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ABSTRACT

To gain insight into the role neurons play, we study the activation patterns
corresponding to meaning-preserving paraphrases (e.g., active-passive). We
compile a dataset of controlled syntactic paraphrases in English with their
reference German translations and demonstrate our model-agnostic approach
with the Transformer translation model. First, we identify neurons that correlate
across paraphrases and dissect the observed correlation into possible confounds.
Although lower-level components are found as the cause of similar activations,
no sentence-level semantics or syntax are detected locally. Later, we manipulate
neuron activations to influence translation towards a particular syntactic form.
We find that a simple value shift is effective, and more so when many neurons are
modified. These suggest that complex syntactic constructions are indeed encoded
in the model. We conclude by discussing how to better manipulate it using the
correlations we first obtained.1

1 INTRODUCTION

Understanding the roles neurons play is important for the interpretability of neural machine trans-
lation (NMT) models. Finding neurons that are either invariant or sensitive to sentence structures
explains how NMT models encode such structures and what similarities they have learned to abstract
away. Furthermore, it enables control of the output by direct manipulation of neurons.

Little previous work analyzed the interaction between input properties and individual neurons (see
§7). We focus on how differences between structures of input sentences are represented and the
resulting effect on the output translation. We propose a methodology to analyze the correlation
patterns of the network activations between a source sentence and its structural paraphrase. We
examine two test cases: the active/passive voice transformation and a paraphrase transforming a
clause into a noun phrase (see Table 1). The work is motivated by the findings of Bau et al. (2019),
who detected neurons that are highly correlated across LSTM translation models that differ in their
initializations. They showed that these neurons are the most important for the model performance.
Bau et al. (2019) further manipulated individual neurons to control semantic features at the word
level (e.g., gender, tense). We extend their method to study the representation of syntactic structures,
which influences the global organization of the sentence, rather than individual words.

Table 1: Examples produced by our paraphrasing engine

Source Paraphrased

Active Voice/
Passive Voice She took the book The book was taken by her

Adverbial Clause/
Noun Phrase

The party died down
before she arrived

The party died down
before her arrival

To carry out the analysis, we compile a dataset (section §2), consisting of English paraphrase pairs
and matching German references. The sentence pairs have similar semantic meaning but a mini-

1The code and data will be released upon publication.
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mal and controlled change, which allows us a controlled analysis of the activation patterns while
attempting to minimize the effect of potential confounds.

We examine the correlation between the activation of neurons (see §4) (1) across models given
identical input and (2) between a single model’s neurons and themselves, given the source or the
paraphrase. We detect strong correlation patterns, some appear in both measurements. This leads
us to dissect the correlation to potential confounds, and indeed we discover that similar positional
encoding and high overlap in lexical identity are the main contributors to the correlation between
paraphrases. This suggests that the strongest correlations are incurred by similar input encoding
and not by high-level abstractions learned by the model. Moreover, local correlation patterns do
not distinguish between sentence paraphrases and lower level similarities, because the overlap of
token embeddings and positional encoding is not a feature that is exclusive to meaning-preserving
paraphrases.

We then experiment with controlling the translation output. It is done by simple addition to neuron
values - the difference in mean activations over two sentence forms (§5). We show that this manip-
ulation generates outputs that are more similar to the desired form. We find that the way we change
activation values is important, but the effect is not localized: many neurons have to be modified to
yield a noticeable effect. Lastly, we compare different methods for selecting subsets of neurons to
be manipulated (§6). Counter-intuitively, we find that neurons most correlated across paraphrases
are better in controlling sentence structure, as opposed to those with the least correlation (i.e. where
activation was most changed between different structures). We attribute that to neurons generally
important for performance and polysemy of neuron roles.

Overall, we find that strong correlations of neuron activation over paraphrases are explained by
shallow features, the positional and token embeddings. Therefore, some neurons represent the input
features, but high-level information is not localized. Moreover, we show how the syntactic forms
generated during inference can be naı̈vely controlled, but require a large amount of neurons to mod-
ify. This suggests the distinction between different sentence structures is encoded in the model,
probably in a widespread manner. Lastly, the neurons that have the most impact on such manip-
ulations are the ones most important for translation in general and not those that differ most over
sentence structure paraphrases.

2 DATASET: MINIMAL PARAPHRASE PAIRS

We aim to isolate representations of specific distinctions in sentence phrasing. To achieve that,
we curate a dataset of sentence pairs with controlled syntactic variations. Specifically, we require
sentence pairs with the following attributes:

• Similar Meaning, to have invariant semantics.

• Minimal Change, to facilitate the experimental setup and the interpretation of the results.

• Controlled Change, where paraphrasing is consistent and well-defined. As opposed to
lexical paraphrases that tend to be idiosyncratic, we require the same distinction to be
applied to all instances.

• Reference Translation, since we examine translation models.

Existing paraphrasing tools and datasets fail to satisfy our criteria (see §7). Therefore, we develop
our own paraphrasing method, which we use to compile two parallel sets: active voice to passive
voice and an adverbial clause to a noun phrase. Sentence examples can be found in Table 1.

The proposed process is automatic, following predefined syntactic rules while utilizing several NLP
models. First, we identify sentences that match some source patterns (active voice, adverbial clause)
according to Dependency Parsing, POS tags (Honnibal et al., 2020) and Semantic Role Labeling
(Gardner et al., 2018). Then, we rephrase the sentence to the desired structure. We complement
missing prepositions by choosing the one with the highest probability as predicted by BERT (Devlin
et al., 2019). For example, the sentence “She felt accomplished when she met the investor” requires
the preposition ”with” in the noun phrase form “She felt accomplished during her meeting with the
investor”, and the temporal preposition when is replaced with during. In ambiguous instances, we
choose whether or not to insert a preposition by opting for the sentence with the higher probability
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Table 2: Minimal Paraphrase Pairs count, as derived from WMT19 English-German dev set, before
(left) and after (right) filtering.

Paraphrased Valid

Adverbial Clause to Noun Phrase 376 114
Active Voice to Passive Voice 3107 1169

according to GPT2 Language Model (Radford et al., 2019). When replacing a verb with a noun
(e.g. arrival is replaced with arrive), we look for the most suitable conversion in existing lexicons,
including Nomlex (Macleod et al., 1998), AMR’s2 and Verb Forms3. The fine-grained details and
step-by-step procedure can be found in Appendix A, along with examples.4

We apply our paraphrasing engine to the development set of WMT19 English-German (Barrault
et al., 2019). Some paraphrases result in disfluent sentences. For example, the sentence “He took
his time” is converted to “His time was taken by him”, which is syntactically well-formed, but also
anomalous. Therefore, we manually filtered the data.5 The number of examples is given in Table 2.

3 TECHNICAL SETUP

Model. We demonstrate our model-agnostic methodology with the Transformer model for Ma-
chine Translation (Vaswani et al., 2017). We use the fairseq implementation (Ott et al., 2019), which
was trained on the WMT19 English-German train set (Barrault et al., 2019). The embedding dimen-
sion is 1024 with learnt token embeddings and sinusoidal positional encoding.

Notations and Definitions. For our purposes, neurons are any of the 1024 values in the output
embedding as produced by each of the 6 layer blocks. We refer to trained models with different
random initialization as m1,m2. We denote the set of source sentences S = {s1, s2, ..., sn}, and
its corresponding paraphrased set with P = {p1, p2, ..., pn} (e.g., si is an active voice sentence and
pi is its passive counterpart). The activation of a neuron in model m, location (layer and index) l
on sentence si is xm,lS [i], while xm,l is a vector of size n. Following previous works (Liu et al.,
2019; Wu et al., 2020) we consider only the last sub-word token activation for each word6. Since
the number of words may differ between paraphrases, we average activation values over the words
in a sentence, to allow for a uniform sample size.7

Dataset. For all experiments we use our minimal paraphrases dataset (see §2). Due to space
considerations, we present results on the active/passive set in the main paper, while clause/noun
phrase results can be found in Appendices B.2 and C.

4 DETECTING CORRELATION PATTERNS

To detect activation patterns, we measure Pearson correlation8 between neural activations. The
correlation will allow us to examine how neurons activate under different conditions.

2https://amr.isi.edu/download/lists/morph-verbalization-v1.01.txt
3https://github.com/monolithpl/verb.forms.dictionary
4The paraphrasing engine code and the dataset derived from WMT19 will be released upon publication.
5Two in-house annotators made binary predictions as to whether the generated paraphrases are fluent, with

75% observed agreement and 0.6 Cohen’s kappa. We also tried using Direct Assessment (Graham et al., 2017)
and eliciting fluency scores through crowdsourcing, as well as attempting to threshold the probability given by
GPT2 or SLOR (Kann et al., 2018). Neither of these approaches worked in a satisfactory manner.

6We experimented with taking all sub-word tokens into the calculation, with similar results.
7Notably, experiments with taking minimum or maximum activation instead of average have shown similar

results in the sense that the effects we present in §4 and §4.1 are included in the minimum and maximum maps.
When applicable, we experimented with no pooling at all, with similar results.

8We experimented with Spearman correlation as well, but did not observe major differences.
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(a) ModelCorr (b) ParaCorr (c) PosCorr (d) TokenCorr

Figure 1: Activation correlation of first layer neurons in the encoder, using the active-passive dataset.

First, we follow Bau et al. (2019) and define ModelCorr to be the correlation between any pair of
neurons across models, when given the same input of source sentences:

ModelCorr(l, l′) = ρ(xm1,l
S , xm2,l

′

S ) (1)

We extend this definition to capture correlation across paraphrases, denoted with ParaCorr. Given
the exact same model instance, we look at activations over a set of sentences and their correlation to
the activations over the paraphrased set:

ParaCorr(l, l′) = ρ(xm1,l
S , xm1,l

′

P ) (2)

Figures 1a and 1b show ModelCorr and ParaCorr correlation maps.9 Some of ParaCorr’s observed
effect also appears in ModelCorr, suggesting it might be unrelated to the examined variable, i.e.
paraphrases. Moreover, ModelCorr indicates a strong correlation between neurons of the same
location in different models, but the Transformer architecture in itself does not account for positions.

4.1 CONTROLLING FOR CONFOUNDS

In this section, we show that strong activation correlations between paraphrases are a product of
low-level cues. Namely, we inspect how the propagation of token identity and positional information
greatly influences the correlation. This is a relevant confound to note for previous work adapting
correlation analysis on neurons (Bau et al., 2019; Wu et al., 2020; Meftah et al., 2021). The positional
encoding in our setting is sinusoidal, therefore the same positions are encoded exactly the same
across models. Paraphrases have a minor change in sentence length, which incurs similar positional
encoding. As for tokens, paraphrases have a large overlap of bag-of-words.

We define PosCorr as an activation correlation between sentences with identical positional encoding
but different token embeddings. Formally (Ŝ is a set of random token sequences matching S in
lengths):

PosCorr(l, l′) = ρ(xm1,l
S , xm1,l

′

Ŝ
) (3)

Indeed, PosCorr isolates the strong correlation effect observed both in ModelCorr and ParaCorr
(Fig. 1c). Repetition through the layers is probably due to the residual connections, which propagate
the positional encoding. Indeed, when we looked at correlations of neurons inside the layer block
- before the first residual connection - the effect seen in PosCorr was missing (see Appendix B.1).
The implication is that input representation, and not higher-level learnt representation, is likely the
cause of strong correlations.

As input representation is composed of tokens and their positions, the counterpart correlation to
PosCorr is TokenCorr, to account for token embeddings. We strip an input set S from its positional
encoding, denoted by S̃, and compare its activations to those of the intact S:

TokenCorr(l, l′) = ρ(xm1,l
S , xm1,l

′

S̃
) (4)

TokenCorr (Fig. 1d) captures the diagonals phenomenon of ParaCorr, explained by paraphrases hav-
ing a large bag-of-words overlap (the effect is not present in ModelCorr since token embeddings are

9We feature only the first layer due to resolution constraints. Any effect shown is present in all layer block
pairs but weakens when moving away from the main diagonal or when the layers are higher.
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learnt). This implies that individual token identities, and not necessarily sentence-level semantics,
contribute to strong correlations. This distinction is made apparent when we consider how word or-
der may affect meaning. For example, ”Rose likes Josh” has a widely different meaning than ”Josh
likes Rose”, although the sentences are comprised of the exact same bag of words.

We further dissect the observed correlation for possible causes. First, we compare activations on
different sentences that only share the relevant syntactic structure (e.g., two random active voice
sentences). No strong correlation is observed (between -0.17 to 0.20). This suggests that the effect
observed in the TokenCorr experiment, where the same tokens are fed to the model (Fig. 1d, Eq. 4) is
not explained by a similar sentence structure (i.e., active voice). In another experiment, we combine
both PosCorr and TokenCorr: we strip the original sentence from its positional embedding and
replace the tokens with random ones – i.e., no input is shared between the compared conditions. As
little correlation is detected (between -0.27 to 0.31), we rule out the possibility that the correlation
is caused by neurons of constant value.

Overall, our confound analysis implies the following: (1) strong activation correlation is greatly due
to low-level components and not high-level learnt knowledge, (2) strong correlation detected across
paraphrases may not be exclusive to sentences with similar meaning and different structure, and (3)
sentence structure is not detected locally using correlation analysis.

5 MANIPULATING ACTIVATIONS

Being able to manipulate neurons allows us to control the translation output (without additional
training), which in turn adds a causative dimension to our understanding of neurons. We look into
changing the activation values to force the output translation to have a desired syntactic structural
feature (e.g., active or passive voice). Although we did not detect individual neurons that have a
strong positive or negative correlation across paraphrases, these distinctions could still be encoded
in a decentralized manner in the model, and therefore susceptible to manipulation. We address three
main questions:

1. Can we effectively control structural properties of the output by changing neuron values?
2. Does the exact value matter or only the identity of the modified neurons?
3. How would we choose only a sub-set of neurons to manipulate?

5.1 SETUP

Our technique is a simple translation of the activation values towards the average activation of a
desired syntactic structure. In doing so, we extend the approach of Bau et al. (2019), who modified
individual neurons according to their average activations.

We denote with ylc the average activation of the neuron in position l under a condition c. The
formulation is general, but in this work we focus on the paraphrase’s form, e.g., active voice where
yc[l] ≡ 1

n

∑n
i=1 x

m1,l
S [i]. The vector of average activations of all m neurons as recorded under

condition c is denoted with yc ∈ Rm. Manipulation from c1 to c2 is defined as 1
‖yc1−yc2‖

(yc1 −
yc2) ∈ Rm. This vector defines a subtraction for every neuron, but may applied to any subset of
neurons. The normalization term is introduced to make manipulations comparable in size when all
neurons are modified. We investigate two parameters: the direction of manipulation (from c1 to c2)
and the set of neurons we apply it to. For an additional experiment on scaling the magnitude of the
manipulation, see Appendix C.5.

We evaluate whether the manipulation increases the similarity of the output to a reference with the
target form (c2), relative to similarity with source form (c1). We measure BLEU score between
our model’s translation and Google translations, which (in the absence of manual references) we
consider as references to both source and target forms. This is a reasonable assumption given the
performance gap between the models we train and Google Translate. Later, we discuss evaluation
by additional methods to complement BLEU (see §5.3).
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(a) Controlled baseline (b) Random direction comparison (c) Random selection comparison

Figure 2: Manipulating the outputted translation to be active voice when feeding passive voice as
input. Lines present BLEU change with active and passive references, as a function of the amount
of neurons manipulated (x-axis)

5.2 EXPERIMENTS

We present experiments manipulating passive voice inputs towards active voice translations. The
opposite manipulation (active input to passive translation) and the results on the clause/noun-phrase
set can be found in Appendix C.

Baseline Manipulation. We modify an increasing amount of neurons, choosing first the neurons
most correlated to themselves according to ParaCorr (i.e., we rank by ParaCorr(l, l) with the
higher values first). The motivation to use the correlation as a rank is based on Bau et al. (2019), who
ranked neurons according to their correlation across models. We manipulate passive voice inputs
towards active voice translations. Our outputs become more similar to active voice than passive
voice (Fig. 2a), suggesting that sentence structure is indeed encoded in the model. Moreover, the
information is used by the model when generating translations and it can be controlled.

Direction of Manipulation. We explore the importance of the manipulation direction by shifting
towards a random vector yr ∈ Rm (e.g., manipulate from average passive activation to a random
value). We repeat the process 100 times and show the average results with standard deviation in
Fig. 2b. We find it to be substantially worse, implying the success of the manipulation is tied to the
direction we shift towards, and not an artifact of value modification.

Selection of Manipulation. We test whether there is a preferable subset of neurons to manipulate
by randomly choosing neurons to manipulate10 (while applying the value modification as the base-
line). Results (Fig. 2c) do not indicate that a controlled selection of neurons (according to ParaCorr
ranking) is better than random. Overall, it seems that a large subset of neurons has to be modified
to obtain the desired outcome, which agrees with our correlation results, where the active/passive
feature was not localized. The correlation between paraphrases can shed light on what sub-sets of
neurons could still be better for manipulation, which we discuss later in section 6.

5.3 BEYOND BLEU

BLEU score captures translation quality on the surface and not necessarily how good (or bad) it
is at preserving meaning or capturing form (active vs. passive). Therefore, we employ additional
evaluation measures.

Passive Score. Specifically for the active/passive dataset, we use a dependency parser and POS
tagger to detect passive form11. The scorer shows a decrease of detected passive voice when we ma-
nipulate the passive input towards active translation (see figure 3b). The magnitude of the decrease

10We also experimented with choosing random neurons under the constraint they have the same distribution
among the 6 encoder layers as the controlled case. The results were the same.

11Using Spacy (Honnibal et al., 2020), we consider a sentence to be in passive voice if the root lemmatization
is ”werden” and it has a child of dependency ”oc” (i.e., clausal object) with a tag indicating a participle form.
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(a) BLEU (b) Passive Score

Figure 3: Top ParaCorr neurons are better for manipulation. Manipulating the output translation to
be active voice when feeding passive voice as input. Comparing the choice of neurons to manipulate
when starting from the top or bottom according to the rank given by ParaCorr. (1) Measuring by
BLEU against active voice references and (2) measuring passive score that automatically detects
passive voice.

may seem small, but the scorer might have a limited recall: the baseline translation (no manipula-
tion) of active voice sentences is detected as 0.94% passive, while passive voice input is translated
into 37.38% passive.

Qualitative Analysis. A native German speaker examined a sample of output translations and
found successful manipulations (see examples in appendix D). She discussed ’fail’ cases – where
the translation changed (i.e. unequal strings) but did not result in the desired form. This analysis
has yielded that in some cases, the manipulation changed between a stative passive and dynamic
passive, rather than between an active and a passive (the distinction between these passive types
is more evident in German). In other cases, the manipulation was not applicable. For instance,
some verbs could not be translated to an adverbial verb form and demand either to appear as a noun
phrase or be replaced with a synonym verb (an example is in Appendix D). These suggest that the
manipulation was successful even when not automatically detected as such, and is limited according
to the target language and the model capabilities to generalize to synonyms while controlling the
sentence structure.

6 SIGNIFICANCE OF SPECIFIC NEURON SETS

Figure 4: Top ranked neurons have a stronger
impact on the translation quality of a test set,
measured in BLEU. Erasure of neurons from
the top or bottom of the rank given by the
value of correlation between paraphrases.

In our baseline manipulation in §5.2 we chose
what neurons to modify according to the rank
given by ParaCorr (i.e., sorting all neurons by
ParaCorr(l, l), high to low). Under an intuitive
interpretation, neurons that still positively correlate
when systematic changes are made to the input are
those invariant to that change. Neurons with a nega-
tive correlation are specific to the change. Following
these, we expect that applying our manipulation on a
set of neurons with the lowest rank would yield bet-
ter results than top ranked neurons. Contrary to intu-
ition, we observe the opposite phenomenon, as seen
in figure 3. We perform some tests, in an attempt to
explain this.

Model Performance. Going back to the founda-
tions of our methodology, Bau et al. (2019) identi-
fied important neurons (in an LSTM) by ranking the
most correlated neurons across models. To verify the
”importance” notion, they delete (i.e., set the activa-
tions to zero) neurons from the top versus the bottom
of the rank and examined the impact on the model
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performance. We apply this experiment in our settings: we set to zero an increasing amount of
neurons, according to ParaCorr. We measure BLEU on a held-out set of 552 active voice sentences
extracted from the WMT19 test set. Results (figure 4) show that top ranked neurons have a stronger
impact on the translation quality than lower ranked do, suggesting that ParaCorr partially ranks neu-
rons by their general importance. This might explain the above counter-intuitive result; Top neurons
have the most impact on translation, and hence have the most impact when manipulated.

Role Overlap. The top ParaCorr neurons are the same neurons that account for lexical identity
and positional information. This fact explains why they have the most impact when manipulating
sentence structure. Sentence structure is tied to word order, especially in active-passive, where the
subject and direct object replace positions. Word tokens are the building blocks for the semantic
meaning of the sentence (which should remain the same across paraphrases), even when bag-of-
words is not exclusive to a specific meaning. The first evidence to support this claim is seen in
§4, where most of the strong correlations in ParaCorr are explained by similarity in the tokens
and the positional embeddings between the inputs (i.e., TokenCorr and PosCorr, respectively). In an
additional test, we check how many of the top ParaCorr neurons are also top PosCorr and TokenCorr
neurons. Figure 5 shows that for any count x, the set of top x ParaCorr neurons have an intersection
with the sets of top x PosCorr or TokenCorr neurons.

7 RELATED WORK

Figure 5: Top ParaCorr neurons intersect
with neurons most related to token embed-
dings and positional encoding. The x-axis
represents the amount of top ParaCorr neu-
rons as a percentage of all the neurons in
the encoder. The y-axis shows how many
of these x neurons are also in the set of top
x TokenCorr neurons or top x PosCorr neu-
rons. The y-axis scale is a percentage out of
x. Results are reported for the active-passive
set.

Understanding Neural Networks in NLP. Vari-
ous approaches were previously proposed to explain
neural networks (Belinkov & Glass, 2019), each
with a methodology that differs from ours. Probing
tasks investigate whether linguistic properties of the
input text can be effectively predicted from model
representations (Jawahar et al., 2019; Tenney et al.,
2019; Slobodkin et al., 2021). They shed light on
what information is kept within a model, but not
necessarily on what is used, or how. Other works
study causation, for example, Vig et al. (2020) em-
ploys mediation analysis theory to interpret what
parts of a model generate a certain semantic be-
havior. Analysis of the interaction between input
and output while exploiting internal knowledge was
done by He et al. (2019), relying on gradients. Some
works analyze attention heads (Voita et al., 2019)
or follow attention flow in the network (Abnar &
Zuidema, 2020). Visualization tools interpret ac-
tivations and with some exceptions (e.g., Lenc &
Vedaldi, 2015), they are mostly limited to qualita-
tive examples. Other works interpreting individ-
ual neurons include Durrani et al. (2020), which
use probing-like methods for a more fine-grained
analysis. Challenge sets (Choshen & Abend, 2019;
Warstadt et al., 2020), as well as adversarial exam-
ples (Alzantot et al., 2018), expose challenging cases
by analyzing the NMT system’s behavior, rather than representation. Elazar et al. (2021) analyze se-
mantically equivalent input by clustering representation. They also improve prediction by continual
training, while we manipulate translation post training.

Analysis in other domains. Some Computer Vision work resembles our approach. Lenc &
Vedaldi (2015) delve into the interaction between input transformation and its representation along
the layers, while Goodfellow et al. (2009) examine invariant neurons, those that are selective to
high-level features but are robust given semantically identical transformation. Their methodologies
do not fit the NLP domain since they rely on a mathematically well-defined input transformation.
We propose an alternative with our paraphrases in section §2, and thus we analyze the relation be-
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tween the input and individual representations. In the field of neuroscience, analysis on the encoding
of linguistics in the human brain have been done in a similar methodology to ours: Friederici (2011)
analyzed the correlation of neuroimaging where subjects are presented with sentences with subtle
syntactic variations or violations, and well correlated regions are considered to process syntax.

Individual neurons analysis using correlation. Correlation between activations of individual
neurons have been analyzed before in different settings. Bau et al. (2019) used it to detect neu-
rons that are most correlated across LSTM models, while showing these are the most important
for performance. They manipulated individual neurons to control single words in the output (e.g.,
gender, tense). The technique to identify neurons that activate similarly in different models was
previously suggested by Dalvi et al. (2019), who found neurons in LSTM models to have role poly-
semy, aligning with our discussion in §6. Later, Wu et al. (2020) employed correlation to examine
similarities of different Transformer architecture. Meftah et al. (2021) adapted correlations analysis
to quantify the impact of fine-tuning by measuring activations of neurons before and after domain
adaptation.

Controlling active-passive voice in translation. Manipulation of the sentence structure of a trans-
lated sentence, and specifically voice, was explored by Yamagishi et al. (2016). They controlled
voice (active/passive) in Transformer translation from Japanese to English, when an indicator was
given as input. Unlike ours, their method required additional model training.

Paraphrases Existing paraphrasing tools vary by how localized the edits they perform on the sen-
tence are. Some alter the lexical level (Ribeiro et al., 2018), other alter whole phrases (Ganitkevitch,
2013; Bhagat et al., 2009), some are sentence-level paraphrases (Dolan et al., 2004), while some
split source sentences into sub-sentences (e.g., Dornescu et al., 2014; Lee & Don, 2017). Other than
paraphrasing tools, some existing datasets include the PPDB database (Pavlick et al., 2015) that
contains sentence paraphrases that are lexical, phrasal, or syntactic. Zhang et al. (2019); Dolan &
Brockett (2005) include paraphrase and non-paraphrase pairs, the former with high lexical overlap,
while (Hu et al., 2019) contains multiple paraphrases of lexical diversity. None of these match our
criteria for paraphrases (§2).

8 CONCLUSION

In this work, we propose a novel approach to understanding Neural Machine Translation models.
With our curated dataset, we measured correlation to detect activation patterns across paraphrases.
By a meticulous confound analysis, we found that similarity of activations across paraphrases is
likely due to similarity of sequence length or word identity overlap, which are important compo-
nents of paraphrases but are not exclusive to meaning-preserving variations. We emphasize how
these confounds must be taken into account when attempting to detect local correlation under any
experimental setup. Our results imply that the strongest correlations observed are due to the input
representation, and to high-level abstraction.

We investigated activation manipulation to control translation to be of a specific sentence structure.
Our experiments show that changing the activation value towards the averages activation under a
target feature increases the similarity of translation to the target form. Our results thus imply that
sentence structure is captured by the model, but in a decentralized way. This suggests that sentence
structure is not a localized feature in representation. This aligns well with our correlation analysis,
where we did not detect strong localized activation patterns after eliminating confounds.

Works in neuroscience also indicate that sentence structure might not be a local phenomenon but
spread across the encoder latent representation. Blank et al. (2016); Reddy & Wehbe (2020) find
that syntax processing is distributed across the language system in the human brain. Fedorenko et al.
(2012) suggest that lexical information may play a more critical role than syntax in the representation
of linguistic meaning, which relates to our findings in §6.

We hope our paraphrasing engine and the dataset derived from WMT19 will be beneficial to oth-
ers for network analysis tasks or otherwise. Moreover, our correlation methodologies are model-
agnostic and can be applied with any variation in input, which we hope will inspire future work in
this field.

9
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A COMPILATION OF MINIMAL PARAPHRASE PAIRS

A.1 TOOLS AND TECHNIQUES

We explain, in greater detail, the main tools we use when we paraphrase, as briefly discussed in
section §2.

Pattern Detection. Making sure we change form but not semantics, we rely on syntax patterns,
not word-based. We use dependency parsing (including Part of Speech tagging) and Semantic Role
Labeling combined (by Honnibal et al. (2020) and Gardner et al. (2018), respectively) to detect
active form and adverbial clauses by type (see table 3).

Sentence Probability Used for choosing between two sentence options (with or without a certain
preposition?). We use gpt2 model Radford et al. (2019) by huggingface Wolf et al. (2020) to get
sentence probability for each option and opt for the higher.
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Word Insertion.
Input: a sentence X = x1, x2, ..., xn , a position i, and a set of possible words
W = {w1, ..., wm}

1: Define
X ′ = x1, . . . , xi−1, [MASK], xi, . . . , xn

2: Send X ′ into a trained BERT masked language model Devlin et al. (2019) by Wolf et al. (2020)
and get y ∈ Rn, a probability vector for each word in the vocabulary (d is the size of the
vocabulary of the BERT model)

3: Define wk ∈ W s.t. wk = maxi=1,...m y[wi] to be a new word at position i of sentence X (the
word with the highest probability, according to BERT, out of the given set W ).

Output: a sentence
(x1, x2, . . . , xi−1, wk, xi, . . . , xn)

We can make this an Optional Word Insertion by returning either the input or output sentence,
using Sentence Probability.

Noun Derivation.
Input: a verb (lemma form)
We prioritize choosing the noun form from AMR morph verbalization 12. If we don’t find it there,
we choose between Nomlex Macleod et al. (1998) form and present participle form according to
Verb Form Dictionaries13 (if exists), deciding according to Word Insertion.
Output: either a noun or None

Preposition Sets. Using Word Insertion requires a set of options as input. In our paraphras-
ing process we use the following predefined sets to insert prepositions. Temporal prepositions:
’as’, ’aboard’,’along’, ’around’, ’at’, ’during’, ’upon’, ’with’, ’without’ General prepositions: ’as’,
’aboard’, ’about’, ’above’, ’across’, ’after’, ’against’, ’along’, ’around’, ’at’, ’before’, ’behind’, ’be-
low’, ’beneath’, ’beside’, ’between’, ’beyond’, ’but’, ’by’, ’down’, ’during’, ’except’, ’following’,
’for’, ’from’, ’in’, ’inside’, ’into’, ’like’, ’minus’, ’minus’, ’near’, ’next’, ’of’, ’off’, ’on’, ’onto’,
’onto’, ’opposite’, ’out’, ’outside’, ’over’, ’past’, ’plus’, ’round’, ’since’, ’since’, ’than’, ’through’,
’to’, ’toward’, ’under’, ’underneath’, ’unlike’, ’until’, ’up’, ’upon’, ’with’, ’without’.

A.2 ACTIVE VOICE TO PASSIVE VOICE

The active to passive paraphrasing process is done on sentences that include a nominal subject and
a direct object. We discard any sentence of question and coordination, possible passive form (root
verb is in past participle), and when the root verb has a ”to” auxiliary.

1: If the subject is a proper noun, convert it to object form
2: If the direct object is a proper noun, convert it to subject form
3: Switch the subtree spans of subject and object
4: Add ”by” just before the span of the new object
5: If an auxiliary verb is one of ”can”, ”may”, ”shall”, convert it to ”could”, ”might”, ”should”

respectively.
6: If root verb is a gerund or present participle, replace it with ”being”. Otherwise, remove it

altogether.
7: Add suitable auxiliary according to the new subject form of singular/plural, and the tense.
8: If the sentence includes a negation word, remove it and add ”not” before the auxiliary.
9: Replace the root verb to its past participle form (using the Verb Forms Dictionary14).

10: If the sentence includes a particle, move it after the root verb.
11: If the sentence includes a dative, try to replace it using Optional Word Insertion.

We’ll go over an example:

Active to Passive: example
Input: He can’t take the book.
12https://amr.isi.edu/download.html
13https://github.com/monolithpl/verb.forms.dictionary
14https://github.com/monolithpl/verb.forms.dictionary
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1: ”He”← ”Him”
2: NA
3: Switch ”him” with ”The book”
4: ”him”← ”by him”
5: ”can”← ”could”
6: NA
7: Add ”be”
8: ”′t”← ”not”
9: ”take”← ”taken”

10: NA
11: NA

Output: The book could not be taken by him.

Extract Adverbial Clause1. Extract detect type by Semantic Role Labeling (Gardner et al., 2018)

Cause/Reason Temporal Purpose
Possessive Non-Possessive

marker ”as”/”before”/
2. Match root ”have” and root isn’t: ”have”/ ”after”/”until”/”while” participle ”to”

pattern marker ”because” ”be”/”do”/”can” or adverbial modifier
”when”

3. aux remove root’s auxiliaries

remove
direct object’s4. det/Noun
determinants

Noun Derivation A.1

5. Possession Nominal subject to possessive form

replace ”because” If ”as”/”while”/ Replace ”to”
with ”because of” ”when”, replace by with ”for”6. Preposition

Word Insertion A.1a

If negation, If there is a direct objectb7. Additions add ”lack of” Optional Word Insertion A.1c

a Using temporal prepositions set.
b If there is a direct object of the form ”¡xxx¿self” in the non-possessive cause/reason case, we instead

add ”self” before the derived noun and remove this object.
c Using general prepositions set.

Table 3: The paraphrasing process from adverbial clause sentence to a noun phrase.

The complete process of paraphrasing a sentence with an adverbial clause to one with a noun phrase
substituting it is detailed in table 3. We’ll demonstrate a few examples 15.

Purpose clause
Input: She sat under the sun to enjoy the warmth.

1: Extract ”to enjoy the warmth”
2: Found matching participle ”to”
3: NA
4: ”enjoy”← ”enjoyment”
5: NA
6: ”to”← ”for”
7: ”thewarmth”← ”ofthewarmth”

Output: She sat under the sun for enjoyment of the warmth.

15The flow of purpose clause conversion lacks optional determiner addition before the new noun phrase. It
will be fixed upon publication.
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Cause/Reason clause, possessive form
Input: She was at the library for a long time because she had an unresolved problem.

1: Extract ”because she had an unresolved problem”
2: Found matching root ”had” and a marker ”because”
3: Remove ”had”
4: Remove ”an”
5: ”she”← ”her”
6: ”because”← ”because of”
7: NA

Output: She was at the library for a long time because of her unresolved problem.

Cause/Reason clause, non-possessive form
Input: This robot is very advanced because it flies itself.

1: Extract ”because it flies itself”
2: Found matching root ”flies” and a marker ”because”
3: NA
4: ”flies”← ”flight”
5: ”it”← ”its”
6: ”because”← ”because of”
7: ”flight”← ”self flight”

Output: This robot is very advanced because of its self flight.

B DETECTING CORRELATION PATTERNS

B.1 INSIDE THE LAYER BLOCK

(a) Post Attention (b) Residual + Norm (c) Linear Layers (d) Residual + Norm

Figure 6: Activation correlation between paraphrases (ParaCorr), using the active-passive dataset.
A view inside the first encoder layer block, step-by-step: (a) attention heads, (b) adding residual
connections and applying normalization, (c) fully connected layer, followed by ReLU and another
fully connected layer, (d) adding residual connections and applying normalization - the output of the
layer block.

In section 4 we measure the correlation of activations only at the output of the encoder layer block,
following previous work (Wu et al., 2020). We also take a look at intermediate activations, see
figure 6. This strengthens our hypothesis that the strong correlation seen in PosCorr (figure 1c) is
due to the sinusoidal positional encodings, as they are propagated through the network with residual
connections. The PosCorr effect appears only after the first residual connection, weakens through
the fully-connected layers, and strengthens again after additional residual connection.

B.2 ADVERBIAL CLAUSE VERSUS NOUN PHRASE

Here we present the same correlations methods detailed in section 4but measured on the adverbial
clause versus noun phrase sets. See figure 7.
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(a) ModelCorr (b) ParaCorr (c) PosCorr (d) TokenCorr

Figure 7: Activation correlation of first layer neurons in the Transformer encoder, using the
clause/noun-phrase dataset.

C MANIPULATION OF NEURONS

C.1 ACTIVE TO PASSIVE

(a) Baseline (b) Random direction comparison (c) Random selection comparison

Figure 8: Manipulating output translation to be passive voice when feeding active voice as input.
Lines present BLEU change with active and passive references according to the amount of neurons
manipulated (x).

To complete all variations of the manipulation experiment, we first showcase the shift from active
voice input to passive voice translation (the opposite direction than what we showed in the paper).
We see that the translation is more similar to the target form (passive voice) than the input form
(active voice). The positive change in BLEU is more subtle in this manipulating, and again getting
maximal change requires many neurons to be modified (at least 50%), see Fig. 8a. With the ran-
dom experiments of direction (Fig. 8b) and neurons selection (Fig. 8c), we get similar results - our
controlled direction is better while choosing a subset of neurons is not easy.

C.2 MANIPULATION ON A TEST SET

We repeat the manipulation on a held-out test set: 552 sentences that we detect as active voice from
the WMT19 test set. While our experiments on the dev set are valid, as we manipulate from one
set (e.g. passive voice) by measuring on another (e.g. active voice), one might argue that we can’t
know the effect the shared semantic meaning (on the set level) has on the success rate. To cover all
bases, we manipulate the test set according to average activations measured on the dev set. Here
we do not have a passive voice counterpart, so we manipulate active voice inputs to passive voice
translations. The passive voice detection score (see §5.3) shows a monotonous increase (up to 0.6%
more) as we modify more neurons (see figure 9). The trend matches our expectations. Moreover, we
see again that manipulating top ranked neurons (rank given by ParaCorr) has a greater effect than
bottom ranked ones. This is again consistent with what we saw with the development set and BLEU
score in section 6.
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Figure 9: Manipulating neurons to get passive voice translation given an active voice input from
the test set. Comparing the effect of manipulating first top versus bottom neurons, according to
ParaCorr. We measure passive form detection

(a) Passive to Active (b) Active to Passive

Figure 10: Comparing various magnitudes α for manipulation α
‖yc1−yc2‖

(yc1 − yc2) ∈ Rm. BLEU
score measured against reference of target form, when manipulating increasingly more neurons
according to top rank of ParaCorr.

C.3 NOUN PHRASE TO ADVERBIAL CLAUSE

Manipulating from a noun phrase to an adverbial clause is consistent with the results we saw for
passive to active manipulation, see Fig. 11 We repeat the same succession of experiments on the

(a) Baseline (b) Random direction comparison (c) Random selection comparison

Figure 11: Manipulating output translation to be with an adverbial clause when feeding a sentence
with a noun phrase as input. Lines present BLEU change with active and passive references accord-
ing to the amount of neurons manipulated (x).

adverbial clause versus noun phrase dataset.

C.4 ADVERBIAL CLAUSE TO NOUN PHRASE

Manipulating neurons to convert input with an adverbial clause to output translation with a noun
phrase is not outright successful. In the controlled case (where we employ direction by our records
of average activation of each paraphrase form and select an increasing set of neurons to manipulate
according to top or bottom ParaCorr rank), we are still closer to the clause form than noun phrase.
We propose several possible explanations:
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1. The clause versus noun phrase dataset is substantially smaller than the active versus passive
one (114 examples compared to 1,169 instances). A small dataset may include more noise
or simply make the target syntactic form harder to capture.

2. Adverbial clause form may be more common in the train set so the model regularizes
to the statistically more acceptable option. We see hints for that when we compare the
manipulation towards active form as more successful than passive form (§5 and Fig. 8).

3. Noun phrase form may not be distinctive enough to be encoded in the model.

4. The target form may not be natural in the target language. As we discuss in our qualitative
analysis in section 5.3, fail cases revealed instances where the target form was either not
possible for a native German speaker, or required replacement of the verb to a synonym.
This replacement demands another layer of manipulation from the model, one that it may
not even know to generalize.

(a) Baseline (b) Random direction comparison (c) Random selection comparison

Figure 12: Manipulating output translation to be with a noun phrase when feeding a sentence with an
adverbial clause as input. Lines present BLEU change with active and passive references according
to the amount of neurons manipulated (x).

C.5 MANIPULATION MAGNITUDE

The manipulation operation defined in 5 is normalized, then applied to chosen neurons. The reason is
for different manipulations to be comparable in size. Another manipulation parameter to experiment
with is a scalar α to re-scale with, i.e. manipulation from c1 to c2 is defined as subtraction of

α
‖yc1−yc2‖

(yc1 − yc2) ∈ Rm. We experimented with a small grid search for alpha values without

an apparent option being better than the baseline (α = 1). See figure 10 for results16. There is no
definitive conclusion of what magnitude would be consistently better in every manipulation. Similar
trends were found in the clause dataset: α = 2 was best when manipulating from paraphrased form
noun phrase back to original form of adverbial clause, and worse in the other way around. This could
be tied to the general effect we see in §C.4 that there is one direction of manipulation more effective,
which is changing from paraphrased form to original form and should be further investigated in
future work.

D QUALITATIVE ANALYSIS OF MANIPULATION

Sentence examples of successful manipulation from passive voice input to active voice translation,
as examined by a native German speaker, can be found at table 4.

As we discuss in §5.3, sometimes a manipulation is not applicable in the target language. For
example, the adverbial clause sentence from our dataset ”In Lyman’s case, she reported the alleged
rape to military police less than an hour after it occurred.”, is translated into a noun phrase sentence
regardless of input form (i.e. if we insert either this as input or its noun phrase paraphrase) or
manipulation (i.e. with or without manipulation). ”it occurred” is immediately translated into the

16We experimented with even greater values (α ∈ {5, 10, 100, 1000}), each with a more drastic BLEU drop,
therefore we discard their inclusion in the figure to allow the y-axis range to capture the subtle trends of the
variables presented.
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Table 4: Example of successfully manipulated sentences, from passive voice input to active voice
translation. Manipulation is done by shifting the values of all the neurons in the encoder towards
their average activation on active voice sentences. Correctness of sentence voice and fluency was
verified by a native German speaker.

Input sentence:
passive voice

Baseline translation:
passive voice

Manipulated translation:
active voice

The scene was described by
police as very gruesome.

Der Tatort wurde von der Polizei
als sehr grauenvoll beschrieben.

Die Polizei beschrieb den
Tatort als sehr grauenvoll.

During the excavations, the
remains of a total of five creatures
were collected by them.

Bei den Ausgrabungen wurden von
ihnen die Überreste von insgesamt
fünf Lebewesen gefunden.

Bei den Ausgrabungen
fanden sie die Überreste von
insgesamt fünf Lebewesen.

From ”dream” to ”megalomania”:
the Bit Galerie is discussed by
TV readers

Vom ”Traum” zum ”Größenwahn”:
Die Bit-Galerie wird von TV-Lesern
diskutiert

Vom ”Traum” zum
”Größenwahn”: TV-Leser
diskutieren über die Bit-Galerie

Table 5: Example of adverbial clause and noun phrase translations, showcasing the limitations of
BLEU comparison to Google Translate references and the challenge of translating an output in
adverbial clause form. Either manipulation here did not have any effect (e.g. manipulation from
clausal input resulted in translation identical to the one without manipulation)

English

Adverbial Clause
In Lyman’s case, she reported the alleged
rape to military police less than an hour
after it occurred.

Noun Phrase
In Lyman’s case, she reported the alleged
rape to military police less than an hour
after its occurrence.

Human
Reference

In Lymans Fall meldete sie die mutmas̈sliche
Vergewaltigung der Militärpolizei weniger als
eine Stunde nach dem überfall.

Google
Translate

In Lymans Fall meldete sie die mutmas̈sliche
Vergewaltigung weniger als eine Stunde nach
ihrem Auftreten der Militärpolizei.

In Lymans Fall wurde die mutmas̈sliche
Vergewaltigung von ihr weniger als eine
Stunde nach ihrem Auftreten der Militärpolizei
gemeldet.

Our
Translation

In Lymans Fall meldete sie die angebliche
Vergewaltigung weniger als eine Stunde nach
dem Vorfall der Militärpolizei.

In Lymans Fall meldete sie die angebliche
Vergewaltigung weniger als eine Stunde nach
ihrem Auftreten der Militärpolizei.

German parallel of ”its occurrence” when translating the clause version, and it is translated into a
wrong noun phrase when translating the noun phrase version (the German parallel of ”appearance”
rather than ”occurrence” in this context , i.e. ”Auftreten” and ”Vorfall”, respectively). A native
German speaker suggested we opt to replace ”occurred” with ”happened”, otherwise it could not be
translated to a clause form. Even the human reference (of WMT) is with the ”its occurrence” noun
phrase.

of of
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