Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Alessandro Montenegro! Marco Mussi! Alberto Maria Metelli! Matteo Papini '

Abstract

Policy gradient (PG) methods are successful ap-
proaches to deal with continuous reinforcement
learning (RL) problems. They learn stochastic
parametric (hyper)policies by either exploring in
the space of actions or in the space of parameters.
Stochastic controllers, however, are often undesir-
able from a practical perspective because of their
lack of robustness, safety, and traceability. In
common practice, stochastic (hyper)policies are
learned only to deploy their deterministic version.
In this paper, we make a step towards the theoreti-
cal understanding of this practice. After introduc-
ing a novel framework for modeling this scenario,
we study the global convergence to the best deter-
ministic policy, under (weak) gradient domination
assumptions. Then, we illustrate how to tune the
exploration level used for learning to optimize the
trade-off between the sample complexity and the
performance of the deployed deterministic policy.
Finally, we quantitatively compare action-based
and parameter-based exploration, giving a formal
guise to intuitive results.

1. Introduction

Within reinforcement learning (RL, Sutton & Barto, 2018)
approaches, policy gradient (PG, Deisenroth et al., 2013)
algorithms have proved very effective in dealing with real-
world control problems. Their advantages include the ap-
plicability to continuous state and action spaces (Peters &
Schaal, 2006), resilience to sensor and actuator noise (Grav-
ell et al., 2020), robustness to partial observability (Aziz-
zadenesheli et al., 2018), and the possibility of incorporating
prior knowledge in the policy design phase (Ghavamzadeh
& Engel, 2006), improving explainability (Likmeta et al.,
2020). PG algorithms search directly in the space of para-
metric policies for the one that maximizes a performance

"Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133,
Milan, Italy. Correspondence to: Alessandro Montenegro
<alessandro.montenegro @polimi.it>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

function. Nonetheless, as always in RL, the exploration
problem has to be addressed, and practical methods involve
injecting noise in the actions or in the parameters. This
limits the application of PG methods in many real-world
scenarios, such as autonomous driving, industrial plants,
and robotic controllers. Indeed, stochastic policies typically
do not meet the reliability, safety, and traceability standards
of this kind of applications.

The problem of learning deterministic policies has been ex-
plicitly addressed in the PG literature by Silver et al. (2014)
with their deterministic policy gradient, which spawned
very successful deep RL algorithms (Lillicrap et al., 2016;
Fujimoto et al., 2018). This approach, however, is affected
by several drawbacks, mostly due to its inherent off-policy
nature. First, this makes DPG hard to analyze from a theo-
retical perspective: local convergence guarantees have been
established only recently, and only under assumptions that
are very demanding for deterministic policies (Xiong et al.,
2022). Furthermore, its practical versions (DDPG, Lillicrap
et al., 2016) are known to be very susceptible to hyperpa-
rameter tuning.

We study here a simpler and fairly common approach: that
of learning stochastic policies with PG algorithms, then de-
ploying the corresponding deterministic version, “switching
off” the noise.! Intuitively, the amount of exploration (e.g.,
the variance of a Gaussian policy) should be selected wisely.
Indeed, the smaller the exploration level, the closer the opti-
mized objective is to that of a deterministic policy. At the
same time, with a small exploration, learning can severely
slow down and get stuck on bad local optima.

Policy gradient methods can be partitioned based on the
space on which the exploration is carried out, distinguish-
ing between: action-based (AB) and parameter-based (PB,
Sehnke et al., 2010) exploration. The first, of which REIN-
FORCE (Williams, 1992) and GPOMDP (Baxter & Bartlett,
2001; Sutton et al., 1999) are the progenitor algorithms, per-
forms exploration in the action space, with a stochastic (e.g.,
Gaussian) policy. On the other hand, PB exploration, in-
troduced by Parameter-Exploring Policy Gradients (PGPE,
Sehnke et al., 2010), implements the exploration at the level
of policy parameters by means of a stochastic hyperpolicy.

IThis can be observed in several libraries (e.g., Raffin et al.,
2021) and benchmarks (e.g., Duan et al., 2016).

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

The latter performs perturbations of the parameters of a (typ-
ically deterministic) action policy. Of course, this dualism
only considers the simplest form of noise-based, undirected
exploration. Efficient exploration in large-scale MDPs is a
very active area of research, with a large gap between theory
and practice (Ghavamzadeh et al., 2020), placing the matter
well beyond the scope of this paper. Also, we consider noise
magnitudes that are fixed during the learning process, as
the common practice of learning the exploration parameters
themselves breaks all known sample complexity guarantees
of vanilla PG (see Appendix C).

To this day, a large effort has been put into providing conver-
gence guarantees and sample complexity analyses for AB
exploration algorithms (e.g., Papini et al., 2018; Yuan et al.,
2022; Fatkhullin et al., 2023), while the theoretical analysis
of PB exploration has been taking a back seat since (Zhao
et al., 2011). We are not aware of any global convergence
results for parameter-based PGs. Furthermore, even for AB
exploration, current studies focus on the convergence to the
best stochastic policy.

Original Contributions. In this paper, we make a step
towards the theoretical understanding of the practice of
deploying a deterministic policy learned with PG methods:

* We introduce a framework for modeling the practice of
deploying a deterministic policy, by formalizing the notion
of white noise-based exploration, allowing for a unified
treatment of both AB and PB exploration.

* We study the convergence to the best deterministic policy
for both AB and PB exploration. For this reason, we focus
on the global convergence, rather than on the first-order
stationary point (FOSP) convergence, and we leverage on
commonly used (weak) gradient domination assumptions.

* We quantitatively show how the exploration level (i.e.,
noise) generates a trade-off between the sample complex-
ity and the performance of the deployed deterministic
policy. Then, we illustrate how it can be tuned to optimize
such a trade-off, delivering sample complexity guarantees.

In light of these results, we compare the advantages and
disadvantages of AB and PB exploration in terms of sam-
ple complexity and requested assumptions, giving a formal
guise to intuitive results. We also elaborate on how the
assumptions used in the convergence analysis can be re-
connected to the basic characteristics of the MDP and the
policy classes. We conclude with a numerical validation to
empirically illustrate the discussed trade-offs. The proofs
of the results presented in the main paper are reported in
Appendix D.

2. Preliminaries

Notation. For a measurable set X', we denote with A(X)
the set of probability measures over X'. For Pe A(X), we

denote with p its density function. With a little abuse of
notation, we will interchangeably use x~ P or z ~p to
denote that random variable x is sampled from the P. For
neN, we denote by [n]:={1,...,n}.

Lipschitz Continuous and Smooth Functions. A func-
tion f: X <RY—R is L-Lipschitz continuous (L-LC) if
If(x)— f(xX)| < L|x—x'|2 for every x,x'eX. fis Lo-
Lipschitz smooth (L»o-LS) if it is continuously differen-
tiable and its gradient Vi f is Lo-LC, ie., |[Vxf(x)—
Vi f(X')|l2 < La|x —x'||2 for every x,x'€ X.

Markov Decision Processes. A Markov Decision Pro-
cess (MDP, Puterman, 1990) is represented by M :=
(S, A,p,7,po,7), where S CR?s and AR are the mea-
surable state and action spaces, p:S x A— A(S) is the tran-
sition model, where p(s’|s,a) specifies the probability den-
sity of landing in state s’€S by playing action a€.A in
state s€ S, r:S X A— [~ Rmax, Rmax] is the reward func-
tion, where r(s,a) specifies the reward the agent gets by
playing action a in state s, pg € A(S) is the initial-state dis-
tribution, and y€[0,1] is the discount factor. A trajectory
T=(870,8r0,.--,8.,7-1,8r7—1) of length Te N U {+00}
is a sequence of T' state-actiorl[pairs. The discounted return
of a trajectory 7 is R(7):=1_' 77 (Sr.1,ar1).

Deterministic Parametric Policies. We consider a para-
metric deterministic policy pg:S — A, where 8 © C R
is the parameter vector belonging to the parameter space O.
The performance of pg is assessed via the expected return
Jp :© — R, defined as:

Jn(0) = [R(T)], M

7~pp(-0)

where pp (7560) := po(s7.0) [1= P(Sr141]87.1, t10(sr.1)) s
the density of trajectory 7 induced by policy pe.”> The
agent’s goal consists of finding an optimal parameter ;5 e
argmaxgeg Jp(0) and we denote J3 := Jp(655).

Action-Based (AB) Exploration. In AB exploration, we
consider a parametric stochastic policy ©p:S— A(A),
where pe P is the parameter vector belonging to the param-
eter space P =R . The policy is used to sample actions
a; ~7p(-|s¢) to be played in state s, for every step ¢ of inter-
action. The performance of 7, is assessed via the expected
return J : P — R, defined as:
Jalp)=_E [R(7)],
7~pa(:lp)
pa(T3p) = po(sro) Hz:ol Tp(ari[sre)p(srev18re,ar)
is the density of trajectory 7 induced by policy 7,.” In AB
exploration, we aim at learning pj €argmax,.p /. A(p)
and we denote Ja*:=Ja(p}). If Ja(p) is differentiable

where 2)

For both Jp (resp. Ja, Jp) and pp (resp. pa, pp), we use the D
(resp. A, P) subscript to denote that the dependence on @ (resp. p)
is through a Deterministic policy (resp. Action-based exploration
policy, Parameter-based exploration hyperpolicy).

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

w.r.t. p, PG methods (Peters & Schaal, 2008) update the
parameter p via gradient ascent: p;i1 <« pr + GV pJa(pe),
where (; >0 is the step size and @pJA(p) is an estimator
of V,Ja(p). In particular, the GPOMDP estimator is:*

NT-1/ t
ZZ (ZV logmp(ar, ks k))’Y 7(Sr tar.t),

zlt 0

V]\

where N is the number of independent trajectories {7;}¥
collected with policy 7, (7; ~pa(-; p)), called batch size.

Parameter-Based (PB) Exploration. In PB exploration,
we use a parametric stochastic hyperpolicy v, < A(©),
where peR%” is the parameter vector. The hyperpolicy
is used to sample parameters 8 ~ v/, to be plugged in the
deterministic policy pg at the beginning of every trajectory.
The performance index of v, is Jp :R% R, that is the
expectation over 0 of Jp(6) defined as:?

T(p)= B [Io(®)].

PB exploration aims at learning pf € argmax . JJp(p) and
we denote Jp* :=Jp(pj). If Jp(p) is differentiable w.r.t. p,
PGPE (Sehnke et al., 2010) updates the hyperparameter p
via gradient accent: p;41 < p; + 'V Jp(py). In particular,
PGPE uses an estimator of V,./p(p) defined as:

Vo lo(p) 2 Vologu,(0:)R(T;),
’L 1
where N is the number of independent parameters-
trajectories pairs {(0;,7;)} Z 1 collected with hyperpolicy
Vp (0; ~vp and 7; ~ pp(+;0;)), called batch size.

3. White-Noise Exploration

We formalize a class of stochastic (hyper)policies widely
employed in the practice of AB and PB exploration, namely
white noise-based (hyper)policies. These policies 7g(+|$)
(resp. hyperpolicies 1g) are obtained by adding a white
noise € to the deterministic action a= pg(s) (resp. to the
parameter) independent of the state s (resp. parameter).

Definition 3.1 (White Noise). Let deN and o >0. A prob-
ability distribution ® € A(R?) is a white-noise if:

_ 2] < 772
E [e]=0a E [Jefo]<do”. 3)

This definition complies with the zero-mean Gaussian distri-
bution €~N(04,%), where E._ (0, 5)[€]3] =tr(X) <
dAmax(X). In particular, for an isotropic Gaussian X =
0214, we have that tr(X)=do?. We now formalize the
notion of white noise-based (hyper)policy.

Definition 3.2 (White noise-based policies). Let @€ © and
o :S — Abe a parametric deterministic policy and let @4 ,

3We limit our analysis to the GPOMDP estimator (Baxter &
Bartlett, 2001), neglecting the REINFORCE one (Williams, 1992)
since it is known that the latter suffers from larger variance.

be a white noise (Definition 3.1). A white noise-based pol-
icy mg: S — A(A) is such that, for every state s€ S, action
a~mg(-|s) satisfies a= pg(s) + € where € ~ @4, indepen-
dently at every step.

This definition considers stochastic policies 7g(+|s) that are
obtained by adding noise € fulfilling Definition 3.1, sampled
independently at every step, to the action g (s) prescribed
by the deterministic policy (i.e., AB exploration), resulting
in playing action pg(s) + €. An analogous definition can be
formulated for hyperpolicies.

Definition 3.3 (White noise-based hyperpolicies). Let
00O and pg:S — A be a parametric deterministic policy
and let ® 5, be a white-noise (Definition 3.1). A white noise-
based hyperpolicy vge A(O) is such that, for every pa-
rameter 0 € ©, parameter 0’ ~ vy satisfies 0’ =0 + € where
e~ &y, independently in every trajectory.

This definition considers stochastic hyperpolicies vg ob-
tained by adding noise € fulfilling Definition 3.1, sampled
independently at the beginning of each trajectory, to the
parameter 6 defining the deterministic policy g, resulting
in playing deterministic policy ptge (i.e., PB exploration).
Definitions 3.2 and 3.3 allow to represent a class of widely-
used (hyper)policies, like Gaussian hyperpolicies and Gaus-
sian policies with state-independent variance. Furthermore,
once the parameter 6 is learned with either AB or PB ex-
ploration, deploying the corresponding deterministic policy
(i.e., “switching off” the noise) is straightforward.* Finally,
we remark that the noise can exhibit an inner structure, while
it is required to be “white” among different realizations.

4. Fundamental Assumptions

In this section, we present the fundamental assumptions on
the MDP (p and r), deterministic policy pg, and white noise
®. For the sake of generality, we will consider abstract as-
sumptions in the next sections and, then, show their relation
to the fundamental ones (see Appendix A for details).

Assumptions on the MDP. We start with the assumptions
on the regularity of the MDP, i.e., on transition model p and
reward function r, w.r.t. variations of the played action a.

Assumption 4.1 (Lipschitz MDP (logp, r) w.r.t. actions).
The log transition model logp(s'|s,) and the reward func-
tion r(s,-) are L,-LC and L,-LC, respectively, w.r.t. the
action for every s,s' €S, i.e., for every a,ac A:
|logp(s'|s,a) —logp(s'|s,a)| < Lyla—al2, (4)
|r(s,a) —r(s,a)| < L.|la—a|s. 5)
Assumption 4.2 (Smooth MDP (logp,) w.r.t. actions).
“For white noise-based (hyper)policies there exists a one-to-
one mapping between the parameter space of (hyper)policies and

that of deterministic l})ohcies (P = ©). For simplicity, we assume
© =R% and A=R% (see Appendix C).

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

The log transition model logp(s'|s,) and the reward func-
tion r(s,-) are Ly ,,-LS and Lo »-LS, respectively, w.r.t. the
action for every s,s' €S, i.e., for every a,ac A:

|Valogp(s'ls,a) = Valogp(s's,a)[2 < Lz p[a—al2,
|Var(s,a) = Var(s,a) |2 < Lz r|a—a]».

Intuitively, these assumptions ensure that when we perform
AB and/or PB exploration altering the played action w.r.t. a
deterministic policy, the effect on the environment dynamics
and on reward (and on their gradients) is controllable.

Assumptions on the deterministic policy. We now move
to the assumptions on the regularity of the deterministic
policy pg w.r.t. the parameter 6.

Assumption 4.3 (Lipschitz deterministic policy pg w.r.t.
parameters 6). The deterministic policy pg(s) is L,-LC
w.r.t. parameter for every s€ S, i.e., for every 0,0€0:

|1e(s) — pg(s) |2 < L,.[6—8]-. (©)
Assumption 4.4 (Smooth deterministic policy pg w.r.t. pa-

rameters 6). The deterministic policy pug(s) is Lz ;,-LS w.rt.
parameter for every s€ S, i.e., for every 68,0€0:

[Vora(s) = Vorg(s)|2< La,.[6—6]2.)

Similarly, these assumptions ensure that if we deploy an
altered parameter 0, like in PB exploration, the effect on the
played action (and on its gradient) is bounded.

Assumptions 4.1 and 4.3 are standard in the DPG litera-
ture (Silver et al., 2014). Assumption 4.2, instead, can be
interpreted as the counterpart of the Q-function smoothness
used in the DPG analysis (Kumar et al., 2020; Xiong et al.,
2022), while Assumption 4.4 has been used to study the
convergence of DPG (Xiong et al., 2022). Similar condi-
tions to our Assumption 4.1 were adopted by Pirotta et al.
(2015), but measuring the continuity of p in the Kantorovich
metric, a weaker requirement that, unfortunately, does not
come with a corresponding smoothness condition.

Assumptions on the (hyper)policies. We introduce the
assumptions on the score functions of the white noise ®.

Assumption 4.5 (Bounded Scores of ®). Let ®eA(R?)
be a white noise with variance bound o >0 (Definition 3.1)
and density ¢. ¢ is differentiable in its argument and there
exists a universal constant ¢> 0 such that:

(i) Eevo[|Vlog(e)[3] <cdo—2;
(ii) Ecva[|V2loge(e) 2] <co2.

Intuitively, this assumption is equivalent to the more com-
mon ones requiring the boundedness of the expected
norms of the score function and its gradient (Papini et al.,
2022; Yuan et al., 2022, see Appendix E). Note that a
zero-mean Gaussian ® =N (04, X) fulfills Assumption 4.5.
Indeed, one has V. logg(e)=X"1e and VZlogg(e)=
¥t Thus, E[|Velogo(e)|3]=tr(E71) <dAmin(E) 71

and E[|VZlog ¢(€)]2] = Amin(X) !, In particular, for an
isotropic Gaussian X = o%I, we have A\yin (2) =02, fulfill-
ing Assumption 4.5 with c=1.

5. Deploying Deterministic Policies

In this section, we study the performance Jp of the deter-
ministic policy pg, when the parameter 0 is learned via AB
or PB white noise-based exploration (Section 3). We will
refer to this scenario as deploying the parameters, which
reflects the common practice of “switching off the noise”
once the learning process is over.

PB Exploration. Let us start with PB exploration by observ-
ing that for white noise-based hyperpolicies (Definition 3.3),
we can express the expected return .Jp as a function of Jp
and of the noise € for every 8 O:

J(0)= E [hp(0+e)]. ®)

e~Pyg

This illustrates that PB exploration can be obtained by per-
turbing the parameter 0 of a deterministic policy pg via the
noise € ~ @4, . To achieve guarantees on the deterministic
performance .Jp of a parameter 6 learned with PB explo-
ration, we enforce the following regularity condition.

Assumption 5.1 (Lipschitz Jp w.r.t. 8). Jp is L j-LC in the
parameter 0, i.e., for every 0,0'€©:

[Jp(6) = Jp(0")| < L]0 —6'2. ©)

When the MDP and the deterministic policy are LC as in
Assumptions 4.1 and 4.3, Ly is O((1—~)~?2) (see Table 2 in
Appendix A for the full expression). This way, we guarantee
that the perturbation € on the parameter 8 determines a
variation on function Jp depending on the magnitude of e,
which allows obtaining the following result.

Theorem 5.1 (Deterministic deployment of parameters
learned with PB white-noise exploration). If the hyper-
policy complies with Definition 3.3, under Assumption 5.1:

(i) (Uniform bound) for every @€©, it holds that
1Tp(8) — J5(8)| < Ly /doop;
(i3) (Jo upper bound) ler 0} cargmaxgeg Jp(0), it
holds that: J}; — Jp(0}) <2Lj+/deop;
(13%) (Jp lower bound) there exists an MDP, a determinis-
tic policy class pe fulfilling Assumption 5.1, and
a noise complying with Definition 3.1, such that
J —Jp(0})=>0.28L ;+/dgop.

Some observations are in order. (¢) shows that the perfor-
mance of the hyperpolicy Jp(0) is representative of the
deterministic performance Jp(€) up to an additive term
depending on L j+/deop. As expected, this term grows
with the Lipschitz constant L ; of the function Jp, with the
standard deviation op of the additive noise, and with the
dimensionality of the parameter space dg. In particular, this
implies that lim,, o+ Jp(0) = Jp(8). (i?) is a consequence

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

of (7) and provides an upper bound between the optimal per-
formance obtained if we were able to directly optimize the
deterministic policy maxgeo Jp(0) and the performance
of the parameter 6% learned by optimizing Jp(0), i.e., via
PB exploration, when deployed on the deterministic policy.
Finally, (i¢¢) provides a lower bound to the same quantity
on a specific instance of MDP and hyperpolicy, proving that
the dependence on L j+/dgop is tight up to constant terms.

AB Exploration. Let us move to the AB exploration case,
where understanding the effect of the noise is more complex
since it is applied to every action independently at every step.
To this end, we introduce the notion of non-stationary deter-
ministic policy g = (p¢)7—,', where at time step ¢ the deter-
ministic policy p; :S — A is played, and its expected return
(with abuse of notation) is Jp () =E<p (.| [2(7)] Where

T-1
pD('|E) = po(sr,0) Ht:o p(sr,t+1|snt7l‘t (sr)). Lete=
(e) gt~ <I>£A be a sequence of noises sampled indepen-
dently, we denote with g o TE= (o + et)'tT=_01 the non-
stationary policy that, at time ¢, perturbs the action as
e (st) + €. Since the noise is independent on the state,
we express J as a function of Jp for every € © as fol-
lows:

Ja(0)= ET

§~(bdA

| To(zy +€). (10)

Thus, to ensure that the parameter learned with AB explo-
ration achieves performance guarantees when evaluated as
a deterministic policy, we need to enforce some regularity
condition on Jp as a function of p.

Assumption 5.2 (Lipschitz Jp w.r.t.). Jp of the non-
stationary deterministic policy p is (L4)1=o'-LC in the non-
stationary policy, i.e., for every p, p':
T—1
o) = To (W<), Lesup [pe(s) —i(s), - (A1)
t=0

Furthermore, we denote L := 23:01 Ly.

When the MDP is LC as in Assumptions 4.1, L is O((1—
7)~2) (see Table 2 in Appendix A for the full expression).
The assumption enforces that changing the deterministic pol-
icy at step ¢ from p; to p}, the variation of Jp is controlled
by the action distance (in the worst state s) multiplied by a
time-dependent Lipschitz constant. This form of condition
allows us to show the following result.

Theorem 5.2 (Deterministic deployment of parameters
learned with AB white-noise exploration). If the policy
complies with Definition 3.2 and under Assumption 5.2:

(i) (Uniform bound) for every @€©, it holds that:
| Tp(0) — Ja(0)| < L\/da0a;
(i3) (Jo upper bound) letting 6 e argmaxgeg Ja(0), it
holds that J}s — Jp(0F) <2L+/d s04;
(13%) (Jp lower bound) there exists an MDP, a determinis-
tic policy class pe fulfilling Assumption 5.1, and

a noise complying with Definition 3.1, such that
JE — Jp(0%) = 0.28L\/d 0.

Similarly to Theorem 5.1, (¢) and (i) provide an upper
bound on the difference between the policy performance
Ja(0) and the corresponding deterministic policy Jp(8),
and on the performance of 8% when deployed on a deter-
ministic policy. Clearly, also in the AB exploration, we
have that lim,, o+ Ja(0) =Jp(@). As in the PB case, (ii7)
shows that the upper bound (7¢) is tight up to constant terms.

Finally, let us note that our bounds for PB exploration de-
pend on the dimension of the parameter space dg that is
replaced by that of the action space d 4 in AB exploration.

6. Global Convergence Analysis

In this section, we present our main results about the con-
vergence of AB and PB white noise-based exploration to a
global optimal parameter @5 for the performance of the de-
terministic policy Jp. Let K €N be the number of iterations
and N the batch size; given an accuracy threshold € >0, our
goal is to bound the sample complexity N K to fulfill the
following last-iterate global convergence condition:

T —E[Jp(0x)] <e, (12)

where O is the (hyper)parameter at the end of learning. We
start in Section 6.1, introducing the abstract assumptions
and providing a general convergence analysis applicable to
both AB and PB exploration for learning the corresponding
objective (J4 or Jp). Then, in Section 6.2, we derive the
convergence guarantees on the deterministic objective Jp
for AB and PB exploration, respectively. Our results are first
presented for a fixed white noise variance o2 to highlight
the trade-off between sample complexity and performance,
then extended to an e-adaptive choice of o.

6.1. General Global Convergence Analysis

In this section, we provide a global convergence analysis
for a generic stochastic first-order algorithm optimizing the
differentiable objective function J; on the parameters space
© < R?, that can be instanced for both AB (setting Jir=Jx)
and PB (setting J; = .Jp) exploration, when optimizing the
corresponding objective. At every iteration k€[K], the
algorithm performs the gradient ascent update:

9k+1‘_0k+Ck@0JT(0k)7 (13)
where (5, > 0 is the step size and 69 J1(0y) is an unbiased

estimate of Vg J;(6)). We denote JJ;" =maxgeo J;(0) and
we enforce the following standard assumptions.

Assumption 6.1 (Weak gradient domination for Jy). There
exist a>0 and 3 =0 such that for every @€ © it holds that
Ji = J1(0)<al Ve J1(8)]2+ 5.

Assumption 6.1 is the gold standard for the global conver-

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

gence of stochastic optimization (Yuan et al., 2022; Masiha
et al., 2022; Fatkhullin et al., 2023). Note that, when 5 =0,
we recover the (strong) gradient domination (GD) property:
JE = Ji(0)<a|VeJ(+0)], for all €O. GD is stricter
than WGD and requires that J; has no local optima. Instead,
WGD admits local maxima as long as their performance is
B-close to the globally optimal one.’

Assumption 6.2 (Smooth J; w.r.t. parameters 6). J; is
Ly +-LS w.r.t. parameters 0, i.e., for every 6,0’ € ©:

IVeJ;(0') =V Ji(0)|2<Lot|0 —0]2. (14)

Assumption 6.2 is ubiquitous in the convergence analysis
of policy gradient algorithms (Papini et al., 2018; Agar-
wal et al., 2021; Yuan et al., 2022; Bhandari & Russo,
2024), which is usually studied as an instance of (non-
convex) smooth stochastic optimization. The smoothness
of Jye{Ja, Jp} can be: (¢) inherited from the deterministic
objective Jp (originating, in turn, from the regularity of the
MDP) and of the deterministic policy ptg (Asm. 4.1 and 4.4);
or (27) enforced through the properties on the white noise ®
(Asm. 4.5). The first result was observed in a similar form
by Pirotta et al. (2015, Theorem 3), while a generalization
of the second was established by Papini et al. (2022) and
refined by Yuan et al. (2022).

Assumption 6.3 (Bounded estimator variance Vg Ji(0)).
The estimator @QJT(H) computed with batch size N has
a bounded variance, i.e., there exists V; >0 such that, for
every €O, we have Var[ﬁg}r(@)] <V;/N.

Assumption 6.3 guarantees that the gradient estimator is
characterized by a bounded variance V; which scales with
the batch size N. Under Assumption 4.5 (and 4.3 for
GPOMDP), the term V; can be further characterized (see
Table 2 in Appendix A).

We are now ready to state the global convergence result.

Theorem 6.1. Consider an algorithm running the up-
date rule of Equation (13). Under Assumptions 6.1, 6.2,
and 6.3, with a suitable constant step size, to guarantee
J¥ —E[J;(0k)] <€+ B the sample complexity is at most:

::16a4L2¢¥GIOgIHaX{07Jf'—LH(00)“5}
€’ €)

NK

(15)

This result establishes a convergence of order 6(6_3)6 to the
global optimum ‘]T* of the general objective J;. Recalling
that J; € {J, Jp}, Theorem 6.1 provides: () the first global
convergence guarantee for PGPE for PB exploration (setting
Jy=Jp) and (i7) a global convergence guarantee for PG
(e.g., GPOMDP) for AB exploration of the same order (up to

5n this section, we will assume that Ji (i.e., either J, or Jp)
is already endowed with the WGD property. In Section 7, we
illustrate how it can be obtained in several common scenarios.

5The O(-) notation hides logarithmic factors.

logarithmic terms in e~ 1) of the state-of-the-art one of Yuan
et al. (2022) (setting Jy=.J,). Note that our guarantee
is obtained for a constant step size and holds for the last
parameter @, delivering a last-iterate result, rather than
a best-iterate one as in (Yuan et al., 2022, Corollary 3.7).
Clearly, this result is not yet our ultimate goal since, we need
to assess how far the performance of the learned parameter
0 is from that of the optimal deterministic objective Jf.

6.2. Global Convergence of PGPE and GPOMDP

In this section, we provide results on the global convergence
of PGPE and GPOMDP with white-noise exploration. The
sample complexity bounds are summarized in Table 1 and
presented extensively in Appendix D. They all follow from
our general Theorem 6.1 and our results on the deployment
of deterministic policies from Section 5.

PGPE. We start by commenting on the sample complex-
ity of PGPE for a constant, generic hyperpolicy variance
o p, shown in the first column (Table 1). First, the guaran-
tee on J}5 —E[Jp(0k)] contains the additional variance-
dependent term 3L p Vdeop originating from the determin-
istic deployment. Second, the sample complexity scales
with O(e=3). Third, by enforcing the smoothness of the
MDP and of the deterministic policy (Asm. 4.2 and 4.4), we
improve the dependence on dg and on op at the price of an
additional (1 —~)~! factor.

A choice of op which adapts to € allows us to achieve the
global convergence on the deterministic objective Jp, up
to € + 3 only. Moving to the second column (Table 1), we
observe that the convergence rate becomes O(e~"), which
reduces to O(e~5) with the additional smoothness assump-
tions, which also improve the dependence on both (1 —~)~!
and dg. The slower rate ¢ > or e 7, compared to the ¢~ of
the fixed-variance case, is easily explained by the more chal-
lenging requirement of converging to the optimal determin-
istic policy rather than the optimal stochastic hyperpolicy,
as for standard PGPE. Note that we have set the standard
deviation equal to op = ;7—<===0O(e(1 - 7)2d51/2) that,

as expected, decreases with the desired accuracy e.’

GPOMDP. We now consider the global convergence of
GPOMDP, starting again with a generic policy variance
0 4 (third column, Table 1). The result is similar to that of
PGPE with three notable exceptions. First, an additional
(1—~)~! factor appears in the sample complexity due to
the variance bound of GPOMDP (Papini et al., 2022). This
suggests that GPOMDP struggles more than PGPE in long-
horizon environments, as already observed by Zhao et al.

"These results should be interpreted as a demonstration that
global convergence to deterministic policies is possible rather than
a practical recipe to set the value of op. We do hope that our theory
can guide the design of practical solutions in future works.

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

PGPE GPOMDP
Generic op op=¢/(6Lp+/do) Generic 0 4 ‘ ga=¢/(6Lav/dy4)
Withont smoothness Iin;ler Asm. 6.1, 4.1, 4.3, t.54 Un;le2r Asm. 6.1,4.1,4.3, 4.4‘1 445
o’dg a*dg a*d% a*dy
1 : 1 :
oo D) (Theorem B.3) oo D) (Theoren D9)
With smoothness \:/ith additional Asm. 4.2, 1.42 4With additional Asm. 4.24 .
a*de a“dg a*dg a“d
2 5 2
(%ﬁgr_erl)Di) (Tlgel&eﬁglg;) (gﬁéir;r? Be;) (Tglle(:rggll (1)36.59)
JE—E[Jp(0k)] < e+p+30pLpr/de e+ e+B+30aLla\/da e+

Table 1. Sample complexity N K = 6() of GPOMDP and PGPE to converge to a deterministic optimal policy, retaining only dependencies
one, (1—v)7t, oa, op, de, da, and a. Task-dependent constants Lp and L 4 are O((1 — 7)72)—see Table 2 in Appendix A.

(2011). Second, the dependence on the dimensionality of
the parameter space dg is replaced with the dimensionality
of the action space d 4. This is expected and derives from
the nature of exploration that is performed in the parameter
space for PGPE and in the action space for GPOMPD. Fi-
nally, the smoothness of the deterministic policy (Asm. 4.4)
is always needed. Adding also the smoothness of the MDP
(Asm. 4.2), we lose a d_4 factor getting a (1—~) ! one.

Again, a careful e-dependent choice of oa allows us to
achieve global convergence on the deterministic objective
Jp. In the last column (Table 1), we can notice that the
convergence rates display the same dependence on € as in
PGPE. However, the dependence on the effective horizon
(1—~)~!is worse. In this case, the additional smoothness
assumption improves the dependency on d 4 and (1—~)~1.

7. About the Weak Gradient Domination

So far, we have assumed WGD for the AB J, and PB Jp
(Asm. 6.1). In this section, we discuss several scenarios in
which such an assumption holds.

7.1. Inherited Weak Gradient Domination

We start by discussing the case in which the deterministic
policy objective Jp already enjoys the (W)GD property.

Assumption 7.1 (Weak gradient domination for Jp). There
exist ap >0 and Bp =0 such that for every @€ O it holds
that Jg — JD(O) < CYDHVQJD(O) HQ + ﬂD.

Although the notion of WGD has been mostly applied to
stochastic policies in the literature (Liu et al., 2020; Yuan
etal., 2022), there is no reason why it should not be plausible
for deterministic policies. Bhandari & Russo (2024) provide
sufficient conditions for the performance function not to
have any local optima, which is a stronger condition, without
discriminating between deterministic and stochastic policies

(see their Remark 1). Moreover, one of their examples is
linear-quadratic regulators with deterministic linear policies.

We show that, under Lipschiztianity and smoothness of the
MDP and the deterministic policy (Asm. 4.1 and 4.4), this
is sufficient to enforce the WGD property for both the PB
Jp and the AB J, objectives. Let us start with Jp.

Theorem 7.1 (Inherited weak gradient domination for Jp).

Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every Q€ ©:
Jp* — J,J(H) < OéDHVng(e) H2 +0Bp+ (OéDLQ + LP)O'P do,

where Ly =O((1—~)73) (full expression in Lemma E.2).

The result shows that the WGD property of Jp entails that
of .Jp with the same ap coefficient, but a different =
Bp(apLs + Lp)opy/de that accounts for the gap between
the two objectives encoded in op. Note that even if Jp
enjoys a (strong) GD (i.e., fp =0), in general, .Jp inherits a
WGD property. In the setting of Theorem 7.1, convergence
in the sense of Jj5 —E[Jp(0x)] <e+ Bp can be achieved
with O(age5d2 (1—~) 1) samples by carefully setting
the hyperpolicy variance (see Theorem D.12 for details).

An analogous result can be obtained for AB exploration.

Theorem 7.2 (Inherited weak gradient domination on J,).
Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every Q€ O:

Ja* = Jx(0)<ap| Ve s(8)|2+Bp+ (apt+ La)oar/da,
where 1= O((1—~)~%) (full expression in the proof).

The sample complexity, in this case, is 5(046]36*5(&(1 _
7)) (see Theorem D.13 for details).

7.2. Policy-induced Weak Gradient Domination

When the objective function does not enjoy weak gradient
domination in the space of deterministic policies, we can
still have WGD w.r.t. stochastic policies if they satisfy a
condition known as Fisher-non-degeneracy (Liu et al., 2020;
Ding et al., 2022). As far as we know, WGD by Fisher-non-

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

degeneracy is a peculiar property of AB exploration that
has no equivalent in PB exploration. White-noise policies
satisfying Assumption 4.5 are Fisher-non-degenerate under
the following standard assumption (Liu et al., 2020).
Assumption 7.2 (Explorability). There exists Ag >0 s.t.
E.o[Vore(s)Vepe(s) = Agl for all €O, where the
expectation over states is induced by the stochastic policy.

We can use this fact to prove WGD for white-noise policies.

Theorem 7.3 (Policy-induced weak gradient domination).
Under Assumptions 4.5 and 7.2, we have:

. Vd ; 4/ €Ebias
JF—Jy(0)<C AAUA |V Ju(0)] 2+ Y2

E l—v’

for some numerical constant C > 0. Thus, Assumption 6.1
(T=A) is satisfied with o= C¥daga gpg 3= ahles
AE 1—v

Here €y, is the compatible-critic error, which can be very
small for rich policy classes (Ding et al., 2022).® We can
leverage this to prove the global convergence of GPOMDP
as in Section 7.1, this time to Jp —E[Jp(0)] <e+ */1;";

Tuning o, we can achieve a sample complexity of
O(e~ Az d% (1 —7)710) (see Theorem D.16 for details)
This seems to violate the Q2(¢~2) lower bound by Azar et al.
(2013). However, the factor A can depend on o4 =O(e) in
highly non-trivial ways and, thus, can hide additional factors
of e. For this reason, the results granted by the Fisher-non-
degeneracy of white-noise policies are not compared with
the ones granted by inherited WGD from Section 7.1. In-
tuitively, Ag encodes some difficulties of exploration that
are absent in “nice” MDPs satisfying Assumption 7.1. See
Appendix D.4 for further discussion and omitted proofs.

8. Related Works

In this section, we provide a discussion of previous works
that addressed similar questions to the ones considered in
this paper. Additional related works in Appendix B.

Convergence rates. The convergence of PG to stationary
points at a rate of O(e~*) was clear at least since (Sut-
ton et al., 1999), although the recent work by Yuan et al.
(2022) clarifies several aspects of the analysis and the re-
quired assumptions. Variants of REINFORCE with faster
convergence, based on stochastic variance reduction, were
explored much later (Papini et al., 2018; Xu et al., 2019),
and the O(e~?) rate of (Xu et al., 2020) is now believed to
be optimal due to lower bounds from nonconvex stochastic
optimization (Arjevani et al., 2023). The same holds for
second-order methods (Shen et al., 2019; Arjevani et al.,
2020). Although the convergence properties of PGPE are
analogous to those of PG, they have not received the same

8 A formal definition of £pias can be found in Appendix D.4.

attention, with the exception of (Xu et al., 2020), where
the O(e~?) rate is proved for a variance-reduced version
of PGPE. Studying the convergence of PG to globally opti-
mal policies under additional assumptions is a more recent
endeavor, pioneered by works such as Scherrer & Geist
(2014), Fazel et al. (2018), Bhandari & Russo (2024). These
works introduced to the policy gradient literature the con-
cept of gradient domination, or gradient dominance, or
Polyak-Lojasiewicz condition, which has a long history
in the optimization literature (Lojasiewicz, 1963; Polyak
et al., 1963; Karimi et al., 2016). Several works study the
iteration complexity of policy gradient with exact gradi-
ents (e.g., Agarwal et al., 2021; Mei et al., 2020; Li et al.,
2021). These results are restricted to specific policy classes
(e.g., softmax, direct tabular parametrization) for which
gradient domination is guaranteed. A notable exception is
the study of sample-based natural policy gradient for gen-
eral smooth policies (Agarwal et al., 2021). As for vanilla
sample-based PG (i.e., GPOMDP), Liu et al. (2020) were
the first to study the sample complexity of this algorithm
in converging to a global optimum. They also introduced
the concept of Fisher-non-degeneracy (Ding et al., 2022),
which allows to exploit a form of gradient domination for a
general class of policies. We refer the reader to (Yuan et al.,
2022) which achieves a better O(e~?) sample complexity
under weaker assumptions. More sophisticated algorithms,
such as variance-reduced methods mentioned above, can
achieve even better sample complexity. The current state
of the art is (Fatkhullin et al., 2023): O(e~2-5) for hessian-
free and 6(672) for second-order algorithms. The latter is
optimal up to logarithmic terms (Azar et al., 2013). When
instantiated to Gaussian policies, all of the works mentioned
in this paragraph implicitly assume that the covariance pa-
rameters are fixed. In this case, our Theorem D.4 recovers
the O(e~?) rate of Yuan et al. (2022, Corollary 3.7), the
best-known result for GPOMDP under general WGD.

Deterministic policies. Value-based RL algorithms, such as
Q-learning, naturally produce deterministic policies as their
final solution, while most policy-gradient methods must
search, by design, in a space of non-degenerate stochas-
tic policies. In (Sutton et al., 1999), this is presented as
an opportunity rather than as a limitation since the opti-
mal policy is often stochastic for partially observable prob-
lems. The possibility of deploying deterministic policies
only is one of the appeals of PGPE and related evolutionary
techniques (Schwefel, 1993), but also of model-based ap-
proaches (Deisenroth & Rasmussen, 2011). In the context
of action-based policy search, the DPG algorithm by Silver
et al. (2014) was the first to search in a space of determin-
istic policies. Differently from PGPE, stochastic policies
are run during the learning process for exploration purposes,
similarly to value-based methods. Moreover, the distribu-
tion mismatch due to off-policy sampling is largely ignored.
Nonetheless, popular deep RL algorithms were derived from

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

DPG (Lillicrap et al., 2016; Fujimoto et al., 2018). (Xiong
et al., 2022) proved the convergence of on-policy (hence,
fully deterministic) DPG to a stationary point, with O(e~*)
sample complexity. However, they rely on an explorabil-
ity assumption (Asm. 4 in their paper) that is standard for
stochastic policies, but very demanding for deterministic
policies. A more practical way of achieving fully deter-
ministic DPG was proposed by Saleh et al. (2022), who
also provide a discussion of the advantages of deterministic
policies. Unsurprisingly, truly deterministic learning is only
possible under strong assumptions on the regularity of the
environment. In this paper, for PG, we considered the more
common scenario of evaluating stochastic policies at train-
ing time, only to deploy a good deterministic policy in the
end. PGPE, by design, does the same with hyperpolicies.

9. Numerical Validation

In this section, we empirically validate the theoretical results
presented in the paper. We conduct a study on the gap in
performance between the deterministic objective Jp and the
ones of GPOMDP and PGPE (respectively .J, and .Jp) by
varying the value of their exploration parameters (o4 and op,
respectively). Details on the employed versions of PGPE
and GPOMDP can be found in Appendix G. Additional
experimental results can be found in Appendix H.

‘We run PGPE and GPOMDP for K = 2000 iterations with
batch size N =100 on three environments from the Mu-
JoCo (Todorov et al., 2012) suite: Swimmer-v4 (1" =200),
Hopper-v4 (T'=100), and HalfCheetah-v4 (T =100). For
all the environments the deterministic policy is linear in
the state and the noise is Gaussian. We consider UTQE

{0.01,0.1,1,10,100}. More details in Appendix H.1.?

From Figure 1, we note that as the exploration parameter
grows, the distance of Jp(0x) and J (O) from Jp(Ok)
increases, coherently with Theorems 5.1 and 5.2. Among
the tested values for op and oa, some lead to the highest
values of Jp (0). Empirically, we note that PGPE delivers
the best deterministic policy with o3 = 10 for Swimmer and
with o = 1 for the other environments. GPOMDP performs
the best with o3 =1 for Swimmer, and with 02 =10 in the
other cases. These outcomes agree with the theoretical
results in showing that there exists an optimal value for oy.

We can also appreciate the trade-off between GPOMDP
and PGPE w.r.t. dg and T, by comparing the best values
of Jp found by the two algorithms in each environment.
GPOMDP is better than PGPE in Hopper and HalfCheetah.
Indeed, such environments are characterized by higher val-
ues of dg. Instead in Swimmer, PGPE performs better than
GPOMDP, since T is higher and dg is lower.

°The code is available at https://github.com/
MontenegroAlessandro/MagicRL.

200 200
100 kaﬁ 1004
i <
>)
= 0 = 0
-~/
- /v
7100 T T T T T 7100 T T T T T
1072 1071 10° 100 10% 1072 107 10° 100 10%
o oh
(a) PGPE on HalfCheetah. (b) GPOMDP on HalfCheetah.
250 250
& 5
< 200 = 200 4
=)
-/ -0
-) —h=Jy
150 - T T T T 150 - T T T T
1072 107% 10° 10* 10% 1072 1071 10° 10t 10%
o ox
(c) PGPE on Hopper. (d) GPOMDP on Hopper.
-~/
60 -| 60 -,
< ™
S)
< 40+ < 40
- p
-
20 = T T T T 20 — T T T T
1072 107 10° 10t 10% 1072 1071 10° 10" 10%
o ox
(e) PGPE on Swimmer. (f) GPOMDP on Swimmer.

Figure 1. Variance study on Mujoco (5 runs, mean + 95% C.L).
10. Conclusions

In this work, we have perfected recent theoretical results
on the global convergence of policy gradient algorithms to
address the practical problem of finding a good deterministic
parametric policy. We have studied the effects of noise
on the learning process and identified a theoretical value
of the variance of the (hyper)policy that allows to find a
good deterministic policy using a polynomial number of
samples. We have compared the two common forms of
noisy exploration, action-based and parameter-based, both
from a theoretical and an empirical perspective.

Our work paves the way for several exciting research direc-
tions. First, our theoretical selection of the policy variance
is not practical, but our theoretical findings should guide the
design of sound and efficient adaptive-variance schedules.
We have shown how white-noise exploration preserves weak
gradient domination—the natural next question is whether
a sufficient amount of noise can smooth or even eliminate
the local optima of the objective function. Finally, we have
focused on “vanilla” policy gradient methods, but our ideas
could be applied to more advanced algorithms, such as the
ones recently proposed by Fatkhullin et al. (2023), to find
optimal deterministic policies with O(e~2) samples.

https://github.com/MontenegroAlessandro/MagicRL
https://github.com/MontenegroAlessandro/MagicRL

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

Funded by the European Union — Next Generation EU
within the project NRPP M4C2, Investment 1.,3 DD. 341
- 15 march 2022 — FAIR - Future Artificial Intelligence
Research — Spoke 4 - PE00000013 - D53C22002380006.

References

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research (JMLR), 22:98:1-98:76, 2021.

Ahmed, Z., Roux, N. L., Norouzi, M., and Schuurmans, D.
Understanding the impact of entropy on policy optimiza-
tion. In International Conference on Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning
Research, pp. 151-160. PMLR, 2019.

Allgower, E. L. and Georg, K. Numerical continuation
methods - an introduction, volume 13 of Springer series
in computational mathematics. Springer, 1990.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Sekhari,
A., and Sridharan, K. Second-order information in non-
convex stochastic optimization: Power and limitations.
In Proceedings of the Annual Conference on Learning
Theory (COLT), volume 125 of Proceedings of Machine
Learning Research, pp. 242-299. PMLR, 2020.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro,
N., and Woodworth, B. E. Lower bounds for non-convex
stochastic optimization. Math. Program., 199(1):165-
214, 2023.

Azar, M. G., Munos, R., and Kappen, H. J. Minimax PAC
bounds on the sample complexity of reinforcement learn-
ing with a generative model. Machine Learning, 91(3):
325-349, 2013.

Azizzadenesheli, K., Yue, Y., and Anandkumar, A.
Policy gradient in partially observable environments:
Approximation and convergence. arXiv preprint
arXiv:1810.07900, 2018.

Baxter, J. and Bartlett, P. L. Infinite-horizon policy-gradient
estimation. Journal of Artificial Intelligence Research
(JAIR), 15:319-350, 2001.

10

Bhandari, J. and Russo, D. Global optimality guarantees for
policy gradient methods. Operations Research, 2024.

Bolland, A., Louppe, G., and Ernst, D. Policy gradient algo-
rithms implicitly optimize by continuation. Transactions
on Machine Learning Research, 2023.

Deisenroth, M. P. and Rasmussen, C. E. PILCO: A model-
based and data-efficient approach to policy search. In
International Conference on Machine Learning (ICML),
pp. 465-472. Omnipress, 2011.

Deisenroth, M. P, Neumann, G., and Peters, J. A survey
on policy search for robotics. Foundations and Trends in
Robotics, 2(1-2):1-142, 2013.

Ding, Y., Zhang, J., and Lavaei, J. On the global optimum
convergence of momentum-based policy gradient. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 151 of Proceedings of Ma-
chine Learning Research, pp. 1910-1934. PMLR, 2022.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning (ICML), pp. 1329-1338. PMLR, 2016.

Fatkhullin, I., Barakat, A., Kireeva, A., and He, N. Stochas-
tic policy gradient methods: Improved sample complexity
for fisher-non-degenerate policies. In International Con-
ference on Machine Learning (ICML), volume 202 of
Proceedings of Machine Learning Research, pp. 9827—
9869. PMLR, 2023.

Fazel, M., Ge, R., Kakade, S. M., and Mesbahi, M. Global
convergence of policy gradient methods for the linear
quadratic regulator. In International Conference on Ma-
chine Learning (ICML), volume 80 of Proceedings of Ma-
chine Learning Research, pp. 1466—1475. PMLR, 2018.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning (ICML),
volume 80 of Proceedings of Machine Learning Research,
pp- 1582-1591. PMLR, 2018.

Ghavamzadeh, M. and Engel, Y. Bayesian policy gradient
algorithms. Advances in Neural Information Processing
Systems (NeurIPS), 19, 2006.

Ghavamzadeh, M., Lazaric, A., and Pirotta, M. Exploration
in reinforcement learning. Tutorial at AAAI’20, 2020.

Gravell, B., Esfahani, P. M., and Summers, T. Learning
optimal controllers for linear systems with multiplicative
noise via policy gradient. IEEE Transactions on Auto-
matic Control, 66(11):5283-5298, 2020.

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Kakade, S. M. A natural policy gradient. In Advances in
Neural Information Processing Systems (NeurlPS), pp.
1531-1538. MIT Press, 2001.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-tojasiewicz condition. In Machine Learning
and Knowledge Discovery in Databases: European Con-
ference (ECML PKDD), pp. 795-811. Springer, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kucera, V. Optimal control: Linear quadratic methods:
Brian d. o. anderson and john b. moore. Autom., 28(5):
1068-1069, 1992.

Kumar, H., Kalogerias, D. S., Pappas, G. J., and Ribeiro, A.
Zeroth-order deterministic policy gradient. arXiv preprint
arXiv:2006.07314, 2020.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Softmax policy
gradient methods can take exponential time to converge.
In Proceedings of the Annual Conference on Learning
Theory (COLT), volume 134 of Proceedings of Machine
Learning Research, pp. 3107-3110. PMLR, 2021.

Likmeta, A., Metelli, A. M., Tirinzoni, A., Giol, R., Restelli,
M., and Romano, D. Combining reinforcement learning
with rule-based controllers for transparent and general
decision-making in autonomous driving. Robotics and
Autonomous Systems, 131:103568, 2020.

Lillicrap, T. P,, Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-
trol with deep reinforcement learning. In International
Conference on Learning Representations (ICLR), 2016.

Liu, Y., Zhang, K., Basar, T., and Yin, W. An improved
analysis of (variance-reduced) policy gradient and nat-
ural policy gradient methods. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Lojasiewicz, S. Une propriété topologique des sous-
ensembles analytiques réels. Les équations aux dérivées
partielles, 117:87-89, 1963.

Masiha, S., Salehkaleybar, S., He, N., Kiyavash, N., and
Thiran, P. Stochastic second-order methods improve best-
known sample complexity of sgd for gradient-dominated
functions. Advances in Neural Information Processing
Systems (NeurIPS), 35:10862—-10875, 2022.

Mei, J., Xiao, C., Szepesviri, C., and Schuurmans, D. On
the global convergence rates of softmax policy gradi-
ent methods. In International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine
Learning Research, pp. 6820-6829. PMLR, 2020.

11

Metelli, A. M., Papini, M., Faccio, F., and Restelli, M. Pol-
icy optimization via importance sampling. In Advances

in Neural Information Processing Systems (NeurIPS), pp.
5447-5459, 2018.

Metelli, A. M., Papini, M., Montali, N., and Restelli, M.
Importance sampling techniques for policy optimization.
J. Mach. Learn. Res., 21:141:1-141:75, 2020.

Metelli, A. M., Papini, M., D’Oro, P., and Restelli, M. Policy
optimization as online learning with mediator feedback.
In AAAI Conference on Artificial Intelligence (AAAI), pp.
8958-8966. AAAI Press, 2021.

Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., and
Restelli, M. Stochastic variance-reduced policy gradi-
ent. In International Conference on Machine Learning
(ICML), volume 80 of Proceedings of Machine Learning
Research, pp. 4023-4032. PMLR, 2018.

Papini, M., Battistello, A., and Restelli, M. Balancing learn-
ing speed and stability in policy gradient via adaptive
exploration. In International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 108 of Pro-
ceedings of Machine Learning Research, pp. 1188-1199.
PMLR, 2020.

Papini, M., Pirotta, M., and Restelli, M. Smoothing policies
and safe policy gradients. Machine Learning, 111(11):
4081-4137, 2022.

Peters, J. and Schaal, S. Policy gradient methods for
robotics. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 2219-2225. IEEE, 2006.

Peters, J. and Schaal, S. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21(4):
682-697, 2008.

Peters, J., Vijayakumar, S., and Schaal, S. Natural actor-
critic. In European Conference on Machine Learning
(ECML), volume 3720 of Lecture Notes in Computer
Science, pp. 280-291. Springer, 2005.

Pirotta, M., Restelli, M., and Bascetta, L. Policy gradient in
lipschitz markov decision processes. Machine Learning,
100:255-283, 2015.

Polyak, B. T. et al. Gradient methods for minimizing func-
tionals. Zhurnal vychislitel’noi matematiki i matematich-
eskoi fiziki, 3(4):643-653, 1963.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 2:331-434,

1990.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research (JMLR), 22(268):1-8, 2021.

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Saleh, E., Ghaffari, S., Bretl, T., and West, M. Truly de-
terministic policy optimization. In Advances in Neural
Information Processing Systems (NeurlPS), 2022.

Scherrer, B. and Geist, M. Local policy search in a convex
space and conservative policy iteration as boosted policy
search. In Machine Learning and Knowledge Discovery
in Databases: European Conference (ECML PKDD),
volume 8726 of Lecture Notes in Computer Science, pp.
35-50. Springer, 2014.

Schwefel, H.-P. P. Evolution and optimum seeking: the sixth
generation. John Wiley & Sons, Inc., 1993.

Sehnke, F., Osendorfer, C., RiickstieB, T., Graves, A., Pe-
ters, J., and Schmidhuber, J. Parameter-exploring policy
gradients. Neural Networks, 23(4):551-559, 2010. The
International Conference on Artificial Neural Networks
(ICANN).

Shani, L., Efroni, Y., and Mannor, S. Adaptive trust region
policy optimization: Global convergence and faster rates
for regularized mdps. In AAAI pp. 5668-5675. AAAI
Press, 2020.

Shen, Z., Ribeiro, A., Hassani, H., Qian, H., and Mi, C. Hes-
sian aided policy gradient. In International Conference
on Machine Learning (ICML), volume 97 of Proceedings
of Machine Learning Research, pp. 5729-5738. PMLR,
2019.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D.,
and Riedmiller, M. Deterministic policy gradient algo-
rithms. In International Conference on Machine Learning
(ICML), pp. 387-395. PMLR, 2014.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y.
Policy gradient methods for reinforcement learning with
function approximation. Advances in Neural Information
Processing Systems (NeurIPS), 12, 1999.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In IEEE/RSJ interna-
tional conference on intelligent robots and systems, pp.
5026-5033. IEEE, 2012.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229-256, 1992.

Xiong, H., Xu, T., Zhao, L., Liang, Y., and Zhang, W. De-
terministic policy gradient: Convergence analysis. In Un-
certainty in Artificial Intelligence (UAI), pp. 2159-2169.
PMLR, 2022.

12

Xu, P, Gao, F., and Gu, Q. An improved convergence
analysis of stochastic variance-reduced policy gradient.
In Uncertainty in Artificial Intelligence (UAI), volume
115 of Proceedings of Machine Learning Research, pp.
541-551. AUAI Press, 2019.

Xu, P,, Gao, F.,, and Gu, Q. Sample efficient policy gradient
methods with recursive variance reduction. In Interna-
tional Conference on Learning Representations (ICLR).
OpenReview.net, 2020.

Yuan, R., Gower, R. M., and Lazaric, A. A general sample
complexity analysis of vanilla policy gradient. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 3332-3380. PMLR, 2022.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. Anal-
ysis and improvement of policy gradient estimation. In
Advances in Neural Information Processing Systems
(NeurlPS), pp. 262-270, 2011.

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

A. Assumptions and Constants: Quick Reference

As mentioned in Section 7, we can start from fundamental assumptions on the MDP and the (hyper)policy classes to satisfy
more abstract assumptions that can be used directly in convergence analyses. Figure 2 shows the relationship between the
assumptions, and Table 2 the constants obtained in the process. All proofs of the assumptions’ implications can be found in

Appendix E.
Ly (Lipschitz) .) L3+ (Smooth) . Vi (Variance bound)
} . LpBmax . Ly 20207 Rinax | 2L2LpLrt Lo ula pRmax | Laula, | Bmexc(@atD)(LatLlau)y Rmaxcdal?
AB L(’;{‘X;“‘“"“ e 15 =) TS L =
Assumptions: | AL [AL424344 0 [434445 [4345]
Reference: Lemma E.1 Lemma D.7 Lemma D.6
N . LyLuRumax | LrL, 2LPLZRmax ZLZL,,Lr-FLz,,LLz,pRmax Lo, Lo, Rmaxc(do+1) Rmaxcde
B L?Tf’_lgd“"“ Tt T |) TS oB ()7 o i)?
Assumptions: | 4L43 | AL424344 [45 [4s_]
Reference: Lemma E.1 Lemma D.3 Lemma D.2

Table 2. Bounds to the Lipschitz and smoothness constants for the AB and PB objectives (J and Jp) and variance of the GPOMDP and
PGPE estimators. Both presented bounds on Lo ; hold under different sets of assumptions. Yif oa <+/da.

13

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

‘1aded oy ur pajussard suondwnsse ayy Jo dwos Jo Aoudpuado(“Z InsIy

(1°9 uondwnssy)
anm-(4g‘) ir

(1", uondwnssy)
an(m)-(9g ‘) ar

(4t uondumnssy) g
M §T-"eT el

(1°9 uondwnssy)
anm-(vg - ‘vo) vr

] A—1
(Tl pwwoy) Tz 7z,
i z(A—1)
xeuy dgy T eyt iqdyTg

(A=1)

(1'q uondwnssy)
6 YIrm §T1-°q ar

(7 uondwnssy) e 1Im
ST-(+e7 ‘“e) « pue d3of

(€' pwwaY)

d
Nﬁ?\ﬂvﬂb ¢ ~d¢
Aa DEETIRKE Sl

(7’9 uonduwnssy)
6 VIM T4 A

N

(1°g uontsodoid)
A—1 t—1)
g + Xdﬂmcmiqmuﬂ VN\N

(1° uondwmnssy)
6 vIm D-L7 ap

(¢ uondwnssy)
m 1IM U‘Hlig mi

(L@ euroy)

g(k=1) Yo

g ‘e L urw
(Te7+77) (1+V'p)oxeuy M

Sver

(7’9 uondunssy)
6 1IM ST-VET v

(19 uonisodoid)
fo= (A=1)
L‘NH .,fw«;:ﬁvq

(7' uonduwmnssy)
M yrm -7 9

(1'% uondwnssy)
® 1Im (47)
4 pue d3of

dr pue Vo uo suondwnssy

dr uo suondwnssy

Korjod onsturuuidiop pue JQN uo suondwnssy

14

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

B. Additional Related Works

Policy variance. When optimizing Gaussian policies with policy-gradient methods, the scale parameters (those of the
variance or, more in general, of the covariance matrix of the policy) are typically fixed in theory, and optimized via gradient
descent in practice. To the best of our knowledge, there is no satisfying theory of the effects of a varying policy (or
hyperpolicy) variance on the convergence rates of PG (or PGPE). Ahmed et al. (2019) were the first to take into serious
consideration the impact of the policy stochasticity on the geometry of the objective function, although their focus was on
entropy regularization. Papini et al. (2020), focusing on monotonic improvement rather than convergence, proposed to
use second-order information to overcome the greediness of gradient updates, arguing that the latter is particularly harmful
for scale parameters. Bolland et al. (2023) propose to study PG with Gaussian policies under the lens of optimization by
continuation (Allgower & Georg, 1990), that is, as a sequence of smoothed version of the deterministic policy optimization
problem. Unfortunately, the theory of optimization by continuation is rather scarce. We studied the impact of a fixed policy
variance on the number of samples needed to find a good deterministic policy. We hope that this can provide some insight
on how to design adaptive policy-variance strategies in future work. We remark here that the common practice of learning
the exploration parameters together with all the other policy parameters breaks all of the known convergence results of
GPOMDP, since the smoothness of the stochastic objective is inversely proportional to the policy variance (Papini et al.,
2022). In this regard, entropy-regularized policy optimization is different, and is better studied using mirror descent theory,
rather than stochastic gradient descent theory (Shani et al., 2020).

Comparing AB and PB exploration. A classic on the topic is the paper by Zhao et al. (2011). They prove upper bounds
on the variance of the REINFORCE and PGPE estimators, highlighting the better dependence on the task horizon of the
latter. The idea that variance reduction does not tell the whole story about the efficiency of policy gradient methods is rather
recent (Ahmed et al., 2019). We revisited the comparison of action-based and parameter based methods under the lens of
modern sample complexity theory. We reached similar conclusions but achieved, we believe, a more complete understanding
of the matter. To our knowledge, the only other work that thoroughly compares AB and PB exploration is (Metelli et al.,
2018; 2020; 2021), where the trade-off between the task horizon and the number of policy parameters is discussed both in
theory and experiments, but in the context of trust-region methods.

15

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

C. Additional Considerations

We only considered (hyper)policy variances 03,07 that are fixed for the duration of the learning process, albeit they can be
set as functions of problem-dependent constants and of the desired accuracy e. This is due to our focus on convergence
guarantees based on smooth optimization theory, as explained in the following.

Remark C.1 (About learning the (hyper)policy variance). It is a well established practice to parametrize the policy variance
and learn these exploration parameters via gradient descent together with all the other policy parameters (again, for
examples, see Duan et al., 2016; Raffin et al., 2021). The same is true for parameter-based exploration (Schwefel, 1993;
Sehnke et al., 2010). However, it is easy to see that an adaptive (in the sense of time-varying) policy variance breaks the
sample complexity guarantees of GPOMDP (Yuan et al., 2022) and its variance-reduced variants (e.g., Liu et al., 2020).
That is because these guarantees all rely on Assumption 6.2, or equivalent smoothness conditions, and obtain sample
complexity upper bounds that scale with the smoothness constant Ly _a. However, the latter can depend inversely on o3, as
already observed by Papini et al. (2022) for Gaussian policies. Thus, unconstrained learning of o 4 breaks the convergence
guarantees. Analogous considerations hold for PGPE with adaptive hyperpolicy variance. Different considerations apply to
entropy-regularized policy optimization methods, which were not considered in this paper, mostly because they converge to a
surrogate objective that is even further from optimal deterministic performance. These methods are better analyzed using
the theory of mirror descent. We refer the reader to (Shani et al., 2020).

In order to properly define the white noise-based (hyper)policies, we need that pg(s) + e€.A (for AB exploration) and
0 + €€ O (for PB exploration), we will assume that A =R% and © =R% for simplicity.

Remark C.2 (About A=R% and © =R% assumption). We have assumed that the action space A and the parameter
space © correspond to R and Re®, respectively. If this is not the case, we can easily alter the transition model p and the
reward function r (for the AB exploration), and the deterministic policy g (for the PB exploration) by means of a retraction
function. Let X < R< be a measurable set, a retraction function vy :R*— X is such that tx(z)=zxifxeX, ie., itis the
identity over X.

* For the AB exploration, we redefine the transition model as p(s'|s,a):=p(s'|s,t4(a)) for every s,s'€S and ac A.
Furthermore, we redefine the reward function as 7(s,a) :=r(s,.4(a)) for every se S and ac A.
* For the PB exploration, we redefine the deterministic policy as Jig(s) := p, (@), for every O€©O.

16

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

D. Proofs

D.1. Proofs from Section 5

Lemma D.1. Let L >0, consider the function f:R — R defined for every xR as follows:
0 ife<—-1/Lorx>2/L
f@)=<XLe+1 if —1/L<x<0 . (16)
1-%fz if0<z<2/L
Consider the function 1, :R —Rx defined for every xeR as follows:
¢a@0:{2éh éf—V@U<$<V@07

0 otherwise

7)

i.e., the p.d.f. of a uniform distribution with zero mean and variance o*. Let f, = f x1,, let v* = argmax, g f(x), and let
r¥ =argmax,p f, (7). Then f is L-LC and, if /30 <1/L, it holds that f(x*)— f(z¥)= Lo /(2V/3).

Proof. Let us first verify that the distribution whose p.d.f. is ¢, has zero mean and variance o2:
f Yo (x)xdr =0, (18)
R
V3o

J}R VYo (z)2?dr =2 . Vo (v)r?dr =0 (19)

Under the assumption V30«1 /L, functions f and v, can be represented as follows:

AN I,
/1 \

Let us now compute the convolution:
Jo(@) = f o1py = J oz — 1) (D)t 20)
R

It is clear that the global optimum of function f, is located in the interval given by |x|<1/L. This combined, with the
assumption v/30 < 1/L, allows to simplify the integral as:

0 1 vtV3o L
JR 1/Jg(m—t)f(t)dt—LﬁUW(Lt—kl)dtJrJO N (1—2t> dt 1)
1 (L L
1—=m (2(x—\/§o)2+4(x+\/§a)2). (22)

The latter is a concave (quadratic) function of =, which is maximized for 2 = o //3. Noticing that 7* = argmax . f(7)=0,
we have:

(23)

F@*) = F(aE) = F(0)— f(o/v/3) =1 (1 Lo > _ Lo

23 2B
O

Theorem 5.1 (Deterministic deployment of parameters learned with PB white-noise exploration). If the hyperpolicy
complies with Definition 3.3, under Assumption 5.1:

17

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

(i) (Uniform bound) for every @€ ®©, it holds that | Jp(0) — Jp(0)| < Lj\/deop;
(ii) (Jp upper bound) let 0} € argmaxg.q Jp(0), it holds that: J} — Jp(0%) <2Lj+/deop;
(241) (Jp lower bound) there exists an MDP, a deterministic policy class pg fulfilling Assumption 5.1, and a noise
complying with Definition 3.1, such that J} — Jp(03) =0.28L j/deoop.

Proof. Before starting the derivation, we remark that:

Jp(0)= E [Jo(6+¢€)], 24)
e~<1>d®
where Ec.a,_ [|l€]3] < deoj. From Assumption 5.1, we can easily derive (i):
[/p(8) = Je(6)|=[/n(6) = E [/n(6+e€)]| (25)
€~ dg
<_E [[/o(6)~Jn(0+¢)l] (26)
€~ dg
<L; E [|e]:] 27
E~q>d(_)
<Ly, | E [le]3] (28)
EN‘I?‘dC_)
gLJUp'\/ d@. (29)
For (i7), let 0* eargmaxg.g Jp (), we have:
Igl%(JD(e)*JDw;)=JD(9*)*JD(9§)iJP(0*) (30)
o6
< Jp(0%)— Jp(0%) + Jp(65) — Jp(6F) (31)
<2max|Jp(0)— Jp(0)] (32)
6€O
<2Ljop\/de, (33)

where line (31) follows from Jp (05) = maxgeo Jp(6) = Jp(0*), and line (32), follows by applying twice result (¢).

To prove (i#i) we construct the MDP ({s},R% p.r, po,7) (i.c., a bandit), where r(s,a) = - 3% f(a;), where f is defined

de i=1
in Lemma D.1 and pg(s) =6 with @R . Thus, we can compute the expected return as follows:

1-~T 1 o
Jn(6) = 1_”7 PONIC) (34)
=1

Let us compute its Lipschitz constant recalling that f is L-LC thanks to Lemma D.1. In particular, we take 8 =04, and
0’ =—nl,, withne(0,1/L), recalling that |@ —6'|2 =n+/de and that f(6;) =1 and f(0;)=—nL + 1, we have:

1-97 1 & 1-97 1 &
Jp(0) — Jp(0')| = C— 0;)— C— o’ 35
0(6) ~ o0 = =4 2S00~ 300 39
1-47 1 %
= — 0;)— f(0: (36)
o 200100
1-47 L de
— N [(37)
= deé' |
1— T
e Ln (38)
l=n
1—-~77 L
= . 0-0|.. 39
oo)
Thus, we have that Jp(0) is (11__7; . \/576>-LC. By naming L ;= % . ﬁ, we have L= 11__7'} v/de L ;. We now con-

sider the additive noise ®4, = ®f§1Uni([—\/§a, \/go]), i.e., the do-dimensional uniform distribution with independent
components over the hypercube [—+/30,/30]%. From Lemma D.1, we know that each dimension has variance o2,

18

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

consequently:
do
E =) E_ [@)=deo? o)
e~Pgq i1 €;~Uni([—v30,4/30])
thus complying with Definition 3.2. Consequently:
d@ d@)
(@)= E [Jp(0+e€)]=)] E [£(0s+e)] =D (o) (62), (41)
e~Pgg - ei~Uni([7\/§a,\/§U]) i1

where 1), is the p.d.f. of the considered uniform distribution as defined in Lemma D.1. From Lemma D.1 and observing that
both Jp and Jp decompose into a sum over the dg dimensions, we have for V3o<1 /L:

0* =argmax Jp(0) =04, , 0F =argmax Jp(0) = —=14,- 42)

OcRde OcR%e \/g

It follows that:
Jo(8%) — Jo(83) = Jo (0, — JD(ﬁl) @3)
de
= 44
T Zf f(o/V3) (44)
1—4T LO’
- =7 45
1—v 23 (43)
1

=——"Lj +\/dgo. 46
2\/§ J o0 ()
O

Theorem 5.2 (Deterministic deployment of parameters learned with AB white-noise exploration). Ifthe policy complies
with Definition 3.2 and under Assumption 5.2:
(i) (Uniform bound) for every @€ ©, it holds that: |Jp(0) — Jx(0)| < L\/d 40a;
(ii) (Jp upper bound) letting 0% € argmaxgeg J4(0), it holds that Jj — Jp(0F) <2L+/d s04;
(122) (Jp lower bound) there exists an MDP, a deterministic policy class g fulfilling Assumption 5.1, and a noise
complying with Definition 3.1, such that J}; — Jp(0F) = 0.28 L\/d 40 4.

Proof. From Assumption 5.2, noting that Jp(0) = Jn(p,) we can easily derive (4):

o(6) = Js(0)|=\Jo(O)~ E, | npy+e)| 7)
=|/oley)— E, [Jo(u9+e)]‘ 48)
T-1 !
S q)T [ZLtSUPWG(St) (NB(St)+€t)|2] (49)
e~Pa, | t=0 st€S
= Z L E [lel?] (50)

<LA/da0n. (D

For (i7), let 0* e argmaxgeg Jp(0), we have:

max Jp(0) — Jp(0%) = Jp(0*) — Jp(0%) + JA(0%) (52)
< Jp(0%) — Ja(0F) + JA(0%) — Jp (%) (53)
<2max|/p(6) /A (0) (54)
<2Loan/d 4, (55)

19

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

where line (53) follows from J4 (0%) = maxgeo Ja(6) = Ja(6*), and line (54) follows by applying twice result (i). The
proof of (ii3) is identical to that of Theorem 5.1 since, for the particular instance, we have enforced pg(s) =6 (which
implies d 4 =dg) and, thus, AB exploration is equivalent to PB exploration. O

D.2. Proofs from Section 6

Lemma D.2 (Variance of 69,]p(0) bounded). Under Assumption 4.5, the variance the PGPE estimator with batch size N
is bounded for every € © as:
I

N(1-7)? TNl

Var [69,];)(0)] <

with £, < cdeop>.

Proof. We recall that the estimator employed by PGPE in its update rule is:

N
~ 1
Vo Jp(0) =1 ; Veologre(0:)R(r;),
where N is the number of parameter configuration tested (on one trajectory) at each iteration. Thus, we can compute the

variance of such an estimator as:

& / 1 ’
OVNaEe [Vng(B)] =N 9’359 [Vologre(0')R(11)]

1 /
=5 o & [[Vologre (8] R(m)?]

< R?naxf% (1 _ ’YT)Q
NI=v)?
where the last line follows form Assumption 4.5 and Lemma E.4 after having defined {3 =Eg/,, [HVg log e (6) H;] and
from the fact that, given a trajectory 7, R(7) is defined as:

T-1
R(T)z 2 fyt,r‘(sT,taaT,t%
t=0

with 7(s,a) € [— Rmax, Rmax] for every se S and ae A. O

Lemma D.3 (Bounded Jp Hessian). Under Assumption 4.5 and using a hyperpolicy complying with Definition 3.2, Y0 ©
it holds that:

Rmax(l - A/T)
T ((2+&3),
2

where & écd@agz and {3<cop °. Furthermore, under Assumptions 4.1, 4.3, 4.2, and 4.4, and using a hyperpolicy
complying with Definition 3.2, Y0 € © it holds that:

I9300(0)], < Lo,

IV370(0)],< Lo

where L5 is bounded as in Lemma E.2.

Proof. The performance index Jp of a hyperpolicy vg can be seen as the expectation over the sampling of a parameter
configuration 8’ from the hyperpolicy vg, or as the perturbation according to the realization € of a sub-gaussian noise op of
the parameter configuration of the deterministic policy pg.

Using the first characterization we can write:

Je(0)= E [Jb(8)]. (56)
Equivalently, we can write:
.]p(0)=EH~E@ [Jp(0+€)]. (57

20

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

By using the latter, we have that:

[V30(6)], = | V3 E, [o(6+e)

2

= H E [VgJp(0+¢€)] ‘
€~g 2

< E [[V3o(6+)]

< La, (58)
where the last inequality simply follows from Assumption E.1.

By using Equation (56), instead, we have the following:
V3 Jp(0)=Vp oF [Jn(6")]
6

_ f V2 (vp(6')Jn(8)) d6’
- j Vo (Vora(0)Jo(8') +v6(6')VaIn(8')) 46’
_ f Vo (v6(0') (Vologra(8') Jo(6))) d6’
= f Vore(0')Velogrg(6')Jp(0') +ve(8') (Vz logre(0")Jp(8') + Velog yg(e’)vgJD(e’)) de’
= fl/g (@) <V9 logve(0')Velogre(0') Jp(0') +Vilogre (0’)JD(0’)) de’
— G/IEVQ [(vg logve(0')Velogre(0') +Vilog ug(a')> JD(O’)] .
Now, given the previous argument, it follows that:

1930, [(Folozsol®Totoxsot@ +T3ioxto)) o)

2

<,E, [va logre(8')|2|Jn(6)] + | V3 logre(8)], |JD(0’)]]
Rmax 1- T
< M (E2+65). (59)
We employ Lemma E.4 to bound &5 and &s. O

Theorem D.4 (Global convergence of PGPE - Fixed op). Under Assumptions 6.1 (with Jy=Jp), 4.1, 4.3, 4.5, with
a suitable constant step size, to guarantee Jj, —E[Jp(0k)| <e+ B+ 3Lp\/deop, where 3Lp~/deop =0(y/deop(1—
7)~2) the sample complexity of PGPE is at most:

472
~ a’d
NK=0|—F—2—). 60
(s7ti=m) <>
Furthermore, under Assumptions 4.2 and 4.4, the same guarantee is obtained with a sample complexity at most:

~ Oz4d@

Proof. We first apply Theorem F.1 with J; = Jp, recalling that the assumptions enforced in the statement entail those of
Theorem F.1:

160{2L2)pvi> IOg maX{O, Jp* — Jp(eo) - 6}

Jp*—]E[Jp(eK)]<€+ﬁ with NK = 3 3

(62)

€ €

By Theorem 5.1 (i) and (i¢), we have that:
JB‘ —E [JD(GK)] = (J]Sk - Jp*) +E [JP(BK) — JD(HK)] + JP* —E[JP(GK)] < Jp* —E[JP(HK)] +3Lj\/dgop. (63)

21

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

After renaming Lp := L for the sake of exposition, the result follows by replacing in the sample complexity N K the
bounds on Lp, L2 p, and Vp from Table 2 under the two set of assumptions and retaining only the desired dependences with

the Big—5 notation.
O

Theorem D.5 (Global convergence of PGPE - c-adaptive op). Under Assumptions 6.1 (with Jy=Jp), 4.1, 4.3, 4.5,
with a suitable constant step size and op = = = O(e(1— ’y)2d61/2), to guarantee Jj; —E[Jp(0k)] < e+ 3 the sample
complexity of PGPE is at most:

~ atd}
NK=0{—%—). 64
(755) o
Furthermore, under Assumptions 4.2 and 4.4, the same guarantee is obtained with a sample complexity at most:
~ 4d2
NEK=0(-2%), (65)
(1=

Proof. We apply Theorem D.4 with € — ¢/2 and set op so that:

3L 7\/deoop = < —> op— (66)

€

2 6L;\de
After renaming L p := L ; for the sake of exposition, the result follows substituting this value in the sample complexity and
bounding the constant Lp as in Table 2. O

Lemma D.6 (Variance of @g Ja(0) bounded). Under Assumptions 4.3 and 4.5, the variance the GPOMDP estimator with
batch size N is bounded for every Q€O as:

R?nax£2(1_fYT)< R12nax£2
N(1-7)3 ~N(1—7)%

Var [%JA(Q)] <

with & <cd a0y *L2.

Proof. 1t follows from Lemma 29 of Papini et al. (2022) and from the application of Lemma E.3 to bound &,. O

Lemma D.7 (Bounded .J5 Hessian). Under Assumptions 4.3, 4.4, and 4.5 Y0 €O it holds that:
Runax (1 _ 7T+1)
(1=7)?
where vy < cd g0—24 Li and vz < caA_zLi + c\/aaA_ngyﬂ. Furthermore, under Assumptions 4.1, 4.3, 4.2, and 4.4, Y0 € ©

it holds that:

va']/\(e)H2< (vg +v3),

[V574(8)], < La,

where Lo is bounded in Lemma E.2.

Proof. Under Assumption 4.5, by a slight modification of the proof of Lemma 4.4 by Yuan et al. (2022) (in which we
consider a finite horizon 1), it follows that:

Ruax (1= (T +1)77 +THT+1) Rumax (1-97)
(1—7)2 (1-7)?

As in the proof of Theorem E.1, we introduce the following convenient expression for the trajectory density function having
fixed a sequence of noise € ~ <I>Z;A:

V574 (0)], <

(Ul +U2)< (Ul +’U2).

T-1
Po(Titty +€) =po(sr0) | [P(sris1lsrr o (sre) +€0).
t=0

This allows us to express the function .J4 (@), for a generic O €O, as:

T—1
Ja(0)= IET lf Po(Tip, +€) Z V(576,10 (57,0) +€)dT | .
%ay, | YT t=0

22

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

With a slight abuse of notation, let us call .Jp (g + €) the following quantity:

T-1
Jp(pe +€) ::J Po(Tiy+€) D AT (5rp po(5re) +€)dr.
T t=0

Now, considering the norm of the hessian w.r.t. 8 of .J,, we have that:

Va0, B [I95(o+e)l,|<La

E
T
~<I>dA

which follows from Assumptions E.1. O

Theorem D.8 (Global convergence of GPOMDP - Fixed o). Under Assumptions 6.1 (with Jy = Ja), 4.1, 4.3, 4.4, 4.5, with
a suitable constant step size, to guarantee J} —E[Jp(0k)]<e+ B +3Lav/daca, where 3L a\/daoa=0(\/daos(1—
7)™ 2) the sample complexity of GPOMDP is at most:
NE =0 (-2 67
- <ﬁﬂ—vﬁé>' ©n
Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity at most:

~ Oz4dA
NK_O<0§(17)653>' (68)

Proof. We first apply Theorem F.1 with J; = J,, recalling that the assumptions enforced in the statement entail those of
Theorem F.1:
16042L27AVA log maX{O, JA* — JA (00) — B}

JA**E[»]A(GK)]<E+5 with NK= 3 3

(69)

€ €

By Theorem 5.2 (¢) and (4%), we have that:

JS —-E [JD(OK)] = (JS — JA*) +E [JA(OK) — JD(BK)] + ']A* —E[,]A(HK)] < JA* —E[JA(OK)] +3L dAO'A. (70)
After renaming L 4 := L for the sake of exposition, the result follows by replacing in the sample complexity /N K the bounds
on L, Ly A, and V) from Table 2 under the two set of assumptions and retaining only the desired dependences with the
Big-O notation. O

Theorem D.9 (Global convergence of GPOMDP - c-adaptive op). Under Assumptions 6.1 (with J; =Jy), 4.1, 4.3, 4.4,
4.5, with a suitable constant step size and setting o, = m =0(e(1— W)Qd;‘l/z), to guarantee Jj, —E[Jp(Ok)] <e+ [
the sample complexity of GPOMDP is at most:

~ atd?
NK=0| —2—]. 71
(55) 7y
Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity at most:
~ atd?
NK=0|—2—]. 72
(757 7

Proof. We apply Theorem D.8 with € < ¢/2 and set o4 so that:
€

€
3LA/dpon== = op=——. 73
ATA= 5 TN (73)
After renaming L 4 := L for the sake of exposition, the result follows substituting this value in the sample complexity and
bounding the constant L 4 as in Table 2. O

D.3. Proofs from Section 7.1

Lemma D.10. Under Assumptions 4.1, 4.3, 4.2, 4.4, 7.1, and using a hyperpolicy complying with Definition 3.2, V@€ © it
holds that:

JZ; —JD(H) <C¥DHV9JP<0) H2 + Bp+apLaopr/de.

23

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Proof. We start by observing that
Jo(0)= E [Jn(0)]=E [Jn(0+¢€)].

0’ ~vg e~P

From this fact, we can proceed as follows:

v9<]]>(0) =V E,IVE.:D [JD (0 + 6)]

=E [VoJp(0+e€)].

For what follows, we define 6. as an intermediate parameter configuration between 6 and 6+ €. More formally, let
A€[0,1], then 8. =X0+ (1 —)\)(0 +€). We can proceed by rewriting the term Vg.Jp (0 + €) exploiting the first-order
Taylor expansion centered in €: there exists a A€ [0, 1] such that

E [VoJp(0+e€)]= E [VgJD(H) + eTvng(o;)]
e~g e~g
~VoJo(0)+ E [eTvng@)] .
Now, we can consider the 2-norm of the gradient:

Vo /n(O)=[Vo n(0) + E |"V5in(00)|| >IValn®)]~| E, | Von(b)||

> (Vo o(6)l~ L2 E, el 74
1
> L (= (@)~ 22— Lo B[] as)

1
=>— (J5—Jn(0))— b — Laopy/de,
ap ap

where Equation (74) follows from Assumption E.1, and Equation (75) follows from Assumption 6.1. Thus, it simply follows
that:

JS — JD(G) <0¢D|\V9Jp(9) HQ +5D +apLsopr/de.

Theorem 7.1 (Inherited weak gradient domination for .Jp). Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every € ©O:
Jp* — Jp(@) <04DHVGJP(9)H2 +06p+ (aDLQ Jer)O‘p do,
where Ly =O((1—~)73) (full expression in Lemma E.2).

Proof. We recall that under the assumptions in the statement, the results of Lemma D.10 and of Theorem 5.1 hold In
particular, we need the result from Theorem 5.1, saying that V6 € © it holds that

Jp(0) — Ljopr/do < Jp(0) < Jp(0) + L jopr/do. (76)
Thus, using the result of Lemma D.10, we need to work on the left-hand side of the following inequality:

JS — JD(O) SO(DHVQJP(Q) HQ + fp +apLaopr/de.
Moreover, by definition of .Jp, we have that J5 > .Jp*. Thus, it holds that:
Ji—Jp(0) = Jp* — Jp(0)

> Jp*— Jp(e) — Ljy/do,
where the last line follows from Line (76). We rename L p := L ; in the statement.

O

Lemma D.11. Under Assumptions 7.1, 4.1, 4.3, 4.2, 4.4, using a policy complying with Definition 3.2, YO € ©, it holds that:
J;)k — JD(G) <O‘DHV0JA(0)H2 + Op +appoar/d,

24

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

where

L2RuaxY (LyLyp+ RumaxLop+ LyLyy) Lo,
_ p max P s T T
w_L”< (1= * (1-7)2 iy)

Proof. As in the proof of Theorem E.1, we introduce the following convenient expression for the trajectory density function
having fixed a sequence of noise € ~ (I>§A:

Po(T5 g +€)=po(sr,0 H (srt+1]570, o (s7e) +€1). (77)
=0

Also in this case, we denote with pp(7o.; pt, + €) the density function of a trajectory prefix of length I:
-1
Pp(T0:45 ey + €)= po(57,0) HP(ST,tJrl |5r¢, o (5r¢) +€t). (78)
=0
From the proof of Proposition E.1, considering a generic parametric configuration 8 € ©, we can write the AB performance
index Ja(0) as:

-1
Ja(@)= E JPD(T Myt E) Z’YT st o (st) + €)dr]
= Tda | t=0

= E Z J pD T0: t7/1'6+6) (Staue(st)+et)dTO:t)
TO:t

>

L =:f(e)

moreover, by using the Taylor expansion centered in € =0, for € = x€ (for some x € [0, 1]) the following holds:

= Tda t=0
T-1
_JD(O) + Z ET [6t VEtf(e) e=€]
=0 €~%a,
Here, we are interested in the gradient of Ja:
T—1
Vo s(0)=VeJo(0)+ > Vo E [/ Ve, f(€)le=e]
t=0 £Y%a
T—1
=VeJp(0) + E [e/VoVe,f(€)|e=e]-
i—0 €~ %,
Now, considering the norm of the gradient we have:
T-1
IV64(8)]l5> Ve (6)], Z E, [e/VoVe f(e)les]
dA 2
B |
>—(J§ —Jp(0) ——~ E [e/ VoVe, f(€)le=]
ap @D =0~ 9
1 B T-1
> (J¥—Jp(0))— = — E 2112 R . _o[214/2
2 B DO) =2 =3 B [l B [VoVaf(@lesli
1
> (5= n(6)) ———cw Z E, Hvevetf@)gzgué]”%

t=0 €~

25

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

where the second inequality is by Assumption 7.1. Re-arranging the last inequality, we have:

2112,

T-1
T = In(0) <ap [V Ja(0) |, + Bp+apoar/da), E [IVeVe fle)le-z
t=0 €~Pd 4

In order to conclude the proof, we need to bound the term » 32_01 Eevar [IVeVe, f(€)|e—el3]"/2. From the proof of
e~®] e=¢
Proposition E.1, for any index k€ [T"], we have that:

vek f(g) =

T~pp (i, TE)

T-1
DA (st pe(se) +€) Ve, logp(ski1lsk, o (sk) +€x) +7 Ve, r (s, po(si) + Gk)] ;
=k

from which we can derive VgV, f(€) as follows:
Vo vek f(é)

T-1
=V9J po(Tip, +€) (Z V7 (51, 10 (51) + €) Ve, logp(siia| sk, po(sk) +€x) +7" Ve, (s, po(sk) +6k)> dr
T =k

T-1

=Vof po(Tipy +€) Y. 7' (se pe(se) + €) Ve, logp(ski1|sk, o (sk) +ex)dr
T t=k

@

+ VeJ po(73)+ €)1 Ve, (5K, o (sk) + €x)dT.

(i)
We will consider the terms (i) and (ii) separately. However, we first need to clarify what happens when we try to compute
the gradient w.r.t. @ and €, for a generic t€{0,...,T — 1}. To this purpose let g(-,a) be a generic differentiable function of
the action a = p1g(s;) + €;. The norm of its gradient w.r.t. €; can be written as:

Ve g @)lampo(si)+e |2 = Vag (@) la=po(si) e Ve, (o (s1) +€1)]2

= Hvag('va)la:ue(st)-i-et ”2
On the other hand, the norm of the gradient of g w.r.t. @ can be written as:

[Vog(-;a)la—pa(si)+e: |2 = Vag (@) lapo(si) +e. Vo lua(si) + €]

= HVag(.7a)|a:/L9(St)+€tV0l’l’9(st)HQ'
Moreover, the norm of the gradient w.r.t. @ of the gradient of g w.r.t. €;, can be written as:

vavetg('7a)‘a=u9(8t)+et H2 = Hvevag('aa)|a=ue(8t)+et H2
= Hvig(%a)|a=ue+5tve/~t9(3t)H2~
Having said this, we can proceed by analyzing the terms (i) and (ii).

The term (i) can be rewritten as:
T-1

(i)=Vef Po(Ti g +€) > A (se, 10 (st) + €) Ve, 10gp(si i1k, po(sk) +€x)dr
T t=k

=Y Vtvej Po(T0:t3 by + €T (St f1g(5t) +€1) Ve, 1ogp(skr1sk, e (sk) + €x)dTo:t

=) A E

Vo logpp(70:¢, e +€)7(5¢, 1o (5¢) + €1) Ve, logp(sk 1|5k, e (sk) + €x)
70:¢~Pp (14 TE)

+Veor(se, po(st) +€)Ve, logp(sisi|sk, po(sk) + €x)

+7(st,10(5¢) +€)VeVe, logp(sii1lsk, pe(sk) +€x)

26

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

t—1
Z Vologp(sjiil|s;,pe(s;)+€;)r(se, po(se) +€)Ve, logp(spt1l|sk, po(sk) +€x)
=0

"2

70: t~pD(iy tE)

+Veor(se, po(st) +€)Ve, logp(spri|se, po(sk) +€x)
+7(s¢, 110 (5¢) +€)VaVe, logp(sky1|sk, pe(sk) +€r) |

We need to bound its norm, thus we can proceed as follows:

¢)Hz
<%

t—1

D IVelogp(sji1ls;. re(s;)+€) |y (s, po(se) + €| Ve, logp(siialsk, po(sk) +e€x)l,
=0

+[Vor(se,pno(se) +€i)lly [Ve, logp(sir1lsk, o (sk) +€x)l,

T0: t"pD(iy tE)

+|r(se, e (st) +€)|IVaVe, logp(skt1lsk, pe(sk) + €k)|2]

<L,L%,,R maxTZlﬂ + (LpLy Liogp + Rumax L L2 10gp) 2

t=k =
_L“le‘)ngma”(1_T7T<_11—+v(>€_1w (+() =)+<LquLlogp+RmaxLuL2,1ogp>7i_—zT
gLﬂleongmax’V <<11_:T2) + L“L’"LIOgP+RmaxLuL2,logp)71—zT
gLHLlQngRm&ﬂ((tfz 1—W 1) +(L LTLlogijRmaxLuLz}logp)Vi__zT_

Finally, we have to sum over k€ [T]:
k_ AT

1" 1kt =y
Zn |\2\ZL L, R max7< T G +(LpuLy Liogp + Runax Ly L2 jog p) s

1—+T T 1—~7 T~T-1
=L L20 Rmax7 <T - + -
#lose (I=7)?2 (A=v? @A-7* (1-9)?
1_2,.YT +,YT+1
(1—7)?

1—
+(LrLiogp + BmaxL20gp) L 7y .

+ (L,quLlogp + RmaxL;LLQ,logp)

T

1
2
< LuLlongmaxWW

The term (ii) can be rewritten as:

(ii)=Vg J po(7i g+ €7 Ve, (51, po(sk) +€x)dr
=V J Po(To:k; py + €V Ve, (55, o (sk) + €x)dTo.1
TO:k
:ka po(70:k5 Hy +€) (Ve logpp (To:k; By + €) Ve, 7(Sk: o (sk) +€x) + Vo Ve, (s, no(sk) +€k))
T0:k

=~k E

To:k~Dp (- ,u9+§)

k—1
Z Vologp(sj+1lsj,pe(s;) +€;)Ve,(sk,o(sk) +€x) +VoVe,r(sk, po(sk) +€k)] :

‘We need to bound its norm, thus we can proceed as follows:
k—1

G, <~ E Z\lVelogP(Sy+1\Sj7ue(Sy)+€j)|\ Ve, 7 (sks 1o (sk) + k)|
To:k ™~

po(-ipy,+E)

27

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

+[VeVe,r(sk, 1o (k) +€x)ly
<L, LyL k™ + L, Lo, A"

Finally, we have to sum over ke [T]:

T—1 T-1 T-1
SNy =LuLpLe Y. kv +LyLay > 4"
k=0 k=0 k=0

1-THT (T -1)4T 1—AT
<L,L,L, L,Ls,
pliplr?y (1—7)2 +Lpbe, 1—
1—97T 1-97T
<L,L,L,y—=+L,Loy,——.
nhep 7(1_7>2+ HERTT
Putting together the bounds on (i) and (ii):
T-1
E [IVoVe, f(€)le=zl3]"
=0 €%,
T-1 T-1
<D 1@+ Y Gl
k=0 k=0
1—~7 1—~7T
<L,uL2Rmaxy 5 + (L Ly + RumaxLop) L
oy Gy (B My
1—4T 1—~7
+L,L,Lyy——5+ L, Loy ——
S (TR R 1—v
Ly RmaxY | (LyLp+ RiaxLop+LyLey) | Loy
<LM p - (p a 75 p)_|_ > (1—’YT),
(1=7) (1=7) 1—
which concludes the proof. O

Theorem 7.2 (Inherited weak gradient domination on Ja). Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every € ©O:
JA*—JA(G)<OZDHV9JA(9)H2+BD+(OéDl/}"_LA)UA d.A7
where 1= O((1—~)~%) (full expression in the proof).

Proof. This proof directly follows from the combination of Lemma D.11 and Theorem E.1, and we can proceed as in the
proof of Theorem 7.1. Indeed, recalling that L is

YAy (T 1) - Ty 147
L= L Rmax ——1L)
R
from Theorem E.1, it follows that:
,]A(O)—LO’A\/dAng(O)ng(O)+LO’A\/d_A. (79)

Analogously to the proof of Theorem 7.1, it is useful to notice that by definition of /5, we have JJ > J,*. Thus, it holds
that:

J]Sk —JD(G) > J * = JD<6)

= Jp*— JA(Q) — Loan/d4,
where the last line follows from Line (79). We rename L 4 := L in the statement. O

Theorem D.12 (Global convergence of PGPE - Inherited WGD). Consider the PGPE algorithm. Under Assumptions 4.1,

4.3,4.2,4.4, 4.5, 7.1, with a suitable constant step size and setting op = m =0(e(1— 7)3d61/2), to guarantee
Jj —E[Jp(0k)] < e+ Bp the sample complexity is at most:
~ a$d?

28

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Proof. Simply apply Theorem F.1 and Theorem 5.1 to obtain a guarantee of Ji —E[Jp(0x)]<e/2+ fp+ (apLao+
Lj)vdeop+3Ljv/doop=e+ 0Op+ (apLa+4L j)v/doop. Then, we set op to ensure that (apLa+4L)v/doop=¢€/2.
O

Theorem D.13 (Global convergence of GPOMDP - Inherited WGD). Consider the GPOMDP algorithm. Under Assump-

tions 4.1, 4.3, 4.2, 4.4, 4.5, 7.1, with a suitable constant step size and setting o4 = m =0(e(1— 7)4d;ll/2), to
guarantee J}s —E[Jp (0)] < e+ Bp the sample complexity is at most:
~ o d
NK=0|—"——). 81
((1—7)145’) e

Proof. Simply apply Theorem F.1 and Theorem 5.2 to obtain a guarantee of J —E[Jp(0k)]<e/2+ Bp+ (ap¥ +
L)vdeoa+3Lv/dooa=¢€+ Op+ (ap¥ +4L)\/dooa. Then, we set oa to ensure that (apW +4L)/d40a =€/2. O

D.4. Proofs from Section 7.2

In this section, we focus on AB exploration with white-noise policies (Definition 3.2), and give the proofs that were omitted
in Section 7.2. We denote by vg(-,-) the state-action distribution induced by the (stochastic) policy 7g, and, with some
abuse of notation, vg(-) to denote the corresponding state distribution. We denote by A?:S x A — R the advantage function
of mg (for the standard definitions, see Sutton & Barto, 2018).

We first have to give a formal characterization of ey;,5. Equivalent definitions appeared in (Liu et al., 2020; Ding et al., 2022;
Yuan et al., 2022), but the concept dates back at least to (Peters et al., 2005).

Definition D.1. Let l(w;s,a,0)=(A%(s,a)— (1—7)w Vg logmg(a|s))2, and w*(0) =
argmin, cpde Es a~vg [L(W;S,a,0)]. We define enias as the smallest positive constant such that, for all €0,
Es a~vgs [L(w*(0);5,a,0)] < €pias, where 8* € argmax .J, ().

We begin by showing that white-noise policies are Fisher-non-degenerate, in the sense of (Ding et al., 2022). First we need
to introduce the concept of Fisher information matrix, that for stochastic policies is defined as (Kakade, 2001):

F)= E B[Vg log g (als)Velogme(als)]. (82)
Lemma D.14. Let g be a white-noise policy (Definition 3.2). Under Assumption 7.2, for all 0€ ©, F(60) > ApI, where
AE
)\F = g.

Proof. Let . =E. ¢ id [e€] be the covariance matrix of the noise, which by definition has A« (X) <0%. By a simple
change of variable and Cramer-Rao’s bound:
F(0)= E [Velogmg(als)Velogma(als)']

s,a~v?

E. [Veue(s) E(‘)[Ve 108 $(€)[e2a—po (5) Ve l0g (&) T ema—po(s)| Voro(s)"
a~Tme(*|S

S~vU

E [Vgug(s)ejgd [veIOg(b(e)velOgd)(e)T]VGMB(S)T]

s~vf

E [Voue(s)X 'Vopue(s)] (Cramer-Rao)

s~v8
1 T
R AL,

e

=3
0A

'

4

1.

O

We can then use Corollary 4.14 by Yuan et al. (2022), itself a refinement of Lemma 4.7 by Ding et al. (2022), to prove that
Ja enjoys the WGD property.

29

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Theorem 7.3 (Policy-induced weak gradient domination). Under Assumptions 4.5 and 7.2, we have:

Vd o 4/ €Ebias
Tt — I (0)<C A";AHVQJA(B)HQ—F 1—}7’

for some numerical constant C' > 0. Thus, Assumption 6.1 (T=A) is satisfied with o= C % and = %El",y“

Proof. Corollary 4.14 by Yuan et al. (2022) tells us that, under Assumption D.1,

€bias
I In(0)% - [Vor(6)] + Y2
F -

whenever F(0) > Apl and E (s [[Vologme(als)|*] <& hold for all 0€ © and s€ S. By Lemma D.14, and the fact
that £ =+/cd Aagl is a valid choice under Assumption 4.5, the previous display holds with

i< Vedaoyt _Vedaoa

Ap Apoy? Ag

the proof is concluded by letting C' = 4/c, where c is the constant from Assumption 4.5. O

Finally, we can use the WGD property just established, with its values of « and 3, to prove special cases of Theorems D.8
and D.9. The key difference with respect to the other sample complexity results presented in the paper is that the amount of
noise o 4 has an effect on the o parameter of the WGD property.

We first consider the case of a generic g 4:

Theorem D.15. Consider the GPOMDP algorithm. Under Assumptions 4.1, 4.3, 4.4, 4.5, 7.2, and D. 1, with a suitable
constant step size, to guarantee Jjs —E[Jp(0x)] <e+ 7fo; +3Ly/d 04, where 3L+/d go4 =0 (\/dao4(1—)"?) the
sample complexity is at most:

~ d4
NK=0—2—). 83

(A%(l—v)%“) ®)
Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity of at most:

~ d3, o2
NK=0|—2A4). 4
© (A%(l—v)ﬁe?’) (89

Proof. By Theorem D.8 and Lemma 7.3. O

The first bound seem to have no dependence on o 4. However, a complex dependence is hidden in \%,. Also, it may
seem that 04 ~0 is a good choice, especially for the second bound. However, A\g can be very large (or infinite) for a
(quasi-)deterministic policy.

If we instead set o 4 as in Section 6 in order to converge to a good deterministic policy (which, of course, completely ignores
the complex dependencies of Ag and epi,5 On 0 4), we obtain the following:

Theorem D.16. Consider the GPOMDP algorithm. Under Assumptions 4.1, 4.3, 4.4, 4.5, 7.2, and D.1 with a suitable
constant step size and setting oy = G- G== O(e(1— 7)2d;11/2), to guarantee J} —E[Jp(Ok)] <e+ %?;‘ the sample
complexity is at most:

~ d§4
NK:O(/\‘%E(l—y)Bé*)' (85)

Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity of at most:
~ d4
NK=0(—3+2~—]. 86
(gam) 50
Proof. By Theorem D.9 and Lemma 7.3. O

The apparently better sample complexity w.r.t. Theorem D.9 is easily explained: using a small o makes the « parameter of
WGD from Lemma 7.3 smaller if we ignore the effect of Ag, and smaller « yields faster convergence. However, Equation (86)

30

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

clearly shows that A cannot be ignored. In particular, Az must be 0(0114/ 4) not to violate the classic (e ~2) lower bound
on the sample complexity (Azar et al., 2013). This may be of independent interest.

E. Assumptions’ Implications

Lemma E.1 (L and L ; characterization). Assumption 4.1 implies Assumption 5.2 with:

k+1

Lts%L Runax +7" Ly, (87)
1—A~T 1—A~T L,Rmax L»

L<ML R + =01, < Ve fima . (88)
(1=)? 1—y (1=7)? 1-v

Assumption 4.1 and 4.3 imply Assumption 5.1 with Ly < LL,,.

Proof. In AB exploration, we introduce the following convenient expression for the trajectory density function having fixed
a sequence of noise €:
T—1
po(Tip+€)=po(sro) H P(Sria1lsre, wi(sre) +€). (89)
t=0
Furthermore, we denote with pp (7. p+ €) the density function of a trajectory prefix of length [:
-1
o (705 14+ €) = po(57.0) | [P(sr41l5re t11(57.0) + &) (90)
t=0
Let us decompose p' = p’ + €. We have:
T—1
Jo(p')= J po(T;p+€) Z A (se, pe(se) + €)dT

—2 J P (Tt 1 €077 (s, (50) + €1) Aot
TO0:t

=:f(e)
Note that given the definition of f(€), we have that f (%)= Jp (). Using Taylor expansion, we have for € = e, for some
xe€[0,1]:
Jo(p)=f(€)
= f(%) + ET Vef (€) |§=E

T—-1
=Jo(p)+ Y. € Ve, f(€)le=z
=0

—1
Z l€t2Ve, f(€)le=el2-

We want to find a bound for the |V, f(€)|e=z|3 which is dlfferent for every ¢. This will result in the Lipschitz constant L;.
We have for k€[0,7 —1]:

— T-1
Ve @< B . Z |V e 1o (roue: g +€) |, 7 I (se e (50) +e)| + D)y |vekr<st,ut<st>+et>||21
pUSETE | t=0 =0
[T—1 t—1 T-1
< E DA r(se.me(se) + €| D | Ve p(siralsi pwa(s) +)2+ D) /yt|v€kr(st7ut(8t)+et)|2]
Tpolipte) | (5 1=0 t=0
- T-1
:T~pD](E'lL+€) D A (st me(se) + €| Veyp (st lse, th(sk) +€x) |2 +7* [Ve sk, o (1) +€k)|2]
== Lt=k+1

31

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

T—1
< Z ’YtRmapr +’7kLT
t=k+1
k+1 _
_eaty o Runax +7¥ Ly = Ly
1=
Thus, we have:
T—1 T—1 ki1
Z Lt: Z %L RIIlaX+’Y L
k=0 k=0
1+T T—1)-T T 1— T
(-1 =Ty Ly R+ 01,
1= T
1 1—-~T
el G O i Y
(I—v)? 1—~v
For the PB exploration, we consider the trajectory density function:
pa(T;0+€)=po(sro n (Srt+1l57t, Ho+e(Srt)), O
and the corresponding version for a trajectory prefix:
-1
PD(TO:l§ 0 + 6) =p0 (ST,O) np(sr,t+1 ‘S‘r,ta N9+e(3‘r,t>)- (92)
t=0
With such a notation, we can write the 8’ = 0 + € index as follows:
T—1
Jn(0') = pr(T 0+€) > V1 (se, tore(se))dr = Z Po(70:1:0 + €)' 7 (51, Bore(st)) -
t=0 T =0

=:g(€)
We recall that g(04,,) = Jp(8). By using Taylor expansion, where € = ze€ for some z€[0,1]:

In(6) =g(e) (93)
=9(0as) + €' Veg(e)le—z (94)
<Jp(0) +|l€]2[Veg(e)|e=¢]2- (95)
We now bound the norm of the gradient:
T—1 T—1
IVegle)|a< E D[Velogp(ro:; 0+ €)o7 |r(se, ose(s:)| + Y V' [Ver(se, pore(se)]2
TN;DA('%ILBJre) =0 t=0

T~pa(-;Ho+e)

T—-1 t—1
< E lz V' r(se; po+e(st) \Z IValogp(sitilsi, a)lazpe . (s) 2l Vertore(st)ll2

1=0
T—1
+ 20V IVar(se,a)lazpg. e(on) 2] Vettore(se) |2
t=0
T-1 ’YT
< 2 Y RimaxtLy Ly, + ——L,L,
t=0 1—7v
N Ol Vi o 197
= L,L,Rypaox+——L.L,=LL,.
e =t
O
Assumption E.1 (Smooth Jp w.r.t. parameter 8). Jp is Lo-LS w.r.t. parameter 0, i.e., for every 6,0’ € ©, we have:
IVoJp(0') = VoJp(6)]2< L2062 (96)

32

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Lemma E.2 (L, Characterization). Assumptions 4.1, 4.3, 4.2, and 4.4 imply Assumption E.1 with
~v(1 +’y)LiLngax (2L2L Ly+Lg Lo, pRmaX) Ly, Lo,
3 + .
(I—=7) (I—7)? 1—vy

2

Proof. It suffices to find a bound to the quantity HV%JD(O) ,» for a generic @€ ©. Notice that in the following we use the
notation 7y.; to refer to a trajectory of length /. Recalling that:

T-1
Jp(0)= r~pD(0 lz yrr 5�(50)1

we have what follows:

T-1
VeJo(0)=Vg E lZ V' Staﬂe(st))]

T~po(10) | [T

Il
<
N

JpD(Tv 6) 2 V7 (se,pe(se))dr
4 t=0

1

N
|

V(zaf po(70:4,0)7' (¢, e (s¢))d 0.4
TO:t

SIS
[
~ ©

Vo f pp(70:¢,0) (Vologpp(To.t,0)v'r (¢, e (s¢)) +7 ' Ver (s, pe(se))) dro
TO:t

o+
Il
o

=
=

E lve log pp(7o:¢,0) (Ve log pp(7o:,0)7 7 (st, 1o (s¢)) + 7' Ver(se, pe(st)))

A r0.~po(10)

+ Vg logpp (10:¢,0)v'r (s, pe(se)) + Velogpp (To:¢,0)v Ver(se, ne(st)) +’tht297“(5t7ﬂe(5t))] .

Now that we have characterized V.Jp(8), we can consider its norm by applying the assumptions in the statement, obtaining
the following result:

HV3JD)l

<y

E e [Velogpp(7o:t,0), (IVelogpp (To:e,0) 27" r(se. e (se)) |+ [Ver(se, ne(se)))
t— O"'Ot“’ D

+ [Vg1ogpp(T0:t,0)], 7" Ir(se, o (s:)] + Ve log o (T0:t,0) [, 7" [Ver(se, o (s:)o +7" | Var(se, ne(se)) |2]

T-1
< L2L} Runaxt®y' + (2L Ly Ly + L2,y Lo Renas 8y + L. L2
t=0

T4+y =TT+ (2(T—1)242(T—1) = 1)4T — (T —1)24T+1
(1=7)?

1—T~AT 1 (T -1)~T 1—~T
y ()Y S P
(1—7)2 R

5 1_,7T 1— T
+ (2L#Ler + LQ,HL2,pRmaX)’VW + LQ’HLZTf

<L, L2 Riax?

(2L2L L + L2 ILL2 pRmaX)’Y

1+y—9T
(1=7)?
’7(1 +7)L3L;27Rmax + ’7(2LiLPLT +L27HL2,pRmax) + LZHU,LQ,T’

(1—7)? (1—)? 1=y

<L2L2Rpaey g

Lemma E.3. Let g be a white noise-based policy. Under Assumption 4.3, 4.4, and 4.5 it holds that for every s€S:
(1) Eaxno(als) [[Velogme(als) H I< CdAUA 2L2
(i1) Earg(als)[|V2logme(als)|2] <coy? L +c\/ dacy Lo,

33

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Proof. Since g is a white noise-based policy, we have that g (a|s) = ¢(a— pg(s)). Consequently, we have:
Velogme(als)=Velogp(a—pe(s))=—Vepe(s)Velogd(€)|cza—pg(s)s 97N

Vg logmg(als) = Valogp(a—pe(s)) = Vore V2108 G(€)|c—a—po(s) Vorts — Voo Velogd(€)lccapo(s)- (98)
Thus, recalling that a — pg(s) ~ @4, and using the Lipschitzinity and smoothness of g, we have:

E [IVelogma(als)3]= E [[Vope(s)Velogd(€)lema—po(s) 3] (99)
a~mg(als) a~mg(als)
<L E [|-Velogg(e)l3] <cdeoiLy, (100)
e~d4g

E [IValogme(als)|zl= E [|VereV21ogd(€)|cca—pows) Vorg — VoroVelogd(€)|ema—po(s) 2] (101)

a~mg(als) a~mg(als)

<L? E [|Vilogo(€)la]+ Loy E [|Velogd(e)]o] (102)

€~q>dA E"q)d_A
<coy Ll +cy/daoy Ly . (103)
O

Lemma E.4. Let vg be a white noise-based hyperpolicy. Under Assumption 4.5, it holds that:

(i) Bornuo[|Vologre(8')[3] < cdooy?;
(i1) Egrnre[[VElogre(6')|2] <cop™.

Proof. Since vg is a white noise-based hyperpolicy, we have that 9 (0") = ¢(0’ —). Consequently, we have:

Velogre(0')=Velogp(0' —0)=—V log¢(e€)|c=o—s, (104)
Vilogre(8')=Vilogp(6' —0)=V:logd(e)|c=o'—o- (105)
Thus, recalling that ' — 0 ~ @4,
o B, [IVolozro(@)[3]= | E [IVelogo(e)le-o—olf] = E _[IVelozae)l3]<cdocf, (106)
J B [IV5loz00(®)]]= B (V2108 0(e)le-or-ola] = _E _[IV2logd(e)la] <crf. (107)
O]

F. General Convergence Analysis under Weak Gradient Domination

In this section, we provide the theoretical guarantees on the convergence to the global optimum of a generic stochastic first-
order optimization algorithm 2 (e.g., policy gradient employing either AB or PB exploration). Let 6 be the parameter vector
optimized by 2, and let © =R be the parameter space. The objective function that 2 aims at optimizing is .J: © — R,
which is a generic function taking as argument a parameter vector 8 € © and mapping it into a real value. Examples of
objective functions of this kind are Jp, Ja, or Jp, which are all defined in Section 2. The algorithm %[is run for K iterations
and it updates directly the parameter vector @€ ©. At the k-th iteration, the update is:

Or+1 <0k + (Vo (0r),
where (. is the step size, 6y is the parameter configuration at the k-th iteration, and @QJ (0%) is an unbiased estimate of
V¢ J(0)) computed from a batch Dy, of N samples. In the following, we refer to N as batch size. Examples of unbiased
gradient estimators are the ones employed by GPOMDP and PGPE, which can be found in Section 2. For GPOMDP, samples
are trajectories; for PGPE, parameter-trajectory pairs. In what follows, we refer to the optimal parameter configuration as
0* cargmaxy.g J(0). For the sake of simplicity, we will shorten J(6*) as J*. Given an optimality threshold § >0, we are
interested in assessing the last-iterate convergence guarantees:

J* —E[J(0k)] <9,
where the expectation is taken over the stochasticity of the learning process.

Theorem F.1. Under Assumptions 6.1, 6.2, and 6.3, running the Algorithm A for K > 0 iterations with a batch size of N >0
trajectories in each iteration with the constant learning rate C fulfilling:

1 1 N O\ Y3
< i ¥)
C S (0. 7% — J(89) — B} (L2vu)

34

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

where |1 = —5. Then, it holds that:

J*_E[J(QK)]<B+<1—2W> max {0,J* — J(6y) — B} + L:]‘\/ZC

In particular, for sufficiently small € >0, setting (= § L V’ the following total number of samples is sufficient to ensure that

J(0*)—E[J(0k)]<B+e:

16L,V o max {0, J* — J(6y) — B}

KN2>=
€32 €

(108)

Proof. Before starting the proof, we need a preliminary result that immediately follows from Assumption 6.1, by rearranging:

max{0,(6%) — 5 J(0)} <| Vo (6)]o (109)

and we will use the notation J(6%):=J(6*)— 3 and u=a~2. Note that J(6%)— J(8) can be negative. Considering a
ke[K], it follows that:

T0%) = 7(002)=T(07) T (00) - (7011~ T01)
<T(0%)~ 7(8,) ~ (Brr 01, Vo (0,)) + 2 611 — 04

<J(0%)—J(0r) — i <66J(0k)7V9J(0k>> + &Ci\ﬁec](ek)“;

where the first inequality follows by applying the Taylor expansion with Lagrange remamder and exploiting Assumption 6.2,
and the last inequality follows from the fact that the parameter update is @1 < 0 + Vg J(6).

In the following, we use the shorthand notation E;[-] to denote the conditional expectation w.r.t. the history up to the k-th
iteration not included. More formally, let 7, = o (69, Do, D1, ..., Dx) be the o-algebra encoding all the stochasticity up to
iteration k included. Note that all the stochasticity comes from the samples (except from the initial parameter 6, which
may be randomly initialized), and that 8}, is Fj_;-measurable, that is, deterministically determined by the realization of the
samples collected in the first k& — 1 iterations. Then, Eg[-]:=E[:|Fx_1]. We will make use of the basic facts E[-] = E[Ex[-]]
and E[X] =X for Fj;_;-measurable X. The variance of vJ (0r) must be always understood as conditional on Fj,_;.
Now, for any ke [K]:

B[00~ 00| <E[70%) - 100~ 6 (900,907 01)) + 2 1T0T 0L

k

N

T(0%) = 7(00) ~ I Vo (60 3+ 2 RE[190(60,)13]

A

T6%) = 71600~ (1 6.) V0T 00 -+ 52t var [60

<T6%) - 7100 - (1- 26) IVoT G0l + 532

where the third inequality follows from the fact that Vg.J (0) is an unbiased estimator and from the definition of Var [@J (0],
and the last inequality is by Assumption 6.3. Now, selecting a step size (j, < L , we have that 1 — %Ck = %, we can use the
bound derived in Equation (109):

B[T(0) ~1(00)| < T(0%)~ (0,) - Kk % mac {0, 7(6%) - J(e,f)}2

The next step is to consider the total expectation over both the terms of the inequality and observe that
~ 2 ~ 2 - 2
E [max{o, J(o%)— J(Ok)}] >E [maX{O, J(o%)— J(Ok)}] > max {O,E [J(G*) - J(Ok)] } ,

having applied Jensen’s inequality twice, being both the square and the max convex functions. In particular, we define
ri:=E[J(0*)— J(0x)]. We can then rewrite the previous inequality as follows:

L.V
rk+1<7’k7%@max{0,rk}2+ 2NC]§

35

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

To study the recurrence, we define the helper sequence:

{po:m . (110)

Prt1=p — ESE max{0, pp}2 + L2V.(2 if k=0

We now show that under a suitable condition on the step size (i, the sequence pj upper bounds the sequence 7.

Lemma F.2. If (i < ﬁ for every k=0, then, ri, < py, for every k=0.

Proof of Lemma F.2. By induction on k. For k£ =0, the statement holds since py =17¢. Suppose the statement holds for every
j <k, we prove that it holds for k + 1:

e LV
Pk+1:Pk_%maX{0apk}2+ ¢} (111)
L V
>rkf'u7CkmaX{O,rk}2 2 gk (112)
>Tpi1- (113)
where the first inequality holds by the inductive hypothesis and by observing that the function f(z)= “C’“ max{0,z}?

is non-decreasing in = when (; <1/(pz). Indeed, if <0, then f(z)=2x, which is non-decreasing, if x > 0, we have
fl@)y=x— “—g"xz, that can be proved to be non-decreasing in the interval [0,1/(uCx)] simply by studying the sign of the
derivative. The requirement (<1/(ppy) ensures that py, falls in the non-decreasing region, and so does r, by the inductive
hypothesis. O

Thus, from now on, we study the properties of the sequence pj and enforce the learning rate to be constant, j := { for every
k>=0. Let us note that, if pj, is convergent, than it converges to the fixed-point p computed as follows:

LV 5, LV
?NC = p= N
o

having retained the positive solution of the second-order equation only, since the negative one never attains the maximum
max{0,p}. Let us now study the monotonicity properties of the sequence py.

p=p— %Cmax{(),ﬁ}z + (114)

Lemma F.3. The following statements hold:

e Ifro>pand (< <iur thenfor every k=0 it holds that: p< pr4+1 < pk.
e Ifro<pand < uﬁ’ thenfor every k=0 it holds that: p= py41= p.

Before proving the lemma, let us comment on it. We have stated that if we initialize the sequence with py =1y above the
fixed-point p, the sequence is non-increasing and remains in the interval [p,ro]. Symmetrically, if we initialize pg=rg
(possibly negative) below the fixed-point p, the sequence is non-decreasing and remains in the interval [rg,p]. These
properties hold under specific conditions on the learning rate.

Proof of Lemma F.3. We first prove the first statement, by induction on k. The inductive hypothesis is “pg11 < pr and
pr+1=p . For k=0, for the first inequality, we have:

Cu 2, LoV C# 2, L2V
= 2= < = o, 115
Pr=po—"5P0t 5 ¢ 2p+2NC = Po (115)
having exploited the fact that pp >p >0 and the definition of p. For the second inequality, we have:
Cu 2 LyV o Cu_g LoV 5 _
=py — 2= >p— 2 —=_(?=7p,
pr=po— "5 pot 5P S =D (116)
Sl 22

recalling that the function z — >+ is non- decreasmg in 2 for x < pg since { <1/(pupo), and by definition of p. Suppose
now that the statement holds for every j < k. First of all, we observe that, under this inductive hypothesis, p; < po and,
consequently, the condition ¢ <1/(upg) entails ¢ <1 / (pr). Thus, for the first inequality, we have:

Cu o LoV Ch_o 2V
. <o d = P, 117
Pri1 =Pk~ 5 Pkt 2N< Pk 2P+2NC Pk (117)
having used the inductive hypothesis and the definition of p. For the second inequality, we have:
Cu o L2V o Cu_o LV o _
= >0— — [=
Prt1=Pk— 5 Pkt 2NC pP=5 P QNC P, (118)

36

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

having used the inductive hypothesis and recalled that the function x — %‘IQ is non-decreasing in z for x < pj since
C<1/(ppr).

For the second statement, we observe that if po =1y <0, we have:
LV,
= k—— 119
Pr=potko ¢, (119)

for all k<k*, where k* is the minimum & in which py + k%c 2> 0. From that point on, we can proceed in an analogous
way as for the first statement, simply switching the signs of the inequalities and recalling that the largest value of py, is
bounded by p in this case. [

We now focus on the first case of the previous lemma in which g > p, as the second one, as we shall see later, is irrelevant
for the convergence rate. We now want to show that the sequence py, actually converges to p and characterize its convergence
rate. To this end, we introduce a new auxiliary sequence:

Mo = Po (120)
Merr= (1= 12)+ B¥CE if k>0

We show that the sequence 7 upper bounds p; when pg =79 =p.
Lemma F4. Ifro>pand (< H%o’ then, for every k=0, it holds that ny, = py.

Proof. By induction on k. For k=0, we have 7y = pg, so, the statement holds. Suppose the statement holds for every j <k,
we prove it for k+ 1:

Mht1= <1—“§”> nk+gj¥<2 (121)
> (1 “42”’“) meot 2 (122)
. (1_ u<2pk) ot I;;ffcz (123)
:pk—%‘max{o,pk}% I;i/c?:pkﬂ. (124)

having exploited that p;, >p (by Lemma F.3) in the second line; using the inductive hypothesis in the third line, exploiting
the fact that 1 — % >0 whenever ¢ <2/(upx), which is entailed by the requirement ¢ <1/(ppo); and by recalling that
pr >0 since p> 0 in the last line. O

Thus, we conclude by studying the convergence rate of the sequence 7. This can be easily obtained by unrolling the

recursion:
_\ k+1 2 k —\ J
(4 1P LV ¢ _ pugp
k1= (1 =) M+ =5 ;} 1-== (125)
—\ k+1 2 400 -\ J
pep LV ¢ Hep
<(1—=—== e
(> > Mo + o - 1 5 (126)
7=0
_\ k+1
pCp LyV (¢
(1= 27 s 127
(5) 7o + N (127)
1 [\ LoVC
1Y 2 2
=|1—=op/—=—— . 12
(5 N > o + N (128)
Putting all the conditions on the step size (together, we must set:
1 1 N\
—min{ —) 129
¢ mm{Lg’umax{O,ro}’(Lg‘/u) } (129)

37

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

K
J(O*)—E[J(QK)]<5+(1—;«//@]{;2‘/> max {0, J(6%)— J(8y) — B} + % (130)

We derive the number of iterations (setting K «— k + 1):

K
1 [uC3LyV € log 210 4N 210
1— a2 <- =K< e < log =2, (131)
(2N TN Ms3 log— - — \ uCLoV &
e A e

having exploited the inequality log 12— > x. Furthermore, let us observe that:

_ LV € euN
—] <f (< . 132
p AN S2 oSS Iy (132)

Thus, recalling that po =19 =rg, we have that: (i) when ro <p, we have that r, < pr, <p<e¢/2; (ii) when o = p, we have
Tk < pr <N < €. Thus, for sufficiently small €, we plug (= ZZ‘L’;@ in Equation (131) to obtain the following upper bound on

the sample complexity:

Thus, we have:

*) _ _
K< 1602V o max{0.(6%) = T(60) =} 133
e €

which guarantees J(0*) —E[J(0x)] < B +e. O

Theorem 6.1. Consider an algorithm running the update rule of Equation (13). Under Assumptions 6.1, 6.2, and 6.3, with
a suitable constant step size, to guarantee Ji —E[J;(0)] <€+ 3 the sample complexity is at most:

1604 Ly 1V max{O,J{"—JT(Oo)—ﬁ}
= 3 log p :

NK 15)

Proof. Directly follows from the second statement of Theorem F.1. O

38

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

G. Specifications of the Algorithms

PGPE. In this section we report the algorithm PGPE as it is reported in its original paper (Sehnke et al., 2010). In particular,
we show the pseudo-code (Algorithm 1) of its original basic version, that is also the one we analyzed throughout this work,
even if several variants are available.

Algorithm 1 PGPE.

Input :Number of iterations K, batch size IV, initial parameter vector 8, environment M, deterministic policy (g, hyperpolicy ve, step
size schedule (Cx)r_,', exploration parameter op.
Initialize 6 < 6o
for ie[K] do
Set the hyperpolicy parameters: vg
for [e[N] do
Sample a parameter configuration p; ~ v according to the exploration parameter op
Collect a trajectory 7; by acting in M with pp,
Compute the cumulative discounted reward R(7;)
end

Compute the gradient estimator: Vg .Jp 0)—« Z;\’:—Ol Vologre(p;)R(T5)

Update the hyperpolicy parameter vector: 8 — 6 + ¢iVel, »(0)
end
Return 6.

Notice that, the original version of PGPE by Sehnke et al. (2010) considers to collect M trajectories for each parameter
configuration p sampled from the hyperpolicy vg. In the pseudo-code (as well as in the paper) we consider M =1 (i.e., we
collect a single trajectory) in order to make GPOMDP and PGPE testing the same number of trajectories in each iteration,
given an equal batch size N. In the original paper also other variants of PGPE are considered, that we have not considered
in or work. For instance, the one with symmetric sampling, or the one employing a baseline while sampling. Moreover, it
would be possible to learn a proper exploration amount op while learning the hyperpolicy parameters, however we decided
to keep op fixed, for reasons remarked in Appendix C.

GPOMDP. As done for PGPE, here we report the algorithm GPOMDP in its original version (Baxter & Bartlett, 2001;
Peters & Schaal, 2006). We show the pseudo-code (Algorithm 2) of such original basic version, that is also the one we
analyzed throughout this work.

Algorithm 2 GPOMDP.

Input : Number of iterations K, batch size N, initial parameter vector 8y, environment M, stochastic policy mg (with exploration
parameter o), step size schedule (Ck)f:_ol, , horizon T', discount factor .
Initialize 0 < 6
for ie [K] do
Set the stochastic policy parameters: g
for [e[N] do
Initialize trajectory 7; as an empty tuple
for te 17 do
Observe state sy
Play action a; ~ e (-|s¢)
Observe reward 7
Add to 7; the tuple (s¢,as,r+)
end
end

Compute the gradient estimator: 6911/\(0) - >V, ;‘F:_Ol (Oh—o Velogma(ar, klsr k) Y7 (s, 80 1)

Update the policy parameter vector: 8 — 6 + ¢iVea (0)
end
Return 6.

In the original paper, it is available a variant of GPOMDP which employs baselines while sampling, but in our work we do
not consider this approach, as for PGPE. Also in this case, we decided to employ a fixed value for o, even if it would be
possible to adapt it at runtime (Appendix C).

39

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

H. Additional Experimental Results

In this section, we present additional experimental results for what concerns the comparison of GPOMDP and PGPE, and
the sensitivity analysis on the exploration parameters, respectively o and op.

H.1. Learning Curves of the Variance Study of Section 9.

Setting. We show the results gained by learning in three environments of increasing complexity taken from the Mu-
JoCo (Todorov et al., 2012) suite: Swimmer-v4, Hopper-v4, and HalfCheetah-v4. Details on the environmental parameters
are shown in Table 3. In order to facilitate the exploration, thus highlighting the results of the sensitivity study on the
exploration parameters, we added an action clipping to the environments.'? The target deterministic policy jug is linear in
the state, while the hyperpolicy vg employed by PGPE is Gaussian with a parameterized mean, and the stochastic policy
mg employed by GPOMDP is Gaussian with a mean linear in the state. Both PGPE and GPOMDP were run for K = 2000
iterations, generating /N = 100 trajectories per iteration. We conducted a sensitivity analysis on the exploration parameters,
using {0.01,0.1,1,10,100} as values for 0[2, and aﬁ. We employed Adam (Kingma & Ba, 2014) to set the step size with
initial values 0.1 for PGPE and 0.01 for GPOMDP. The latter does not support a larger step size due to the higher variance
of the employed estimator w.r.t. the one used by PGPE.

Environment | T | 7 | ds | da | do |

Swimmer 200 | 1 8 2 16
Hopper 100 | 1 | 11 3 33
HalfCheetah 100 | 1 | 17 6 102

Table 3. Parameters of the environments.

Here we show the learning curves of .Jp and .J, (and the associated empirical Jp) obtained in the same setting of Section 9,
which is also summarized in Table 3. In particular, Figures 3 and 4 show the learning curves associated with the HalfCheetah-
v4 environment, Figures 5 and 6 show the ones for the Hopper-v4 environment, while Figures 7 and 8 show the ones for
the Swimmer-v4 environment. In all the environments, it is possible to notice that, for increasing values of the exploration
parameters op and o, the learning curves Jp and J, (optimized respectively by PGPE and GPOMDP) differ increasingly
with the associated empirical deterministic one Jp (reported in right-hand side column in the plots). This is due to the fact
that small values of op and g4 lead to a lower amount of exploration. Poorly exploratory vg and mg make the algorithms test
actions that are very similar to the ones that target deterministic policy pg would suggest. Conversely, large values of op and
o lead to a higher amount of exploration, thus Jp and .J5 tend to show a higher offset w.r.t. to the associated empirical Jp.

HalfCheetah. In Figures 3 and 4, it is possible to see the learning curves of Jp and J, (and the associated empirical
Jb) seen by PGPE and GPOMDP while learning on HalfCheetah-v4. Note that, in this case, the optimal value for o2 is
1, while the one for 03 is 10. With T'=100, PGPE seems to struggle a bit more in finding a good deterministic policy
w.r.t. GPOMDP. This can be explained by the fact that the parameter dimensionality dg is the highest throughout the three
presented environments.

Hopper. In Figures 5 and 6, it is possible to see the learning curves of .Jp and .J5 (and the associated empirical Jp) seen by
PGPE and GPOMDP while learning on Swimmer-v4. Also in this case, the optimal value for o3 is 1, while the one for o3
is 10. As for HalfCheetah, with T'=100, PGPE seems to struggle a bit more in finding a good deterministic policy w.r.t.
GPOMDP, even if this is the intermediate difficulty environment for what concerns the parameter dimensionality dg.

Swimmer. In Figures 7 and 8, it is possible to see the learning curves of Jp and .J, (and the associated empirical Jp) seen
by PGPE and GPOMDP while learning on Swimmer-v4. Note that, in this case, the optimal value for 01% is 10, while the one
for 0% is 1. Here we employed an horizon 7' = 200. Indeed, as also commented in Section 9, GPOMDP struggles more than
PGPE in finding a good deterministic policy.

"%When the policy draws an action the environment performs a clip of the action before the reward is computed.

40

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index Performance Index Performance Index Performance Index

Performance Index

150

100

50

-50

-100

-150

150

100

50

-100

-150

150

100

50

-100

-150

-100

-150

50

-50

-100

-150

Jp With g3 = 0.01

Jp with g3 = 0.01

150

100

50

-50

Performance Index

-100

°

250 500 750 1000 1250

Iteration
Jpwithgg= 0.1

1500

1750

2000

-150

750 1000 1250 1500 1750 2000

Iteration
Jo withgg= 0.1

Ao
F/M L

e

-50

Performance Index

-100

o
3
w
2
3
N
3
3

1000 1250

Iteration

1500

1750

2000

-150

o

750 1000 1250 1500 1750 2000

Iteration
Jo with g = 1.0

Performance Index

-100

Jp withog= 1.0
1000 1250

Iteration

Jp with g3 = 10.0

°
3
o
2
3
<
3
3

1500

1750

2000

-150

°

750 1000 1250 1500 1750 2000
Iteration

Jp with 02 = 10.0

A

Performance Index

-100

°

250 500 750 1000 1250
Iteration

Jp With 03 = 100.0

1500

1750

2000

-150

°

750 1000 1250 1500 1750 2000
Iteration

Jp with g3 = 100.0

50

-50

Performance Index

-100

o
&

500 750 1000 1250

Iteration

1500

1750

2000

-150

°

750 1000 1250 1500 1750 2000

Iteration

Figure 3. Jp and Jp learning curves (5 runs, mean £95% C.1.) for PGPE on Half Cheetah-v4.

41

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index Performance Index Performance Index Performance Index

Performance Index

150

100

50

-50

-100

-150

150

100

50

-100

-150

150

100

50

-100

-150

-100

-150

50

-50

-100

-150

Ja with = 0.01

Jp with g2 = 0.01

Performance Index

-50

-100

750 1000 1250

Iteration
Jawith oz = 0.1

1500

1750

2000

-150

750 1000 1250

Iteration
Jo withgg= 0.1

1500

1750

2000

Performance Index

-50

-100

500

750 1000 1250

Iteration
Ja with 0z = 1.0

1500

1750

2000

-150

500

750 1000 1250

Iteration
Jp with 02 = 1.0

1500

1750

2000

Performance Index

-100

500

750 1000 1250
Iteration

Ja with 02 = 10.0

1500

1750

2000

-150

500

750 1000 1250
Iteration

Jp with 02 = 10.0

1500

1750

2000

Performance Index

-100

500

750 1000 1250
Iteration

Ja with 02 = 100.0

1500

1750

2000

-150

500

750 1000 1250
Iteration

Jp with 02 = 100.0

1500

1750

2000

Performance Index

50

-50

-100

500

750 1000 1250

Iteration

1500

1750

2000

-150

500

750 1000 1250

Iteration

1500

Figure 4. Jx and Jp learning curves (5 runs, mean +£95% C.I.) for GPOMDP on Half Cheetah-v4.

42

1750

2000

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index Performance Index Performance Index Performance Index

Performance Index

250

200

150

100

50

250

200

150

100

50

250

200

150

100

50

250

200

150

100

50

250

200

150

100

Jp with g3 = 0.01

Jp with g3 = 0.01

250
x
()
E 200
]
c 150
]
£
- 100
o
€
9}
o so
0
0 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Jpwithgg= 0.1 Jp withgg= 0.1
250
x
[}
g 200
]
c 150
(]
£
- 100
(=]
‘©
9}
o so
0
o 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Jp with g3 = 1.0 Jp with g3 = 1.0
250
x
S
E 200
]
c 150
©
g 100
o
L
=
[}
a so
o 250 500 750 1000 1250 1500 1750 2000 ° 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Jp with 02 = 10.0 Jp with 02 = 10.0
250
X
[}
E 200
]
c 150
@
g 100
(=]
il
=
()
o so
0 250 500 750 1000 1250 1500 1750 2000 ° 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Jp with 03 = 100.0 Jp with g2 = 100.0
250
x
()
E 200
]
c 150
©
g 00
) 1
£
=
()
[Y)
0 250 500 750 1000 1250 1500 1750 2000 ° 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration

Figure 5. Jp and Jp learning curves (5 runs, mean +95% C.1.) for PGPE on Hopper-v4.

43

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index Performance Index Performance Index Performance Index

Performance Index

250

200

150

100

50

250

200

150

100

50

250

200

150

100

50

250

200

150

100

50

250

200

150

100

Ja with 2= 0.01

Jp with 2 = 0.01

250

x
5
E 200
]
c 150
]
£
- 100
o
€
(]
o so
0 250 500 750 1000 1250 1500 1750 2000 ° 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Jawith oz = 0.1 Jp with gz = 0.1
250
x
5
E 200
]
c 150
(]
£
- 100
(=]
‘©
(O]
o so
0
o 250 500 750 1000 1250 1500 1750 2000 o 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Ja with o = 1.0 Jo withog= 1.0
250
x
S
E 200
]
c 150
©
£
) 100
i)
t
[}
a so
o 250 500 750 1000 1250 1500 1750 2000 ° o 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Ja with 02 = 10.0 Jp with 02 = 10.0
250
x
5
E 200
]
c 150
@
£
) 100
i
=
()
o so
0 250 500 750 1000 1250 1500 1750 2000 ° 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Ja with o2 = 100.0 Jp with 02 = 100.0
250
x
5
E 200
]
c 150
©
£
o 100
L
=
()
[Y)
0 250 500 750 1000 1250 1500 1750 2000 ° 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
Figure 6. Jx and Jp learning curves (5 runs, mean +£95% C.I.) for GPOMDP on Hopper-v4.

44

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index Performance Index Performance Index Performance Index

Performance Index

70

60

50

a0

30

20

70

60

50

40

30

20

70

60

50

40

30

20

70

60

50

40

30

20

10

70

60

50

a0

30

20

Jp with 03 = 0.01

Jp with g3 = 0.01

70

60

50

a0

30

20

Performance Index

°

500 750 1000 1250

Iteration
Jp with g5 = 0.1

1500

1750

2000

°

250 500 750 1000 1250 1500 1750 2000

Iteration
Jo withgg= 0.1

70

60

50

40

30

20

Performance Index

500 750 1000 1250

Iteration
Jp with o= 1.0

1500

1750

2000

o
N
5
3

500 750 1000 1250 1500 1750 2000

Iteration
Jo with g3 = 1.0

70

60

50

40

30

Performance Index

j

o

500 750 1000 1250
Iteration

Jp with g3 = 10.0

1500

1750

2000

o
~
b
3

500 750 1000 1250 1500 1750 2000
Iteration

Jp with 02 = 10.0

70

60

50

40

30

Performance Index

|

o

250

500 750 1000 1250
Iteration

Jp with 03 = 100.0

1500

1750

2000

o

250 500 750 1000 1250 1500 1750 2000
Iteration

Jp with g3 = 100.0

70

60

50

40

30

20

10

Performance Index

|

500 750 1000 1250

Iteration

1500

1750

2000

o
N
&
&

500 750 1000 1250 1500 1750 2000

Iteration

Figure 7. Jp and Jp learning curves (5 runs, mean +95% C.1.) for PGPE on Swimmer-v4.

45

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index

%

Performance Index

|

Performance Index

Performance Index

Performance Index

70

60

50

a0

30

20

70

60

50

40

30

20

70

60

50

40

30

20

70

60

50

40

30

20

70

60

50

a0

30

20

Ja with 2= 0.01

Jp with 3 = 0.01

70

60

50

a0

30

20

Performance Index

°

250 500 750 1000

Iteration
Ja with og= 0.1

1250 1500 1750 2000

1000

Iteration
Jo withgz= 0.1

1250 1500 1750 2000

70

60

50

40

30

20

Performance Index

o
N
5
3

500 1000

Iteration
Ja with 03 = 1.0

1250 1500 1750 2000

1000

Iteration
Jo with 02 = 1.0

1250 1500 1750 2000

70

60

50

40

30

Performance Index

o
~
i
3

500 1000

Iteration
Ja with 02 = 10.0

1250 1500 1750 2000

1000
Iteration

Jp with 02 = 10.0

1250 1500 1750 2000

70

60

50

40

30

Performance Index

o

250 500 750 1000

Iteration
Ja with 02 = 100.0

1250 1500 1750 2000

1000
Iteration

Jp with 2 = 100.0

1250 1500 1750 2000

70

60

50

40

30

20

10

Performance Index

o
N
&
&

500 750 1000

Iteration

1250 1500 1750 2000

1000

Iteration

1250 1500 1750 2000

Figure 8. Jx and Jp learning curves (5 runs, mean +£95% C.I.) for GPOMDP on Swimmer-v4.

46

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

PGPE: Deterministic Deployment GPOMDP: Deterministic Deployment

0 0
-2 -2
-4 -4
-6 -6
Q Q
-~ ~
-8 -8
-10 -10
-12 -12
-14 -14
1073 1074 103 1072 1071 1073 10~ 1073 1072 1071
o3 o
P A

Figure 9. Jp(0x) associated with GPOMDP and PGPE in LQR (7" =50) employing linear (hyper)policies and varying exploration
amounts (5 runs, mean +95% C.L).

H.2. GPOMDP vs. PGPE: the case of LQR

In order to show more clearly the discussed trade-offs, here we present a numerical validation conduced on the Linear
Quadratic Regulator (LQR, Kucera, 1992) environment, much smaller w.r.t. the ones offered by the MuJoCo suite.

Brief description of the environment Here we summarize the considered version of the LQR environment. Considering
x; and u, as the state and action at time ¢, respectively, the state evolution is computed as: ;1 = Azx; + Bu,. The reward at
time ¢ is computed as: r; = —x; Qx; —u, Ruy. The initial state of the environment is randomly sampled from the interval
[—3,3] using a uniform distribution.

Setting Our objective is to control the LQR environment via a deterministic linear policy. For the presented results, we
considered a number of iterations of K = 3000 for both PGPE and GPOMDP, with a batch size of N =100 trajectories for
each iteration, and a learning rate schedule governed by Adam, with initial step sizes of 0.01. We conducted 3 runs for
each experiment, and the plots depict the mean +95% confidence interval. Moreover, we considered a bi-dimensional LQR
environment (i.e., ds =2 and d 4 = 2), with unlimited state and action spaces (i.e., state and action ranges are (—o0, +00)).
Furthermore, the characteristic matrices of the LQR environment were selected as:

09 0 09 0 01 0
A:B:[o 0.9]’ Q:[o 0.1]’ and R:[o 0.9]' (134)

Sensitivity w.r.t. O’.% Here we present a similar study to the one that has been discussed in the main paper. We tested

both PGPE and GPOMDP on the previously described LQR with 7'=50 and with the exploration amounts varying in
07€{107°,107*,107%,107%,10"}. As can be noticed in Figure 9, there are values for the exploration amounts op and o
leading to higher performance values for the deployed deterministic policy. In particular, PGPE deploys its best version of
e when setting o3 = 103, while the same happens with GPOMDP setting o5 =107%.

Increasing " Here we present a study on the horizon length 7', for which we tested values T € {50,100,200}. We display
in Figure 10 the resulting Jp associated with the learning processes of PGPE and GPOMDP. For each of the algorithms,
we employed the best values of ¢ obtained from the previous experiment. Additionally, we depicted as a dashed line the
estimated performance of the optimal policy for LQR, showing that both algorithms manage to achieve performance close
to optimal on average. As can be observed, GPOMDP struggles more than PGPE in converging to the globally optimal

47

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

deterministic policy. In particular, the performance of the deterministic policy associated with PGPE appears not to change
with increasing values of 7.

H.3. GPOMDP vs. PGPE: the case of Swimmer-v4.

In this section, we conduce experiments to highlight the trade-off between parameter dimensionality dg and trajectory
length T'. As emerges from the theoretical results shown in the main paper, GPOMDP should struggle in finding a good
deterministic policy j1g from large values of 7', while PGPE should struggle in the same task form large values of dg. Notice
that this behavior was already visible in the variance study conducted in Section 9 and Appendix H.1, where we added
action clipping to environments. To better illustrate the trade-off at hand, we removed the action clipping to conduce the
following experimental results, restoring the original version of the MuJoCo environments. Indeed, we remark that action
clipping was introduced to facilitate the exploration, highlighting the outcomes of the variance study.

Setting. We consider two different target deterministic policies pg:

¢ linear: PGPE and GPOMDP are run for K =2000, with N =100, dg = 16 (parameters initialized to 0);
* neural network (two dense hidden layers with 32 neurons and with hyperbolic tangent activation functions): PGPE and
GPOMDRP are run for K = 2000, with N =100, dg = 1344 (parameters initial values sampled by A/(0,1)).

For the learning rate schedule, we employed Adam with the same step sizes 0.1 for PGPE and 0.01 for GPOMDP (the
reason is the same explained in Section 9). For all the experiments we fixed both op and o to 1.

Increasing 7. Here we show the results of learning on Swimmer-v4 with T'€ {100,200} (and y =1). The target deterministic
policy in this case is the linear one, thus dg = 16. Figures 11 and 12 show the learning curves of Jp and .J5, with their
associated empirical Jp. For T'= 100, PGPE and GPOMDP reach deterministic policies exhibiting similar values of Jp (6).
For T'=200, instead, the algorithms reach deterministic policies showing an offset in the values of Jp (0) in favor of
PGPE. As suggested by the theoretical results shown in the paper, the fact that GPOMDP struggles in reaching a good
deterministic policy can be explained by the doubling of the horizon value.

Increasing dg. Here we show the results of learning on Swimmer-v4 with T'€ {100,200} (and = 1), with two different
target deterministic policies: the linear one (dg = 16) and the neural network one (dg = 1344).

Figures 13 and 15 show the learning curves of .Jp, with their associated empirical .Jp, for both the target policies, when
learning with trajectories respectively of length 100 and 200. For both the values of the horizon, it is possible to notice that
with a smaller value of dg PGPE manages to find a better deterministic policy. Indeed, the found linear and neural network
deterministic policies show an offset in Jp (6) in favor of the linear one. As suggested by the theoretical results shown in
the paper, the fact that PGPE struggles in reaching a good deterministic policy can be explained by the heavily increased
parameter dimensionality dg.

Figures 14 and 16 show the learning curves of J,, with their associated empirical Jp, for both the target policies, when
learning with trajectories respectively of length 100 and 200. From Figure 14, even with the target neural network policy,
for T'=100 GPOMDP is able however to find a deterministic policy with similar performances to the one found when the
target deterministic policy is the linear one. Switching to T =200 (Figure 16), it is possible to notice a severe offset between
the learning curves of the empirical .Jp associated to ./, in favor of the case in which the target policy is the linear one. As
done for the analysis on the increasing 7', this can be explained by the fact that the horizon has been doubled, which is in
line with the theoretical results shown throughout this work.

48

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Jp Comparison on LQR with T=50

— Gromor
—— PGPE
- LoR Optimal
o
=5
-10
Q
£
-15
20
25
3 560 1000 1500 2000 2500 3000
Iteration
Jo Comparison on LQR with T=100
— Gromor
— e
=== LQR Optimal
o
s
10
Q
2
15
-20
=25
13 00 1000 1500 2000 2500 3000
Iteration
Jo Comparison on LQR with T=200
— Gromor
— pore
--- LoR Optimal
0
T W v
s)
“10 |
Q
Ky
15
20
25
13 500 1000 2000 2500 3000

1500
Iteration

Figure 10. Jp associated with GPOMDP and PGPE in LQR employing linear (hyper)policies and T"€ {50,100, 200} (5 runs, mean +95%
C.L).

49

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index

Performance Index

Performance Index

Performance Index

Jpwitho3 =1

Jowithog=1

35
x
()
LN hel 30
kS
) 25
1)
C 20
©
§ 15
o
E 10
o
5
[
250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(a) PGPE.
withoZ= 1 witho2= 1
./A A 20 jD A
35
x
g 30
£
1) 25
1)
C 20
©
g 15
o
t 10
j0)
o
5
250 500 750 1000 1250 1500 1750 2000 ° 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(b) GPFOMDP.

Figure 11. PGPE and GPOMDP on Swimmer-v4 with linear policy and T'= 100 (5 runs, mean +£95% C.L.).

with 02 = with 02 =
jP P 70 JD P
60
x
i ()
VrY el 50
£
o 40
1%
% 30
g 20
L
B 10
o
0
250 500 750 1000 1250 1500 1750 2000 1 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(a) PGPE.
Ja with o = " Jo with o5 =
60
x
(3]
kel 50
[
; 10
o
% 30
é 20
o
e
b 10
o
0
250 500 750 1000 1250 1500 1750 2000 -1 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(b) GPOMDP.

Figure 12. PGPE and GPOMDP on Swimmer-v4 with linear policy and T'= 200 (5 runs, mean +95% C.1.).

50

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index

Performance Index

Performance Index

Performance Index

Jpwitho3 =1

Jowithog=1

35
x
()
o o} 30
<
) 25
1)
C 20
©
§ 15
o
E 10
o
5
0 250 500 750 1000 1250 1500 1750 2000 ° 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(a) Linear.
. 2 _ ; 2 _
Jpwithog=1 0 Jowithog=1
35
x
()
kel 30
<
o - i v vogermantt o?®
1)
C 20
©
g 15
oS
t 10
j0)
o
5
0 250 500 750 1000 1250 1500 1750 2000 ° 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(b) Neural Network.

Figure 13. PGPE on Swimmer-v4 with linear and neural network policies, and T'= 100 (5 runs, mean +95% C.1.).

; 2 _ ; 2 _
Ja with oz 0 Jp with o2
35
)
v - -g 30
1) 25
1%
C 20
©
g 15
o
t 10
jO)
o
5
0 250 500 750 1000 1250 1500 1750 2000 0 o 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(a) Linear.
Ja with o = 0 Jo with o5 =
35
x
g 30
£
[0} 25
o
C 20
©
é 15
o
t 10
jO)
o
5
o 250 500 750 1000 1250 1500 1750 2000 ° o 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(b) Neural Network.

Figure 14. GPOMDP on Swimmer-v4 with linear and neural network policies, and T'= 100 (5 runs, mean +95% C.L.).

51

Learning Optimal Deterministic Policies with Stochastic Policy Gradients

Performance Index

i

Performance Index

i

Performance Index

\

Performance Index

Jpwitho3 =1

Jowithog=1

LN w s 0 o
s 3 & & & 3

Performance Index

°

250 500 1000

Iteration

1250 1500 1750

2000

°
&

1000

Iteration

1250 1500 1750 2000

(a) Linear.

Jpwithod =1

Jowithod=1

Performance Index

N w s w
o 5 3 & & 2

o

250 500 1000

Iteration

1250 1500 1750

2000

°

250 500 1000

Iteration

1250 1500 1750 2000

(b) Neural Network.

Figure 15. PGPE on Swimmer-v4 with linear and neural network policies, and T'= 200 (5 runs, mean +95% C.1.).

Jawithof=1

Jowithoz =1

2N w s w
s s & & 2

Performance Index

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(a) Linear.
Ja with o = " Jo with o5 =
60
x
g 50
£
[0} 40
o
C 30
©
é 20
o
t 10
jO)
o
0
0 250 500 750 1000 1250 1500 1750 2000 -1 0 250 500 750 1000 1250 1500 1750 2000
Iteration Iteration
(b) Neural Network.

Figure 16. GPOMDP on Swimmer-v4 with linear and neural network policies, and T'= 200 (5 runs, mean +95% C.L.).

52

