6 87.8 77.3 88.5 74.1 80.8 80.2
5e-4 71.8 86.5 77.9 82.8 83.1 88.6 76.8 81.4 81.1
3e-4 72.9 85.6 77.8 92.7 83.3 89.7 77.6 82.8 82.8

H Does Selectivity Help?1114

Lily introduced selective weight combination to1115

selectively incorporate information from other lay-1116

ers. To verify the effectiveness of this selectivity,1117

we remove the router from Lily and evaluate the1118

impact. The modified algorithm without the router1119

is presented in Fig. 8. We conduct experiments on1120

commonsense reasoning to investigate the effect of1121

removing selectivity from Lily.1122

As shown in Table 17, removing selectivity from1123

Lily results in generally poorer performance com-1124

pared to vanilla Lily. This is likely because the lack1125

of selectivity causes Lily to simply aggregate all1126

the B expert, leading to inferior performance. This1127

validates the design choice of using routers in Lily1128

to selectively allocate weights to B experts, rather1129

than simply summing them.1130

I How to Allocate Parameters?1131

Since Lily alters the traditional LoRA’s layer-1132

bound setup, increasing the parameters of Lily can1133

be achieved through two approaches: 1) increasing1134

ne, i.e., increasing the number of A and B experts,1135

and 2) increasing the rank, i.e., increasing the pa-1136

rameter size of each individual A or B expert. In1137

this section, we investigate which factor has the1138

greatest impact on performance. We conduct exper-1139

iments on the commonsense reasoning task. Specif-1140

ically, we maintain the same parameter count and1141

learning rate, and achieve the same parameter count1142

by setting different ranks and adjusting the corre-1143

sponding ne (e.g., r=16, ne=4 versus r=8, ne=8).1144

The results are shown in Fig. 9, from which we1145

observe that more A and B experts with smaller1146

rank (i.e., bigger ne and smaller rank) generally1147

performs worse. We argue that this is because, al-1148

though increasing the attention granularity allows1149

for finer details, the resulting performance gain is1150

not as significant as the gain obtained by increasing1151

the rank, i.e., increasing the model’s capacity to1152

learn more information. This gives us an insight1153

that, in Lily, increasing ne to increase the param-1154

eters is less effective than directly increasing the1155

rank in terms of potential performance gain.1156
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1 class lily_adapter_monoscale(nn.Module):
2

3 def __init__(self, hidden_dim, ne, lp, hps, mlp=False):
4 super().__init__()
5 self.hps = hps
6 self.ne = ne
7 self.lp = lp
8 self.scale = 1 / ne
9 if mlp:

10 self.non_linear = nn.ReLU()
11 else:
12 self.non_linear = nn.Identity()
13 def forward(self, x):
14 hidden = self.non_linear(self.lp(x))
15 combined_hp = torch.sum(self.hps, 0) * self.scale
16 return torch.matmul(hidden, combined_hp)

1

Figure 8: Implementation of Lily with no selectivity.

Table 17: Commonsense reasoning results of Lily without selectivity. We provide results using two learning rates.

Model Lr BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LLaMA3-8B
3e-4 64.0 82.6 78.5 77.0 79.6 88.4 74.5 82.0 78.3
5e-4 71.3 85.5 78.1 84.3 79.6 86.4 76.1 79.0 79.8
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Figure 9: Results on commonsense reasoning tasks when applying different settings of rank. The hyperparameter
ne is specifically tuned to maintain the same amount of parameter count for a fair comparison.
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J More on Subject-driven Generation1157

We provide more results on subject-driven genera-1158

tion in Fig. 10 and Fig. 11.1159

K From a Feature Merging Perspective1160

Apart from having higher-rank weight updates than1161

LoRA, Lily also enables comprehensive informa-1162

tion access across layers. Lily enables access to1163

information or features from all other layers when1164

adapting a target module at a specific layer thanks1165

to the inter-connectivity of the adapters. We aim to1166

understand how Lily achieves this comprehensive1167

information access from the perspective of visual1168

tasks as shown in Fig. 12. We can observe that, in1169

Lily, the distinctness of the attention maps between1170

layers is not as pronounced as in LoRA. This vali-1171

dates Lily’s ability to enable all-level information1172

access, since adaptation at each layer takes into ac-1173

count features from other layers. Additionally, we1174

specifically visualize the actual feature differences1175

between different layers in Fig. 13. We observe that1176

Lily has more points with low feature differences1177

(blue color) than LoRA, indicating that the distinct-1178

ness of features between layers in Lily is generally1179

lower than in LoRA. This further demonstrates1180

Lily’s ability to enable comprehensive information1181

access. Although we enable all-level information1182

access, what prevents the features from becoming1183

completely identical is the selectivity introduced1184

by Lily, which we specify in the following section.1185

1186

L More on Attention Maps of Lily and1187

LoRA1188

We provide more visualization results of the atten-1189

tion map from both LoRA and Lily on Caltech1011190

dataset from VTAB-1K benchmark in Fig. 14.1191
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Prompts:
1. A [v] grey sloth plushie floating on top

 of water

2. A [v] grey sloth plushie in the snow

3. A [v] grey sloth plushie on a cobblestone
 street

4. A [v] grey sloth plushie on top of a dirt
 road

5. A [v] grey sloth plushie on top of a white
 rug

6. A [v] grey sloth plushie on top of a wooden
 floor

Input images (not all included)

1

2

3

4

5

6

Input images (not all included)

1

2

3

4

5

6

Prompts:
1. A [v] bear plushie floating on top

 of water

2. A [v] bear plushie in the snow

3. A [v] bear plushie on a cobblestone
 street

4. A [v] bear plushie on top of a dirt
 road

5. A [v] bear plushie on top of a white
 rug

6. A [v] bear plushie on top of a wooden
 floor

LoRA Lily

Figure 10: More subject-driven generation results for unreported subjects.

22



LoRA Lily

Prompts:

1. A [v] {} on top of a dirt
 road

2. A [v] {} on top of a white
 rug

3. A [v] {} with a tree and
 autumn leaves in the background

4. A [v] {} with a
 wheat field in the background

5. A {} with the Eiffel
 Tower in the background

1

2

3

4

5

1

2

3

4

5

subject = duck toy

subject = wolf plushie

Figure 11: More subject-driven generation results for subjects that are reported in the experiment section.
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Lily

LoRA

Lily

LoRA

Input Layer 1 Layer 6 Layer 9 Input Layer 6Layer 1 Layer 9

Figure 12: Attention maps of Lily and LoRA. The input images for the example here are taken from Caltech101
datasets from VTAB-1K benchmark. It can be observed that features from a certain layer have more similarity to
those in other layers in Lily than in LoRA.

Lily LoRA Lily LoRA

Layer 6 to 1 Layer 6 to 9

Figure 13: Feature difference measured in absolute distance for each element. We compare Lily and LoRA in terms
of the difference between features from different layers. In this example image taken from Caltech101, we visualize
the feature difference between layers 6 and 1, as well as between layers 6 and 9.
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Lily

LoRA

Lily

LoRA

Lily

LoRA

Lily

Lily

LoRA

LoRA

Input Image Layer1 Layer6 Layer9

Figure 14: More results of attention maps from LoRA and Lily. All images are taken from Caltech101 dataset.
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