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Abstract
Policy gradient (PG) methods are successful ap-
proaches to deal with continuous reinforcement
learning (RL) problems. They learn stochastic
parametric (hyper)policies by either exploring in
the space of actions or in the space of parameters.
Stochastic controllers, however, are often undesir-
able from a practical perspective because of their
lack of robustness, safety, and traceability. In
common practice, stochastic (hyper)policies are
learned only to deploy their deterministic version.
In this paper, we make a step towards the theoreti-
cal understanding of this practice. After introduc-
ing a novel framework for modeling this scenario,
we study the global convergence to the best deter-
ministic policy, under (weak) gradient domination
assumptions. Then, we illustrate how to tune the
exploration level used for learning to optimize the
trade-off between the sample complexity and the
performance of the deployed deterministic policy.
Finally, we quantitatively compare action-based
and parameter-based exploration, giving a formal
guise to intuitive results.

1. Introduction
Within reinforcement learning (RL, Sutton & Barto, 2018)
approaches, policy gradient (PG, Deisenroth et al., 2013)
algorithms have proved very effective in dealing with real-
world control problems. Their advantages include the ap-
plicability to continuous state and action spaces (Peters &
Schaal, 2006), resilience to sensor and actuator noise (Grav-
ell et al., 2020), robustness to partial observability (Aziz-
zadenesheli et al., 2018), and the possibility of incorporating
prior knowledge in the policy design phase (Ghavamzadeh
& Engel, 2006), improving explainability (Likmeta et al.,
2020). PG algorithms search directly in the space of para-
metric policies for the one that maximizes a performance
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function. Nonetheless, as always in RL, the exploration
problem has to be addressed, and practical methods involve
injecting noise in the actions or in the parameters. This
limits the application of PG methods in many real-world
scenarios, such as autonomous driving, industrial plants,
and robotic controllers. Indeed, stochastic policies typically
do not meet the reliability, safety, and traceability standards
of this kind of applications.

The problem of learning deterministic policies has been ex-
plicitly addressed in the PG literature by Silver et al. (2014)
with their deterministic policy gradient, which spawned
very successful deep RL algorithms (Lillicrap et al., 2016;
Fujimoto et al., 2018). This approach, however, is affected
by several drawbacks, mostly due to its inherent off-policy
nature. First, this makes DPG hard to analyze from a theo-
retical perspective: local convergence guarantees have been
established only recently, and only under assumptions that
are very demanding for deterministic policies (Xiong et al.,
2022). Furthermore, its practical versions (DDPG, Lillicrap
et al., 2016) are known to be very susceptible to hyperpa-
rameter tuning.

We study here a simpler and fairly common approach: that
of learning stochastic policies with PG algorithms, then de-
ploying the corresponding deterministic version, “switching
off” the noise.1 Intuitively, the amount of exploration (e.g.,
the variance of a Gaussian policy) should be selected wisely.
Indeed, the smaller the exploration level, the closer the opti-
mized objective is to that of a deterministic policy. At the
same time, with a small exploration, learning can severely
slow down and get stuck on bad local optima.

Policy gradient methods can be partitioned based on the
space on which the exploration is carried out, distinguish-
ing between: action-based (AB) and parameter-based (PB,
Sehnke et al., 2010) exploration. The first, of which REIN-
FORCE (Williams, 1992) and GPOMDP (Baxter & Bartlett,
2001; Sutton et al., 1999) are the progenitor algorithms, per-
forms exploration in the action space, with a stochastic (e.g.,
Gaussian) policy. On the other hand, PB exploration, in-
troduced by Parameter-Exploring Policy Gradients (PGPE,
Sehnke et al., 2010), implements the exploration at the level
of policy parameters by means of a stochastic hyperpolicy.

1This can be observed in several libraries (e.g., Raffin et al.,
2021) and benchmarks (e.g., Duan et al., 2016).
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The latter performs perturbations of the parameters of a (typ-
ically deterministic) action policy. Of course, this dualism
only considers the simplest form of noise-based, undirected
exploration. Efficient exploration in large-scale MDPs is a
very active area of research, with a large gap between theory
and practice (Ghavamzadeh et al., 2020), placing the matter
well beyond the scope of this paper. Also, we consider noise
magnitudes that are fixed during the learning process, as
the common practice of learning the exploration parameters
themselves breaks all known sample complexity guarantees
of vanilla PG (see Appendix C).

To this day, a large effort has been put into providing conver-
gence guarantees and sample complexity analyses for AB
exploration algorithms (e.g., Papini et al., 2018; Yuan et al.,
2022; Fatkhullin et al., 2023), while the theoretical analysis
of PB exploration has been taking a back seat since (Zhao
et al., 2011). We are not aware of any global convergence
results for parameter-based PGs. Furthermore, even for AB
exploration, current studies focus on the convergence to the
best stochastic policy.

Original Contributions. In this paper, we make a step
towards the theoretical understanding of the practice of
deploying a deterministic policy learned with PG methods:

• We introduce a framework for modeling the practice of
deploying a deterministic policy, by formalizing the notion
of white noise-based exploration, allowing for a unified
treatment of both AB and PB exploration.

• We study the convergence to the best deterministic policy
for both AB and PB exploration. For this reason, we focus
on the global convergence, rather than on the first-order
stationary point (FOSP) convergence, and we leverage on
commonly used (weak) gradient domination assumptions.

• We quantitatively show how the exploration level (i.e.,
noise) generates a trade-off between the sample complex-
ity and the performance of the deployed deterministic
policy. Then, we illustrate how it can be tuned to optimize
such a trade-off, delivering sample complexity guarantees.

In light of these results, we compare the advantages and
disadvantages of AB and PB exploration in terms of sam-
ple complexity and requested assumptions, giving a formal
guise to intuitive results. We also elaborate on how the
assumptions used in the convergence analysis can be re-
connected to the basic characteristics of the MDP and the
policy classes. We conclude with a numerical validation to
empirically illustrate the discussed trade-offs. The proofs
of the results presented in the main paper are reported in
Appendix D.

2. Preliminaries
Notation. For a measurable set X , we denote with ∆pX q
the set of probability measures over X . For P P∆pX q, we

denote with p its density function. With a little abuse of
notation, we will interchangeably use x„P or x„p to
denote that random variable x is sampled from the P . For
nPN, we denote by JnK :“t1, . . . , nu.

Lipschitz Continuous and Smooth Functions. A func-
tion f :X ĎRd ÑR is L-Lipschitz continuous (L-LC) if
|fpxq´fpx1q|ďL}x´x1}2 for every x,x1 PX . f is L2-
Lipschitz smooth (L2-LS) if it is continuously differen-
tiable and its gradient ∇xf is L2-LC, i.e., }∇xfpxq´
∇xfpx1q}2 ďL2}x´x1}2 for every x,x1 PX .

Markov Decision Processes. A Markov Decision Pro-
cess (MDP, Puterman, 1990) is represented by M :“
pS,A,p,r,ρ0,γq, where SĎRdS and AĎRdA are the mea-
surable state and action spaces, p :SˆAÝÑ∆pSq is the tran-
sition model, where pps1|s,aq specifies the probability den-
sity of landing in state s1 PS by playing action aPA in
state sPS, r :SˆAÝÑr´Rmax,Rmaxs is the reward func-
tion, where rps,aq specifies the reward the agent gets by
playing action a in state s, ρ0 P∆pSq is the initial-state dis-
tribution, and γ Pr0,1s is the discount factor. A trajectory
τ“psτ,0,aτ,0, . . . ,sτ,T´1,aτ,T´1q of length T PNYt`8u
is a sequence of T state-action pairs. The discounted return
of a trajectory τ is Rpτq :“řT´1

t“0 γ
trpsτ,t,aτ,tq.

Deterministic Parametric Policies. We consider a para-
metric deterministic policy µθ :SÑA, where θPΘĎRdΘ

is the parameter vector belonging to the parameter space Θ.
The performance of µθ is assessed via the expected return
JD :ΘÑR, defined as:

JDpθq :“ E
τ„pDp¨|θq

rRpτqs , (1)

where pDpτ ;θq :“ρ0psτ,0qśT´1
t“0 ppsτ,t`1|sτ,t,µθpsτ,tqq is

the density of trajectory τ induced by policy µθ.2 The
agent’s goal consists of finding an optimal parameter θ˚

D P
argmaxθPΘJDpθq and we denote J˚

D :“JDpθ˚
Dq.

Action-Based (AB) Exploration. In AB exploration, we
consider a parametric stochastic policy πρ :SÑ∆pAq,
where ρPP is the parameter vector belonging to the param-
eter space P ĎRdP . The policy is used to sample actions
at „πρp¨|stq to be played in state st for every step t of inter-
action. The performance of πρ is assessed via the expected
return JA :P ÑR, defined as:

JApρq :“ E
τ„pAp¨|ρq

rRpτqs , where (2)

pApτ ;ρq :“ρ0psτ,0qśT´1
t“0 πρpaτ,t|sτ,tqppsτ,t`1|sτ,t,aτ,tq

is the density of trajectory τ induced by policy πρ.2 In AB
exploration, we aim at learning ρ˚

A PargmaxρPP JApρq
and we denote JA

˚ :“JApρ˚
Aq. If JApρq is differentiable

2For both JD (resp. JA, JP) and pD (resp. pA, pP), we use the D
(resp. A, P) subscript to denote that the dependence on θ (resp. ρ)
is through a Deterministic policy (resp. Action-based exploration
policy, Parameter-based exploration hyperpolicy).
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w.r.t. ρ, PG methods (Peters & Schaal, 2008) update the
parameter ρ via gradient ascent: ρt`1 ÐÝρt `ζt p∇ρJApρtq,
where ζt ą0 is the step size and p∇ρJApρq is an estimator
of ∇ρJApρq. In particular, the GPOMDP estimator is:3

p∇ρJApρq:“ 1

N

N
ÿ

i“1

T´1
ÿ

t“0

˜

t
ÿ

k“0

∇ρlogπρpaτi,k|sτi,kq
¸

γtrpsτi,t,aτi,tq,

where N is the number of independent trajectories tτiuNi“1

collected with policy πρ (τi „pAp¨;ρq), called batch size.

Parameter-Based (PB) Exploration. In PB exploration,
we use a parametric stochastic hyperpolicy νρ Ď∆pΘq,
where ρPRdP is the parameter vector. The hyperpolicy
is used to sample parameters θ„νρ to be plugged in the
deterministic policy µθ at the beginning of every trajectory.
The performance index of νρ is JP :Rdρ ÝÑR, that is the
expectation over θ of JDpθq defined as:2

JPpρq :“ E
θ„νρ

rJDpθqs .
PB exploration aims at learning ρ˚

P PargmaxρPP JPpρq and
we denote JP

˚ :“JPpρ˚
P q. If JDpρq is differentiable w.r.t. ρ,

PGPE (Sehnke et al., 2010) updates the hyperparameter ρ
via gradient accent: ρt`1 ÐÝρt `ζt p∇ρJPpρtq. In particular,
PGPE uses an estimator of ∇ρJPpρq defined as:

p∇ρJPpρq“ 1

N

N
ÿ

i“1

∇ρ logνρpθiqRpτiq,

where N is the number of independent parameters-
trajectories pairs tpθi, τiquNi“1, collected with hyperpolicy
νρ (θi „νρ and τi „pDp¨;θiq), called batch size.

3. White-Noise Exploration
We formalize a class of stochastic (hyper)policies widely
employed in the practice of AB and PB exploration, namely
white noise-based (hyper)policies. These policies πθp¨|sq
(resp. hyperpolicies νθ) are obtained by adding a white
noise ϵ to the deterministic action a“µθpsq (resp. to the
parameter θ) independent of the state s (resp. parameter θ).

Definition 3.1 (White Noise). Let dPN and σą0. A prob-
ability distribution Φd P∆pRdq is a white-noise if:

E
ϵ„Φd

rϵs“0d, E
ϵ„Φd

r}ϵ}22sďdσ2. (3)

This definition complies with the zero-mean Gaussian distri-
bution ϵ„N p0d,Σq, where Eϵ„N p0d,Σqr}ϵ}22s“ trpΣqď
dλmaxpΣq. In particular, for an isotropic Gaussian Σ“
σ2Id, we have that trpΣq“dσ2. We now formalize the
notion of white noise-based (hyper)policy.

Definition 3.2 (White noise-based policies). Let θPΘ and
µθ :SÑA be a parametric deterministic policy and let ΦdA

3We limit our analysis to the GPOMDP estimator (Baxter &
Bartlett, 2001), neglecting the REINFORCE one (Williams, 1992)
since it is known that the latter suffers from larger variance.

be a white noise (Definition 3.1). A white noise-based pol-
icy πθ :SÑ∆pAq is such that, for every state sPS, action
a„πθp¨|sq satisfies a“µθpsq`ϵ where ϵ„ΦdA indepen-
dently at every step.

This definition considers stochastic policies πθp¨|sq that are
obtained by adding noise ϵ fulfilling Definition 3.1, sampled
independently at every step, to the action µθpsq prescribed
by the deterministic policy (i.e., AB exploration), resulting
in playing action µθpsq`ϵ. An analogous definition can be
formulated for hyperpolicies.

Definition 3.3 (White noise-based hyperpolicies). Let
θPΘ and µθ :SÑA be a parametric deterministic policy
and let ΦdΘ

be a white-noise (Definition 3.1). A white noise-
based hyperpolicy νθ P∆pΘq is such that, for every pa-
rameter θPΘ, parameter θ1 „νθ satisfies θ1 “θ`ϵ where
ϵ„ΦdΘ

independently in every trajectory.

This definition considers stochastic hyperpolicies νθ ob-
tained by adding noise ϵ fulfilling Definition 3.1, sampled
independently at the beginning of each trajectory, to the
parameter θ defining the deterministic policy µθ, resulting
in playing deterministic policy µθ`ϵ (i.e., PB exploration).
Definitions 3.2 and 3.3 allow to represent a class of widely-
used (hyper)policies, like Gaussian hyperpolicies and Gaus-
sian policies with state-independent variance. Furthermore,
once the parameter θ is learned with either AB or PB ex-
ploration, deploying the corresponding deterministic policy
(i.e., “switching off” the noise) is straightforward.4 Finally,
we remark that the noise can exhibit an inner structure, while
it is required to be “white” among different realizations.

4. Fundamental Assumptions
In this section, we present the fundamental assumptions on
the MDP (p and r), deterministic policy µθ , and white noise
Φ. For the sake of generality, we will consider abstract as-
sumptions in the next sections and, then, show their relation
to the fundamental ones (see Appendix A for details).

Assumptions on the MDP. We start with the assumptions
on the regularity of the MDP, i.e., on transition model p and
reward function r, w.r.t. variations of the played action a.

Assumption 4.1 (Lipschitz MDP (logp, r) w.r.t. actions).
The log transition model logpps1|s, ¨q and the reward func-
tion rps, ¨q are Lp-LC and Lr-LC, respectively, w.r.t. the
action for every s,s1 PS, i.e., for every a,aPA:

| logpps1|s,aq´ logpps1|s,aq|ďLp}a´a}2, (4)
|rps,aq´rps,aq|ďLr}a´a}2. (5)

Assumption 4.2 (Smooth MDP (logp, r) w.r.t. actions).
4For white noise-based (hyper)policies there exists a one-to-

one mapping between the parameter space of (hyper)policies and
that of deterministic policies (P “Θ). For simplicity, we assume
Θ“RdΘ and A“RdA (see Appendix C).
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The log transition model logpps1|s, ¨q and the reward func-
tion rps, ¨q are L2,p-LS and L2,r-LS, respectively, w.r.t. the
action for every s,s1 PS, i.e., for every a,aPA:

}∇a logpps1|s,aq´∇a logpps1|s,aq}2 ďL2,p}a´a}2,
}∇arps,aq´∇arps,aq}2 ďL2,r}a´a}2.

Intuitively, these assumptions ensure that when we perform
AB and/or PB exploration altering the played action w.r.t. a
deterministic policy, the effect on the environment dynamics
and on reward (and on their gradients) is controllable.

Assumptions on the deterministic policy. We now move
to the assumptions on the regularity of the deterministic
policy µθ w.r.t. the parameter θ.

Assumption 4.3 (Lipschitz deterministic policy µθ w.r.t.
parameters θ). The deterministic policy µθpsq is Lµ-LC
w.r.t. parameter for every sPS, i.e., for every θ,θPΘ:

}µθpsq´µθpsq}2 ďLµ}θ´θ}2. (6)

Assumption 4.4 (Smooth deterministic policy µθ w.r.t. pa-
rameters θ). The deterministic policy µθpsq isL2,µ-LS w.r.t.
parameter for every sPS, i.e., for every θ,θPΘ:

}∇θµθpsq´∇θµθpsq}2 ďL2,µ}θ´θ}2. (7)

Similarly, these assumptions ensure that if we deploy an
altered parameter θ, like in PB exploration, the effect on the
played action (and on its gradient) is bounded.

Assumptions 4.1 and 4.3 are standard in the DPG litera-
ture (Silver et al., 2014). Assumption 4.2, instead, can be
interpreted as the counterpart of the Q-function smoothness
used in the DPG analysis (Kumar et al., 2020; Xiong et al.,
2022), while Assumption 4.4 has been used to study the
convergence of DPG (Xiong et al., 2022). Similar condi-
tions to our Assumption 4.1 were adopted by Pirotta et al.
(2015), but measuring the continuity of p in the Kantorovich
metric, a weaker requirement that, unfortunately, does not
come with a corresponding smoothness condition.

Assumptions on the (hyper)policies. We introduce the
assumptions on the score functions of the white noise Φ.

Assumption 4.5 (Bounded Scores of Φ). Let ΦP∆pRdq
be a white noise with variance bound σą0 (Definition 3.1)
and density ϕ. ϕ is differentiable in its argument and there
exists a universal constant cą0 such that:

(i) Eϵ„Φr}∇ϵ logϕpϵq}22sďcdσ´2;
(ii) Eϵ„Φr}∇2

ϵ logϕpϵq}2sďcσ´2.

Intuitively, this assumption is equivalent to the more com-
mon ones requiring the boundedness of the expected
norms of the score function and its gradient (Papini et al.,
2022; Yuan et al., 2022, see Appendix E). Note that a
zero-mean Gaussian Φ“N p0d,Σq fulfills Assumption 4.5.
Indeed, one has ∇ϵ logϕpϵq“Σ´1ϵ and ∇2

ϵ logϕpϵq“
Σ´1. Thus, Er}∇ϵ logϕpϵq}22s“ trpΣ´1qďdλminpΣq´1

and Er}∇2
ϵ logϕpϵq}2s“λminpΣq´1. In particular, for an

isotropic Gaussian Σ“σ2I, we have λminpΣq“σ2, fulfill-
ing Assumption 4.5 with c“1.

5. Deploying Deterministic Policies
In this section, we study the performance JD of the deter-
ministic policy µθ , when the parameter θ is learned via AB
or PB white noise-based exploration (Section 3). We will
refer to this scenario as deploying the parameters, which
reflects the common practice of “switching off the noise”
once the learning process is over.

PB Exploration. Let us start with PB exploration by observ-
ing that for white noise-based hyperpolicies (Definition 3.3),
we can express the expected return JP as a function of JD
and of the noise ϵ for every θPΘ:

JPpθq“ E
ϵ„ΦdΘ

rJDpθ`ϵqs. (8)

This illustrates that PB exploration can be obtained by per-
turbing the parameter θ of a deterministic policy µθ via the
noise ϵ„ΦdΘ

. To achieve guarantees on the deterministic
performance JD of a parameter θ learned with PB explo-
ration, we enforce the following regularity condition.

Assumption 5.1 (Lipschitz JD w.r.t. θ). JD is LJ -LC in the
parameter θ, i.e., for every θ,θ1 PΘ:

|JDpθq´JDpθ1q|ďLJ}θ´θ1}2. (9)

When the MDP and the deterministic policy are LC as in
Assumptions 4.1 and 4.3, LJ isOpp1´γq´2q (see Table 2 in
Appendix A for the full expression). This way, we guarantee
that the perturbation ϵ on the parameter θ determines a
variation on function JD depending on the magnitude of ϵ,
which allows obtaining the following result.

Theorem 5.1 (Deterministic deployment of parameters
learned with PB white-noise exploration). If the hyper-
policy complies with Definition 3.3, under Assumption 5.1:

(i) (Uniform bound) for every θPΘ, it holds that
|JDpθq´JPpθq|ďLJ

?
dΘσP;

(ii) (JD upper bound) let θ˚
P PargmaxθPΘJPpθq, it

holds that: J˚
D ´JDpθ˚

P qď2LJ

?
dΘσP;

(iii) (JD lower bound) there exists an MDP, a determinis-
tic policy class µθ fulfilling Assumption 5.1, and
a noise complying with Definition 3.1, such that
J˚

D ´JDpθ˚
P qě0.28LJ

?
dΘσP.

Some observations are in order. (i) shows that the perfor-
mance of the hyperpolicy JPpθq is representative of the
deterministic performance JDpθq up to an additive term
depending on LJ

?
dΘσP. As expected, this term grows

with the Lipschitz constant LJ of the function JD, with the
standard deviation σP of the additive noise, and with the
dimensionality of the parameter space dΘ. In particular, this
implies that limσPÑ0` JPpθq“JDpθq. (ii) is a consequence
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of (i) and provides an upper bound between the optimal per-
formance obtained if we were able to directly optimize the
deterministic policy maxθPΘJDpθq and the performance
of the parameter θ˚

P learned by optimizing JPpθq, i.e., via
PB exploration, when deployed on the deterministic policy.
Finally, (iii) provides a lower bound to the same quantity
on a specific instance of MDP and hyperpolicy, proving that
the dependence on LJ

?
dΘσP is tight up to constant terms.

AB Exploration. Let us move to the AB exploration case,
where understanding the effect of the noise is more complex
since it is applied to every action independently at every step.
To this end, we introduce the notion of non-stationary deter-
ministic policy µ“pµtqT´1

t“0 , where at time step t the deter-
ministic policy µt :SÑA is played, and its expected return
(with abuse of notation) is JDpµq“Eτ„pDp¨|µqrRpτqs where

pDp¨|µq :“ρ0psτ,0qśT´1
t“0 ppsτ,t`1|sτ,t,µtpsτ,tqq. Let ϵ“

pϵtqT´1
t“0 „ΦT

dA
be a sequence of noises sampled indepen-

dently, we denote with µ
θ

`ϵ“pµθ `ϵtqT´1
t“0 the non-

stationary policy that, at time t, perturbs the action as
µθpstq`ϵt. Since the noise is independent on the state,
we express JA as a function of JD for every θPΘ as fol-
lows:

JApθq“ E
ϵ„ΦT

dA

”

JDpµ
θ

`ϵq
ı

. (10)

Thus, to ensure that the parameter learned with AB explo-
ration achieves performance guarantees when evaluated as
a deterministic policy, we need to enforce some regularity
condition on JD as a function of µ.
Assumption 5.2 (Lipschitz JD w.r.t. µ). JD of the non-
stationary deterministic policy µ is pLtqT´1

t“0 -LC in the non-
stationary policy, i.e., for every µ,µ1:

|JDpµq´JDpµ1q|ď
T´1
ÿ

t“0

Lt sup
sPS

›

›µtpsq´µ1
tpsq›

›

2
. (11)

Furthermore, we denote L :“řT´1
t“0 Lt.

When the MDP is LC as in Assumptions 4.1, L is Opp1´
γq´2q (see Table 2 in Appendix A for the full expression).
The assumption enforces that changing the deterministic pol-
icy at step t from µt to µ1

t, the variation of JD is controlled
by the action distance (in the worst state s) multiplied by a
time-dependent Lipschitz constant. This form of condition
allows us to show the following result.
Theorem 5.2 (Deterministic deployment of parameters
learned with AB white-noise exploration). If the policy
complies with Definition 3.2 and under Assumption 5.2:

(i) (Uniform bound) for every θPΘ, it holds that:
|JDpθq´JApθq|ďL

?
dAσA;

(ii) (JD upper bound) letting θ˚
A PargmaxθPΘJApθq, it

holds that J˚
D ´JDpθ˚

A qď2L
?
dAσA;

(iii) (JD lower bound) there exists an MDP, a determinis-
tic policy class µθ fulfilling Assumption 5.1, and

a noise complying with Definition 3.1, such that
J˚

D ´JDpθ˚
A qě0.28L

?
dAσA.

Similarly to Theorem 5.1, (i) and (ii) provide an upper
bound on the difference between the policy performance
JApθq and the corresponding deterministic policy JDpθq,
and on the performance of θ˚

A when deployed on a deter-
ministic policy. Clearly, also in the AB exploration, we
have that limσAÑ0` JApθq“JDpθq. As in the PB case, (iii)
shows that the upper bound (ii) is tight up to constant terms.

Finally, let us note that our bounds for PB exploration de-
pend on the dimension of the parameter space dΘ that is
replaced by that of the action space dA in AB exploration.

6. Global Convergence Analysis
In this section, we present our main results about the con-
vergence of AB and PB white noise-based exploration to a
global optimal parameter θ˚

D for the performance of the de-
terministic policy JD. Let K PN be the number of iterations
and N the batch size; given an accuracy threshold ϵą0, our
goal is to bound the sample complexity NK to fulfill the
following last-iterate global convergence condition:

J˚
D ´E rJDpθKqsďϵ, (12)

where θK is the (hyper)parameter at the end of learning. We
start in Section 6.1, introducing the abstract assumptions
and providing a general convergence analysis applicable to
both AB and PB exploration for learning the corresponding
objective (JA or JP). Then, in Section 6.2, we derive the
convergence guarantees on the deterministic objective JD
for AB and PB exploration, respectively. Our results are first
presented for a fixed white noise variance σ2 to highlight
the trade-off between sample complexity and performance,
then extended to an ϵ-adaptive choice of σ.

6.1. General Global Convergence Analysis

In this section, we provide a global convergence analysis
for a generic stochastic first-order algorithm optimizing the
differentiable objective function J: on the parameters space
ΘĎRd, that can be instanced for both AB (setting J: “JA)
and PB (setting J: “JP) exploration, when optimizing the
corresponding objective. At every iteration kPJKK, the
algorithm performs the gradient ascent update:

θk`1 ÐÝθk `ζk p∇θJ:pθkq, (13)

where ζk ą0 is the step size and p∇θJ:pθkq is an unbiased
estimate of ∇θJ:pθkq. We denote J˚

: “maxθPΘJ:pθq and
we enforce the following standard assumptions.

Assumption 6.1 (Weak gradient domination for J:). There
exist αą0 and βě0 such that for every θPΘ it holds that
J˚

: ´J:pθqďα}∇θJ:pθq}2 `β.

Assumption 6.1 is the gold standard for the global conver-
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gence of stochastic optimization (Yuan et al., 2022; Masiha
et al., 2022; Fatkhullin et al., 2023). Note that, when β“0,
we recover the (strong) gradient domination (GD) property:
J˚

: ´J:pθqďα}∇θJp:θq}2 for all θPΘ. GD is stricter
than WGD and requires that J: has no local optima. Instead,
WGD admits local maxima as long as their performance is
β-close to the globally optimal one.5

Assumption 6.2 (Smooth J: w.r.t. parameters θ). J: is
L2,:-LS w.r.t. parameters θ, i.e., for every θ,θ1 PΘ:

}∇θJ:pθ1q´∇θJ:pθq}2 ďL2,:}θ1 ´θ}2. (14)

Assumption 6.2 is ubiquitous in the convergence analysis
of policy gradient algorithms (Papini et al., 2018; Agar-
wal et al., 2021; Yuan et al., 2022; Bhandari & Russo,
2024), which is usually studied as an instance of (non-
convex) smooth stochastic optimization. The smoothness
of J: PtJA,JPu can be: (i) inherited from the deterministic
objective JD (originating, in turn, from the regularity of the
MDP) and of the deterministic policy µθ (Asm. 4.1 and 4.4);
or (ii) enforced through the properties on the white noise Φ
(Asm. 4.5). The first result was observed in a similar form
by Pirotta et al. (2015, Theorem 3), while a generalization
of the second was established by Papini et al. (2022) and
refined by Yuan et al. (2022).

Assumption 6.3 (Bounded estimator variance p∇θJ:pθq).
The estimator p∇θJ:pθq computed with batch size N has
a bounded variance, i.e., there exists V: ě0 such that, for
every θPΘ, we have Varr p∇θJ:pθqsďV:{N .

Assumption 6.3 guarantees that the gradient estimator is
characterized by a bounded variance V: which scales with
the batch size N . Under Assumption 4.5 (and 4.3 for
GPOMDP), the term V: can be further characterized (see
Table 2 in Appendix A).

We are now ready to state the global convergence result.

Theorem 6.1. Consider an algorithm running the up-
date rule of Equation (13). Under Assumptions 6.1, 6.2,
and 6.3, with a suitable constant step size, to guarantee
J˚

: ´ErJ:pθKqsďϵ`β the sample complexity is at most:

NK“ 16α4L2,:V:

ϵ3
log

maxt0,J˚
: ´J:pθ0q´βu
ϵ

. (15)

This result establishes a convergence of order rOpϵ´3q6 to the
global optimum J˚

: of the general objective J:. Recalling
that J: PtJA,JPu, Theorem 6.1 provides: (i) the first global
convergence guarantee for PGPE for PB exploration (setting
J: “JP) and (ii) a global convergence guarantee for PG
(e.g., GPOMDP) for AB exploration of the same order (up to

5In this section, we will assume that J: (i.e., either JA or JP)
is already endowed with the WGD property. In Section 7, we
illustrate how it can be obtained in several common scenarios.

6The rOp¨q notation hides logarithmic factors.

logarithmic terms in ϵ´1) of the state-of-the-art one of Yuan
et al. (2022) (setting J: “JA). Note that our guarantee
is obtained for a constant step size and holds for the last
parameter θK , delivering a last-iterate result, rather than
a best-iterate one as in (Yuan et al., 2022, Corollary 3.7).
Clearly, this result is not yet our ultimate goal since, we need
to assess how far the performance of the learned parameter
θK is from that of the optimal deterministic objective J˚

D .

6.2. Global Convergence of PGPE and GPOMDP

In this section, we provide results on the global convergence
of PGPE and GPOMDP with white-noise exploration. The
sample complexity bounds are summarized in Table 1 and
presented extensively in Appendix D. They all follow from
our general Theorem 6.1 and our results on the deployment
of deterministic policies from Section 5.

PGPE. We start by commenting on the sample complex-
ity of PGPE for a constant, generic hyperpolicy variance
σP , shown in the first column (Table 1). First, the guaran-
tee on J˚

D ´ErJDpθKqs contains the additional variance-
dependent term 3LP

?
dΘσP originating from the determin-

istic deployment. Second, the sample complexity scales
with rOpϵ´3q. Third, by enforcing the smoothness of the
MDP and of the deterministic policy (Asm. 4.2 and 4.4), we
improve the dependence on dΘ and on σP at the price of an
additional p1´γq´1 factor.

A choice of σP which adapts to ϵ allows us to achieve the
global convergence on the deterministic objective JD, up
to ϵ`β only. Moving to the second column (Table 1), we
observe that the convergence rate becomes rOpϵ´7q, which
reduces to rOpϵ´5q with the additional smoothness assump-
tions, which also improve the dependence on both p1´γq´1

and dΘ. The slower rate ϵ´5 or ϵ´7, compared to the ϵ´3 of
the fixed-variance case, is easily explained by the more chal-
lenging requirement of converging to the optimal determin-
istic policy rather than the optimal stochastic hyperpolicy,
as for standard PGPE. Note that we have set the standard
deviation equal to σP “ ϵ

6LP

?
dΘ

“Opϵp1´γq2d´1{2
Θ q that,

as expected, decreases with the desired accuracy ϵ.7

GPOMDP. We now consider the global convergence of
GPOMDP, starting again with a generic policy variance
σA (third column, Table 1). The result is similar to that of
PGPE with three notable exceptions. First, an additional
p1´γq´1 factor appears in the sample complexity due to
the variance bound of GPOMDP (Papini et al., 2022). This
suggests that GPOMDP struggles more than PGPE in long-
horizon environments, as already observed by Zhao et al.

7These results should be interpreted as a demonstration that
global convergence to deterministic policies is possible rather than
a practical recipe to set the value of σP. We do hope that our theory
can guide the design of practical solutions in future works.
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PGPE GPOMDP

Generic σP σP “ϵ{p6LP

?
dΘq Generic σA σA “ϵ{p6LA

?
dAq

Without smoothness
Under Asm. 6.1, 4.1, 4.3, 4.5 Under Asm. 6.1, 4.1, 4.3, 4.4, 4.5
α4d2Θ

σ4
Pp1´γq4ϵ3

(Theorem D.4)

α4d4Θ
p1´γq12ϵ7

(Theorem D.5)

α4d2A
σ4

Ap1´γq5ϵ3
(Theorem D.8)

α4d4A
p1´γq13ϵ7

(Theorem D.9)

With smoothness
With additional Asm. 4.2, 4.4 With additional Asm. 4.2
α4dΘ

σ2
Pp1´γq5ϵ3

(Theorem D.4)

α4d2Θ
p1´γq9ϵ5

(Theorem D.5)

α4dA
σ2

Ap1´γq6ϵ3
(Theorem D.8)

α4d2A
p1´γq10ϵ5

(Theorem D.9)

J˚
D ´ErJDpθKqsď ϵ`β`3σPLP

?
dΘ ϵ`β ϵ`β`3σALA

?
dA ϵ`β

Table 1. Sample complexity NK“ rOp¨q of GPOMDP and PGPE to converge to a deterministic optimal policy, retaining only dependencies
on ϵ, p1´γq

´1, σA, σP, dΘ, dA, and α. Task-dependent constants LP and LA are Opp1´γq
´2

q—see Table 2 in Appendix A.

(2011). Second, the dependence on the dimensionality of
the parameter space dΘ is replaced with the dimensionality
of the action space dA. This is expected and derives from
the nature of exploration that is performed in the parameter
space for PGPE and in the action space for GPOMPD. Fi-
nally, the smoothness of the deterministic policy (Asm. 4.4)
is always needed. Adding also the smoothness of the MDP
(Asm. 4.2), we lose a dA factor getting a p1´γq´1 one.

Again, a careful ϵ-dependent choice of σA allows us to
achieve global convergence on the deterministic objective
JD. In the last column (Table 1), we can notice that the
convergence rates display the same dependence on ϵ as in
PGPE. However, the dependence on the effective horizon
p1´γq´1 is worse. In this case, the additional smoothness
assumption improves the dependency on dA and p1´γq´1.

7. About the Weak Gradient Domination
So far, we have assumed WGD for the AB JA and PB JP
(Asm. 6.1). In this section, we discuss several scenarios in
which such an assumption holds.

7.1. Inherited Weak Gradient Domination

We start by discussing the case in which the deterministic
policy objective JD already enjoys the (W)GD property.

Assumption 7.1 (Weak gradient domination for JD). There
exist αD ą0 and βD ě0 such that for every θPΘ it holds
that J˚

D ´JDpθqďαD}∇θJDpθq}2 `βD.

Although the notion of WGD has been mostly applied to
stochastic policies in the literature (Liu et al., 2020; Yuan
et al., 2022), there is no reason why it should not be plausible
for deterministic policies. Bhandari & Russo (2024) provide
sufficient conditions for the performance function not to
have any local optima, which is a stronger condition, without
discriminating between deterministic and stochastic policies

(see their Remark 1). Moreover, one of their examples is
linear-quadratic regulators with deterministic linear policies.

We show that, under Lipschiztianity and smoothness of the
MDP and the deterministic policy (Asm. 4.1 and 4.4), this
is sufficient to enforce the WGD property for both the PB
JP and the AB JA objectives. Let us start with JP.
Theorem 7.1 (Inherited weak gradient domination for JP).
Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every θPΘ:

JP
˚ ´JPpθqďαD}∇θJPpθq}2 `βD `pαDL2 `LP qσP

a

dΘ,

where L2 “Opp1´γq´3q (full expression in Lemma E.2).

The result shows that the WGD property of JD entails that
of JP with the same αD coefficient, but a different β“
βDpαDL2 `LP qσP

?
dΘ that accounts for the gap between

the two objectives encoded in σP. Note that even if JD
enjoys a (strong) GD (i.e., βD “0), in general, JP inherits a
WGD property. In the setting of Theorem 7.1, convergence
in the sense of J˚

D ´ErJDpθKqsďϵ`βD can be achieved
with rOpα6

Dϵ
´5d2Θp1´γq´11q samples by carefully setting

the hyperpolicy variance (see Theorem D.12 for details).

An analogous result can be obtained for AB exploration.
Theorem 7.2 (Inherited weak gradient domination on JA).
Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every θPΘ:

JA
˚ ´JApθqďαD}∇θJApθq}2 `βD `pαDψ`LAqσA

a

dA,

where ψ“Opp1´γq´4q (full expression in the proof).

The sample complexity, in this case, is rOpα6
Dϵ

´5d2Ap1´
γq´14q (see Theorem D.13 for details).

7.2. Policy-induced Weak Gradient Domination

When the objective function does not enjoy weak gradient
domination in the space of deterministic policies, we can
still have WGD w.r.t. stochastic policies if they satisfy a
condition known as Fisher-non-degeneracy (Liu et al., 2020;
Ding et al., 2022). As far as we know, WGD by Fisher-non-
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degeneracy is a peculiar property of AB exploration that
has no equivalent in PB exploration. White-noise policies
satisfying Assumption 4.5 are Fisher-non-degenerate under
the following standard assumption (Liu et al., 2020).

Assumption 7.2 (Explorability). There exists λE ą0 s.t.
Eπθ

r∇θµθpsq∇θµθpsqJsľλEI for all θPΘ, where the
expectation over states is induced by the stochastic policy.

We can use this fact to prove WGD for white-noise policies.

Theorem 7.3 (Policy-induced weak gradient domination).
Under Assumptions 4.5 and 7.2, we have:

JA
˚ ´JApθqďC

?
dAσA
λE

}∇θJApθq}2 `
?
ϵbias

1´γ
,

for some numerical constant Cą0. Thus, Assumption 6.1
(:=A) is satisfied with α“C

?
dAσA

λE
and β“

?
ϵbias

1´γ .

Here ϵbias is the compatible-critic error, which can be very
small for rich policy classes (Ding et al., 2022).8 We can
leverage this to prove the global convergence of GPOMDP
as in Section 7.1, this time to JD ´ErJDpθqsďϵ`

?
ϵbias
1´γ .

Tuning σA, we can achieve a sample complexity of
rOpϵ´1λ´4

E d4Ap1´γq´10q (see Theorem D.16 for details)
This seems to violate the Ωpϵ´2q lower bound by Azar et al.
(2013). However, the factor λE can depend on σA “Opϵq in
highly non-trivial ways and, thus, can hide additional factors
of ϵ. For this reason, the results granted by the Fisher-non-
degeneracy of white-noise policies are not compared with
the ones granted by inherited WGD from Section 7.1. In-
tuitively, λE encodes some difficulties of exploration that
are absent in “nice” MDPs satisfying Assumption 7.1. See
Appendix D.4 for further discussion and omitted proofs.

8. Related Works
In this section, we provide a discussion of previous works
that addressed similar questions to the ones considered in
this paper. Additional related works in Appendix B.

Convergence rates. The convergence of PG to stationary
points at a rate of Opϵ´4q was clear at least since (Sut-
ton et al., 1999), although the recent work by Yuan et al.
(2022) clarifies several aspects of the analysis and the re-
quired assumptions. Variants of REINFORCE with faster
convergence, based on stochastic variance reduction, were
explored much later (Papini et al., 2018; Xu et al., 2019),
and the Opϵ´3q rate of (Xu et al., 2020) is now believed to
be optimal due to lower bounds from nonconvex stochastic
optimization (Arjevani et al., 2023). The same holds for
second-order methods (Shen et al., 2019; Arjevani et al.,
2020). Although the convergence properties of PGPE are
analogous to those of PG, they have not received the same

8A formal definition of εbias can be found in Appendix D.4.

attention, with the exception of (Xu et al., 2020), where
the Opϵ´3q rate is proved for a variance-reduced version
of PGPE. Studying the convergence of PG to globally opti-
mal policies under additional assumptions is a more recent
endeavor, pioneered by works such as Scherrer & Geist
(2014), Fazel et al. (2018), Bhandari & Russo (2024). These
works introduced to the policy gradient literature the con-
cept of gradient domination, or gradient dominance, or
Polyak-Łojasiewicz condition, which has a long history
in the optimization literature (Lojasiewicz, 1963; Polyak
et al., 1963; Karimi et al., 2016). Several works study the
iteration complexity of policy gradient with exact gradi-
ents (e.g., Agarwal et al., 2021; Mei et al., 2020; Li et al.,
2021). These results are restricted to specific policy classes
(e.g., softmax, direct tabular parametrization) for which
gradient domination is guaranteed. A notable exception is
the study of sample-based natural policy gradient for gen-
eral smooth policies (Agarwal et al., 2021). As for vanilla
sample-based PG (i.e., GPOMDP), Liu et al. (2020) were
the first to study the sample complexity of this algorithm
in converging to a global optimum. They also introduced
the concept of Fisher-non-degeneracy (Ding et al., 2022),
which allows to exploit a form of gradient domination for a
general class of policies. We refer the reader to (Yuan et al.,
2022) which achieves a better rOpϵ´3q sample complexity
under weaker assumptions. More sophisticated algorithms,
such as variance-reduced methods mentioned above, can
achieve even better sample complexity. The current state
of the art is (Fatkhullin et al., 2023): rOpϵ´2.5q for hessian-
free and rOpϵ´2q for second-order algorithms. The latter is
optimal up to logarithmic terms (Azar et al., 2013). When
instantiated to Gaussian policies, all of the works mentioned
in this paragraph implicitly assume that the covariance pa-
rameters are fixed. In this case, our Theorem D.4 recovers
the rOpϵ´3q rate of Yuan et al. (2022, Corollary 3.7), the
best-known result for GPOMDP under general WGD.

Deterministic policies. Value-based RL algorithms, such as
Q-learning, naturally produce deterministic policies as their
final solution, while most policy-gradient methods must
search, by design, in a space of non-degenerate stochas-
tic policies. In (Sutton et al., 1999), this is presented as
an opportunity rather than as a limitation since the opti-
mal policy is often stochastic for partially observable prob-
lems. The possibility of deploying deterministic policies
only is one of the appeals of PGPE and related evolutionary
techniques (Schwefel, 1993), but also of model-based ap-
proaches (Deisenroth & Rasmussen, 2011). In the context
of action-based policy search, the DPG algorithm by Silver
et al. (2014) was the first to search in a space of determin-
istic policies. Differently from PGPE, stochastic policies
are run during the learning process for exploration purposes,
similarly to value-based methods. Moreover, the distribu-
tion mismatch due to off-policy sampling is largely ignored.
Nonetheless, popular deep RL algorithms were derived from
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DPG (Lillicrap et al., 2016; Fujimoto et al., 2018). (Xiong
et al., 2022) proved the convergence of on-policy (hence,
fully deterministic) DPG to a stationary point, with Opϵ´4q
sample complexity. However, they rely on an explorabil-
ity assumption (Asm. 4 in their paper) that is standard for
stochastic policies, but very demanding for deterministic
policies. A more practical way of achieving fully deter-
ministic DPG was proposed by Saleh et al. (2022), who
also provide a discussion of the advantages of deterministic
policies. Unsurprisingly, truly deterministic learning is only
possible under strong assumptions on the regularity of the
environment. In this paper, for PG, we considered the more
common scenario of evaluating stochastic policies at train-
ing time, only to deploy a good deterministic policy in the
end. PGPE, by design, does the same with hyperpolicies.

9. Numerical Validation
In this section, we empirically validate the theoretical results
presented in the paper. We conduct a study on the gap in
performance between the deterministic objective JD and the
ones of GPOMDP and PGPE (respectively JA and JP) by
varying the value of their exploration parameters (σA and σP,
respectively). Details on the employed versions of PGPE
and GPOMDP can be found in Appendix G. Additional
experimental results can be found in Appendix H.

We run PGPE and GPOMDP for K“2000 iterations with
batch size N“100 on three environments from the Mu-
JoCo (Todorov et al., 2012) suite: Swimmer-v4 (T “200),
Hopper-v4 (T “100), and HalfCheetah-v4 (T “100). For
all the environments the deterministic policy is linear in
the state and the noise is Gaussian. We consider σ2

: P
t0.01,0.1,1,10,100u. More details in Appendix H.1.9

From Figure 1, we note that as the exploration parameter
grows, the distance of JPpθKq and JApθKq from JDpθKq
increases, coherently with Theorems 5.1 and 5.2. Among
the tested values for σP and σA, some lead to the highest
values of JDpθKq. Empirically, we note that PGPE delivers
the best deterministic policy with σ2

P “10 for Swimmer and
with σ2

P “1 for the other environments. GPOMDP performs
the best with σ2

A “1 for Swimmer, and with σ2
A “10 in the

other cases. These outcomes agree with the theoretical
results in showing that there exists an optimal value for σ:.

We can also appreciate the trade-off between GPOMDP
and PGPE w.r.t. dΘ and T , by comparing the best values
of JD found by the two algorithms in each environment.
GPOMDP is better than PGPE in Hopper and HalfCheetah.
Indeed, such environments are characterized by higher val-
ues of dΘ. Instead in Swimmer, PGPE performs better than
GPOMDP, since T is higher and dΘ is lower.

9The code is available at https://github.com/
MontenegroAlessandro/MagicRL.
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Figure 1. Variance study on Mujoco (5 runs, mean ˘ 95% C.I.).

10. Conclusions
In this work, we have perfected recent theoretical results
on the global convergence of policy gradient algorithms to
address the practical problem of finding a good deterministic
parametric policy. We have studied the effects of noise
on the learning process and identified a theoretical value
of the variance of the (hyper)policy that allows to find a
good deterministic policy using a polynomial number of
samples. We have compared the two common forms of
noisy exploration, action-based and parameter-based, both
from a theoretical and an empirical perspective.

Our work paves the way for several exciting research direc-
tions. First, our theoretical selection of the policy variance
is not practical, but our theoretical findings should guide the
design of sound and efficient adaptive-variance schedules.
We have shown how white-noise exploration preserves weak
gradient domination—the natural next question is whether
a sufficient amount of noise can smooth or even eliminate
the local optima of the objective function. Finally, we have
focused on “vanilla” policy gradient methods, but our ideas
could be applied to more advanced algorithms, such as the
ones recently proposed by Fatkhullin et al. (2023), to find
optimal deterministic policies with rOpϵ´2q samples.
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A. Assumptions and Constants: Quick Reference
As mentioned in Section 7, we can start from fundamental assumptions on the MDP and the (hyper)policy classes to satisfy
more abstract assumptions that can be used directly in convergence analyses. Figure 2 shows the relationship between the
assumptions, and Table 2 the constants obtained in the process. All proofs of the assumptions’ implications can be found in
Appendix E.

L: (Lipschitz) L2,: (Smooth) V: (Variance bound)

AB Exploration
(:=A)

LpRmax

p1´γq2
` Lr

1´γ

2L2
pL

2
µRmax

p1´γq3
` 2L2

µLpLr`L2,µL2,pRmax

p1´γq2
` L2,µL2,r

1´γ

RmaxcpdA`1qpL2
µ`L2,µq

σ2
Ap1´γq2

; RmaxcdAL2
µ

σ2
Ap1´γq3

Assumptions: 4.1 4.1, 4.2, 4.3, 4.4 4.3, 4.4, 4.5 4.3, 4.5
Reference: Lemma E.1 Lemma D.7 Lemma D.6

PB Exploration
(:=P)

LpLµRmax

p1´γq2
` LrLµ

1´γ

2L2
pL

2
µRmax

p1´γq3
` 2L2

µLpLr`L2,µL2,pRmax

p1´γq2
` L2,µL2,r

1´γ
RmaxcpdΘ`1q

σ2
P p1´γq2

RmaxcdΘ

σ2
P p1´γq2

Assumptions: 4.1, 4.3 4.1, 4.2, 4.3, 4.4 4.5 4.5
Reference: Lemma E.1 Lemma D.3 Lemma D.2

Table 2. Bounds to the Lipschitz and smoothness constants for the AB and PB objectives (JA and JP) and variance of the GPOMDP and
PGPE estimators. Both presented bounds on L2,: hold under different sets of assumptions. ; if σA ă

?
dA.
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B. Additional Related Works
Policy variance. When optimizing Gaussian policies with policy-gradient methods, the scale parameters (those of the
variance or, more in general, of the covariance matrix of the policy) are typically fixed in theory, and optimized via gradient
descent in practice. To the best of our knowledge, there is no satisfying theory of the effects of a varying policy (or
hyperpolicy) variance on the convergence rates of PG (or PGPE). Ahmed et al. (2019) were the first to take into serious
consideration the impact of the policy stochasticity on the geometry of the objective function, although their focus was on
entropy regularization. Papini et al. (2020), focusing on monotonic improvement rather than convergence, proposed to
use second-order information to overcome the greediness of gradient updates, arguing that the latter is particularly harmful
for scale parameters. Bolland et al. (2023) propose to study PG with Gaussian policies under the lens of optimization by
continuation (Allgower & Georg, 1990), that is, as a sequence of smoothed version of the deterministic policy optimization
problem. Unfortunately, the theory of optimization by continuation is rather scarce. We studied the impact of a fixed policy
variance on the number of samples needed to find a good deterministic policy. We hope that this can provide some insight
on how to design adaptive policy-variance strategies in future work. We remark here that the common practice of learning
the exploration parameters together with all the other policy parameters breaks all of the known convergence results of
GPOMDP, since the smoothness of the stochastic objective is inversely proportional to the policy variance (Papini et al.,
2022). In this regard, entropy-regularized policy optimization is different, and is better studied using mirror descent theory,
rather than stochastic gradient descent theory (Shani et al., 2020).

Comparing AB and PB exploration. A classic on the topic is the paper by Zhao et al. (2011). They prove upper bounds
on the variance of the REINFORCE and PGPE estimators, highlighting the better dependence on the task horizon of the
latter. The idea that variance reduction does not tell the whole story about the efficiency of policy gradient methods is rather
recent (Ahmed et al., 2019). We revisited the comparison of action-based and parameter based methods under the lens of
modern sample complexity theory. We reached similar conclusions but achieved, we believe, a more complete understanding
of the matter. To our knowledge, the only other work that thoroughly compares AB and PB exploration is (Metelli et al.,
2018; 2020; 2021), where the trade-off between the task horizon and the number of policy parameters is discussed both in
theory and experiments, but in the context of trust-region methods.
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C. Additional Considerations
We only considered (hyper)policy variances σ2

A,σ
2
P that are fixed for the duration of the learning process, albeit they can be

set as functions of problem-dependent constants and of the desired accuracy ϵ. This is due to our focus on convergence
guarantees based on smooth optimization theory, as explained in the following.

Remark C.1 (About learning the (hyper)policy variance). It is a well established practice to parametrize the policy variance
and learn these exploration parameters via gradient descent together with all the other policy parameters (again, for
examples, see Duan et al., 2016; Raffin et al., 2021). The same is true for parameter-based exploration (Schwefel, 1993;
Sehnke et al., 2010). However, it is easy to see that an adaptive (in the sense of time-varying) policy variance breaks the
sample complexity guarantees of GPOMDP (Yuan et al., 2022) and its variance-reduced variants (e.g., Liu et al., 2020).
That is because these guarantees all rely on Assumption 6.2, or equivalent smoothness conditions, and obtain sample
complexity upper bounds that scale with the smoothness constant L2,A. However, the latter can depend inversely on σ2

A, as
already observed by Papini et al. (2022) for Gaussian policies. Thus, unconstrained learning of σA breaks the convergence
guarantees. Analogous considerations hold for PGPE with adaptive hyperpolicy variance. Different considerations apply to
entropy-regularized policy optimization methods, which were not considered in this paper, mostly because they converge to a
surrogate objective that is even further from optimal deterministic performance. These methods are better analyzed using
the theory of mirror descent. We refer the reader to (Shani et al., 2020).

In order to properly define the white noise-based (hyper)policies, we need that µθpsq`ϵPA (for AB exploration) and
θ`ϵPΘ (for PB exploration), we will assume that A“RdA and Θ“RdΘ for simplicity.

Remark C.2 (About A“RdA and Θ“RdΘ assumption). We have assumed that the action space A and the parameter
space Θ correspond to RdA and RdΘ , respectively. If this is not the case, we can easily alter the transition model p and the
reward function r (for the AB exploration), and the deterministic policy µθ (for the PB exploration) by means of a retraction
function. Let X ĎRd be a measurable set, a retraction function ιX :Rd ÑX is such that ιX pxq“x if xPX , i.e., it is the
identity over X .

• For the AB exploration, we redefine the transition model as pps1|s,aq :“pps1|s,ιApaqq for every s,s1 PS and aPA.
Furthermore, we redefine the reward function as rps,aq :“rps, ιApaqq for every sPS and aPA.

• For the PB exploration, we redefine the deterministic policy as µθpsq :“µιΘpθq, for every θPΘ.
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D. Proofs
D.1. Proofs from Section 5

Lemma D.1. Let Lą0, consider the function f :RÑR defined for every xPR as follows:

fpxq“

$

’

&

’

%

0 if xă´1{L or xą2{L
Lx`1 if ´1{Lďxă0

1´ L
2 x if 0ďxď2{L

. (16)

Consider the function ψσ :RÑRě0 defined for every xPR as follows:

ψσpxq“
#

1
2

?
3σ

if ´?
3σďxď?

3σ

0 otherwise
, (17)

i.e., the p.d.f. of a uniform distribution with zero mean and variance σ2. Let fσ :“f ˚ψσ , let x˚ “argmaxxPR fpxq, and let
x˚
σ “argmaxxPR fσpxq. Then f is L-LC and, if

?
3σď1{L, it holds that fpx˚q´fpx˚

σq“Lσ{p2?
3q.

Proof. Let us first verify that the distribution whose p.d.f. is ϕσ has zero mean and variance σ2:
ż

R
ψσpxqxdx“0, (18)

ż

R
ψσpxqx2dx“2

ż

?
3σ

0

ψσpxqx2dx“σ2. (19)

Under the assumption
?
3σď1{L, functions f and ψσ can be represented as follows:

´ 1
L ´?

3σ
?
3σ 2

L

x

fpxq
ψσpxq

Let us now compute the convolution:

fσpxq“f ˚ψσ “
ż

R
ψσpx´ tqfptqdt. (20)

It is clear that the global optimum of function fσ is located in the interval given by |x|ď1{L. This combined, with the
assumption

?
3σď1{L, allows to simplify the integral as:

ż

R
ψσpx´ tqfptqdt“

ż 0

x´
?
3σ

1

2
?
3σ

pLt`1qdt`
ż x`

?
3σ

0

1

2
?
3σ

ˆ

1´ L

2
t

˙

dt (21)

1´“ 1

2
?
3σ

ˆ

L

2
px´?

3σq2 ` L

4
px`?

3σq2
˙

. (22)

The latter is a concave (quadratic) function of x, which is maximized for x˚
σ “σ{?

3. Noticing that x˚ “argmaxxPR fpxq=0,
we have:

fpx˚q´fpx˚
σq“fp0q´fpσ{?

3q“1´
ˆ

1´ Lσ

2
?
3

˙

“ Lσ

2
?
3
. (23)

Theorem 5.1 (Deterministic deployment of parameters learned with PB white-noise exploration). If the hyperpolicy
complies with Definition 3.3, under Assumption 5.1:
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(i) (Uniform bound) for every θPΘ, it holds that |JDpθq´JPpθq|ďLJ

?
dΘσP;

(ii) (JD upper bound) let θ˚
P PargmaxθPΘJPpθq, it holds that: J˚

D ´JDpθ˚
P qď2LJ

?
dΘσP;

(iii) (JD lower bound) there exists an MDP, a deterministic policy class µθ fulfilling Assumption 5.1, and a noise
complying with Definition 3.1, such that J˚

D ´JDpθ˚
P qě0.28LJ

?
dΘσP.

Proof. Before starting the derivation, we remark that:
JPpθq“ E

ϵ„ΦdΘ

rJDpθ`ϵqs , (24)

where Eϵ„ΦdΘ
r}ϵ}22sďdΘσ

2
P . From Assumption 5.1, we can easily derive (i):

|JDpθq´JPpθq|“|JDpθq´ E
ϵ„ΦdΘ

rJDpθ`ϵqs | (25)

ď E
ϵ„ΦdΘ

r|JDpθq´JDpθ`ϵq|s (26)

ďLJ E
ϵ„ΦdΘ

r}ϵ}2s (27)

ďLJ

c

E
ϵ„ΦdΘ

r}ϵ}22s (28)

ďLJσP

a

dΘ. (29)
For (ii), let θ˚ PargmaxθPΘJDpθq, we have:

max
θPΘ

JDpθq´JDpθ˚
P q“JDpθ˚q´JDpθ˚

P q˘JPpθ˚q (30)

ďJDpθ˚q´JPpθ˚q`JPpθ˚
P q´JDpθ˚

P q (31)
ď2max

θPΘ
|JDpθq´JPpθq| (32)

ď2LJσP

a

dΘ, (33)
where line (31) follows from JPpθ˚

P q“maxθPΘJPpθqěJPpθ˚q, and line (32), follows by applying twice result (i).

To prove (iii) we construct the MDP ptsu,RdΘ ,p,r,ρ0,γq (i.e., a bandit), where rps,aq“ 1
dΘ

řdΘ

i“1 fpaiq, where f is defined
in Lemma D.1 and µθpsq“θ with θPRdΘ . Thus, we can compute the expected return as follows:

JDpθq“ 1´γT

1´γ
¨ 1

dΘ

dΘ
ÿ

i“1

fpθiq. (34)

Let us compute its Lipschitz constant recalling that f is L-LC thanks to Lemma D.1. In particular, we take θ“0dΘ
and

θ1 “´η1dΘ
with ηPp0,1{Lq, recalling that }θ´θ1}2 “η

?
dΘ and that fpθiq“1 and fpθ1

iq“´ηL`1, we have:

|JDpθq´JDpθ1q|“
ˇ

ˇ

ˇ

ˇ

ˇ

1´γT

1´γ
¨ 1

dΘ

dΘ
ÿ

i“1

fpθiq´ 1´γT

1´γ
¨ 1

dΘ

dΘ
ÿ

i“1

fpθ1
iq

ˇ

ˇ

ˇ

ˇ

ˇ

(35)

“ 1´γT

1´γ
¨ 1

dΘ

dΘ
ÿ

i“1

|fpθiq´fpθ1
iq| (36)

“ 1´γT

1´γ
¨ L
dΘ

dΘ
ÿ

i“1

|θi ´θ1
i| (37)

“ 1´γT

1´γ
Lη (38)

“ 1´γT

1´γ
¨ L?

dΘ
}θ´θ1}2. (39)

Thus, we have that JDpθq is
´

1´γT

1´γ ¨ L?
dΘ

¯

-LC. By naming LJ “ 1´γT

1´γ ¨ L?
dΘ

, we have L“ 1´γ
1´γT

?
dΘLJ . We now con-

sider the additive noise ΦdΘ “bdΘ
i“1Unipr´?

3σ,
?
3σsq, i.e., the dΘ-dimensional uniform distribution with independent

components over the hypercube r´?
3σ,

?
3σsdΘ . From Lemma D.1, we know that each dimension has variance σ2,
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consequently:

E
ϵ„ΦdΘ

r}ϵ}22s“
dΘ
ÿ

i“1

E
ϵi„Unipr´

?
3σ,

?
3σsq

rϵ2i s“dΘσ
2, (40)

thus complying with Definition 3.2. Consequently:

JPpθq“ E
ϵ„ΦdΘ

rJDpθ`ϵqs“
dΘ
ÿ

i“1

E
ϵi„Unipr´

?
3σ,

?
3σsq

rfpθi `ϵiqs“
dΘ
ÿ

i“1

pf ˚ψσqpθiq, (41)

where ψσ is the p.d.f. of the considered uniform distribution as defined in Lemma D.1. From Lemma D.1 and observing that
both JD and JP decompose into a sum over the dΘ dimensions, we have for

?
3σă1{L:

θ˚ “argmax
θPRdΘ

JDpθq“0dΘ
, θ˚

P “argmax
θPRdΘ

JPpθq“ σ?
3
1dΘ

. (42)

It follows that:

JDpθ˚q´JDpθ˚
P q“JDp0dΘq´JD

ˆ

σ?
3
1dΘ

˙

(43)

“ 1´γT

1´γ

1

dΘ

dΘ
ÿ

i“1

fp0q´fpσ{?
3q (44)

“ 1´γT

1´γ

Lσ

2
?
3

(45)

“ 1

2
?
3
LJ

a

dΘσ. (46)

Theorem 5.2 (Deterministic deployment of parameters learned with AB white-noise exploration). If the policy complies
with Definition 3.2 and under Assumption 5.2:

(i) (Uniform bound) for every θPΘ, it holds that: |JDpθq´JApθq|ďL
?
dAσA;

(ii) (JD upper bound) letting θ˚
A PargmaxθPΘJApθq, it holds that J˚

D ´JDpθ˚
A qď2L

?
dAσA;

(iii) (JD lower bound) there exists an MDP, a deterministic policy class µθ fulfilling Assumption 5.1, and a noise
complying with Definition 3.1, such that J˚

D ´JDpθ˚
A qě0.28L

?
dAσA.

Proof. From Assumption 5.2, noting that JDpθq“JDpµ
θ

q we can easily derive (i):

|JDpθq´JApθq|“
ˇ

ˇ

ˇ

ˇ

ˇ

JDpθq´ E
ϵ„ΦT

dA

”

JDpµ
θ

`ϵq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

(47)

“
ˇ

ˇ

ˇ

ˇ

ˇ

JDpµ
θ

q´ E
ϵ„ΦT

dA

”

JDpµ
θ

`ϵq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

(48)

ď E
ϵ„ΦT

dA

«

T´1
ÿ

t“0

Lt sup
stPS

}µθpstq´pµθpstq`ϵtq}2
ff

(49)

“
T´1
ÿ

t“0

Lt E
ϵ„ΦdA

r}ϵ}22s (50)

ďL
a

dAσA. (51)
For (ii), let θ˚ PargmaxθPΘJDpθq, we have:

max
θPΘ

JDpθq´JDpθ˚
Aq“JDpθ˚q´JDpθ˚

Aq˘JApθ˚q (52)

ďJDpθ˚q´JApθ˚q`JApθ˚
Aq´JDpθ˚

Aq (53)
ď2max

θPΘ
|JDpθq´JApθq| (54)

ď2LσA

a

dA, (55)
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where line (53) follows from JApθ˚
Aq“maxθPΘJApθqěJApθ˚q, and line (54) follows by applying twice result (i). The

proof of piiiq is identical to that of Theorem 5.1 since, for the particular instance, we have enforced µθpsq“θ (which
implies dA “dΘ) and, thus, AB exploration is equivalent to PB exploration.

D.2. Proofs from Section 6

Lemma D.2 (Variance of p∇θJPpθq bounded). Under Assumption 4.5, the variance the PGPE estimator with batch size N
is bounded for every θPΘ as:

Var
”

p∇θJPpθq
ı

ď R2
maxξ2p1´γT q2
Np1´γq2 ď R2

maxξ
2
1

Np1´γq2 .
with ξ2 ďcdΘσ

´2
P .

Proof. We recall that the estimator employed by PGPE in its update rule is:

p∇θJPpθq“ 1

N

N
ÿ

i“1

∇θ logνθpθiqRpτiq,

where N is the number of parameter configuration tested (on one trajectory) at each iteration. Thus, we can compute the
variance of such an estimator as:

Var
θ1„νθ

”

p∇θJPpθ1q
ı

“ 1

N
Var
θ1„νθ

“

∇θ logνθpθ1qRpτ1q‰

“ 1

N
E

θ1„νθ

”

›

›∇θ logνθpθ1q›

›

2

2
Rpτ1q2

ı

ď R2
maxξ

2
1p1´γT q2

Np1´γq2 ,

where the last line follows form Assumption 4.5 and Lemma E.4 after having defined ξ2 “Eθ1„νθ

”

}∇θ logνθpθ1q}22
ı

and
from the fact that, given a trajectory τ , Rpτq is defined as:

Rpτq“
T´1
ÿ

t“0

γtrpsτ,t,aτ,tq,

with rps,aqPr´Rmax,Rmaxs for every sPS and aPA.

Lemma D.3 (Bounded JP Hessian). Under Assumption 4.5 and using a hyperpolicy complying with Definition 3.2, @θPΘ
it holds that:

›

›∇2
θJPpθq›

›

2
ďL2,P

Rmaxp1´γT q
1´γ

pξ2 `ξ3q ,
where ξ2 ďcdΘσ

´2
P and ξ3 ďcσ´2

P . Furthermore, under Assumptions 4.1, 4.3, 4.2, and 4.4, and using a hyperpolicy
complying with Definition 3.2, @θPΘ it holds that:

›

›∇2
θJPpθq›

›

2
ďL2,

where L2 is bounded as in Lemma E.2.

Proof. The performance index JP of a hyperpolicy νθ can be seen as the expectation over the sampling of a parameter
configuration θ1 from the hyperpolicy νθ , or as the perturbation according to the realization ϵ of a sub-gaussian noise σP of
the parameter configuration of the deterministic policy µθ.

Using the first characterization we can write:
JPpθq“ E

θ1„νθ

“

JDpθ1q‰

. (56)

Equivalently, we can write:
JPpθq“ E

ϵ„Φ
rJDpθ`ϵqs . (57)
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By using the latter, we have that:
›

›∇2
θJPpθq›

›

2
“

›

›

›

›

∇2
θ E
ϵ„g

rJDpθ`ϵqs
›

›

›

›

2

“
›

›

›

›

E
ϵ„g

“

∇2
θJDpθ`ϵq‰

›

›

›

›

2

ď E
ϵ„g

“
›

›∇2
θJDpθ`ϵq›

›

2

‰

ďL2, (58)
where the last inequality simply follows from Assumption E.1.

By using Equation (56), instead, we have the following:
∇2

θJPpθq“∇2
θ E
θ1„νθ

“

JDpθ1q‰

“
ż

∇2
θ

`

νθpθ1qJDpθ1q˘

dθ1

“
ż

∇θ

`

∇θνθpθ1qJDpθ1q`νθpθ1q∇θJDpθ1q˘

dθ1

“
ż

∇θ

`

νθpθ1q`

∇θ logνθpθ1qJDpθ1q˘˘

dθ1

“
ż

∇θνθpθ1q∇θ logνθpθ1qJDpθ1q`νθpθ1q
ˆ

∇2
θ logνθpθ1qJDpθ1q`∇θ logνθpθ1q∇θJDpθ1q

˙

dθ1

“
ż

νθpθ1q
ˆ

∇θ logνθpθ1q∇θ logνθpθ1qJJDpθ1q`∇2
θ logνθpθ1qJDpθ1q

˙

dθ1

“ E
θ1„νθ

„ˆ

∇θ logνθpθ1q∇θ logνθpθ1qJ `∇2
θ logνθpθ1q

˙

JDpθ1q
ȷ

.

Now, given the previous argument, it follows that:
›

›∇2
θJPpθq›

›

2
“

›

›

›

›

E
θ1„νθ

„ˆ

∇θ logνθpθ1q∇θ logνθpθ1qJ `∇2
θ logνθpθ1q

˙

JDpθ1q
ȷ

›

›

›

›

2

ď E
θ1„νθ

”

›

›∇θ logνθpθ1q›

›

2

2

ˇ

ˇJDpθ1qˇ

ˇ`›

›∇2
θ logνθpθ1q›

›

2

ˇ

ˇJDpθ1qˇ

ˇ

ı

ď Rmaxp1´γT q
1´γ

pξ2 `ξ3q . (59)

We employ Lemma E.4 to bound ξ2 and ξ3.

Theorem D.4 (Global convergence of PGPE - Fixed σP). Under Assumptions 6.1 (with J: “JP), 4.1, 4.3, 4.5, with
a suitable constant step size, to guarantee J˚

D ´ErJDpθKqsďϵ`β`3LP

?
dΘσP , where 3LP

?
dΘσP “Op?

dΘσPp1´
γq´2q the sample complexity of PGPE is at most:

NK“ rO

ˆ

α4d2Θ
σ4

Pp1´γq4ϵ3
˙

. (60)

Furthermore, under Assumptions 4.2 and 4.4, the same guarantee is obtained with a sample complexity at most:

NK“ rO

ˆ

α4dΘ
σ2

Pp1´γq5ϵ3
˙

. (61)

Proof. We first apply Theorem F.1 with J: “JP, recalling that the assumptions enforced in the statement entail those of
Theorem F.1:

JP
˚ ´ErJPpθKqsďϵ`β with NK“ 16α2L2,PVP

ϵ3
log

maxt0,JP
˚ ´JPpθ0q´βu
ϵ3

. (62)

By Theorem 5.1 (i) and (ii), we have that:

J˚
D ´E rJDpθKqs“pJ˚

D ´JP
˚q`E rJPpθKq´JDpθKqs`JP

˚ ´ErJPpθKqsďJP
˚ ´ErJPpθKqs`3LJ

a

dΘσP. (63)
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After renaming LP :“LJ for the sake of exposition, the result follows by replacing in the sample complexity NK the
bounds on LP , L2,P, and VP from Table 2 under the two set of assumptions and retaining only the desired dependences with
the Big- rO notation.

Theorem D.5 (Global convergence of PGPE - ϵ-adaptive σP). Under Assumptions 6.1 (with J: “JP), 4.1, 4.3, 4.5,
with a suitable constant step size and σP “ ϵ

6LP

?
dΘ

“Opϵp1´γq2d´1{2
Θ q, to guarantee J˚

D ´ErJDpθKqsďϵ`β the sample
complexity of PGPE is at most:

NK“ rO

ˆ

α4d4Θ
p1´γq12ϵ7

˙

. (64)

Furthermore, under Assumptions 4.2 and 4.4, the same guarantee is obtained with a sample complexity at most:

NK“ rO

ˆ

α4d2Θ
p1´γq9ϵ5

˙

. (65)

Proof. We apply Theorem D.4 with ϵÐϵ{2 and set σP so that:

3LJ

a

dΘσP “ ϵ

2
ùñ σP “ ϵ

6LJ

?
dΘ

. (66)

After renaming LP :“LJ for the sake of exposition, the result follows substituting this value in the sample complexity and
bounding the constant LP as in Table 2.

Lemma D.6 (Variance of p∇θJApθq bounded). Under Assumptions 4.3 and 4.5, the variance the GPOMDP estimator with
batch size N is bounded for every θPΘ as:

Var
”

p∇θJApθq
ı

ď R2
maxξ2p1´γT q
Np1´γq3 ď R2

maxξ2
Np1´γq3 .

with ξ2 ďcdAσ
´2
A L2

µ.

Proof. It follows from Lemma 29 of Papini et al. (2022) and from the application of Lemma E.3 to bound ξ2.

Lemma D.7 (Bounded JA Hessian). Under Assumptions 4.3, 4.4, and 4.5 @θPΘ it holds that:
›

›∇2
θJApθq›

›

2
ď Rmax

`

1´γT`1
˘

p1´γq2 pυ2 `υ3q,
where υ2 ďcdAσ´2AL

2
µ and υ3 ďcσ´2

A L2
µ `c

?
dAσ

´1
A L2,µ. Furthermore, under Assumptions 4.1, 4.3, 4.2, and 4.4, @θPΘ

it holds that:
›

›∇2
θJApθq›

›

2
ďL2,

where L2 is bounded in Lemma E.2.

Proof. Under Assumption 4.5, by a slight modification of the proof of Lemma 4.4 by Yuan et al. (2022) (in which we
consider a finite horizon T ), it follows that:

›

›∇2
θJApθq›

›

2
ď Rmax

`

1´pT `1qγT `TγT`1
˘

p1´γq2 pυ1 `υ2qď Rmax

`

1´γT
˘

p1´γq2 pυ1 `υ2q.

As in the proof of Theorem E.1, we introduce the following convenient expression for the trajectory density function having
fixed a sequence of noise ϵ„ΦT

dA
:

pDpτ ;µ
θ

`ϵq“ρ0psτ,0q
T´1
ź

t“0

ppsτ,t`1|sτ,t,µθpsτ,tq`ϵtq.

This allows us to express the function JApθq, for a generic θPΘ, as:

JApθq“ E
ϵ„ΦT

dA

«

ż

τ

pDpτ ;µ
θ

`ϵq
T´1
ÿ

t“0

γtrpsτ,t,µθpsτ,tq`ϵtqdτ
ff

.
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With a slight abuse of notation, let us call JDpµθ `ϵq the following quantity:

JDpµθ `ϵq :“
ż

τ

pDpτ ;µ
θ

`ϵq
T´1
ÿ

t“0

γtrpsτ,t,µθpsτ,tq`ϵtqdτ.

Now, considering the norm of the hessian w.r.t. θ of JA, we have that:
›

›∇2
θJApθq›

›

2
ď E

ϵ„ΦT
dA

”

›

›∇2
θJDpµθ `ϵq›

›

2

ı

ďL2,

which follows from Assumptions E.1.

Theorem D.8 (Global convergence of GPOMDP - Fixed σA). Under Assumptions 6.1 (with J: “JA), 4.1, 4.3, 4.4, 4.5, with
a suitable constant step size, to guarantee J˚

D ´ErJDpθKqsďϵ`β`3LA

?
dAσA, where 3LA

?
dAσA “Op?

dAσAp1´
γq´2q the sample complexity of GPOMDP is at most:

NK“ rO

ˆ

α4d2A
σ4

Ap1´γq5ϵ3
˙

. (67)

Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity at most:

NK“ rO

ˆ

α4dA
σ2

Ap1´γq6ϵ3
˙

. (68)

Proof. We first apply Theorem F.1 with J: “JA, recalling that the assumptions enforced in the statement entail those of
Theorem F.1:

JA
˚ ´ErJApθKqsďϵ`β with NK“ 16α2L2,AVA

ϵ3
log

maxt0,JA
˚ ´JApθ0q´βu
ϵ3

. (69)

By Theorem 5.2 (i) and (ii), we have that:

J˚
D ´E rJDpθKqs“pJ˚

D ´JA
˚q`E rJApθKq´JDpθKqs`JA

˚ ´ErJApθKqsďJA
˚ ´ErJApθKqs`3L

a

dAσA. (70)
After renaming LA :“L for the sake of exposition, the result follows by replacing in the sample complexity NK the bounds
on LA, L2,A, and VA from Table 2 under the two set of assumptions and retaining only the desired dependences with the
Big- rO notation.

Theorem D.9 (Global convergence of GPOMDP - ϵ-adaptive σP). Under Assumptions 6.1 (with J: “JA), 4.1, 4.3, 4.4,
4.5, with a suitable constant step size and setting σA “ ϵ

6LA

?
dA

“Opϵp1´γq2d´1{2
A q, to guarantee J˚

D ´ErJDpθKqsďϵ`β

the sample complexity of GPOMDP is at most:

NK“ rO

ˆ

α4d4A
p1´γq13ϵ7

˙

. (71)

Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity at most:

NK“ rO

ˆ

α4d2A
p1´γq10ϵ5

˙

. (72)

Proof. We apply Theorem D.8 with ϵÐϵ{2 and set σA so that:

3L
a

dAσA “ ϵ

2
ùñ σA “ ϵ

6L
?
dA

. (73)

After renaming LA :“L for the sake of exposition, the result follows substituting this value in the sample complexity and
bounding the constant LA as in Table 2.

D.3. Proofs from Section 7.1

Lemma D.10. Under Assumptions 4.1, 4.3, 4.2, 4.4, 7.1, and using a hyperpolicy complying with Definition 3.2, @θPΘ it
holds that:

J˚
D ´JDpθqďαD}∇θJPpθq}2 `βD `αDL2σP

a

dΘ.
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Proof. We start by observing that
JPpθq“ E

θ1„νθ

“

JDpθ1q‰“ E
ϵ„Φ

rJDpθ`ϵqs .

From this fact, we can proceed as follows:
∇θJPpθq“∇θ E

ϵ„Φ
rJDpθ`ϵqs

“ E
ϵ„Φ

r∇θJDpθ`ϵqs .

For what follows, we define θ̃ϵ as an intermediate parameter configuration between θ and θ`ϵ. More formally, let
λPr0,1s, then θ̃ϵ “λθ`p1´λqpθ`ϵq. We can proceed by rewriting the term ∇θJDpθ`ϵq exploiting the first-order
Taylor expansion centered in ϵ: there exists a λPr0,1s such that

E
ϵ„g

r∇θJDpθ`ϵqs“ E
ϵ„g

”

∇θJDpθq`ϵT∇2
θJDpθ̃ϵq

ı

“∇θJDpθq` E
ϵ„Φ

”

ϵT∇2
θJDpθ̃ϵq

ı

.

Now, we can consider the 2-norm of the gradient:

}∇θJPpθq}“
›

›

›
∇θJDpθq` E

ϵ„Φ

”

ϵT∇2
θJDpθ̃ϵq

ı
›

›

›

2
ě}∇θJDpθq}2 ´

›

›

›
E

ϵ„Φ

”

ϵT∇2
θJDpθ̃ϵq

ı
›

›

›

2

ě}∇θJDpθq}2 ´L2 E
ϵ„Φ

r}ϵ}2s (74)

ě 1

αD
pJ˚

D ´JDpθqq´ βD

αD
´L2 E

ϵ„Φ
r}ϵ}2s (75)

ě 1

αD
pJ˚

D ´JDpθqq´ βD

αD
´L2σP

a

dΘ,

where Equation (74) follows from Assumption E.1, and Equation (75) follows from Assumption 6.1. Thus, it simply follows
that:

J˚
D ´JDpθqďαD}∇θJPpθq}2 `βD `αDL2σP

a

dΘ.

Theorem 7.1 (Inherited weak gradient domination for JP). Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every θPΘ:

JP
˚ ´JPpθqďαD}∇θJPpθq}2 `βD `pαDL2 `LP qσP

a

dΘ,

where L2 “Opp1´γq´3q (full expression in Lemma E.2).

Proof. We recall that under the assumptions in the statement, the results of Lemma D.10 and of Theorem 5.1 hold In
particular, we need the result from Theorem 5.1, saying that @θPΘ it holds that

JPpθq´LJσP

a

dΘ ďJDpθqďJPpθq`LJσP

a

dΘ. (76)
Thus, using the result of Lemma D.10, we need to work on the left-hand side of the following inequality:

J˚
D ´JDpθqďαD}∇θJPpθq}2 `βD `αDL2σP

a

dΘ.

Moreover, by definition of JP, we have that J˚
D ěJP

˚. Thus, it holds that:
J˚

D ´JDpθqěJP
˚ ´JPpθq

ěJP
˚ ´JPpθq´LJ

a

dΘ,

where the last line follows from Line (76). We rename LP :“LJ in the statement.

Lemma D.11. Under Assumptions 7.1, 4.1, 4.3, 4.2, 4.4, using a policy complying with Definition 3.2, @θPΘ, it holds that:

J˚
D ´JDpθqďαD}∇θJApθq}2 `βD `αDψσA

a

dA,
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where

ψ“Lµ

˜

L2
pRmaxγ

p1´γq4 ` pLrLp `RmaxL2,p `LpLrγq
p1´γq2 ` L2,r

1´γ

¸

p1´γT q.

Proof. As in the proof of Theorem E.1, we introduce the following convenient expression for the trajectory density function
having fixed a sequence of noise ϵ„ΦT

dA
:

pDpτ ;µ
θ

`ϵq“ρ0psτ,0q
T´1
ź

t“0

ppsτ,t`1|sτ,t,µθpsτ,tq`ϵtq. (77)

Also in this case, we denote with pDpτ0:l;µθ
`ϵq the density function of a trajectory prefix of length l:

pDpτ0:l;µθ
`ϵq“ρ0psτ,0q

l´1
ź

t“0

ppsτ,t`1|sτ,t,µθpsτ,tq`ϵtq. (78)

From the proof of Proposition E.1, considering a generic parametric configuration θPΘ, we can write the AB performance
index JApθq as:

JApθq“ E
ϵ„ΦT

dA

«

ż

τ

pDpτ ;µ
θ

`ϵq
T´1
ÿ

t“0

γtrpst,µθpstq`ϵtqdτ
ff

“ E
ϵ„ΦT

dA

»

—

—

—

—

–

T´1
ÿ

t“0

ż

τ0:t

pDpτ0:t;µθ
`ϵqγtrpst,µθpstq`ϵtqdτ0:t

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

“:fpϵq

fi

ffi

ffi

ffi

ffi

fl

,

moreover, by using the Taylor expansion centered in ϵ“0, for rϵ“xϵ (for some xPr0,1s) the following holds:

JApθq“ E
ϵ„ΦT

dA

«

fp0q`
T´1
ÿ

t“0

ϵJ
t ∇ϵtfpϵq|ϵ“rϵ

ff

“JDpθq`
T´1
ÿ

t“0

E
ϵ„ΦT

dA

rϵJ
t ∇ϵtfpϵq|ϵ“rϵs.

Here, we are interested in the gradient of JA:

∇θJApθq“∇θJDpθq`
T´1
ÿ

t“0

∇θ E
ϵ„ΦT

dA

rϵJ
t ∇ϵtfpϵq|ϵ“rϵs

“∇θJDpθq`
T´1
ÿ

t“0

E
ϵ„ΦT

dA

rϵJ
t ∇θ∇ϵtfpϵq|ϵ“rϵs.

Now, considering the norm of the gradient we have:

}∇θJApθq}2 ě}∇θJDpθq}2 ´
›

›

›

›

›

T´1
ÿ

t“0

E
ϵ„ΦT

dA

rϵJ
t ∇θ∇ϵtfpϵq|ϵ“rϵs

›

›

›

›

›

2

ě 1

αD
pJ˚

D ´JDpθqq´ βD

αD
´

›

›

›

›

›

T´1
ÿ

t“0

E
ϵ„ΦT

dA

rϵJ
t ∇θ∇ϵtfpϵq|ϵ“rϵs

›

›

›

›

›

2

ě 1

αD
pJ˚

D ´JDpθqq´ βD

αD
´

T´1
ÿ

t“0

E
ϵt„ΦdA

r}ϵt}22s1{2 E
ϵ„ΦT

dA

r}∇θ∇ϵtfpϵq|ϵ“rϵ}22s1{2

ě 1

αD
pJ˚

D ´JDpθqq´ βD

αD
´σA

a

dA

T´1
ÿ

t“0

E
ϵ„ΦT

dA

r}∇θ∇ϵtfpϵq|ϵ“rϵ}22s1{2,
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where the second inequality is by Assumption 7.1. Re-arranging the last inequality, we have:

J˚
D ´JDpθqďαD }∇θJApθq}2 `βD `αDσA

a

dA

T´1
ÿ

t“0

E
ϵ„ΦT

dA

r}∇θ∇ϵtfpϵq|ϵ“rϵ}22s1{2.

In order to conclude the proof, we need to bound the term
řT´1

t“0 Eϵ„ΦT
dA

r}∇θ∇ϵtfpϵq|ϵ“rϵ}22s1{2. From the proof of
Proposition E.1, for any index kPJT K, we have that:

∇ϵkfpϵq“ E
τ„pDp¨;µ

θ
`ϵq

«

T´1
ÿ

t“k

γtrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkq`γk∇ϵkrpsk,µθpskq`ϵkq
ff

,

from which we can derive ∇θ∇ϵkfpϵq as follows:
∇θ∇ϵkfpϵq

“∇θ

ż

τ

pDpτ ;µ
θ

`ϵq
˜

T´1
ÿ

t“k

γtrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkq`γk∇ϵkrpsk,µθpskq`ϵkq
¸

dτ

“∇θ

ż

τ

pDpτ ;µ
θ

`ϵq
T´1
ÿ

t“k

γtrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkqdτ
loooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooon

(i)

`∇θ

ż

τ

pDpτ ;µ
θ

`ϵqγk∇ϵkrpsk,µθpskq`ϵkqdτ
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

(ii)

.

We will consider the terms (i) and (ii) separately. However, we first need to clarify what happens when we try to compute
the gradient w.r.t. θ and ϵt, for a generic tPt0, . . . ,T ´1u. To this purpose let gp¨,aq be a generic differentiable function of
the action a“µθpstq`ϵt. The norm of its gradient w.r.t. ϵt can be written as:

}∇ϵtgp¨,aq|a“µθpstq`ϵt}2 “}∇agp¨,aq|a“µθpstq`ϵt∇ϵtpµθpstq`ϵtq}2
“}∇agp¨,aq|a“µθpstq`ϵt}2.

On the other hand, the norm of the gradient of g w.r.t. θ can be written as:
}∇θgp¨,aq|a“µθpstq`ϵt}2 “}∇agp¨,aq|a“µθpstq`ϵt∇θpµθpstq`ϵtq}2

“}∇agp¨,aq|a“µθpstq`ϵt∇θµθpstq}2.
Moreover, the norm of the gradient w.r.t. θ of the gradient of g w.r.t. ϵt, can be written as:

}∇θ∇ϵtgp¨,aq|a“µθpstq`ϵt}2 “}∇θ∇agp¨,aq|a“µθpstq`ϵt}2
“}∇2

agp¨,aq|a“µθ`ϵt∇θµθpstq}2.
Having said this, we can proceed by analyzing the terms (i) and (ii).

The term (i) can be rewritten as:

(i)“∇θ

ż

τ

pDpτ ;µ
θ

`ϵq
T´1
ÿ

t“k

γtrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkqdτ

“
T´1
ÿ

t“k

γt∇θ

ż

τ0:t

pDpτ0:t;µθ
`ϵqrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkqdτ0:t

“
T´1
ÿ

t“k

γt E
τ0:t„pDp¨;µ

θ
`ϵq

«

∇θ logpDpτ0:t,µθ `ϵqrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkq

`∇θrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkq

`rpst,µθpstq`ϵtq∇θ∇ϵk logppsk`1|sk,µθpskq`ϵkq
ff
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“
T´1
ÿ

t“k

γt E
τ0:t„pDp¨;µ

θ
`ϵq

«

t´1
ÿ

j“0

∇θ logppsj`1|sj ,µθpsjq`ϵjqrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkq

`∇θrpst,µθpstq`ϵtq∇ϵk logppsk`1|sk,µθpskq`ϵkq

`rpst,µθpstq`ϵtq∇θ∇ϵk logppsk`1|sk,µθpskq`ϵkq
ff

.

We need to bound its norm, thus we can proceed as follows:
}piq}2
ď

T´1
ÿ

t“k

γt E
τ0:t„pDp¨;µ

θ
`ϵq

«

t´1
ÿ

j“0

}∇θ logppsj`1|sj ,µθpsjq`ϵjq}2 |rpst,µθpstq`ϵtq|}∇ϵk logppsk`1|sk,µθpskq`ϵkq}2

`}∇θrpst,µθpstq`ϵtq}2 }∇ϵk logppsk`1|sk,µθpskq`ϵkq}2
`|rpst,µθpstq`ϵtq|}∇θ∇ϵk logppsk`1|sk,µθpskq`ϵkq}2

ff

ďLµL
2
logpRmax

T´1
ÿ

t“k

tγt `pLµLrLlogp `RmaxLµL2,logpq
T´1
ÿ

t“k

γt

“LµL
2
logpRmaxγ

ˆ

1´TγT´1 `pT ´1qγT
p1´γq2 ´ 1´kγk´1 `pk´1qγk

p1´γq2
˙

`pLµLrLlogp `RmaxLµL2,logpqγ
k ´γT

1´γ

ďLµL
2
logpRmaxγ

ˆ

1´γT

p1´γq2 ´ 1´kγk´1

p1´γq2
˙

`pLµLrLlogp `RmaxLµL2,logpqγ
k ´γT

1´γ

ďLµL
2
logpRmaxγ

ˆ

1´γT

p1´γq2 ´ 1´kγk´1

p1´γq2
˙

`pLµLrLlogp `RmaxLµL2,logpqγ
k ´γT

1´γ
.

Finally, we have to sum over kPJT K:
T´1
ÿ

k“0

}piq}2 ď
T´1
ÿ

k“0

LµL
2
logpRmaxγ

ˆ

1´γT

p1´γq2 ´ 1´kγk´1

p1´γq2
˙

`pLµLrLlogp `RmaxLµL2,logpqγ
k ´γT

1´γ

“LµL
2
logpRmaxγ

ˆ

T
1´γT

p1´γq2 ´ T

p1´γq2 ` 1´γT

p1´γq4 ´ TγT´1

p1´γq3
˙

`pLµLrLlogp `RmaxLµL2,logpq1´2γT `γT`1

p1´γq2

ďLµL
2
logpRmaxγ

1´γT

p1´γq4 `pLrLlogp `RmaxL2,logpqLµ
1´γT

p1´γq2 .

The term (ii) can be rewritten as:

(ii)“∇θ

ż

τ

pDpτ ;µ
θ

`ϵqγk∇ϵkrpsk,µθpskq`ϵkqdτ

“∇θ

ż

τ0:k

pDpτ0:k;µθ
`ϵqγk∇ϵkrpsk,µθpskq`ϵkqdτ0:k

“γk
ż

τ0:k

pDpτ0:k;µθ
`ϵq

´

∇θ logpDpτ0:k;µθ
`ϵq∇ϵkrpsk,µθpskq`ϵkq`∇θ∇ϵkrpsk,µθpskq`ϵkq

¯

“γk E
τ0:k„pDp¨;µ

θ
`ϵq

«

k´1
ÿ

j“0

∇θ logppsj`1|sj ,µθpsjq`ϵjq∇ϵkrpsk,µθpskq`ϵkq`∇θ∇ϵkrpsk,µθpskq`ϵkq
ff

.

We need to bound its norm, thus we can proceed as follows:

}(ii)}2 ďγk E
τ0:k„pDp¨;µ

θ
`ϵq

«

k´1
ÿ

j“0

}∇θ logppsj`1|sj ,µθpsjq`ϵjq}2 }∇ϵkrpsk,µθpskq`ϵkq}2
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`}∇θ∇ϵkrpsk,µθpskq`ϵkq}2
ff

ďLµLpLrkγ
k `LµL2,rγ

k.

Finally, we have to sum over kPJT K:
T´1
ÿ

k“0

}(ii)}2 “LµLpLr

T´1
ÿ

k“0

kγk `LµL2,r

T´1
ÿ

k“0

γk

ďLµLpLrγ
1´TγT´1 `pT ´1qγT

p1´γq2 `LµL2,r
1´γT

1´γ

ďLµLpLrγ
1´γT

p1´γq2 `LµL2,r
1´γT

1´γ
.

Putting together the bounds on (i) and (ii):
T´1
ÿ

t“0

E
ϵ„ΦT

dA

r}∇θ∇ϵtfpϵq|ϵ“rϵ}22s1{2

ď
T´1
ÿ

k“0

}piq}2 `
T´1
ÿ

k“0

}(ii)}2

ďLµL
2
pRmaxγ

1´γT

p1´γq4 `pLrLp `RmaxL2,pqLµ
1´γT

p1´γq2

`LµLpLrγ
1´γT

p1´γq2 `LµL2,r
1´γT

1´γ

ďLµ

˜

L2
pRmaxγ

p1´γq4 ` pLrLp `RmaxL2,p `LpLrγq
p1´γq2 ` L2,r

1´γ

¸

p1´γT q,

which concludes the proof.

Theorem 7.2 (Inherited weak gradient domination on JA). Under Assumptions 4.1, 4.2, 4.3, 4.4, 7.1, for every θPΘ:

JA
˚ ´JApθqďαD}∇θJApθq}2 `βD `pαDψ`LAqσA

a

dA,

where ψ“Opp1´γq´4q (full expression in the proof).

Proof. This proof directly follows from the combination of Lemma D.11 and Theorem E.1, and we can proceed as in the
proof of Theorem 7.1. Indeed, recalling that L is

L“ γ`γ1`T pT ´1q´TγT

p1´γq2 LlogpRmax ` 1´γT

1´γ
Lr,

from Theorem E.1, it follows that:
JApθq´LσA

a

dA ďJDpθqďJApθq`LσA

a

dA. (79)
Analogously to the proof of Theorem 7.1, it is useful to notice that by definition of JA, we have J˚

D ěJA
˚. Thus, it holds

that:
J˚

D ´JDpθqěJA
˚ ´JDpθq

ěJA
˚ ´JApθq´LσA

a

dA,

where the last line follows from Line (79). We rename LA :“L in the statement.

Theorem D.12 (Global convergence of PGPE - Inherited WGD). Consider the PGPE algorithm. Under Assumptions 4.1,
4.3, 4.2, 4.4, 4.5, 7.1, with a suitable constant step size and setting σP “ ϵ

pαDL2`4LJ q
?
dΘ

“Opϵp1´γq3d´1{2
Θ q, to guarantee

J˚
D ´ErJDpθKqsďϵ`βD the sample complexity is at most:

NK“ rO

ˆ

α6
Dd

2
Θ

p1´γq11ϵ5
˙

. (80)
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Proof. Simply apply Theorem F.1 and Theorem 5.1 to obtain a guarantee of J˚
D ´ErJDpθKqsďϵ{2`βD `pαDL2 `

LJq?
dΘσP `3LJ

?
dΘσP “ϵ`βD `pαDL2 `4LJq?

dΘσP. Then, we set σP to ensure that pαDL2 `4LJq?
dΘσP “ϵ{2.

Theorem D.13 (Global convergence of GPOMDP - Inherited WGD). Consider the GPOMDP algorithm. Under Assump-
tions 4.1, 4.3, 4.2, 4.4, 4.5, 7.1, with a suitable constant step size and setting σA “ ϵ

pαDΨ`4Lq
?
dA

“Opϵp1´γq4d´1{2
A q, to

guarantee J˚
D ´ErJDpθKqsďϵ`βD the sample complexity is at most:

NK“ rO

ˆ

α6
Dd

2
A

p1´γq14ϵ5
˙

. (81)

Proof. Simply apply Theorem F.1 and Theorem 5.2 to obtain a guarantee of J˚
D ´ErJDpθKqsďϵ{2`βD `pαDΨ`

Lq?
dΘσA `3L

?
dΘσA “ϵ`βD `pαDΨ`4Lq?

dΘσA. Then, we set σA to ensure that pαDΨ`4Lq?
dAσA “ϵ{2.

D.4. Proofs from Section 7.2

In this section, we focus on AB exploration with white-noise policies (Definition 3.2), and give the proofs that were omitted
in Section 7.2. We denote by υθp¨, ¨q the state-action distribution induced by the (stochastic) policy πθ, and, with some
abuse of notation, υθp¨q to denote the corresponding state distribution. We denote by Aθ :SˆAÑR the advantage function
of πθ (for the standard definitions, see Sutton & Barto, 2018).

We first have to give a formal characterization of ϵbias. Equivalent definitions appeared in (Liu et al., 2020; Ding et al., 2022;
Yuan et al., 2022), but the concept dates back at least to (Peters et al., 2005).

Definition D.1. Let ℓpw;s,a,θq“`

Aθps,aq´p1´γqwJ∇θ logπθpa|sq˘2
, and w‹pθq“

argminwPRdΘ Es,a„υθ
rℓpw;s,a,θqs. We define ϵbias as the smallest positive constant such that, for all θPΘ,

Es,a„υθ‹ rℓpw‹pθq;s,a,θqsďϵbias, where θ‹ PargmaxJApθq.

We begin by showing that white-noise policies are Fisher-non-degenerate, in the sense of (Ding et al., 2022). First we need
to introduce the concept of Fisher information matrix, that for stochastic policies is defined as (Kakade, 2001):

F pθq :“ E
s,a„υθ

r∇θ logπθpa|sq∇θ logπθpa|sqJs. (82)

Lemma D.14. Let πθ be a white-noise policy (Definition 3.2). Under Assumption 7.2, for all θPΘ, F pθqľλF I , where

λF :“ λE
σ2
A

.

Proof. Let Σ“Eϵ„ΦdA
rϵϵJs be the covariance matrix of the noise, which by definition has λmaxpΣqďσ2

A. By a simple
change of variable and Cramer-Rao’s bound:

F pθq“ E
s,a„υθ

r∇θ logπθpa|sq∇θ logπθpa|sqJs

“ E
s„υθ

„

∇θµθpsq E
a„πθp¨|sq

“

∇ϵ logϕprϵq|
rϵ“a´µθpsq∇ϵ logϕprϵqJ|

rϵ“a´µθpsq

‰

∇θµθpsqJ

ȷ

“ E
s„υθ

„

∇θµθpsq E
ϵ„ΦdA

“

∇ϵ logϕpϵq∇ϵ logϕpϵqJ
‰

∇θµθpsqJ

ȷ

ľ E
s„υθ

“

∇θµθpsqΣ´1∇θµθpsqJ
‰

(Cramer-Rao)

ľ
1

λmaxpΣq E
s„υθ

“

∇θµθpsq∇θµθpsqJ
‰

ľ
λE
σ2
A

I.

We can then use Corollary 4.14 by Yuan et al. (2022), itself a refinement of Lemma 4.7 by Ding et al. (2022), to prove that
JA enjoys the WGD property.
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Theorem 7.3 (Policy-induced weak gradient domination). Under Assumptions 4.5 and 7.2, we have:

JA
˚ ´JApθqďC

?
dAσA
λE

}∇θJApθq}2 `
?
ϵbias

1´γ
,

for some numerical constant Cą0. Thus, Assumption 6.1 (:=A) is satisfied with α“C
?
dAσA

λE
and β“

?
ϵbias
1´γ .

Proof. Corollary 4.14 by Yuan et al. (2022) tells us that, under Assumption D.1,

JA
˚ ´JApθqď ξ

λF
}∇θJApθq}`

?
ϵbias

1´γ
,

whenever F pθqľλF I and Ea„πθp¨|sqr}∇θ logπθpa|sq}2sďξ2 hold for all θPΘ and sPS. By Lemma D.14, and the fact
that ξ“?

cdAσ
´1
A is a valid choice under Assumption 4.5, the previous display holds with

ξ

λF
ď

?
cdAσ

´1
A

λEσ
´2
A

“
?
cdAσA
λE

,

the proof is concluded by letting C“?
c, where c is the constant from Assumption 4.5.

Finally, we can use the WGD property just established, with its values of α and β, to prove special cases of Theorems D.8
and D.9. The key difference with respect to the other sample complexity results presented in the paper is that the amount of
noise σA has an effect on the α parameter of the WGD property.

We first consider the case of a generic σA:

Theorem D.15. Consider the GPOMDP algorithm. Under Assumptions 4.1, 4.3, 4.4, 4.5, 7.2, and D.1, with a suitable
constant step size, to guarantee J˚

D ´ErJDpθKqsďϵ`
?
ϵbias
1´γ `3L

?
dAσA, where 3L

?
dAσA “Op?

dAσAp1´γq´2q the
sample complexity is at most:

NK“ rO

ˆ

d4A
λ4Ep1´γq5ϵ3

˙

. (83)

Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity of at most:

NK“ rO

ˆ

d3Aσ
2
A

λ4Ep1´γq6ϵ3
˙

. (84)

Proof. By Theorem D.8 and Lemma 7.3.

The first bound seem to have no dependence on σA. However, a complex dependence is hidden in λ4E . Also, it may
seem that σA »0 is a good choice, especially for the second bound. However, λE can be very large (or infinite) for a
(quasi-)deterministic policy.

If we instead set σA as in Section 6 in order to converge to a good deterministic policy (which, of course, completely ignores
the complex dependencies of λE and ϵbias on σA), we obtain the following:

Theorem D.16. Consider the GPOMDP algorithm. Under Assumptions 4.1, 4.3, 4.4, 4.5, 7.2, and D.1 with a suitable
constant step size and setting σA “ ϵ

6L
?
dA

“Opϵp1´γq2d´1{2
A q, to guarantee J˚

D ´ErJDpθKqsďϵ`
?
ϵbias
1´γ the sample

complexity is at most:

NK“ rO

ˆ

d6A
λ4Ep1´γq13ϵ3

˙

. (85)

Furthermore, under Assumption 4.2, the same guarantee is obtained with a sample complexity of at most:

NK“ rO

ˆ

d4A
λ4Ep1´γq10ϵ

˙

. (86)

Proof. By Theorem D.9 and Lemma 7.3.

The apparently better sample complexity w.r.t. Theorem D.9 is easily explained: using a small σ makes the α parameter of
WGD from Lemma 7.3 smaller if we ignore the effect of λE , and smaller α yields faster convergence. However, Equation (86)
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clearly shows that λE cannot be ignored. In particular, λE must be Opσ1{4
A q not to violate the classic Ωpϵ´2q lower bound

on the sample complexity (Azar et al., 2013). This may be of independent interest.

E. Assumptions’ Implications
Lemma E.1 (L and LJ characterization). Assumption 4.1 implies Assumption 5.2 with:

Lt ď γk`1 ´γT

1´γ
LpRmax `γkLr, (87)

Lď γp1´γT q
p1´γq2 LpRmax ` 1´γT

1´γ
Lr ď γLpRmax

p1´γq2 ` Lr

1´γ
. (88)

Assumption 4.1 and 4.3 imply Assumption 5.1 with LJ ďLLµ.

Proof. In AB exploration, we introduce the following convenient expression for the trajectory density function having fixed
a sequence of noise ϵ:

pDpτ ;µ`ϵq“ρ0psτ,0q
T´1
ź

t“0

ppsτ,t`1|sτ,t,µtpsτ,tq`ϵtq. (89)

Furthermore, we denote with pDpτ0:l;µ`ϵq the density function of a trajectory prefix of length l:

pDpτ0:l;µ`ϵq“ρ0psτ,0q
l´1
ź

t“0

ppsτ,t`1|sτ,t,µtpsτ,tq`ϵtq. (90)

Let us decompose µ1 “µ1 `ϵ. We have:

JDpµ1q“
ż

τ

pDpτ ;µ`ϵq
T´1
ÿ

t“0

γtrpst,µtpstq`ϵtqdτ

“
T´1
ÿ

t“0

ż

τ0:t

pDpτ0:t;µ`ϵqγtrpst,µtpstq`ϵtqdτ0:t
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“:fpϵq

.

Note that given the definition of fpϵq, we have that fp0dAq“JDpµq. Using Taylor expansion, we have for rϵ“xϵ, for some
xPr0,1s:

JDpµ1q“fpϵq
“fp0dAq`ϵJ∇ϵfpϵq|ϵ“rϵ

“JDpµq`
T´1
ÿ

t“0

ϵJ
t ∇ϵtfpϵq|ϵ“rϵ

ďJDpµq`
T´1
ÿ

t“0

}ϵt}2}∇ϵtfpϵq|ϵ“rϵ}2.

We want to find a bound for the }∇ϵtfpϵq|ϵ“rϵ}22 which is different for every t. This will result in the Lipschitz constant Lt.
We have for kPJ0,T ´1K:

›

›∇ϵk
fpϵq›

›

2
ď E

τ„pDp¨;µ`ϵq

«

T´1
ÿ

t“0

›

›∇ϵk logpDpτ0:t;µ`ϵq›

›

2
γt|rpst,µtpstq`ϵtq|`

T´1
ÿ

t“0

γt}∇ϵkrpst,µtpstq`ϵtq}2
ff

ď E
τ„pDp¨;µ`ϵq

«

T´1
ÿ

t“0

γt|rpst,µtpstq`ϵtq|
t´1
ÿ

l“0

}∇ϵkppsl`1|sl,µlpslq`ϵlq}2 `
T´1
ÿ

t“0

γt}∇ϵkrpst,µtpstq`ϵtq}2
ff

“ E
τ„pDp¨;µ`ϵq

«

T´1
ÿ

t“k`1

γt|rpst,µtpstq`ϵtq|}∇ϵkppsk`1|sk,µkpskq`ϵkq}2 `γk}∇ϵkrpsk,µkpskq`ϵkq}2
ff
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ď
T´1
ÿ

t“k`1

γtRmaxLp `γkLr

“ γk`1 ´γT

1´γ
LpRmax `γkLr “:Lk.

Thus, we have:
T´1
ÿ

k“0

Lt “
T´1
ÿ

k“0

γk`1 ´γT

1´γ
LpRmax `γkLr

“ γ`γ1`T pT ´1q´TγT

p1´γq2 LpRmax ` 1´γT

1´γ
Lr

ď γp1´γT q
p1´γq2 LpRmax ` p1´γT q

1´γ
Lr “:L.

For the PB exploration, we consider the trajectory density function:

pApτ ;θ`ϵq“ρ0psτ,0q
T´1
ź

t“0

ppsτ,t`1|sτ,t,µθ`ϵpsτ,tqq, (91)

and the corresponding version for a trajectory prefix:

pDpτ0:l;θ`ϵq“ρ0psτ,0q
l´1
ź

t“0

ppsτ,t`1|sτ,t,µθ`ϵpsτ,tqq. (92)

With such a notation, we can write the θ1 “θ`ϵ index as follows:

JDpθ1q“
ż

τ

pDpτ ;θ`ϵq
T´1
ÿ

t“0

γtrpst,µθ`ϵpstqqdτ“
ż

τ

T´1
ÿ

t“0

pDpτ0:t;θ`ϵqγtrpst,µθ`ϵpstqq
looooooooooooooooooooooomooooooooooooooooooooooon

“:gpϵq

.

We recall that gp0dΘq“JDpθq. By using Taylor expansion, where rϵ“xϵ for some xPr0,1s:
JDpθ1q“gpϵq (93)

“gp0dΘ
q`ϵJ∇ϵgpϵq|ϵ“rϵ (94)

ďJDpθq`}ϵ}2}∇ϵgpϵq|ϵ“rϵ}2. (95)
We now bound the norm of the gradient:

}∇ϵgpϵq}2 ď E
τ„pAp¨;µθ`ϵq

«

T´1
ÿ

t“0

}∇ϵ logppτ0:t;θ`ϵq}2γt|rpst,µθ`ϵpstqq|`
T´1
ÿ

t“0

γt}∇ϵrpst,µθ`ϵpstqq}2
ff

ď E
τ„pAp¨;µθ`ϵq

«

T´1
ÿ

t“0

γt|rpst,µθ`ϵpstqq|
t´1
ÿ

l“0

}∇a logppsl`1|sl,aq|a“µθ`ϵpstq}2}∇ϵµθ`ϵpslq}2

`
T´1
ÿ

t“0

γt}∇arpst,aq|a“µθ`ϵpstq}2}∇ϵµθ`ϵpstq}2
ff

ď
T´1
ÿ

t“0

γtRmaxtLpLµ ` 1´γT

1´γ
LrLµ

“ γ`γ1`T pT ´1q´TγT

p1´γq2 LpLµRmax ` 1´γT

1´γ
LrLµ “LLµ.

Assumption E.1 (Smooth JD w.r.t. parameter θ). JD is L2-LS w.r.t. parameter θ, i.e., for every θ,θ1 PΘ, we have:

}∇θJDpθ1q´∇θJDpθq}2 ďL2}θ1 ´θ}2. (96)
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Lemma E.2 (L2 Characterization). Assumptions 4.1, 4.3, 4.2, and 4.4 imply Assumption E.1 with

L2 ď γp1`γqL2
µL

2
pRmax

p1´γq3 ` γp2L2
µLpLr `L2,µL2,pRmaxq

p1´γq2 ` L2,µL2,r

1´γ
.

Proof. It suffices to find a bound to the quantity
›

›∇2
θJDpθq›

›

2
, for a generic θPΘ. Notice that in the following we use the

notation τ0:l to refer to a trajectory of length l. Recalling that:

JDpθq“ E
τ„pDp¨|θq

«

T´1
ÿ

t“0

γtrpst,µθpstqq
ff

,

we have what follows:

∇2
θJDpθq“∇2

θ E
τ„pDp¨|θq

«

T´1
ÿ

t“0

γtrpst,µθpstqq
ff

“∇2
θ

ż

τ

pDpτ,θq
T´1
ÿ

t“0

γtrpst,µθpstqqdτ

“
T´1
ÿ

t“0

∇2
θ

ż

τ0:t

pDpτ0:t,θqγtrpst,µθpstqqdτ0:t

“
T´1
ÿ

t“0

∇θ

ż

τ0:t

pDpτ0:t,θq`

∇θ logpDpτ0:t,θqγtrpst,µθpstqq`γt∇θrpst,µθpstqq˘

dτ0:t

“
T´1
ÿ

t“0

E
τ0:t„pDp¨|θq

«

∇θ logpDpτ0:t,θq`

∇θ logpDpτ0:t,θqγtrpst,µθpstqq`γt∇θrpst,µθpstqq˘

`∇2
θ logpDpτ0:t,θqγtrpst,µθpstqq`∇θ logpDpτ0:t,θqγt∇θrpst,µθpstqq`γt∇2

θrpst,µθpstqq
ff

.

Now that we have characterized ∇2
θJDpθq, we can consider its norm by applying the assumptions in the statement, obtaining

the following result:
›

›∇2
θJDpθq›

›

ď
T´1
ÿ

t“0

E
τ0:t„pDp¨|θq

«

}∇θ logpDpτ0:t,θq}2
`}∇θ logpDpτ0:t,θq}2 γt |rpst,µθpstqq|`γt }∇θrpst,µθpstqq}2

˘

`›

›∇2
θ logpDpτ0:t,θq›

›

2
γt |rpst,µθpstqq|`}∇θ logpDpτ0:t,θq}2 γt }∇θrpst,µθpstqq}2 `γt

›

›∇2
θrpst,µθpstqq›

›

2

ff

ď
T´1
ÿ

t“0

L2
µL

2
pRmaxt

2γt `p2L2
µLpLr `L2,µL2,pRmaxqtγt `L2,µL2,rγ

t

ďL2
µL

2
pRmaxγ

1`γ´T 2γT´1 `p2pT ´1q2 `2pT ´1q´1qγT ´pT ´1q2γT`1

p1´γq3

`p2L2
µLpLr `L2,µL2,pRmaxqγ 1´TγT´1 `pT ´1qγT

p1´γq2 `L2,µL2,r
1´γT

1´γ

ďL2
µL

2
pRmaxγ

1`γ´γT

p1´γq3 `p2L2
µLpLr `L2,µL2,pRmaxqγ 1´γT

p1´γq2 `L2,µL2,r
1´γT

1´γ

ď γp1`γqL2
µL

2
pRmax

p1´γq3 ` γp2L2
µLpLr `L2,µL2,pRmaxq

p1´γq2 ` L2,µL2,r

1´γ
.

Lemma E.3. Let πθ be a white noise-based policy. Under Assumption 4.3, 4.4, and 4.5 it holds that for every sPS:

(i) Ea„πθpa|sqr}∇θ logπθpa|sq}22sďcdAσ
´2
A L2

µ;
(ii) Ea„πθpa|sqr}∇2

θ logπθpa|sq}2sďcσ´2
A L2

µ `c
?
dAσ

´1
A L2,µ.
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Proof. Since πθ is a white noise-based policy, we have that πθpa|sq“ϕpa´µθpsqq. Consequently, we have:
∇θ logπθpa|sq“∇θ logϕpa´µθpsqq“´∇θµθpsq∇ϵ logϕpϵq|ϵ“a´µθpsq, (97)

∇2
θ logπθpa|sq“∇2

θ logϕpa´µθpsqq“∇θµθ∇2
ϵ logϕpϵq|ϵ“a´µθpsq∇θµ

J
θ ´∇2

θµθ∇ϵ logϕpϵq|ϵ“a´µθpsq. (98)
Thus, recalling that a´µθpsq„ΦdA and using the Lipschitzinity and smoothness of µθ, we have:

E
a„πθpa|sq

r}∇θ logπθpa|sq}22s“ E
a„πθpa|sq

r}∇θµθpsq∇ϵ logϕpϵq|ϵ“a´µθpsq}22s (99)

ďL2
µ E
ϵ„ΦdΘ

r}´∇ϵ logϕpϵq}22sďcdΘσ
2
AL

2
µ, (100)

E
a„πθpa|sq

r}∇2
θ logπθpa|sq}2s“ E

a„πθpa|sq
r}∇θµθ∇2

ϵ logϕpϵq|ϵ“a´µθpsq∇θµ
J
θ ´∇2

θµθ∇ϵ logϕpϵq|ϵ“a´µθpsq}2s (101)

ďL2
µ E
ϵ„ΦdA

r}∇2
ϵ logϕpϵq}2s`L2,µ E

ϵ„ΦdA

r}∇ϵ logϕpϵq}2s (102)

ďcσ´2
A L2

µ `c
a

dAσ
´1
A L2,µ. (103)

Lemma E.4. Let νθ be a white noise-based hyperpolicy. Under Assumption 4.5, it holds that:

(i) Eθ1„νθ
r}∇θ logνθpθ1q}22sďcdΘσ

´2
P ;

(ii) Eθ1„νθ
r}∇2

θ logνθpθ1q}2sďcσ´2
P .

Proof. Since νθ is a white noise-based hyperpolicy, we have that νθpθ1q“ϕpθ1 ´θq. Consequently, we have:
∇θ logνθpθ1q“∇θ logϕpθ1 ´θq“´∇ϵ logϕpϵq|ϵ“θ1´θ, (104)

∇2
θ logνθpθ1q“∇2

θ logϕpθ1 ´θq“∇2
ϵ logϕpϵq|ϵ“θ1´θ. (105)

Thus, recalling that θ1 ´θ„ΦdΘ

E
θ1„νθ

r}∇θ logνθpθ1q}22s“ E
θ1„νθ

r}∇ϵ logϕpϵq|ϵ“θ1´θ}22s“ E
ϵ„ΦdΘ

r}∇ϵ logϕpϵq}22sďcdΘσ
2
P , (106)

E
θ1„νθ

r}∇2
θ logνθpθ1q}2s“ E

θ1„νθ

r}∇2
ϵ logϕpϵq|ϵ“θ1´θ}2s“ E

ϵ„ΦdΘ

r}∇2
ϵ logϕpϵq}2sďcσ2

P . (107)

F. General Convergence Analysis under Weak Gradient Domination
In this section, we provide the theoretical guarantees on the convergence to the global optimum of a generic stochastic first-
order optimization algorithm A (e.g., policy gradient employing either AB or PB exploration). Let θ be the parameter vector
optimized by A, and let Θ“RdΘ be the parameter space. The objective function that A aims at optimizing is J :ΘÝÑR,
which is a generic function taking as argument a parameter vector θPΘ and mapping it into a real value. Examples of
objective functions of this kind are JD, JA, or JP, which are all defined in Section 2. The algorithm A is run for K iterations
and it updates directly the parameter vector θPΘ. At the k-th iteration, the update is:

θk`1 ÐÝθk `ζk p∇θJpθkq,
where ζk is the step size, θk is the parameter configuration at the k-th iteration, and p∇θJpθkq is an unbiased estimate of
∇θJpθkq computed from a batch Dk of N samples. In the following, we refer to N as batch size. Examples of unbiased
gradient estimators are the ones employed by GPOMDP and PGPE, which can be found in Section 2. For GPOMDP, samples
are trajectories; for PGPE, parameter-trajectory pairs. In what follows, we refer to the optimal parameter configuration as
θ˚ PargmaxθPΘJpθq. For the sake of simplicity, we will shorten Jpθ˚q as J˚. Given an optimality threshold δě0, we are
interested in assessing the last-iterate convergence guarantees:

J˚ ´E rJpθKqsďδ,

where the expectation is taken over the stochasticity of the learning process.

Theorem F.1. Under Assumptions 6.1, 6.2, and 6.3, running the Algorithm A for Ką0 iterations with a batch size of Ną0
trajectories in each iteration with the constant learning rate ζ fulfilling:

ζďmin

#

1

L2
,

1

µmaxt0,J˚ ´Jpθ0q´βu ,
ˆ

N

L2V µ

˙1{3
+
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where µ“ 1
α2 . Then, it holds that:

J˚ ´ErJpθKqsďβ`
˜

1´ 1

2

c

µζ3L2V

N

¸K

maxt0,J˚ ´Jpθ0q´βu`
d

L2V ζ

µN
.

In particular, for sufficiently small ϵą0, setting ζ“ ϵ2µN
4L2V

, the following total number of samples is sufficient to ensure that
Jpθ˚q´ErJpθKqsďβ`ϵ:

KNě 16L2V

ϵ3µ2
log

maxt0,J˚ ´Jpθ0q´βu
ϵ

. (108)

Proof. Before starting the proof, we need a preliminary result that immediately follows from Assumption 6.1, by rearranging:

1

α
maxt0,Jpθ˚q´β´Jpθquď}∇θJpθq}2, (109)

and we will use the notation rJpθ˚q :“Jpθ˚q´β and µ“α´2. Note that rJpθ˚q´Jpθq can be negative. Considering a
kPJKK, it follows that:

rJpθ˚q´Jpθk`1q“ rJpθ˚q´Jpθkq´pJpθk`1q´Jpθkqq
ď rJpθ˚q´Jpθkq´⟨θk`1 ´θk,∇θJpθkq⟩` L2

2
}θk`1 ´θk}22

ď rJpθ˚q´Jpθkq´ζk

〈
p∇θJpθkq,∇θJpθkq

〉
` L2

2
ζ2k} p∇θJpθkq}22,

where the first inequality follows by applying the Taylor expansion with Lagrange remainder and exploiting Assumption 6.2,
and the last inequality follows from the fact that the parameter update is θk`1 Ðθk `ζk p∇θJpθkq.

In the following, we use the shorthand notation Ekr¨s to denote the conditional expectation w.r.t. the history up to the k-th
iteration not included. More formally, let Fk “σ pθ0,D0,D1, . . . ,Dkq be the σ-algebra encoding all the stochasticity up to
iteration k included. Note that all the stochasticity comes from the samples (except from the initial parameter θ0, which
may be randomly initialized), and that θk is Fk´1-measurable, that is, deterministically determined by the realization of the
samples collected in the first k´1 iterations. Then, Ekr¨s :“Er¨|Fk´1s. We will make use of the basic facts Er¨s“ErEkr¨ss
and EkrXs“X for Fk´1-measurable X . The variance of p∇Jpθkq must be always understood as conditional on Fk´1.
Now, for any kPJKK:

E
k

”

rJpθ˚q´Jpθk`1q
ı

ďE
k

„

rJpθ˚q´Jpθkq´ζk

〈
p∇θJpθkq,∇θJpθkq

〉
` L2

2
ζ2k} p∇θJpθkq}22

ȷ

ď rJpθ˚q´Jpθkq´ζk}∇θJpθkq}22 ` L2

2
ζ2k E

k

”

} p∇θJpθkq}22
ı

ď rJpθ˚q´Jpθkq´ζk

ˆ

1´ L2

2
ζk

˙

}∇θJpθkq}22 ` L2

2
ζ2kVar

”

p∇θJpθkq
ı

ď rJpθ˚q´Jpθkq´ζk

ˆ

1´ L2

2
ζk

˙

}∇θJpθkq}22 ` L2V

2N
ζ2k ,

where the third inequality follows from the fact that p∇θJpθq is an unbiased estimator and from the definition of Varr p∇Jpθqs,
and the last inequality is by Assumption 6.3. Now, selecting a step size ζk ď 1

L2
, we have that 1´ L2

2 ζk ě 1
2 , we can use the

bound derived in Equation (109):

E
k

”

rJpθ˚q´Jpθk`1q
ı

ď rJpθ˚q´Jpθkq´ µζk
2

max
!

0, rJpθ˚q´Jpθkq
)2 ` L2V

2N
ζ2k .

The next step is to consider the total expectation over both the terms of the inequality and observe that

E
„

max
!

0, rJpθ˚q´Jpθkq
)2

ȷ

ěE
”

max
!

0, rJpθ˚q´Jpθkq
)ı2 ěmax

!

0,E
”

rJpθ˚q´Jpθkq
ı)2

,

having applied Jensen’s inequality twice, being both the square and the max convex functions. In particular, we define
rk :“E rJpθ˚q´Jpθkqs. We can then rewrite the previous inequality as follows:

rk`1 ďrk ´ µζk
2

maxt0, rku2 ` L2V

2N
ζ2k .
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To study the recurrence, we define the helper sequence:
#

ρ0 “r0

ρk`1 “ρk ´ µζk
2 maxt0,ρku2 ` L2V

2N ζ2k if kě0
. (110)

We now show that under a suitable condition on the step size ζk, the sequence ρk upper bounds the sequence rk.

Lemma F.2. If ζk ď 1
µρk

for every kě0, then, rk ďρk for every kě0.

Proof of Lemma F.2. By induction on k. For k“0, the statement holds since ρ0 “r0. Suppose the statement holds for every
jďk, we prove that it holds for k`1:

ρk`1 “ρk ´ µζk
2

maxt0,ρku2 ` L2V

2N
ζ2k (111)

ěrk ´ µζk
2

maxt0, rku2 ` L2V

2N
ζ2k (112)

ěrk`1. (113)

where the first inequality holds by the inductive hypothesis and by observing that the function fpxq“x´ µζk
2 maxt0,xu2

is non-decreasing in x when ζk ď1{pµxq. Indeed, if xă0, then fpxq“x, which is non-decreasing; if xě0, we have
fpxq“x´ µζk

2 x2, that can be proved to be non-decreasing in the interval r0,1{pµζkqs simply by studying the sign of the
derivative. The requirement ζk ď1{pµρkq ensures that ρk falls in the non-decreasing region, and so does rk by the inductive
hypothesis.

Thus, from now on, we study the properties of the sequence ρk and enforce the learning rate to be constant, ζk :“ζ for every
kě0. Let us note that, if ρk is convergent, than it converges to the fixed-point ρ computed as follows:

ρ“ρ´ µζ

2
maxt0,ρu2 ` L2V

2N
ζ2 ùñ ρ“

d

L2V ζ

µN
, (114)

having retained the positive solution of the second-order equation only, since the negative one never attains the maximum
maxt0,ρu. Let us now study the monotonicity properties of the sequence ρk.

Lemma F.3. The following statements hold:

• If r0 ąρ and ζď 1
µr0

, then for every kě0 it holds that: ρďρk`1 ďρk.
• If r0 ăρ and ζď 1

µρ , then for every kě0 it holds that: ρěρk`1 ěρk.

Before proving the lemma, let us comment on it. We have stated that if we initialize the sequence with ρ0 “r0 above the
fixed-point ρ, the sequence is non-increasing and remains in the interval rρ,r0s. Symmetrically, if we initialize ρ0 “r0
(possibly negative) below the fixed-point ρ, the sequence is non-decreasing and remains in the interval rr0,ρs. These
properties hold under specific conditions on the learning rate.

Proof of Lemma F.3. We first prove the first statement, by induction on k. The inductive hypothesis is “ρk`1 ďρk and
ρk`1 ěρ ”. For k“0, for the first inequality, we have:

ρ1 “ρ0 ´ ζµ

2
ρ20 ` L2V

2N
ζ2 ďρ0 ´ ζµ

2
ρ2 ` L2V

2N
ζ2 “ρ0, (115)

having exploited the fact that ρ0 ąρą0 and the definition of ρ. For the second inequality, we have:

ρ1 “ρ0 ´ ζµ

2
ρ20 ` L2V

2N
ζ2 ěρ´ ζµ

2
ρ2 ` L2V

2N
ζ2 “ρ, (116)

recalling that the function x´ ζµ
2 x

2 is non-decreasing in x for xďρ0 since ζď1{pµρ0q, and by definition of ρ. Suppose
now that the statement holds for every jăk. First of all, we observe that, under this inductive hypothesis, ρk ďρ0 and,
consequently, the condition ζď1{pµρ0q entails ζď1{pµρkq. Thus, for the first inequality, we have:

ρk`1 “ρk ´ ζµ

2
ρ2k ` L2V

2N
ζ2 ďρk ´ ζµ

2
ρ2 ` L2V

2N
ζ2 “ρk, (117)

having used the inductive hypothesis and the definition of ρ. For the second inequality, we have:

ρk`1 “ρk ´ ζµ

2
ρ2k ` L2V

2N
ζ2 ěρ´ ζµ

2
ρ2 ` L2V

2N
ζ2 “ρ, (118)
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having used the inductive hypothesis and recalled that the function x´ ζµ
2 x

2 is non-decreasing in x for xďρk since
ζď1{pµρkq.

For the second statement, we observe that if ρ0 “r0 ă0, we have:

ρk “ρ0 `k
L2V

2N
ζ2, (119)

for all kďk˚, where k˚ is the minimum k in which ρ0 `kL2V
2N ζ2 ě0. From that point on, we can proceed in an analogous

way as for the first statement, simply switching the signs of the inequalities and recalling that the largest value of ρk is
bounded by ρ in this case.

We now focus on the first case of the previous lemma in which r0 ąρ, as the second one, as we shall see later, is irrelevant
for the convergence rate. We now want to show that the sequence ρk actually converges to ρ and characterize its convergence
rate. To this end, we introduce a new auxiliary sequence:

#

η0 “ρ0

ηk`1 “
´

1´ µζρ
2

¯

ηk ` L2V
2N ζ2 if kě0

. (120)

We show that the sequence ηk upper bounds ρk when ρ0 “r0 ěρ.

Lemma F.4. If r0 ąρ and ζď 1
µr0

, then, for every kě0, it holds that ηk ěρk.

Proof. By induction on k. For k“0, we have η0 “ρ0, so, the statement holds. Suppose the statement holds for every jďk,
we prove it for k`1:

ηk`1 “
ˆ

1´ µζρ

2

˙

ηk ` L2V

2N
ζ2 (121)

ě
ˆ

1´ µζρk
2

˙

ηk ` L2V

2N
ζ2 (122)

ě
ˆ

1´ µζρk
2

˙

ρk ` L2V

2N
ζ2 (123)

“ρk ´ ζµ

2
maxt0,ρku2 ` L2V

2N
ζ2 “ρk`1. (124)

having exploited that ρk ěρ (by Lemma F.3) in the second line; using the inductive hypothesis in the third line, exploiting
the fact that 1´ µζρk

2 ě0 whenever ζď2{pµρkq, which is entailed by the requirement ζď1{pµρ0q; and by recalling that
ρk ą0 since ρą0 in the last line.

Thus, we conclude by studying the convergence rate of the sequence ηk. This can be easily obtained by unrolling the
recursion:

ηk`1 “
ˆ

1´ µζρ

2

˙k`1

η0 ` L2V ζ
2

2N

k
ÿ

j“0

ˆ

1´ µζρ

2

˙j

(125)

ď
ˆ

1´ µζρ

2

˙k`1

η0 ` L2V ζ
2

2N

`8
ÿ

j“0

ˆ

1´ µζρ

2

˙j

(126)

“
ˆ

1´ µζρ

2

˙k`1

η0 ` L2V ζ

Nµρ
(127)

“
˜

1´ 1

2

c

µζ3L2V

N

¸k`1

η0 `
d

L2V ζ

µN
. (128)

Putting all the conditions on the step size ζ together, we must set:

ζ“min

#

1

L2
,

1

µmaxt0, r0u ,
ˆ

N

L2V µ

˙1{3
+

. (129)
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Thus, we have:

Jpθ˚q´ErJpθKqsďβ`
˜

1´ 1

2

c

µζ3L2V

N

¸K

maxt0,Jpθ˚q´Jpθ0q´βu`
d

L2V ζ

µN
. (130)

We derive the number of iterations (setting KÐk`1):
˜

1´ 1

2

c

µζ3L2V

N

¸K

η0 ď ϵ

2
ùñKď log 2η0

ϵ

log 1

1´ 1
2

b

µζ3L2V
N

ď
d

4N

µζ3L2V
log

2η0
ϵ
, (131)

having exploited the inequality log 1
1´x ěx. Furthermore, let us observe that:

ρ“
d

L2V ζ

µN
ď ϵ

2
ùñ ζď ϵ2µN

4L2V
. (132)

Thus, recalling that ρ0 “η0 “r0, we have that: (i) when r0 ăρ, we have that rk ďρk ďρďϵ{2; (ii) when r0 ěρ, we have
rk ďρk ďηk ďϵ. Thus, for sufficiently small ϵ, we plug ζ“ ϵ2µN

4L2V
in Equation (131) to obtain the following upper bound on

the sample complexity:

KNď 16L2V

ϵ3µ2
log

maxt0,Jpθ˚q´Jpθ0q´βu
ϵ

, (133)

which guarantees Jpθ˚q´ErJpθKqsďβ`ϵ.

Theorem 6.1. Consider an algorithm running the update rule of Equation (13). Under Assumptions 6.1, 6.2, and 6.3, with
a suitable constant step size, to guarantee J˚

: ´ErJ:pθKqsďϵ`β the sample complexity is at most:

NK“ 16α4L2,:V:

ϵ3
log

maxt0,J˚
: ´J:pθ0q´βu
ϵ

. (15)

Proof. Directly follows from the second statement of Theorem F.1.
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G. Specifications of the Algorithms
PGPE. In this section we report the algorithm PGPE as it is reported in its original paper (Sehnke et al., 2010). In particular,
we show the pseudo-code (Algorithm 1) of its original basic version, that is also the one we analyzed throughout this work,
even if several variants are available.

Algorithm 1 PGPE.
Input :Number of iterations K, batch size N , initial parameter vector θ0, environment M, deterministic policy µθ , hyperpolicy νθ , step

size schedule pζkq
K´1
k“0 , exploration parameter σP.

Initialize θÐÝθ0

for iPJKK do
Set the hyperpolicy parameters: νθ
for lPJNK do

Sample a parameter configuration ρl „νθ according to the exploration parameter σP
Collect a trajectory τl by acting in M with µρl

Compute the cumulative discounted reward Rpτlq
end
Compute the gradient estimator: p∇θJPpθqÐÝ 1

N

řN´1
j“0 ∇θ logνθpρjqRpτjq

Update the hyperpolicy parameter vector: θÐÝθ`ζi p∇θJPpθq

end
Return θ.

Notice that, the original version of PGPE by Sehnke et al. (2010) considers to collect M trajectories for each parameter
configuration ρ sampled from the hyperpolicy νθ . In the pseudo-code (as well as in the paper) we consider M“1 (i.e., we
collect a single trajectory) in order to make GPOMDP and PGPE testing the same number of trajectories in each iteration,
given an equal batch size N . In the original paper also other variants of PGPE are considered, that we have not considered
in or work. For instance, the one with symmetric sampling, or the one employing a baseline while sampling. Moreover, it
would be possible to learn a proper exploration amount σP while learning the hyperpolicy parameters, however we decided
to keep σP fixed, for reasons remarked in Appendix C.

GPOMDP. As done for PGPE, here we report the algorithm GPOMDP in its original version (Baxter & Bartlett, 2001;
Peters & Schaal, 2006). We show the pseudo-code (Algorithm 2) of such original basic version, that is also the one we
analyzed throughout this work.

Algorithm 2 GPOMDP.
Input : Number of iterations K, batch size N , initial parameter vector θ0, environment M, stochastic policy πθ (with exploration

parameter σA), step size schedule pζkq
K´1
k“0 , , horizon T , discount factor γ.

Initialize θÐÝθ0

for iPJKK do
Set the stochastic policy parameters: πθ

for lPJNK do
Initialize trajectory τl as an empty tuple
for tPJT K do

Observe state st
Play action at „πθp¨|stq
Observe reward rt
Add to τl the tuple pst,at, rtq

end
end
Compute the gradient estimator: p∇θJApθqÐÝ 1

N

řN
i“1

řT´1
t“0

`
řt

k“0∇θ logπθpaτi,k|sτi,kq
˘

γtrpsτi,t,aτi,tq

Update the policy parameter vector: θÐÝθ`ζi p∇θJApθq

end
Return θ.

In the original paper, it is available a variant of GPOMDP which employs baselines while sampling, but in our work we do
not consider this approach, as for PGPE. Also in this case, we decided to employ a fixed value for σA, even if it would be
possible to adapt it at runtime (Appendix C).

39



Learning Optimal Deterministic Policies with Stochastic Policy Gradients

H. Additional Experimental Results
In this section, we present additional experimental results for what concerns the comparison of GPOMDP and PGPE, and
the sensitivity analysis on the exploration parameters, respectively σA and σP.

H.1. Learning Curves of the Variance Study of Section 9.

Setting. We show the results gained by learning in three environments of increasing complexity taken from the Mu-
JoCo (Todorov et al., 2012) suite: Swimmer-v4, Hopper-v4, and HalfCheetah-v4. Details on the environmental parameters
are shown in Table 3. In order to facilitate the exploration, thus highlighting the results of the sensitivity study on the
exploration parameters, we added an action clipping to the environments.10 The target deterministic policy µθ is linear in
the state, while the hyperpolicy νθ employed by PGPE is Gaussian with a parameterized mean, and the stochastic policy
πθ employed by GPOMDP is Gaussian with a mean linear in the state. Both PGPE and GPOMDP were run for K“2000
iterations, generating N“100 trajectories per iteration. We conducted a sensitivity analysis on the exploration parameters,
using t0.01,0.1,1,10,100u as values for σ2

P and σ2
A. We employed Adam (Kingma & Ba, 2014) to set the step size with

initial values 0.1 for PGPE and 0.01 for GPOMDP. The latter does not support a larger step size due to the higher variance
of the employed estimator w.r.t. the one used by PGPE.

Environment T γ dS dA dΘ

Swimmer 200 1 8 2 16

Hopper 100 1 11 3 33

HalfCheetah 100 1 17 6 102

Table 3. Parameters of the environments.

Here we show the learning curves of JP and JA (and the associated empirical JD) obtained in the same setting of Section 9,
which is also summarized in Table 3. In particular, Figures 3 and 4 show the learning curves associated with the HalfCheetah-
v4 environment, Figures 5 and 6 show the ones for the Hopper-v4 environment, while Figures 7 and 8 show the ones for
the Swimmer-v4 environment. In all the environments, it is possible to notice that, for increasing values of the exploration
parameters σP and σA, the learning curves JP and JA (optimized respectively by PGPE and GPOMDP) differ increasingly
with the associated empirical deterministic one JD (reported in right-hand side column in the plots). This is due to the fact
that small values of σP and σA lead to a lower amount of exploration. Poorly exploratory νθ and πθ make the algorithms test
actions that are very similar to the ones that target deterministic policy µθ would suggest. Conversely, large values of σP and
σA lead to a higher amount of exploration, thus JP and JA tend to show a higher offset w.r.t. to the associated empirical JD.

HalfCheetah. In Figures 3 and 4, it is possible to see the learning curves of JP and JA (and the associated empirical
JD) seen by PGPE and GPOMDP while learning on HalfCheetah-v4. Note that, in this case, the optimal value for σ2

P is
1, while the one for σ2

A is 10. With T “100, PGPE seems to struggle a bit more in finding a good deterministic policy
w.r.t. GPOMDP. This can be explained by the fact that the parameter dimensionality dΘ is the highest throughout the three
presented environments.

Hopper. In Figures 5 and 6, it is possible to see the learning curves of JP and JA (and the associated empirical JD) seen by
PGPE and GPOMDP while learning on Swimmer-v4. Also in this case, the optimal value for σ2

P is 1, while the one for σ2
A

is 10. As for HalfCheetah, with T “100, PGPE seems to struggle a bit more in finding a good deterministic policy w.r.t.
GPOMDP, even if this is the intermediate difficulty environment for what concerns the parameter dimensionality dΘ.

Swimmer. In Figures 7 and 8, it is possible to see the learning curves of JP and JA (and the associated empirical JD) seen
by PGPE and GPOMDP while learning on Swimmer-v4. Note that, in this case, the optimal value for σ2

P is 10, while the one
for σ2

A is 1. Here we employed an horizon T “200. Indeed, as also commented in Section 9, GPOMDP struggles more than
PGPE in finding a good deterministic policy.

10When the policy draws an action the environment performs a clip of the action before the reward is computed.
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Figure 3. JP and JD learning curves (5 runs, mean ˘95% C.I.) for PGPE on Half Cheetah-v4.
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Figure 4. JA and JD learning curves (5 runs, mean ˘95% C.I.) for GPOMDP on Half Cheetah-v4.
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Figure 5. JP and JD learning curves (5 runs, mean ˘95% C.I.) for PGPE on Hopper-v4.
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Figure 6. JA and JD learning curves (5 runs, mean ˘95% C.I.) for GPOMDP on Hopper-v4.
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Figure 7. JP and JD learning curves (5 runs, mean ˘95% C.I.) for PGPE on Swimmer-v4.
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Figure 8. JA and JD learning curves (5 runs, mean ˘95% C.I.) for GPOMDP on Swimmer-v4.
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Figure 9. JDpθKq associated with GPOMDP and PGPE in LQR (T “50) employing linear (hyper)policies and varying exploration
amounts (5 runs, mean ˘95% C.I.).

H.2. GPOMDP vs. PGPE: the case of LQR

In order to show more clearly the discussed trade-offs, here we present a numerical validation conduced on the Linear
Quadratic Regulator (LQR, Kucera, 1992) environment, much smaller w.r.t. the ones offered by the MuJoCo suite.

Brief description of the environment Here we summarize the considered version of the LQR environment. Considering
xt and ut as the state and action at time t, respectively, the state evolution is computed as: xt`1 “Axt `But. The reward at
time t is computed as: rt “´xJ

t Qxt ´uJ
t Rut. The initial state of the environment is randomly sampled from the interval

r´3,3s using a uniform distribution.

Setting Our objective is to control the LQR environment via a deterministic linear policy. For the presented results, we
considered a number of iterations of K“3000 for both PGPE and GPOMDP, with a batch size of N“100 trajectories for
each iteration, and a learning rate schedule governed by Adam, with initial step sizes of 0.01. We conducted 3 runs for
each experiment, and the plots depict the mean ˘95% confidence interval. Moreover, we considered a bi-dimensional LQR
environment (i.e., dS “2 and dA “2), with unlimited state and action spaces (i.e., state and action ranges are p´8,`8q).
Furthermore, the characteristic matrices of the LQR environment were selected as:

A“B“
„

0.9 0
0 0.9

ȷ

, Q“
„

0.9 0
0 0.1

ȷ

, and R“
„

0.1 0
0 0.9

ȷ

. (134)

Sensitivity w.r.t. σ2
: Here we present a similar study to the one that has been discussed in the main paper. We tested

both PGPE and GPOMDP on the previously described LQR with T “50 and with the exploration amounts varying in
σ2

: Pt10´5,10´4,10´3,10´2,10´1u. As can be noticed in Figure 9, there are values for the exploration amounts σP and σA
leading to higher performance values for the deployed deterministic policy. In particular, PGPE deploys its best version of
µθ when setting σ2

P “10´3, while the same happens with GPOMDP setting σA “10´4.

Increasing T Here we present a study on the horizon length T , for which we tested values T Pt50,100,200u. We display
in Figure 10 the resulting JD associated with the learning processes of PGPE and GPOMDP. For each of the algorithms,
we employed the best values of σ obtained from the previous experiment. Additionally, we depicted as a dashed line the
estimated performance of the optimal policy for LQR, showing that both algorithms manage to achieve performance close
to optimal on average. As can be observed, GPOMDP struggles more than PGPE in converging to the globally optimal
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deterministic policy. In particular, the performance of the deterministic policy associated with PGPE appears not to change
with increasing values of T .

H.3. GPOMDP vs. PGPE: the case of Swimmer-v4.

In this section, we conduce experiments to highlight the trade-off between parameter dimensionality dΘ and trajectory
length T . As emerges from the theoretical results shown in the main paper, GPOMDP should struggle in finding a good
deterministic policy µθ from large values of T , while PGPE should struggle in the same task form large values of dΘ. Notice
that this behavior was already visible in the variance study conducted in Section 9 and Appendix H.1, where we added
action clipping to environments. To better illustrate the trade-off at hand, we removed the action clipping to conduce the
following experimental results, restoring the original version of the MuJoCo environments. Indeed, we remark that action
clipping was introduced to facilitate the exploration, highlighting the outcomes of the variance study.

Setting. We consider two different target deterministic policies µθ:

• linear: PGPE and GPOMDP are run for K“2000, with N“100, dΘ “16 (parameters initialized to 0);
• neural network (two dense hidden layers with 32 neurons and with hyperbolic tangent activation functions): PGPE and

GPOMDP are run for K“2000, with N“100, dΘ “1344 (parameters initial values sampled by N p0,1q).

For the learning rate schedule, we employed Adam with the same step sizes 0.1 for PGPE and 0.01 for GPOMDP (the
reason is the same explained in Section 9). For all the experiments we fixed both σP and σA to 1.

Increasing T . Here we show the results of learning on Swimmer-v4 with T Pt100,200u (and γ“1). The target deterministic
policy in this case is the linear one, thus dΘ “16. Figures 11 and 12 show the learning curves of JP and JA, with their
associated empirical JD. For T “100, PGPE and GPOMDP reach deterministic policies exhibiting similar values of JDpθKq.
For T “200, instead, the algorithms reach deterministic policies showing an offset in the values of JDpθKq in favor of
PGPE. As suggested by the theoretical results shown in the paper, the fact that GPOMDP struggles in reaching a good
deterministic policy can be explained by the doubling of the horizon value.

Increasing dΘ. Here we show the results of learning on Swimmer-v4 with T Pt100,200u (and γ“1), with two different
target deterministic policies: the linear one (dΘ “16) and the neural network one (dΘ “1344).

Figures 13 and 15 show the learning curves of JP, with their associated empirical JD, for both the target policies, when
learning with trajectories respectively of length 100 and 200. For both the values of the horizon, it is possible to notice that
with a smaller value of dΘ PGPE manages to find a better deterministic policy. Indeed, the found linear and neural network
deterministic policies show an offset in JDpθKq in favor of the linear one. As suggested by the theoretical results shown in
the paper, the fact that PGPE struggles in reaching a good deterministic policy can be explained by the heavily increased
parameter dimensionality dΘ.

Figures 14 and 16 show the learning curves of JA, with their associated empirical JD, for both the target policies, when
learning with trajectories respectively of length 100 and 200. From Figure 14, even with the target neural network policy,
for T “100 GPOMDP is able however to find a deterministic policy with similar performances to the one found when the
target deterministic policy is the linear one. Switching to T “200 (Figure 16), it is possible to notice a severe offset between
the learning curves of the empirical JD associated to JA, in favor of the case in which the target policy is the linear one. As
done for the analysis on the increasing T , this can be explained by the fact that the horizon has been doubled, which is in
line with the theoretical results shown throughout this work.
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Figure 10. JD associated with GPOMDP and PGPE in LQR employing linear (hyper)policies and T Pt50,100,200u (5 runs, mean ˘95%
C.I.).
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(a) PGPE.
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(b) GPOMDP.

Figure 11. PGPE and GPOMDP on Swimmer-v4 with linear policy and T “100 (5 runs, mean ˘95% C.I.).
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(a) PGPE.
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Figure 12. PGPE and GPOMDP on Swimmer-v4 with linear policy and T “200 (5 runs, mean ˘95% C.I.).
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(a) Linear.
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(b) Neural Network.

Figure 13. PGPE on Swimmer-v4 with linear and neural network policies, and T “100 (5 runs, mean ˘95% C.I.).
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(a) Linear.
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(b) Neural Network.

Figure 14. GPOMDP on Swimmer-v4 with linear and neural network policies, and T “100 (5 runs, mean ˘95% C.I.).
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(a) Linear.
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Figure 15. PGPE on Swimmer-v4 with linear and neural network policies, and T “200 (5 runs, mean ˘95% C.I.).
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(a) Linear.
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Figure 16. GPOMDP on Swimmer-v4 with linear and neural network policies, and T “200 (5 runs, mean ˘95% C.I.).
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