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ABSTRACT

Identifying molecular structures from spectral data is essential for early-stage
chemical analysis, yet it remains a difficult task due to the imbalance in functional
group distributions. Current methods often overfit to prevalent groups while ne-
glecting underrepresented ones, failing to capture key dependencies between func-
tional groups. This highlights the need for a unified approach that addresses both
data imbalance and structural constraints. In this work, we present SymSpectra,
a Symmetric Conditional Information Bottleneck (SCIB) framework designed to
seamlessly integrate multi-modal Spectra features. Our model employs the SCIB
framework to fuse multi-modal spectroscopic data into a unified representation,
effectively preserving discriminative signals while mitigating redundancy. To en-
hance robustness against data imbalance, we incorporate conditional mutual in-
formation into the training objective, increasing the model’s sensitivity to rare
functional groups and challenging molecular cases. Additionally, a specialized
module captures the dependencies among functional groups, improving both pre-
diction accuracy and chemically meaningful interpretability. Experiments on mul-
timodal spectral datasets demonstrate that SymSpectra significantly outperforms
state-of-the-art methods, achieving an F1-score of 0.970 in substructure classifi-
cation. More importantly, SymSpectra consistently outperforms baselines under
various imbalanced scenarios, exhibiting superior robustness and generalizability,
which may help advance the automation of chemical discovery. Our code can be
found at https://anonymous.4open.science.

1 INTRODUCTION

The rapid advancement of artificial intelligence has revolutionized the interpretation of com-
plex chemical data, facilitating tasks such as molecular property prediction and reaction plan-
ning Venkatasubramanian & Mann (2022); De Almeida et al. (2019); Brown et al. (2020). Central to
these applications is the ability to extract structural insights from the low-dimensional spectral infor-
mation. However, different spectroscopic techniques provide complementary insights. For example,
infrared (IR) spectroscopy characterizes molecular vibrational modes Baiz et al. (2020), 1H-NMR
elucidates the local environments of hydrogen atoms Yesinowski & Eckert (1987), and 13C-NMR
captures the architecture of carbon frameworks Buddrus & Bauer (1987). Effectively integrating
these diverse modalities allows AI models to leverage their synergistic information for accurate and
efficient molecular identification Dale & Halgren (2001); Albers et al. (2022).

However, these data-driven approaches inevitably suffer from the challenge of imbalanced data
distributions Pourkamali-Anaraki & Hariri-Ardebili (2021); Zhou et al. (2021). As illustrated in
Figure 1 (a), functional groups in molecular datasets exhibit a highly skewed distribution: a few
common groups dominate the majority of samples, while many groups—such as Azo compounds,
Enol, and Phosphine—occur infrequently. This imbalance adversely affects model performance on
rare functional groups, which may hold significant chemical importance. Figure 1 (b) demonstrates
that classification accuracy for high-frequency groups far surpasses that of low-frequency ones, with
an F1-score gap of 38%. Such disparity undermines the reliability of model predictions, especially
when applied to novel molecules containing rare functional groups, thereby limiting practical utility
in tasks like molecular discovery and design.
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Figure 1: (a) The distribution of functional groups derived from the Alberts et al. dataset, cat-
egorized into three tiers to illustrate the inherent class imbalance. (b) The performance of three
baseline models across these tiers. (c) The dependencies among functional groups, derived from
co-occurrence statistics within the dataset. Edges connect groups with co-occurrence frequencies
above a threshold, and node proximity indicates the strength of their association.

Furthermore, data imbalance presents a significant challenge in practice: conventional models, bi-
ased by the overrepresentation of certain high-frequency functional groups, tend to severely overfit
to these dominant classes during training Xu et al. (2024). Consequently, they often fail to capture
meaningful associations between spectral patterns and less-represented functional groups, leading
to worse generalization and the emergence of spurious correlations driven by frequency rather than
genuine chemical relevance Haghighatlari et al. (2020); Gallegos et al. (2021). Such limitations hin-
der model robustness, especially in recognizing rare functional groups that are nonetheless critical
for downstream molecular analysis tasks.

Moreover, a molecule should be understood as an integrated whole, composed of multiple intri-
cately interacting substructures Winterbach et al. (2013); Mitra et al. (2013). From a pharmaco-
logical standpoint, a molecule can be seen as an organized assembly of co-occurring functional
fragments Magura (2008), where functional groups exhibit both statistical and chemical depen-
dencies—i.e., characteristic patterns of co-occurrence Ertl & Schuhmann (2019); Ertl (2017). For
instance, hydroxyl and carboxyl groups frequently appear together, as a carboxyl group inherently
includes a hydroxyl moiety Cramer et al. (2019); Dimakos & Taylor (2018). Despite this, most ex-
isting approaches treat functional group prediction as a multi-label classification problem with inde-
pendent outputs, thereby completely ignoring these intrinsic chemical relationships. This oversight
may result in chemically implausible combinations of functional groups, undermining the validity
and reliability of the predicted molecular structures.

In this work, we propose a Symmetric Conditional Information Bottleneck (SCIB) framework to
seamlessly integrate multi-modal Spectra features, named SymSpectra, effectively addressing the
persistent task of class-imbalanced functional group classification. Built upon information bottle-
neck principles, the SCIB framework dynamically suppresses redundant cross-modal features while
preserving discriminative signals, thereby maximizing spectral complementarity and ensuring pre-
diction stability across diverse spectroscopic conditions. Meanwhile, to address the inherent bias
toward underrepresented functional groups caused by data imbalance, SymSpectra innovatively in-
corporates conditional mutual information (CMI) into the training objective, explicitly prioritizing
rare classes. Unlike traditional class reweighting or resampling heuristics, the CMI-guided optimiza-
tion dynamically quantifies and amplifies the informational significance of spectrally ambiguous
and underrepresented functional groups. Furthermore, to holistically model the complex interde-
pendencies among functional groups, we introduce a structured prediction module that processes
targets in a predefined order, leveraging earlier predictions as contextual inputs to explicitly en-
code co-occurrence and exclusivity relationships. This integrated approach substantially improves
classification accuracy while ensuring chemically interpretable predictions, particularly for rare or
ambiguous functional groups. Evaluated on both simulated and experimental spectroscopic data,
SymSpectra achieves a new state-of-the-art F1-score of 0.970, significantly outperforming baseline
methods. Notably, the framework demonstrates consistent superiority under challenging imbalance
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Figure 2: Illustration of the SymSpectra model. A SCIB framework integrates multimodal spectro-
scopic data. During training, three predictors are jointly optimized to compute CMI while capturing
functional group dependencies. Only the main predictor and the decoder is used for inference.

scenarios such as label imbalance and structural heterogeneity, exhibiting unmatched robustness and
generalizability compared to existing approaches.

2 METHODOLOGY

2.1 MULTI-MODAL CONDITIONAL INFORMATION BOTTLENECK

Our method focus on extracting task-relevant, non-redundant features from each modality condi-
tioned on the others. This motivates a Symmetric Conditional Information Bottleneck framework,
jointly optimizing all modality-specific representations.

Symmetric Conditional Informational Bottleneck (SCIB) Given n modalities {Xi}ni=1 and tar-
get variable Y , the optimal representations {T i}ni=1 are obtained by solving:

arg min
{T i}

n∑
i=1

[
− I(T i;Y | T¬i) + βI(Xi;T i | X¬i)

]
, (1)

where X¬i and T¬i denote all other modalities and representations except the i-th one, respectively.

The SCIB framework ensures that each representations {T i}:
❶ Preserves unique information about Y not contained in other representations T¬i.

❷ Eliminates redundant information already present in other modalities.

The parameter β ≥ 0 is a Lagrangian multiplier that governs the trade-off between predictive accu-
racy and representation compression.

2.2 MODEL ARCHITECTURE

2.2.1 SPECTRAL ENCODING MODULE

To accommodate the heterogeneous nature of multi-modal spectroscopic data, modality-specific
preprocessing strategies are applied, as detailed in Appendix F. Regardless of the modality, each
processed spectrum is transformed into a fixed-length vector of 600 dimensions, ensuring dimen-
sional consistency for multimodal integration.
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The resulting spectral vector is then passed through two sequential 1D convolutional blocks, each
composed of a Conv1D layer, followed by BatchNorm1D, ReLU, and MaxPool1D. Formally,
for an input vector Xi ∈ R600, the transformation in each block can be expressed as:

Oi = MaxPool1D(ReLU(BatchNorm(Conv1D(Xi)))). (2)
This design effectively captures local spectral patterns while robustly promoting consistent feature
representations both across different modalities and scales.

2.2.2 CORE INFORMATION EXTRACTION

To extract the core representation T i of each spectrum Xi, a unified cross-modal attention mecha-
nism is applied to dynamically estimate the importance of spectral tokens within and across modal-
ities, preserving complementary information while suppressing redundancy. Let the modality-
specific representations be {O1, O2...On} ∈ RB×L×C . Firstly, all modalities are concatenated
along the sequence dimension to obtain a joint representation:

Ocat = Linear(Concat(O1, O2...On)). (3)
Subsequently, one modality (e.g., O1) serves as the query in a multi-head attention mechanism
applied over the concatenated sequence, enabling the aggregation of cross-modal context:

O1
attn = MultiheadAttention(Q = O1,K = Ocat, V = Ocat). (4)

The output O1
attn ∈ RB×L×C is processed by a feed-forward network in order to compute an impor-

tance score for each individual token in the sequence.
p1 = σ(MLP(O1

attn)) ∈ [0, 1]B×L. (5)
The same procedure is applied to {O2...On} to obtain {p2...pn}, respectively.

The importance scores learned from cross-modal attention act as soft masks to reweight spectral
representations, filtering out task-irrelevant components under the information bottleneck frame-
work. To enforce task-relevant compression, we follow the variational information bottleneck prin-
ciple Yu et al. (2022) by perturbing the representations with stochastic noise. Specifically, each
token representation Hi

j is replaced with Gaussian noise ϵi ∼ N (µi, σ
2
i ) according to a sampled

gate λi
j ∼ Bernoulli(pij):

T i
j = λi

jH
i
j + (1− λi

j)ϵ
i. (6)

Gumbel-Softmax relaxation is adopt to make the sampling differentiable Maddison et al. (2016):

λi
j = σ

(
1

t
log

(
pij

1− pij

)
+ log

(
u

1− u

))
, u ∼ Uniform (0, 1), (7)

where t is the temperature parameter set to 1.0. This enables end-to-end optimization of the infor-
mation bottleneck objective as follows:

min
θ

β

n∑
i=1

I(Xi;T i | X¬i). (8)

By minimizing the conditional mutual information, the model learns to suppress redundant signals
across modalities while retaining discriminative features for classification.

2.2.3 DYNAMIC WEIGHTING STRATEGY BASED ON CMI

To exploit spectral complementarity, we extend the information bottleneck with conditional mutual
information (CMI). As defined in Equation 1, I(Y ;T i | T¬i) quantifies each modality’s unique
predictive contribution. CMI is approximated via an auxiliary CNN predictor trained under modality
dropout: masking T i and measuring the performance drop in predicting Y from T¬i. This drop
proxies I(Y ;T i | T¬i), guiding sample- and group-specific weighting in the loss (Section 2.3).
Formally, the CMI of T i and Y given other modality representations T¬i is:

I(Y ;T i | T¬i) = ET i,Y |T¬i

[
log

p(Y, T i | T¬i)

p(Y | T¬i) p(T i | T¬i)

]
= ET i,Y |T¬i

[
log

p(Y | T i, T¬i) p(T i | T¬i)

p(Y | T¬i) p(T i | T¬i)

]
= ET i,Y |T¬i

[
log

p(Y | T i, T¬i)

p(Y | T¬i)

]
,

(9)
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where p(Y | T i, T¬i) and p(Y | T¬i) are estimated separately by the main and auxiliary predictors.

Loss reweighting with modality-wise and sample-wise weights. A dual-level dynamic weighting
mechanism is introduced to adaptively incorporate these CMI estimates into the training process.
Specifically, the total loss function is formally defined as:

Ltotal =
1

N

N∑
i=1

W samp
i · 1

K

K∑
j=1

ℓ (yi,j , ŷi,j) ·W feat
i,j

 , (10)

In this formulation, W samp
i is the sample-level weight for instance i, and W feat

i,j is the feature-level
weight reflecting the relevance of the most informative modality for label j. W samp

i adjusts instance
importance, while W feat

i,j refines label-specific predictions based on modality contributions.

Sample-level weighting. The sample weight W samp
i emphasizes samples with higher prediction

uncertainty, which typically correspond to challenging functional groups. It is defined as:

W samp
i = max

{
0, 1 + s1 ·

CMIi − µs

σs

}
, (11)

where CMIi is the average estimated CMI for all labels in sample i, and µs, σs denote the batch
mean and standard deviation of CMIi.

Feature-level weighting. The feature weight W feat
i,j adjusts the importance of each label based on its

modality sensitivity. It is given by:

W feat
i,j = max

{
0, 1 + s2 ·

CMIi,j − µf

σf

}
, (12)

where CMIi,j denotes the estimated conditional mutual information related to predicting label j for
sample i, and µf , σf are normalization statistics across all samples and labels.

2.2.4 SEQUENTIAL MULTI-LABEL PREDICTION USING LSTM DECODER

Structured label dependencies are modeled using an LSTM decoder that sequentially predicts func-
tional groups from fused multi-modal features. Specifically, given the fused representation Tf ob-
tained from multi-modal spectral inputs, the decoder’s initializes its hidden state h0 using a MLP
and predicts functional groups sequentially according to a predefined order. At each time step t, the
previous prediction yt−1 is embedded as et, and the hidden state is updated via:

ht = LSTM(et, ht−1). (13)

Predictions are generated via a dropout-regularized linear layer.

To stabilize training and accelerates convergence, Scheduled Sampling Mihaylova & Martins (2019)
is used with teacher forcing. At each step, the model uses either the ground truth or its own prediction
as input, with the ground truth probability p initialized to 0.5 and decaying exponentially (factor 0.95
per epoch). This gradually shifts reliance to model predictions.

2.3 OPTIMIZATION

To jointly learn the model parameters and effectively identify modality-specific core information,
we minimize the objective function:

min−I(Y ;T i | T¬i) + βI(T i;Xi | X¬i), (14)

where each term corresponds to either prediction or compression. The following sections derive an
upper bound for each, which is minimized during training.

2.3.1 MINIMIZING −I(Y ;T i | T¬i)

The first term −I(Y ;T i | T¬i) ensures T i encodes complementary information about Y that is not
already captured by T¬i. By the chain rule of mutual information, the objective is decomposed into
two sub-components:

−I(Y ;T i | T¬i) = −I(Y ;T i, T¬i) + I(Y ;T¬i), (15)
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The first term is bounded by the main classification loss. Let pθ(Y | T i, T¬i) be a variational predic-
tor; following the variational information bottleneck framework, −I(Y ;T i, T¬i) is approximated
using the parametric form:

−I(Y ;T i, T¬i) ≤ EY,T i,T¬i

[
− log pθ(Y | T i, T¬i)

]
:= Lpred. (16)

The second term I(Y ;T¬i) is omitted, as its minimization introduces optimization instability that
degrades model performance, as empirically validated in Obs 11. Further details are shown in
Appendix E.1.

2.3.2 MINIMIZING I(T i;Xi | X¬i)

The second term constrains the information transfer from Xi into T i, suppressing modality-specific
noise and redundancy. To decompose this term, the chain rule of mutual information is applied:

I(T i;Xi | X¬i) = I(T i;Xi, X¬i)− I(T i;X¬i). (17)
As shown in Appendix E.2, both terms are tractably upper-bounded under Gaussian assumptions
using the variational information bottleneck framework. We also explore the impact of different
prior distributions in the Appendix G. Specifically:

I(T i;Xi, X¬i) ≤ EXi,X¬i

[
− 1

2 logA+ 1
2Ni

A+ 1
2Ni

B2
]
+ C, (18)

−I(T i;X¬i) ≤ EX¬i

[
− 1

2 logA
′ + 1

2Ni
A′ + 1

2Ni
(B′)2

]
+ C, (19)

where A, B, A′, B′ are attention-weighted terms computed from spectral features, C is a con-
stant. Intuitively, minimizing these upper bounds drives the attention mechanism to function as an
information filter. The terms A′ and B′ explicitly penalize the predictability of T i given the other
modalities X¬i. By optimizing this objective, the model learns to assign lower attention weights
to features in Xi that are redundant, thereby forcing the representation T i to focus exclusively on
modality-specific, complementary information.

3 EXPERIMENT AND ANALYSES

We present experimental results to demonstrate the effectiveness of our model. In this section, we
conduct extensive experiments to address the following research questions:

• RQ1: Can SymSpectra accurately perform structure elucidation?
• RQ2: Can SymSpectra effectively mitigate class imbalance problem?
• RQ3: How do individual modules contribute to SymSpectra’s performance?

3.1 DATASETS AND SETUPS

Datasets. We evaluate our model on both simulated and real-world experimental spectroscopic
datasets. The simulated dataset from Alberts et al. Alberts et al. (2024) contains 794K molecules
with IR, 1H-NMR, 13C-NMR, and MS/MS spectra. For experimental validation, we curated
a dataset of approximately 12K molecules from the Spectral Database for Organic Compounds
(SDBS)1 with corresponding MS, 13C-NMR, and 1H-NMR spectra, as large-scale multi-modal ex-
perimental datasets are not publicly available. Further details are available in Appendix H.

Baselines. To thoroughly benchmark our model, we compare it against a diverse set of key archi-
tectures, ranging from a specialized 1D-CNN for spectral analysis Jung et al. (2023) and a standard
OpenNMT-based Transformer Klein et al. (2018) to the more recent state-of-the-art models pro-
posed by Alberts et al. (2025) and Wu et al. (2025).

Metrics. We evaluate model performance using three metrics: sample-level accuracy (ACC), the
percentage of samples where all functional groups are correctly predicted; macro-F1, the unweighted
average F1-score across all classes, which highlights performance on rare groups; and micro-F1,
which calculates the F1-score globally to reflect overall performance. Each experiment is repeated
eight times with the same 8:1:1 train/validation/test split. Detailed hyperparameter settings are pro-
vided in Appendix B, and a report on time and space consumption is available in Appendix R.

1https://sdbs.db.aist.go.jp
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Table 1: F1-scores for predicting functional groups. The best results, determined by t-tests at a 95%
confidence level, are highlighted in bold. The second-best results are underlined.

Spectrum Config. 1D-CNN Transformer Wu et al. Alberts et al. SymSpectra

Alberts et al. (Simulated Spectra)

IR 0.895(0.002) 0.881(0.021) 0.886(0.013) 0.891(0.007) 0.924(0.013)
13C-NMR 0.674(0.056) 0.913(0.017) 0.914(0.004) 0.919(0.012) 0.921(0.023)
1H-NMR 0.839(0.005) 0.935(0.031) 0.943(0.036) 0.946(0.027) 0.925(0.007)
IR, 13C-NMR, 1H-NMR 0.900(0.004) 0.936(0.013) 0.944(0.012) 0.947(0.014) 0.970(0.018)

IR, MS/MSpos, MS/MSneg 0.887(0.008) 0.911(0.003) 0.924(0.012) 0.931(0.031) 0.949(0.008)

SDBS Database (Experimental Spectra)

MS 0.801(0.018) 0.826(0.021) 0.837(0.015) 0.836(0.010) 0.855(0.007)
13C-NMR 0.729(0.033) 0.821(0.020) 0.833(0.014) 0.836(0.011) 0.849(0.007)
1H-NMR 0.701(0.027) 0.779(0.025) 0.801(0.019) 0.803(0.018) 0.796(0.008)
MS, 13C-NMR, 1H-NMR 0.847(0.022) 0.858(0.019) 0.872(0.020) 0.881(0.017) 0.919(0.008)

3.2 MODEL PERFORMANCE (RQ1)

Obs 1: SymSpectra achieves superior predictive performance over baseline models. Table 1
presents the predictive performance for molecular structure inference, showing SymSpectra consis-
tently outperforms all baselines across both unimodal and multimodal settings. Furthermore, Fig-
ure 3(a) shows SymSpectra significantly improves sample-level accuracy—a key real-world metric.
Figure 3(b) shows SymSpectra achieves higher accuracy as the number of functional groups in a
molecule increases. This suggests SymSpectra is more robust with challenging samples, likely by
extracting and leveraging core substructures to generalize. For practical efficiency, our analysis, de-
tailed in Appendix R, explores the trade-off between modalities and computational cost, leading us
to select the three most informative spectra as model input.

Obs 2: SymSpectra outperforms standard class imbalance handling techniques without re-
quiring external preprocessing. To rigorously benchmark SymSpectra against established strate-
gies for mitigating class imbalance, we conducted comparative experiments using the simulated
dataset. We augmented strong baselines (1D-CNN and Alberts et al.) with three standard tech-
niques: Oversampling (MLSMOTE), Inverse Class Frequency Reweighting, and Focal Loss. As
summarized in Table 2, while these heuristic techniques improved baseline performance (e.g., Al-
berts et al. improved from 0.947 to 0.956 with Focal Loss), SymSpectra still achieved a superior
F1-score of 0.970. Statistical analysis (t-test) confirms this advantage is significant across all com-
parisons (p < 0.01), demonstrating that our CMI-based dynamic weighting offers a more effective,
data-driven solution to long-tail distributions than static reweighting or resampling heuristics.

Obs 3: SymSpectra demonstrates robust performance on experimental spectra. To evaluate
real-world performance, we used a dataset of approximately 12,000 molecules with experimen-
tal spectra from the SDBS database. As shown in Table 1, while the performance of all models
declined on this data, likely due to the limited dataset size and inherent noise and shifts in exper-
imental spectra, SymSpectra exhibited a significantly smaller loss. This resilience is particularly
evident in the multimodal setting, where SymSpectra achieves a substantial performance gain with
an F1-score of 0.919. This is attributable to its ability to effectively synthesize complementary
information from diverse spectral sources. Furthermore, in Appendix I we analyzed various data
augmentation techniques and achieved additional performance improvements. Crucially, the ability
to recover performance through realistic perturbations like horizontal shifts and noise suggests that
the observed Sim-to-Real gap is primarily a result of domain shifts that can be mitigated, rather than
a fundamental defect in the model architecture. These results, along with simulations of spectral
noise and missing modalities detailed in Appendix J, further confirm the model’s robustness.

Obs 4: SymSpectra retains more information for samples with rich functional groups, bal-
ancing retention and compression. To examine how SymSpectra adapts its information allocation
based on molecular complexity, we analyzed the relationship between functional group count and
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Figure 3: (a) Model-wise sample-level accuracy; (b) Accuracy across molecules with varying func-
tional group counts; (c) Model Performance on Structurally Disjoint Test Set; (d) Correlation be-
tween functional group count and macro-F1 score.

modality-wise importance distributions2. The distribution of importance scores in Appendix M
demonstrate that molecules with richer functional groups consistently receive higher importance
scores, indicating SymSpectra preserves more information for complex inputs. This adaptive mech-
anism effectively tailors the information processing strategy to each sample’s inherent complexity.

3.3 CAPABILITY TO MITIGATE DATA IMBALANCE (RQ2)

Obs 5: SymSpectra effectively mitigates class imbalance by achieving superior performance on
low-frequency functional groups. To evaluate SymSpectra’s robustness under class imbalance, we
assessed its performance on functional groups with varying frequencies in the test set. As shown in
Figure 3 (d), our model consistently outperforms the baseline across all categories. The advantage is
particularly notable for low-frequency classes such as Acid anhydride and Azo compound, where the
baseline yields near-zero recall. This indicates that our model better captures informative patterns
from limited data, enhancing generalization.

Obs 6: SymSpectra effectively mitigates sample imbalance while ensuring stable performance
across varying training conditions. To evaluate SymSpectra’s performance under extreme class
imbalance, we selected four most representative rare functional groups as minority classes and pro-
gressively reduced their positive training samples until reaching 25% of the original count. All mod-
els were trained on these datasets and evaluated on a fixed test set. As shown in Figure 4, although
all models demonstrate improved F1 scores for minority classes as the imbalance level decreases, the
performance advantage of SymSpectra becomes increasingly pronounced as the imbalance severity
reduces, highlighting its greater capacity to fully utilize minority samples.

Obs 7: SymSpectra effectively mitigates structural imbalance, enabling robust generalization
to unseen structures. To rigorously evaluate model generalization, we employed the scaffold-based
clustering strategy detailed in Appendix K. This method partitions the training and test sets into
structurally distinct regions of chemical space and thus creates a significant structural imbalance. As
shown in Figure 3(c), this intentionally challenging scenario led to a noticeable performance drop
across virtually all baselines. Despite this difficulty, SymSpectra achieved a remarkable F1-score of

2To generate the visualization in Figure 8, 500 molecules were randomly selected and ranked by functional
group count; the top 5 (hardest) and bottom 5 (easiest) samples

8
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Figure 4: Prediction F1 scores for four functional groups under varied training-set configurations.
Each model is independently trained per setting and evaluated on a shared test set. Functional groups
and their positive ratios appear in each subfigure’s top-right corner.

Table 2: Comparison of SymSpectra against baselines enhanced with standard class imbalance mit-
igation strategies. P-values indicate the statistical significance of the performance gap compared to
SymSpectra.

Model Training Strategy F1-Score p-value (vs. SymSpectra)

SymSpectra Original 0.970 -

Alberts et al.

+ Focal Loss 0.956 8.13× 10−3

+ Oversampling 0.954 1.89× 10−3

+ Class Reweighting 0.951 3.17× 10−3

Original 0.947 9.29× 10−4

1D-CNN

+ Focal Loss 0.917 6.82× 10−5

+ Class Reweighting 0.915 2.41× 10−4

+ Oversampling 0.910 3.09× 10−5

Original 0.900 8.15× 10−6

0.8798, significantly outperforming all other competing models tested. This result strongly indicates
SymSpectra’s superior ability to handle structural imbalance, ensuring stable and high performance
even when predicting diverse and structurally novel molecules.

3.4 ABLATION STUDY AND SENSITIVITY ANALYSIS (RQ3)

Obs 8: The prediction order of functional groups significantly influences model performance.
To investigate the impact of prediction order on model performance, we evaluate several strategies
against a non-sequential CNN, including predefined orders based on IUPAC nomenclature priori-
ties Jenkins et al. (1991) and data-driven orders learned via mutual information or GNN. As shown
in Table 4, sequential prediction significantly improves performance on functional groups where the
baseline struggles, highlighting the importance of modeling inter-label dependencies. The GNN-
derived and IUPAC-based orders were most effective, likely by capturing higher-order chemical
dependencies. The impact of order is significant; for instance, predicting Imines early yields poor
results, while Aldehydes benefit from later placement that leverages contextual cues. Consequently,
we adopt IUPAC order to ensure generalizability, as this predefined convention is immune to dataset
bias. Full details on ordering strategies and decoder analysis are available in Appendix L and P.

Table 3: Ablation study of model com-
ponents, showing average F1-scores across
functional group frequencies.
Component High Medium Low
SymSpectra 0.967 0.942 0.866
- Dynamic Weight 0.957 0.922 0.844
- SCIB Compression 0.949 0.919 0.827
- LSTM Decoder 0.966 0.933 0.854

Obs 9: The dynamic weighting strategy is cru-
cial for mitigating data imbalances. To assess
the contribution of each component, we performed
an ablation study. As shown in Table 3, remov-
ing the dynamic weighting mechanism caused a per-
formance drop across all tiers, with the largest de-
cline in low-frequency groups. Visualization in Ap-
pendix N shows that samples with more functional
groups or harder-to-predict categories receive higher

9
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Table 4: Prediction results for five representative functional groups under different label ordering
strategies. Indices correspond to functional groups listed in the footnote.4 Best results are in bold,
second-best are underlined.

Category Order Relative Sequence 8 9 13 16 22

Predefined IUPAC [13, 16, 8, 9, 22] 0.942 0.926 0.974 0.904 0.885

Data-driven Mutual Info [16, 13, 9, 8, 22] 0.930 0.826 0.877 0.896 0.872
GNN [22, 13, 16, 8, 9] 0.883 0.929 0.985 0.909 0.756

Non-sequential CNN no order 0.884 0.927 0.992 0.868 0.540

weights. By adaptively increasing the weights of underrepresented and difficult groups based on
CMI, the model prevents these classes from being overlooked. In addition, removing SCIB compres-
sion or the LSTM decoder degraded performance, especially on low-frequency groups, highlighting
the complementary role of all components.

Obs 10: β measures information compression, while s1 and s2 control the focus on challenging
samples and functional groups. We performed a sensitivity analysis of β, s1, and s2 to assess
their impact on model performance. According to Equation 1, β balances information compression
and prediction accuracy, while s1 and s2 (Equations 11 and 12) regulate the emphasis on complex
samples. As shown in Appendix Q, setting s1 = s2 = 0.3 yields optimal performance, as larger
values overly emphasize difficult samples and smaller values fail to highlight critical ones. Similarly,
β = 1e−6 gives the best result, since higher values discard meaningful representations via excessive
compression, while lower values miss essential substructures.

Obs 11: Minimizing I(Y ;T¬i) negatively impacts final prediction performance.
Table 5: Performance impact of including the con-
flicting term I(Y ;T¬i).

Weight (λ) 0 (Ours) 0.01 0.1 1.0

F1-Score 0.970 0.956 0.952 0.931

The term I(Y ;T¬i) quantifies the information
about the target Y contained in the context
modalities T¬i. Minimizing this term essen-
tially forces the context representations to be
uninformative about the label, which creates a
fundamental conflict with the main predictor’s
goal of maximizing the joint mutual information for accurate classification. To empirically verify
this, we conducted an experiment by incorporating the upper bound of this term into the training
objective, controlled by a weight hyperparameter λ. As shown in Table 5, increasing the weight of
this penalty term leads to a monotonic deterioration in model performance. This finding aligns with
the Variational Information Bottleneck (VIB) framework , which observes similar optimization in-
stability with conflicting objectives. Following their implementation strategy, we exclude this term
from our final objective to ensure optimal predictive performance.

4 CONCLUSION

In this work, we present SymSpectra, a novel framework that integrates multimodal spectral data
via a Symmetric Conditional Information Bottleneck framework. Specifically, to address label im-
balance, conditional mutual information is incorporated into the training objective, while a dedi-
cated module captures dependencies among functional groups. Experiments on benchmark spectral
datasets demonstrate state-of-the-art performance in molecular structure recognition, with signifi-
cant improvements in identifying rare functional groups. Our approach exhibits strong robustness
across various imbalanced scenarios and generates predictions that align more closely with chemical
reasoning, thereby supporting downstream tasks such as drug discovery and material design.

48: Amide, 9: Amine, 13: Carboxylic acid, 16: Ester, 22: Imine.
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5 REPRODUCIBILITY

We provide the complete implementation in the repository along with guidance on how to re-
produce our results. Our code is available at https://anonymous.4open.science/r/
SymSpectra-0017.

6 ETHICS STATEMENT

Our study does not involve human participants, personal data, or sensitive information. The datasets
and resources used are either publicly available or released under appropriate licenses. We confirm
that our research does not raise any ethical concerns related to privacy, safety, fairness, or potential
misuse. The contributions of this work are intended solely for advancing scientific research and are
not designed or evaluated for harmful applications.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model (LLM) was employed exclusively for writing assistance and text refinement,
including grammar correction, stylistic adjustments, and improving conciseness. The LLM did not
contribute to research design, data analysis, model development, or interpretation of results. All
technical content, experiments, and conclusions were entirely conceived, conducted, and validated
by the authors.

B TRAINING SETTINGS

Our model was trained for 100 epochs on a single NVIDIA A100 GPU (80GB) with a batch size of
128. We employed the Adam optimizer with a learning rate of 3e-4, managed by a cosine annealing
scheduler. An LSTM-based decoder with Scheduled Sampling was utilized for the sequential pre-
diction task. Based on hyperparameter tuning, the information bottleneck coefficient β was set to
1e-6, and the sample emphasis regulators, s1 and s2, were both set to 0.3. The total training time
was approximately 7 hours.

C RELATED WORK

C.1 SPECTROSCOPY-BASED MOLECULAR MODELING

Recent advances in machine learning have significantly advanced molecular modeling from spec-
troscopic data. Devata et al. Devata et al. (2024) introduced DeepSPInN, a reinforcement learning
approach that predicts molecular structures directly from infrared and 13C-NMR spectra, without
relying on spectral databases. Kim et al. Kim et al. (2023) developed DeepSAT, a neural network-
based system that extracts structural features from 1H-13C HSQC NMR spectra to assist molecular
structure annotation. Baygi et al. Baygi & Barupal (2024) proposed IDSL MINT, a transformer-
based framework that translates MS/MS spectra into molecular fingerprint descriptors to enhance
annotation in untargeted metabolomics and exposomics. In parallel, Stravs et al. Stravs et al. (2022)
explored the use of recurrent neural networks for de novo molecular structure generation from mass
spectrometry data. More recently, diffusion models and Large Language Models have also been
adapted for spectral analysis. DiffMS Bohde et al. (2025) utilizes diffusion models to generate
molecular graphs conditioned on mass spectra, employing combinatorial optimization to embed
spectral peaks. Similarly, DiffSpectra Wang et al. (2025) investigates the joint modeling of 2D and
3D molecular structures, enabling the prediction of conformations from multi-modal spectra. In
the domain of general-purpose models, a comprehensive multimodal benchmark Guo et al. (2024)
has been established to evaluate the capabilities of LLMs in solving molecular puzzles, specifi-
cally focusing on their potential in spectrum interpretation and molecule construction. While these
methods demonstrate considerable progress, most focus exclusively on mass spectrometry and of-
ten overlook the integration of diverse spectroscopic modalities. Furthermore, mass spectrometry
remains expensive, noise-sensitive, and difficult to standardize in automated workflows. To address
these challenges, Alberts et al. Alberts et al. (2024) introduced a multimodal spectroscopic dataset
comprising 790,000 entries, enabling joint analysis across multiple spectroscopic techniques. Their
reference models for structural inference and functional group classification establish a strong base-
line for future research. Together, these contributions highlight both the potential and limitations of
current approaches, motivating our development of an integrative, multi-spectroscopic framework
for robust and generalizable molecular structure analysis.

C.2 INFORMATION BOTTLENECK THEORY

The Information Bottleneck (IB) framework offers a systematic approach to distilling concise yet
meaningful representations from intricate datasets, which is particularly valuable for tasks such as
noise reduction and data compression. Building upon this, PGIB Yu et al. (2020) generalizes the
IB principle by incorporating a mutual information estimation mechanism tailored for non-uniform
graph structures, as well as introducing a connectivity-based loss to enhance the robustness of infor-
mation extraction. VGIB Yu et al. (2022) advances this direction by injecting Gaussian perturbations
into node embeddings, thereby moderating the transfer of information between the original and mod-
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ified graphs and further enhancing stability. Additionally, Lee et al. Lee et al. (2023) expanded the
graph information bottleneck to the field of molecular relational learning, proposing the Conditional
Graph Information Bottleneck (CGIB) theory, which aims to retain as much relevant information as
possible with paired graphs while obtaining compressed subgraphs. The CGIB theory addresses the
issue of extracting independent subgraphs in GIB for MRL tasks, but considering all information
from another graph during interaction can introduce excessive noise.

D BROADER IMPACTS AND LIMITATION

D.1 BROADER IMPACTS

This work enables robust prediction of functional group presence under imbalanced scenarios, align-
ing closely with chemical reasoning. By detecting rare functional groups, it supports early drug
screening, as such substructures often signal unique bioactivity. Additionally, SymSpectra models
functional group interactions to enhance interpretability and consistency, offering valuable insights
for materials science and diagnostics.

D.2 LIMITATION

Despite its strengths, SymSpectra still has limitations. First, its generalization is constrained by the
diversity of the training data, leading to suboptimal performance on rare or novel functional groups.
Second, resolving severe spectral overlap in complex molecules remains a significant hurdle, which
can cause ambiguity in feature attribution. The framework also identifies the presence of functional
groups but not their connectivity, making it difficult to distinguish between certain structural isomers.
Addressing these challenges will require more diverse datasets and architectural enhancements for
more fine-grained structural elucidation.

E PROOF

E.1 MINIMIZING −I(Y ;T i | T¬i)

The objective of minimizing the conditional mutual information −I(Y ;T i | T¬i) is to encourage
the representation T i to capture as much discriminative information as possible about the label Y ,
conditioned on the remaining representations T¬i. By applying the chain rule of mutual information,
we decompose this term as:

−I(Y ;T i | T¬i) = −I(Y ;T i, T¬i) + I(Y ;T¬i), (20)

where I(Y ;T i, T¬i) denotes the mutual information between Y and the joint representation
(T i, T¬i), while I(Y ;T¬i) captures the information about Y in the remaining representations.

E.1.1 MINIMIZING −I(Y ;T i, T¬i)

To minimize−I(Y ;T i, T¬i), we derive an upper bound using the negative log-likelihood, resulting
in the supervised prediction loss:

−I(Y ;T i, T¬i) = E(T i,T¬i,Y )

[
log

p(Y )

p(Y | T i, T¬i)

]
≤ E(T i,T¬i,Y )

[
− log pθ(Y | T i, T¬i)

]
= −E(T i,T¬i,Y )

[
log pθ(Y | T i, T¬i)

]
= Lpred,

(21)

where pθ(Y | T i, T¬i) is a probabilistic predictor parameterized by θ. It infers the target label
Y based on the full set of spectral representations (T i, T¬i). Therefore, minimizing the primary
prediction loss Lpred(Y, T

i, T¬i), often implemented as a cross-entropy loss, serves as a tractable
surrogate for minimizing −I(Y ;T i, T¬i).
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E.1.2 MINIMIZING I(Y ;T¬i)

The second term in the decomposition, I(Y ;T¬i), represents the mutual information that the set of
all other modalities, T¬i, shares with the target Y . However, minimizing the mutual information
I(Y ;T¬i) requires forcing the representations T¬i to become uninformative about Y . This objec-
tive is fundamentally contradictory to the primary model’s goal of learning meaningful features by
minimizing its own prediction loss. Such a setup introduces an unstable, adversarial training dy-
namic that can impede convergence and degrade the quality of the learned representations. Given
this theoretical conflict and the practical instability it creates, we omit this term from our final ob-
jective.

E.2 MINIMIZING I(T i;Xi | X¬i)

The goal of minimizing I(T i;Xi | X¬i) is to compress the information from Xi as much as
possible, conditioned on X¬i. Using the chain rule of mutual information, we express this as:

I(T i;Xi | X¬i) = I(T i;Xi, X¬i)− I(T i;X¬i). (22)

Minimizing I(T i;Xi, X¬i) encourages the encoder to extract only the most essential information
from the combined inputs, while minimizing −I(T i;X¬i) ensures that T i retains as much depen-
dence on X¬i as needed to support meaningful disentanglement.

E.2.1 MINIMIZING I(T i;Xi, X¬i)

To upper-bound the mutual information I(T i;Xi, X¬i), we adopt a variational approximation ap-
proach inspired by the Variational Autoencoder (VAE) framework. Specifically, we introduce a
variational distribution q(T i) to approximate the marginal p(T i):

I(T i;Xi, X¬i) = Ep(Xi,X¬i,T i)

[
log

p(T i | Xi, X¬i)

p(T i)

]
= Ep(Xi,X¬i,T i)

[
log

p(T i | Xi, X¬i)

q(T i)
· q(T

i)

p(T i)

]
= Ep(Xi,X¬i,T i)

[
log

p(T i | Xi, X¬i)

q(T i)

]
− Ep(Xi,X¬i,T i)

[
log

q(T i)

p(T i)

]
= Ep(Xi,X¬i,T i)

[
log

p(T i | Xi, X¬i)

q(T i)

]
−DKL(p(T

i)∥q(T i))

≤ Ep(Xi,X¬i,T i)

[
log

p(T i | Xi, X¬i)

q(T i)

]
.

(23)

The KL divergence is non-negative, providing a valid upper bound.

Following the Variational Information Bottleneck (VIB) principle, we model q(T i) as a Gaussian
perturbed version of the encoder’s output, where the noise is sampled as ϵ ∼ N (µT i , σ2

T i). Let the
representation T i be aggregated (e.g., via summation) over local spectral features. By the additive
property of Gaussian distributions, the aggregated representation is also Gaussian:

q(T i) = N (NiµT i , Niσ
2
T i). (24)

For the conditional distribution p(T i | Xi, X¬i), we assume a Gaussian with mean shifted by
attention-weighted local feature deviations:

p(T i | Xi, X¬i) = N

NiµT i +

Ni∑
j=1

λj(hj − µT i),

Ni∑
j=1

(1− λj)
2σ2

T i

 . (25)

Substituting into the mutual information bound yields:

I(T i;Xi, X¬i) ≤ EXi,X¬i

[
−1

2
logA+

1

2Ni
A+

1

2Ni
B2

]
+ C, (26)

where A =
∑Ni

j=1(1− λj)
2, B =

∑Ni

j=1 λj
(hj−µTi )

σTi
, and C is a constant.
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E.2.2 MINIMIZING −I(T i;X¬i)

To upper-bound −I(T i;X¬i), we again use a variational approximation:

−I(T i;X¬i) = −Ep(T i,X¬i)

[
log

p(T i | X¬i)

p(T i)

]
= −Ep(T i,X¬i)

[
log

p(T i | X¬i)

q(T i)

]
+DKL(q(T

i)∥p(T i))

≤ −Ep(T i,X¬i)

[
log

p(T i | X¬i)

q(T i)

]
,

(27)

where the KL term is non-negative and thus may be omitted during optimization.

We retain the Gaussian assumptions:

q(T i) = N (NiµT i , Niσ
2
T i), (28)

p(T i | X¬i) = N

NiµT i +

Ni∑
j=1

λ
(¬i)
j (h

(¬i)
j − µT i),

Ni∑
j=1

(1− λ
(¬i)
j )2σ2

T i

 , (29)

where λ
(¬i)
j and h

(¬i)
j are attention weights and local features derived from X¬i only.

Thus, we have:

−I(T i;X¬i) ≤ EX¬i

[
−1

2
logA′ +

1

2Ni
A′ +

1

2Ni
(B′)2

]
+ C, (30)

where

A′ =

Ni∑
j=1

(1− λ
(¬i)
j )2, B′ =

Ni∑
j=1

λ
(¬i)
j

(h
(¬i)
j − µT i)

σT i

, (31)

and C is a constant that does not affect optimization.

This regularization term encourages T i to remain conditionally independent of the unrelated modal-
ity X¬i, thereby promoting disentangled and modality-specific representation learning.

F PREPROCESSING OF MULTIMODAL SPECTRAL DATA

To better exploit the unique characteristics of each spectral modality, we explored and empirically
selected distinct preprocessing strategies tailored to the data characteristics of each type. The pre-
processing procedures for each modality are described as follows.

F.1 PREPROCESSING OF 1H-NMR AND 13C-NMR SPECTRA

All NMR spectra are first linearly interpolated to a fixed length of 600 to ensure consistent input
dimensions. Given two adjacent sampling points (xi, yi) and (xi+1, yi+1), the interpolated value at
position x ∈ [xi, xi+1] is computed as:

y(x) = yi +
(x− xi)

(xi+1 − xi)
(yi+1 − yi). (32)

After interpolation, min-max normalization is applied to scale each spectrum into the range [0, 1]:

xnorm
i =

xi −min(x)

max(x)−min(x)
, (33)

where xi denotes the i-th interpolated intensity value, and min(x), max(x) are the minimum and
maximum values of the spectrum, respectively.
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F.2 PREPROCESSING OF IR SPECTRA

Infrared (IR) spectra undergo the same interpolation process to 600 points as the NMR data (see
Eq. 32) to maintain consistent input dimensionality. However, we omit normalization for IR spectra,
as empirical results suggest that removing absolute intensity information can degrade performance.
Unlike NMR, absolute peak heights in IR spectra often encode discriminative cues related to func-
tional group presence or bond strength. Thus, the interpolated raw signals are used directly as model
input without additional scaling.

F.3 PREPROCESSING OF MS/MSpos AND MS/MSneg SPECTRA

Raw MS/MS spectra are represented as a set of discrete fragment peaks, each described by a tuple
(m/zi, Ii), where m/zi ∈ R+ is the mass-to-charge ratio of the i-th fragment ion and Ii ∈ R+ is
its corresponding intensity. These spectra are inherently sparse and vary in length across samples.
To enable uniform input for batch processing and model training, we convert each spectrum into
a fixed-length continuous representation through a two-step process: Gaussian-based smoothing of
fragment peaks followed by cubic spline interpolation over a predefined m/z grid.

F.3.1 STEP1: GAUSSIAN DIFFUSION ENCODING

Firstly, each spectrum is encoded into a fixed-length vector of 6000 bins, corresponding to the m/z
range [0, 600) with a resolution of 0.1. For each peak (m/zi, Ii), its corresponding position in the
vector space is computed as

pi = ⌊10 ·m/zi⌋, (34)
where pi ∈ {0, 1, . . . , 5999}. To account for small shifts in m/z values and experimental noise, a
Gaussian diffusion kernel centered at pi with standard deviation σ is applied as:

Gi(x) =
1

Zi
· exp

(
− (x− pi)

2

2σ2

)
, (35)

where Zi =
∑

x exp
(
− (x−pi)

2

2σ2

)
is a normalization factor ensuring

∑
x Gi(x) = 1. The spectral

vector s ∈ R6000 is then constructed by accumulating the weighted contributions of all peaks:

s[x] =

N∑
i=1

Ii ·Gi(x), x ∈ {0, . . . , 5999}. (36)

This step produces a smooth, dense representation that retains the shape and intensity of each peak
while mitigating resolution sensitivity.

F.3.2 STEP2: SPLINE-BASED DOWNSAMPLING

To reduce computational cost while preserving the overall shape of the spectrum, we compress the
6000-dimensional vector s ∈ R6000 into a 600-dimensional vector s̃ ∈ R600 using cubic spline
interpolation. Specifically, a smooth curve f(x) is fitted to s, and s is then sampled at 600 evenly
spaced positions over the same range:

s̃[j] = max (0, f(xj)) , j = 1, . . . , 600. (37)

Here, negative values from interpolation are clipped to zero to maintain non-negativity. Finally, ℓ2
normalization is applied:

s̃← s̃

∥s̃∥2 + ε
, (38)

where ε is a small constant to avoid division by zero. This step produces a compact and scale-
invariant spectral representation suitable for model input.

This preprocessing pipeline addresses three key challenges of raw MS/MS spectra: sparsity, vari-
able length, and sensitivity to m/z shifts. The Gaussian diffusion step produces a stable, smooth
spectrum, while the spline-based downsampling reduces dimensionality with minimal information
loss. The resulting fixed-length, normalized vector s̃ ∈ R600 serves as a robust input to downstream
models.
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G IMPACT OF LATENT PRIOR DISTRIBUTION

G.1 COMPARATIVE ABLATION STUDY

The selection of the prior distribution for the latent variables, q(tm) and q(ta), is a key hyperpa-
rameter in our proposed framework. To determine the optimal choice, we conduct an ablation study
comparing three canonical distributions: the standard normal N (0, I), the Laplace(0, 1), and the
Gamma(k = 1, θ = 1). The Laplace prior is selected for its tendency to induce sparsity, while the
Gamma prior enforces non-negativity in the latent space.

The results of this analysis are summarized in Table 6. The model configured with a Gaussian
prior demonstrates superior performance, achieving the highest F1-score. This suggests that the
unimodal and symmetric properties of the Gaussian distribution provide a well-suited inductive bias
for compressing multi-modal spectral information into a flexible and effective latent representation.
In contrast, the sparsity induced by the Laplace prior or the non-negativity constraint of the Gamma
prior appear to be overly restrictive for this task. Consequently, we adopt the N (0, I) prior for all
other experiments presented in this work.

Table 6: Impact of different latent prior distributions on functional group classification performance.
All other hyperparameters are held constant during this ablation.

Prior Distribution F1-Score
Gaussian N (0, I) 0.970
Laplace(0, 1) 0.958
Gamma(k = 1, θ = 1) 0.951

G.2 VALIDATION OF THE GAUSSIAN ASSUMPTION

Complementing the comparative experiments above, we further clarify that the choice of a Gaussian
distribution for our representations is theoretically grounded in the Central Limit Theorem. Specif-
ically, our representation is formed by aggregating a large number of local features, a process that
includes pooling and attention mechanisms (Equations 2, 3, and 4). According to the Central Limit
Theorem, when aggregating a large number of independent or weakly dependent random variables,
the resulting distribution naturally converges to a Gaussian distribution, regardless of the original
distribution of the individual features.

To empirically validate this assumption, we conducted tests on the feature distributions of the three
spectral modalities (IR, 13C-NMR, and 1H-NMR). We tested the compressed feature distributions
for these spectra using the Shapiro-Wilk and Kolmogorov-Smirnov (K-S) tests for normality.

Table 7: Normality test results (p-values) for compressed feature distributions across spectral modal-
ities. High p-values (> 0.05) indicate that the hypothesis of normality cannot be rejected.

Test Method IR 13C-NMR 1H-NMR
Shapiro-Wilk 0.1648 0.1199 0.1479
Kolmogorov-Smirnov 0.5610 0.4210 0.4715

As shown in Table 7, the p-values from both tests are consistently greater than the significance level
of 0.05. These results suggest that the distributions of the compressed features for all three spectral
types align with the Gaussian distribution assumption, thereby justifying our choice of prior.

H FUNCTIONAL GROUPS DEFINITION

Functional groups serve as the foundational building blocks that impart specific chemical behaviors
and biological activities to organic molecules. In this work, we leverage a curated library of chemi-
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cally significant substructures, computationally encoded using SMARTS patterns, to achieve precise
and interpretable molecular characterization at the subgraph level. These structural descriptors cap-
ture key functional motifs and enable efficient substructure recognition through graph isomorphism-
based methods, ensuring scalability to large datasets.

The functional groups considered in our analysis are listed in Table 8, covering a diverse array of
chemically and pharmacologically relevant units—such as hydroxyl (-OH), carbonyl (C=O), and
amino (-NH2) groups. Functional group identification is conducted using cheminformatics libraries
such as RDKit, which support efficient substructure searching across molecular graphs. This strategy
facilitates the extraction of chemically meaningful features and supports downstream tasks including
molecular property prediction, reactivity analysis, and structure-based clustering.

Table 8: Predefined Functional Groups and Their SMARTS Patterns
No. Functional Group SMARTS Pattern
1 Acid anhydride [CX3](=[OX1])[OX2][CX3](=[OX1])
2 Acyl halide [CX3](=[OX1])[F,Cl,Br,I]
3 Alcohol [#6][OX2H]
4 Aldehyde [CX3H1](=O)[#6,H]
5 Alkane [CX4;H3,H2]
6 Alkene [CX3]=[CX3]
7 Alkyne [CX2]#[CX2]
8 Amide [NX3][CX3](=[OX1])[#6]
9 Amine [NX3;H2,H1,H0;!$(NC=O)]
10 Arene [cX3]1[cX3][cX3][cX3][cX3][cX3]1
11 Azo compound [#6][NX2]=[NX2][#6]
12 Carbamate [NX3][CX3](=[OX1])[OX2H0]
13 Carboxylic acid [CX3](=O)[OX2H]
14 Enamine [NX3][CX3]=[CX3]
15 Enol [OX2H][#6X3]=[#6]
16 Ester [#6][CX3](=O)[OX2H0][#6]
17 Ether [OD2]([#6])[#6]
18 Haloalkane [#6][F,Cl,Br,I]
19 Hydrazine [NX3][NX3]
20 Hydrazone [NX3][NX2]=[#6]
21 Imide [CX3](=[OX1])[NX3][CX3](=[OX1])
22 Imine [$([CX3]([#6])[#6]),$([CX3H][#6])]=[$([NX2][#6]),$([NX2H])]
23 Isocyanate [NX2]=[C]=[O]
24 Isothiocyanate [NX2]=[C]=[S]
25 Ketone [#6][CX3](=O)[#6]
26 Nitrile [NX1]#[CX2]
27 Phenol [OX2H][cX3]:[c]
28 Phosphine [PX3]
29 Sulfide [#16X2H0]
30 Sulfonamide [#16X4]([NX3])(=[OX1])(=[OX1])[#6]
31 Sulfonate [#16X4](=[OX1])(=[OX1])([#6])[OX2H0]
32 Sulfone [#16X4](=[OX1])(=[OX1])([#6])[#6]
33 Sulfonic acid [#16X4](=[OX1])(=[OX1])([#6])[OX2H]
34 Sulfoxide [#16X3]=[OX1]
35 Thial [CX3H1](=S)[#6,H]
36 Thioamide [NX3][CX3]=[SX1]
37 Thiol [#16X2H]

I IMPACT OF DATA AUGMENTATION

Real-world experimental spectra inevitably exhibit variations due to instrumental noise and calibra-
tion drift. These issues are further aggravated by the limited availability of large-scale multi-modal
spectral datasets. Since deep learning models require abundant data to generalize effectively, data
augmentation serves as a key strategy. By artificially expanding the training set to simulate diverse
experimental conditions, we can substantially improve the robustness, generalization ability, and
predictive accuracy of the models. All experiments in this study were performed using molecular
data sourced from the SDBS database.
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Figure 5: Evaluation of model robustness. (a) F1-scores under different data augmentation con-
ditions and in modality-ablation studies. The dashed line indicates the performance of the model
trained on original, complete data. (b) Impact of increasing levels of Gaussian noise on the final
F1-score.

To this end, we explored several augmentation techniques. A random horizontal shift was applied
to spectral signals to mimic peak displacement, while vertical perturbations were introduced by
adding uniform random noise inversely scaled to the original signal intensity. In addition, Gaussian
smoothing with a randomly selected bandwidth was employed to emulate instrument-dependent
resolution effects. Beyond these perturbation-based methods, we also implemented a linear com-
bination strategy, where two spectra from the same molecular class were blended with randomly
assigned weights. This method effectively encourages the model to learn intermediate representa-
tions and smooth decision boundaries, while still preserving the chemical validity of the spectra.

Figure 5(a) presents the performance comparison. All augmentation strategies provided clear im-
provements over the baseline model trained without augmentation (F1-score = 0.9192). The most
pronounced gain came from the Horizontal Shift augmentation, yielding an F1-score of 0.9369,
highlighting the importance of accounting for peak misalignments. Vertical noise also contributed
positively (0.9321), followed by Gaussian smoothing (0.9244). The linear combination approach
achieved enhanced performance (0.9234), indicating that interpolating between spectra is a viable
means of enriching the feature space. Overall, while every augmentation method enhanced predic-
tive performance, the results suggest that carefully designed perturbations targeting realistic spectral
variability are most effective in boosting model robustness.

J MODEL ROBUSTNESS UNDER IMPERFECT DATA CONDITIONS

To assess the model’s practical utility, we conducted a series of experiments to probe its resilience
against two common challenges in real-world spectral analysis: incomplete data and the presence of
noise. The results, summarized in Figure 5, underscore the model’s stability and ability to deliver
reliable predictions even when faced with suboptimal data.

Our investigation into data completeness, shown in Figure 5(a), involved systematically withholding
each of the three spectral modalities during testing. With the complete three-modality data, the
model established a strong baseline F1-score of 0.9192. When a single modality was withheld to
simulate incomplete data, the performance, while reduced, did not collapse. Specifically, the F1-
score dropped to 0.9031 without 1H-NMR, 0.8814 without 13C-NMR, and 0.8765 without MS.
This demonstrates that the model can effectively leverage the remaining available data to maintain
a high level of predictive accuracy, a crucial feature for applications where acquiring a full suite of
spectra is not always feasible.

Furthermore, we evaluated the model’s tolerance to noise by injecting synthetic Gaussian noise
of increasing intensity into the input spectra. This test mimics the random fluctuations inherent in
experimental data. As illustrated in Figure 5(b), the model exhibited a smooth and predictable degra-
dation in performance, with the F1-score declining steadily from 0.9192 on clean data to 0.7439 at
the highest noise level of 0.1. Crucially, there was no sharp drop-off; this graceful degradation high-
lights the model’s capacity to distinguish meaningful spectral features from random interference,
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confirming its robustness for deployment in real-world analytical workflows where data quality may
vary.

K SCAFFOLD-BASED DATA SPLIT

To prevent scaffold-level data leakage and create a rigorous test of generalization, we adopted an ad-
vanced clustering-based partitioning strategy. We first extracted Murcko scaffolds for all molecules
and computed their Morgan fingerprints. Based on Tanimoto distances, these scaffolds were grouped
into structurally homogeneous clusters via agglomerative clustering. To ensure a challenging split,
we then employed a greedy algorithm that explicitly maximizes the structural dissimilarity between
the training and test sets. This algorithm calculates the distances between all scaffold clusters and
strategically allocates entire clusters to the test set to maximize its separation from the chemical
space occupied by the training set.

The outcome of this diversity-maximization strategy is visualized in the t-SNE plot presented in
Figure 6. The plot reveals a significant distributional shift between the training set (blue) and the test
set (orange). The clear separation of their respective data clouds—highlighted by the distinct density
contours—illustrates the structural disparity enforced by our splitting strategy. This partitioning
provides a stringent evaluation setting, as the test molecules are structurally disjoint from the training
set, compelling the model to generalize far beyond memorized structural patterns.

Figure 6: t-SNE visualization of the scaffold-based data split using our diversity maximization strat-
egy. The training set (blue) and test set (orange) occupy separate regions in chemical space, demon-
strating the effectiveness of the split.

L DECISION OF PREDICTING ORDER

The order in which functional groups are predicted can significantly influence the overall perfor-
mance of multi-label prediction tasks. In Section 3.2, we systematically investigate the impact of
prediction order by considering three distinct strategies: alphabetical, mutual information-based,
and graph neural network (GNN)-based orderings. In this section, we provide a comprehensive
description of the mutual information-based and GNN-based methods, emphasizing the intuition,
construction steps, and practical implementation details behind each approach.

L.1 MUTUAL INFORMATION-BASED ORDERING

This method leverages information-theoretic principles to infer the optimal prediction sequence
among functional groups. The intuition is that functional groups with lower inherent uncertainty
(entropy) are generally easier to predict, while groups exhibiting high dependency with others can
be predicted more accurately when their correlated groups are known.
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L.1.1 INFORMATION-THEORETIC METRICS

For each functional group fi, we quantify its uncertainty using entropy, a standard measure in infor-
mation theory:

H(fi) = −p(fi = 1) log2 p(fi = 1)− p(fi = 0) log2 p(fi = 0), (39)

where p(fi = 1) and p(fi = 0) denote the probabilities of presence or absence of fi in the dataset,
respectively. Intuitively, a functional group with lower entropy is more predictable, as its distribution
is more concentrated.

To further understand dependencies between pairs of functional groups, we compute the conditional
entropy, which captures the remaining uncertainty of fi given the state of fj :

H(fi|fj) =
∑

v∈{0,1}

p(fj = v) ·H(fi|fj = v), (40)

where
H(fi|fj = v) = −

∑
u∈{0,1}

p(fi = u|fj = v) log2 p(fi = u|fj = v). (41)

This allows us to measure how knowledge of one group reduces the uncertainty of another.

Based on these quantities, the mutual information between fi and fj is defined as:

I(fi; fj) = H(fi)−H(fi|fj). (42)

A higher mutual information value indicates a stronger dependency, meaning that knowing fj sub-
stantially reduces uncertainty about fi.

L.1.2 DEPENDENCY GRAPH CONSTRUCTION

After quantifying all pairwise dependencies via mutual information, we represent these relationships
as a directed dependency graph G = (V,E):

• Each node vi ∈ V represents a specific functional group fi.

• A directed edge (vi, vj) ∈ E is established if fi provides significant information for pre-
dicting fj , as indicated by a mutual information value I(fi; fj) exceeding a threshold τ .

• Each edge is weighted by the mutual information value, reflecting the strength of the de-
pendency.

This graph encodes the core relationships among functional groups, ensuring that the most informa-
tive dependencies are retained.

L.1.3 MINIMUM SPANNING TREE CONSTRUCTION

To efficiently capture the most critical dependencies while avoiding redundancy, we transform the
dependency graph into a distance matrix D:

Di,j =
1

I(fi; fj) + ϵ
, (43)

where ϵ is a small constant to prevent division by zero. Using Kruskal’s algorithm, we compute the
minimum spanning tree (MST) over this graph:

MST = argmin
T⊆G

∑
(u,v)∈T

Du,v. (44)

The resulting MST preserves the strongest dependencies and provides a tree structure that connects
all functional groups with minimal total distance (i.e., maximal cumulative dependency).
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L.2 TRAVERSAL STRATEGY

To determine the prediction order, we initiate the traversal from the node corresponding to the most
predictable functional group—that is, the node vs with the lowest entropy:

vs = argmin
vi∈V

H(fi). (45)

We then traverse the MST using a breadth-first search (BFS) approach. At each step, the unvisited
neighbors of the current node are sorted by their entropy in ascending order and appended to the
queue. This process continues until all nodes have been visited. The resulting sequence prioritizes
functional groups that are more predictable and respects the dependency structure encoded in the
MST, thus facilitating more accurate sequential predictions.

L.3 ORDERING VIA GRAPH NEURAL NETWORKS

We introduce a GNN-based framework to learn an interpretable and data-driven prediction order by
modeling complex co-occurrence patterns and latent dependencies among functional groups.

Co-occurrence Graph Construction. Consider a binary label matrix Y ∈ RN×K , where N is
the number of molecules and K the number of functional groups. For each group i, we estimate its
marginal probability:

pi =
1

N

N∑
n=1

Yni. (46)

To capture pairwise dependencies, we compute the phi coefficient for each pair (i, j):

ϕij =
E[Y:i ∧ Y:j ]− pipj√
pi(1− pi)pj(1− pj)

, (47)

where E[Y:i ∧ Y:j ] is the empirical co-occurrence probability. An undirected, weighted graph G =
(V, E) is constructed, with nodes corresponding to functional groups and edges (i, j) included if
ϕij > τ . Edge weights are set to ϕij , representing the strength of co-occurrence.

Learning Functional Dependencies via GNN. To model higher-order dependencies, we encode
each node using feature vectors X ∈ RK×K (e.g., one-hot encodings). The graph structure (adja-
cency and edge weights) is fed into a GNN comprising GCN and GAT layers:

H(1) = ReLU(GCNConv(X,A,w)), (48)

H(2) = ReLU(GATConv(H(1),A)), (49)

Z = GCNConv(H(2),A), (50)

where A is the adjacency matrix and w are the edge weights. Each node embedding zi encodes the
structural and dependency information for group i. The importance of node i is then scored as:

si = w⊤
impzi + bimp, (51)

where wimp and bimp are learnable parameters.

Dependency-Aware Order Induction. A directed dependency graph Gdep is constructed using the
learned embeddings and scores. For each pair (i, j), a directed edge from i to j is added if si < sj
and either the cosine similarity between embeddings exceeds a threshold δ or the phi coefficient is
above τ :

si < sj and (cos(zi, zj) > δ or ϕij > τ) . (52)
Edge weights are computed as a convex combination of semantic similarity and co-occurrence
strength:

wij = α · cos(zi, zj) + (1− α) · ϕij , (53)
with α ∈ [0, 1] (default α = 0.7). To determine a global ranking, we apply the PageRank algorithm ?
to obtain a score ri for each node. The final ordering score is then:

oi = λsi + (1− λ)ri, (54)
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where λ ∈ [0, 1] (typically λ = 0.6). Functional groups are sorted in ascending order of oi, yielding
the final prediction sequence.

In summary, both the mutual information-based and GNN-based strategies provide principled frame-
works for determining an effective prediction order by explicitly modeling dependencies and pre-
dictability among functional groups, thereby facilitating improved performance in sequential pre-
diction tasks.

M MODALITY IMPORTANCE ON DIFFERENT SAMPLES

To analyze how the model assigns importance across spectra for samples of varying difficulty, we
evaluated 500 test samples and recorded modality-level importance scores. Based on functional
group counts, we identified the five easiest and hardest groups to predict. For these subsets, we vi-
sualized importance score distributions across input spectra (Figure 7). In the visualization, warmer
regions indicate higher importance, i.e., where the model retains more information.

The importance maps reveal that the model tends to retain less information for easier samples, effec-
tively discarding redundancy to enhance generalization. In contrast, for harder samples, it preserves
more information to enable fine-grained analysis. Furthermore, the importance patterns vary signif-
icantly across samples, likely due to differences in spectral characteristics and the complementary
nature of the modalities.

Figure 7: Importance maps for the top 5 most challenging and top 5 easiest samples. The first
number denotes the number of functional groups in each molecule, and the second indicates the
average importance score. From left to right: IR spectrum, 1H-NMR, and 13C-NMR. Warmer
regions indicate higher importance, while cooler regions represent lower importance.

N VISUALIZATION OF THE DYNAMIC WEIGHTING STRATEGY

To further illustrate and validate the efficacy of our dynamic weighting strategy in mitigating data
imbalance, we provide two visualizations. This strategy, based on Conditional Mutual Information
(CMI), is designed to adaptively assign higher weights to more challenging samples and functional
groups, thereby optimizing the model’s learning process.
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Figure 8 demonstrates the relationship between the average sample weight assigned to each molecule
and the number of functional groups it contains. A clear positive correlation is observed: as the
number of functional groups in a molecule increases, so does the average sample weight assigned
by the model. This indicates that our model successfully identifies structurally complex molecules as
more challenging examples and allocates greater attention to them during training. This aligns with
our design objective of assigning higher importance to samples with greater prediction uncertainty.

Figure 9 offers a more granular view, showing how dynamic weights are adjusted based on the
prediction difficulty of individual functional groups. In this plot, functional groups are sorted by
their F1 score from lowest to highest. The results show that functional groups that are harder to
predict (i.e., have lower F1 scores), such as Thial, Azo compound, and Phosphine, consistently
receive higher dynamic weights. Conversely, high-frequency functional groups where the model
performs well are assigned comparatively lower weights. This trend confirms that our dynamic
weighting mechanism effectively identifies and amplifies the signal from underrepresented or hard-
to-distinguish classes, preventing them from being overlooked during training.

Collectively, these two figures provide empirical evidence for our CMI-driven dynamic weighting
strategy. They demonstrate its ability to steer the model’s focus toward both difficult samples and
difficult classes, which is crucial for achieving robust performance on imbalanced data.

Figure 8: The relationship between the number of functional groups in a molecule and the average
sample weight assigned. Molecules with more functional groups are considered more complex and
are assigned higher weights.

Figure 9: Dynamic weights assigned to functional groups. Lower-performing functional groups
receive higher weights, focusing the model’s attention on challenging classes.
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Figure 10: Average recall for functional groups grouped by frequency: low (≤ 600), medium
(601–5000), and high (≥ 5000). Our method consistently outperforms others across all groups,
particularly in the low-frequency regime, indicating improved robustness to label imbalance.

O FURTHER INVESTIGATION INTO LABEL IMBALANCE

To further quantitatively assess our model’s adaptability to varying numbers of functional groups,
we grouped the functional classes based on their occurrence frequencies5: low-frequency, medium-
frequency, and high-frequency. For each group, we computed the average recall. As shown in
Figure 10, our model achieves higher average recall than the baseline in all three categories. The
performance gap is especially significant in the low-frequency group, where data scarcity typically
limits learning. This result underscores the model’s capacity to mitigate class imbalance by preserv-
ing discriminative features even for underrepresented functional groups.

P THE IMPACTION OF DECODER TYPE

The choice of decoder architecture significantly influences how the model utilizes the predic-
tions of previously predicted functional groups. We experimented with GRU-based, LSTM-based,
and Transformer-based decoders, with results summarized in Table 9. The LSTM-based decoder
achieved a slight performance improvement of approximately 1% over the other methods. This
could be attributed to its ability to balance complexity and sequential dependency modeling, while
maintaining robustness against overfitting in smaller datasets. As a result, we selected the LSTM-
based decoder as the final architecture for our model.

Table 9: Performance on various decoder.
Decoder Type F1 Score Accuracy
LSTM 0.965 0.7588
GRU 0.957 0.6988
Transformer 0.961 0.7165

Q HYPERPARAMETER EXPERIMENTS

To assess the impact of hyperparameter choices on model performance, we conduct a series of
experiments by varying the information bottleneck trade-off coefficients β from 10−8 to 10−3 and
the sample emphasis s1 and s2 from 0.1 to 0.6. As shown in Figure 11, optimal performance occurs
at s1 = s2 = 0.3 with β = 1e− 6.

5Grouping criteria: Low frequency (≤600 samples): 14 groups. Medium frequency (¿600 and ≤5000
samples): 9 groups. High frequency (¿5000 samples): 14 groups.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 11: Hyperparameter Analysis. (a) Effect of the sample emphasis regulators s1 and s2 with
circle size indicating error magnitude. (b) Impact of the information bottleneck coefficient β.

Table 10: Comparison of resource usage and
performance against baseline models.

Model Mem. (GB) Time (h) F1-score
XGBoost 209 0.7 0.913
1D-CNN 5.7 2.0 0.900
Transformer 1.7 35.0 0.911
SymSpectra 7.0 2.7 0.965

Table 11: Performance and resource usage as a
function of the number of modalities.

#Modalities Mem. (GB) Time (h) F1-score
1 3.5 2.0 0.914
2 5.3 2.4 0.948
3 7.0 2.7 0.970
4 9.8 3.9 0.971
5 12.1 5.0 0.973

R COMPUTATIONAL COST AND MODALITY SELECTION

To assess the practical viability of our proposed model, SymSpectra, we conducted a comprehen-
sive analysis of its computational resource requirements. We benchmarked its performance against
several established baseline models and investigated the trade-off between predictive accuracy and
computational cost as a function of the number of input modalities. The results of this analysis are
summarized in Table 10 and Table 11.

Our analysis in Table 10 demonstrates that SymSpectra achieves a state-of-the-art F1-score of 0.965,
significantly outperforming the baselines. Notably, it accomplishes this with a substantially lower
training time (2.7 hours) compared to the Transformer model (35 hours) while maintaining a man-
ageable memory cost of 7 GB.

The selection of three modalities is a deliberate decision aimed at optimizing the balance between
performance and computational overhead. As detailed in Table 11, increasing the number of modal-
ities from one to three yields a substantial performance gain, boosting the F1-score from 0.914 to
0.970 with only a moderate increase in resource utilization. However, further increasing the modal-
ities to four or five, while offering marginal F1-score improvements, results in a disproportionate
surge in resource consumption. For instance, moving from three to five modalities increases the
memory footprint by 73% and training time by 85%, for only a minor improvement in the F1-score.
This trade-off is particularly critical given that the acquisition of comprehensive, multi-modal spec-
tral data is often infeasible in real-world applications, which strongly favors a more data-efficient
model. Therefore, the three-modality configuration represents the most compelling trade-off, deliv-
ering near-peak performance while ensuring both computational efficiency and practical relevance.
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