
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAPONET : NONLINEAR OPERATOR LEARNING
FOR BRIDGING THE HUMANOID SIM-TO-REAL GAP

Anonymous authors
Paper under double-blind review

ABSTRACT

The sim-to-real gap, arising from imperfect actuator modeling, contact dynam-
ics, and environmental uncertainty, poses fundamental challenges for deploying
simulated policies on physical robots. In humanoids, object manipulation further
amplifies this gap: end-effector payloads alter joint inertia, gravity torques, and
transmission efficiency, introducing state- and payload-dependent nonlinearities.
Yet existing approaches lack both systematic analysis and a generalizable repre-
sentation of this payload-induced degradation. To address this limitation, we pro-
pose GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware. We then introduce a payload-
aware ⟨collect–analyze–solve⟩ framework to learn this operator GapONet. First,
we curate a sim-real paired dataset TWINS spanning multiple payloads, robots,
motions, actuation rates, and simulators, comprising more than 11,298 motion
sequences. Second, we perform payload-aware system identification to isolate
payload-related effects and quantify their contributions, and analyze sim-to-real
gaps across different simulators. Third, we train the operator GapONet to predict
delta action for real-time, generalized, payload-conditioned compensation. We
further introduce actuation functions and sensor predictors, which enable parallel
RL training of GapONet with substantially reduced energy consumption. While
tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps
below 0.09%, whereas competing methods remain near 10%. By correcting upper-
body gaps, GapONet also stabilizes lower-body locomotion tracking, laying the
foundation for improved performance in humanoid loco-manipulation tasks.

1 INTRODUCTION

Policies trained in simulation benefit from GPU acceleration and massively parallel sampling, en-
abling fast and scalable optimization under approximate physics such as mass, friction, and damp-
ing (Makoviychuk et al., 2021; Tan et al., 2018). However, object interactions in the real world often
diverge from these idealizations due to unmodeled or state-dependent effects, most notably in fric-
tion, inertia, and contact—leading to a persistent model–plant mismatch (Tobin et al., 2017; Zhao
et al., 2020). This sim-to-real gap is further exacerbated in humanoids that manipulate objects of
different masses. Variations in end-effector payload induce coupled drifts in equivalent joint inertia,
gravity–torque amplitudes via center-of-mass and lever-arm shifts, transmission friction and effi-
ciency, thereby altering closed-loop dynamics (Spong et al., 2006). Yet during policy training, these
payload-dependent adjustments are typically simplified or held fixed, which leaves the gap largely
unaddressed. The sim-to-real gap can grow in complex, nonpredictive ways, posing a substantial
obstacle to robust policy transfer and reliable real-world deployment (Zhang et al., 2023).

Prevailing approaches either calibrate simulators via system identification to tune masses, frictions,
and damping (Ljung, 1998; Åström & Eykhoff, 1971; Nelles, 2002); broaden training distributions
through domain randomization and observation noise to reduce overfitting (Mehta et al., 2020; Tobin
et al., 2017; Chen et al., 2021; Laskey et al., 2017; Zhang et al., 2020; Matas et al., 2018); or stage
learning with curricula or progressively harder terrains to harden policies over time (Luo et al., 2020;
Wang et al., 2021; Peng et al., 2020; Heess et al., 2017) to bridge the sim-to-real gap. However, the
interacted object (payload) is a structured operating condition, not mere noise (Slotine & Li, 1987):
it deterministically alters gravity loading, effective inertia, dissipation, and hence the closed-loop
gain/phase under PD control. Single-point identification cannot capture behavior across payloads,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and domain randomization or curricula largely treat the payload as unstructured uncertainty. Thus,
while these strategies can improve robustness, they hinge on manual design (randomization ranges,
noise schedules, curriculum pacing) and provide limited diagnostic attribution. Critically, they do
not yield a generalizable representation of the sim-to-real gap for humanoid interaction.

(d) Model Evaluation

𝑎𝑡
𝑟𝑒𝑎𝑙 − ∆𝑎𝑡

Real-time On-board

Evaluation

GapONetPD Control

𝜉 = {𝑞𝑡−𝑛:𝑡
𝑟𝑒𝑎𝑙 , ሶ𝑞𝑡−𝑛:𝑡

𝑟𝑒𝑎𝑙 }

Sensor

Model

(b) Actuation Function

Gap Modeled as

Difference of Sim & Real’s

Actuation Function Space

Joint Pos.

Joint Vel.

{𝑞𝑡
𝑠𝑖𝑚}

{ ሶ𝑞𝑡
𝑠𝑖𝑚}

Joint Torque

{𝜏𝑡
𝑠𝑖𝑚} Joint Pos.

Joint Ve l.

{𝑞𝑡
𝑟𝑒𝑎𝑙}

{ ሶ𝑞𝑡
𝑟𝑒𝑎𝑙}

Joint Torque

{𝜏𝑡
𝑟𝑒𝑎𝑙}

Sim

Real

Surrogate

Actuation

Functions

Trunk Net
11dim

 (Joints + payload)

Branch Net
40 dim

(fixed senso r n umber)

ℬ(𝑈𝜀
𝑠𝑢𝑟𝑟)

⊕
𝑎𝑡 + ∆𝑎𝑡

(c) GapONet Training

State Transitions

{∆𝑠1...𝑘
𝑠𝑢𝑟𝑟}

Action

Queries

RL

TWINS

Dataset

𝜉 ∽ 𝐷

𝑎𝑡, 𝑝 ∽ 𝐷

Func. Coords

Action & Payload

Simulator

{∆𝑠𝑠𝑖𝑚}

Sensor

Modelin

g

{𝑦1,...,𝑘}
k-sensor queries

⊗

Action

Queries

SimulatorTWINS Transition

∆𝑠𝑡
𝑟𝑒𝑎𝑙∽ 𝐷

∆𝑠𝑡
𝑠𝑖𝑚

Sim. Transition

𝑦𝑡

Separate control

Upper- &

Lower-body

Large-scale

Open-source

Human Motions

Retarget

Augmentation

Real-time

 Teleoperation
Wheeled 1.8m Humanoid 1.3m Humanoid

Different Payload Different Robot Different Simulator
IsaacGym IsaacSimMujoco

(a) Data collection in multiple robot platforms

T
W

IN
S

D
at

as
et

P
a
r
in

g

Figure 1: The overall architecture of both data collection and GapONet training. (a) TWINS, a
paired sim–real dataset via motion retargeting and real-time teleoperation across diverse payloads,
robots, and simulators. (b) The sim–real gap is formulated as a discrepancy between actuation func-
tion spaces, providing functional coordinates. (c) GapONet learns a payload-conditioned nonlinear
operator that maps simulation context to residual actions, and training uses parallel RL. (d) Online
evaluation on unseen hardware with PD control and sensor modeling to quantify sim–real alignment.

A complementary line of work learns dynamics directly from real data, either as state-transition
models or action-to-effect maps (Shi et al., 2019; Xiao et al., 2024; He et al., 2025). From a con-
trol standpoint, however, identifying payload-dependent dynamics from passive logs requires per-
sistence of excitation and explicit treatment of operating conditions. In practice, motion patterns,
contact regimes, and payload values co-vary, so a single black-box model fit to mixed data tends to
entangle payload effects with task-specific artifacts, yielding spurious correlations. As a result, such
models often need large volumes of paired sim–real trajectories to cover the space and still exhibit
poor cross-payload and unseen-motion generalization. The missing ingredient is a representation
that disentangles exogenous operating parameters from state evolution, rather than collapsing them
into a single dynamics model. Such a formulation enables a more faithful mapping between the
simulator and real-world domains.

We present a ⟨collect–analyze–solve⟩ framework to learn this representation for bridging the sim-
to-real gap in humanoids. We first curate TWINS, a time-synchronized sim–real corpus with a
structured factorial design. Unlike prior collections (Wu et al., 2024; Mao et al., 2024; AgiBot-
World-Contributors et al., 2025), our dataset design over diverse payload levels, humanoid plat-
forms, actuation rates, simulations, and motion families, enabling further controlled analyses. To
clarify the GapONet ’s learning target, we first perform gray-box, block-wise system identification
atop a PD control model, attributing error reductions to specific payload-related terms and quantify-
ing their contributions. We then analyze identical motions across payloads and simulators, showing
structured residuals dominated by actuator nonlinearities, which motivates a more generalizable
nonlinear operator rather than a pointwise approximation function.

We then propose GapONet, a payload-conditioned nonlinear operator that maps simulation context
functions to a residual actions for hardware. Our operator is parameterized with a branch–trunk
decomposition (Lu et al., 2019): The branch net encodes the local dynamics of the physical world in
which our robot resides as a function, and the trunk network encodes the input variables to that func-
tion, including payload weight and target pose. This separation provides a strong structural inductive
bias, disentangling the conditioning context from the queried response, thereby enhancing the oper-
ator’s generalization capacity. We also propose the sensor predictor, enabling parallel RL training

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of GapONet with lower energy cost while preserving generalization beyond pointwise regression.
While tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps below
0.09%, whereas competing methods remain near 10%. By correcting upper-body gaps, GapONet
also stabilizes lower-body locomotion tracking, laying the foundation for improved performance in
humanoid loco-manipulation tasks.

This paper makes three primary contributions:

• We develop a sim-real data collection pipeline and we curate the first dataset TWINS fo-
cusing on payload-induced sim-real gap across multiple payloads, robots, motions, and
simulators.

• We reproduced over 30 hours of real data across four simulators and conducted controlled,
ceteris paribus comparisons, yielding quantitative evidence that sim-to-sim evaluation im-
proves the deployability of humanoid controllers.

• We introduce GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware, and demonstrate its training via RL.

2 RELATED WORK

Sim-to-Real Gap Sim-to-real research has largely moved from system identification—calibrating
masses, frictions, and control gains to align simulation with measurements (Sobanbabu et al., 2025;
Gu et al., 2024; Zhang et al., 2024)—to domain randomization, which perturbs dynamics and obser-
vations to harden policies (Peng et al., 2018; Xie et al., 2021; Mehta et al., 2020; Chen et al., 2021).
The former can deliver high fidelity but typically demands accurate structural assumptions and ex-
tensive hardware time (Ljung, 1998; Miller et al., 2025); the latter proved influential for legged
and humanoid control (Xie et al., 2020; Margolis et al., 2024; Li et al., 2023) yet can bias policies
toward conservatism (He et al., 2024). In practice, both families often require substantial manual
retuning across agents, tasks, and operating regimes, motivating data-driven directions that learn
from collected data. One line models actuator nonlinearities with fine granularity to capture motor-
level effects (Hwangbo et al., 2019); another emphasizes residual correction, learning delta actions
for online compensation with lighter overhead (He et al., 2025). In parallel, simulation–real fusion
seeks coverage and speed from simulators while retaining real-world grounding (Fey et al., 2025;
Zhang et al., 2023; Bjelonic et al., 2025; Xu et al., 2025; Ouyang & Cui), and new benchmarks stan-
dardize evaluation (Bjelonic & Hutter, 2025). Despite these advances, both simulator-centric and
data-centric pipelines still struggle with broad generalization under real-world variability (Muratore
et al., 2022), which limits general gap-bridging in complex systems, such as humanoids.

Nonlinear Operator Nonlinear operator learning. Rather than learning pointwise mappings, oper-
ator learning targets mappings between function spaces, where both inputs and outputs are functions
(Kovachki et al., 2023). Within this paradigm, Unstacked Deep Operator Network (DeepONet) of-
fers a principled route to learn nonlinear operators via an operator-level universal approximation
result (Lu et al., 2019). Its branch–trunk decomposition encodes input functions in the branch
network and query locations in the trunk, combining them (e.g., via inner products) to produce
function values; the construction connects to low-rank approximations and RKHS viewpoints, lend-
ing theoretical footing to the architecture (Hornik et al., 1989; Lu et al., 2021). Building on these
foundations, recent studies have pushed operator learning toward control and engineering settings:
formulations grounded in Hamilton–Jacobi policy iteration suggest a pathway to control-theoretic
operators (Lee & Kim, 2025); physics-informed treatments extend the approach to optimal control
(Na & Lee, 2024); and model-predictive control has been instantiated with deep operator networks
to handle online decision-making under dynamical constraints (de Jong et al., 2025). Beyond con-
trol, multiphysics applications demonstrate operator surrogates for solution fields in materials pro-
cessing and additive manufacturing, highlighting scalability to complex PDE-governed phenomena
(Kushwaha et al., 2024). Despite this progress, most deployments remain either theory-centric or
domain-specific, with limited attention to robotics sim-to-real—in particular, to humanoid systems
subject to shifting operating conditions such as payload changes. This gap motivates operator-based
formulations that explicitly encode conditioning on task and environment variations while preserv-
ing sample efficiency and real-time viability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 DATA COLLECTION AND GAP ANALYSIS

End-effector payloads reshape joint dynamics and closed-loop behavior—raising reflected inertia,
shifting gravity torques, and coupling with actuator and contact nonlinearities. Divergent simulator
treatments of these effects produce a persistent, multi-factor sim-to-real gap. This section provides
a structured diagnosis: Section 3.1 isolates payload-induced terms via gray-box system identi-
fication; Section 3.3 compares simulators on identical payload-bearing motions under matched
controllers; Section 3.2 details TWINS and its collection pipeline.

\

Joint Angle (rad)
−1.5 −1.0

−0.5 0.0 0.5 1.0 1.5L_shou_pitch
R_shou_pitch

L_shou_roll
R_shou_roll

L_shou_yaw
R_shou_yaw
L_elbow

R_elbow
L_wrist_roll

R_wrist_roll

D
ensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
D

en
si

ty

Joint Name

(a) Payload-aware System Identification

(c) Data Distribution (b) Gap changes related to payload

Figure 2: System identification and data distribution (a) Prediction residuals after adding
payload-related parameters; notably, adding gravity compensation yields a clear improvement. (b)
The vertical axis shows the change in the joint-wise gap as the payload increases. (c) Data distribu-
tion of TWINS; the z-axis indicates the probability density of each joint action.

3.1 PAYLOAD-AWARE SYSTEM IDENTIFICATION

Using bipedal humanoids that demand precise control as exemplars (Unitree H1-2 and G1), both
operate under joint-space PD control tailored to locomotion (details in Section A.3.1). With added
end-effector payloads P , we adopt a gray-box identification scheme: start from a rigid PD baseline
and progressively augment the torque model with physically grounded terms salient in manipulation.
For each joint, we fit a linear in parameters regression that attributes the sim-to-real discrepancy to
gravity scaling, reflected inertia, actuator and transmission nonlinearities, and contact compliance,
and we quantify their marginal contributions:

τ = Kp (qcmd − q) + Kd (q̇cmd − q̇) + Kv q̇ + Kc tanh
(

q̇
ε

)
+ Kpayload P

+ KP sin P sin q + KP cos P cos q

+ KP q̇ P q̇ + KP q̈ P q̈

+ τ0.

(1)

Here, Kp and Kd are proportional and derivative gains; Kv and Kc model viscous and Coulomb
friction with ε smoothing the latter; Kpayload scales the main payload P ; KP sin and KP cos capture
gravity and posture coupling under payload; KP q̇ and KP q̈ model interactions between payload and
joint velocity or acceleration; τ0 is a constant bias. The remaining symbols are τ for joint torque;

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

q, q̇, q̈ for joint position, velocity, and acceleration; qcmd, q̇cmd for commanded references; and P for
payload magnitude interpreted as mass or equivalent inertia at the end effector. All K coefficients
are identified per joint. This compact form separates baseline PD, friction, and payload dependent
effects and enables clear attribution of simulation to real error.

Using over 2,000 data collected from real robots, we fit Equation (1) by minimizing RMSE be-
tween its torque and measurements. Adding payload-dependent terms reduces error Figure 2(a),
with gravity compensation giving an early gain, but at higher payloads Equation (1) no longer cap-
tures the closed loop response Figure 2(b). The equation is not a replica of the simulator; it is a
control equivalent surrogate that covers dominant channels under matched controllers. Identifica-
tion on synchronized inputs with persistently exciting motions enables term level attribution, and
the residual exposes nonlinear dynamics not captured by compact models. Learning a nonlinear op-
erator, rather than a pointwise nonlinear function, better supports generalization across trajectories,
payload schedules, actuation rates, and robots by mapping context functions to control signals.

3.2 TWINS COLLECTION

Section 3.1 shows with block-wise identification that the prediction to measurement gap is nonlin-
ear and uncertain. Given the lack of suitable data, to validate this conclusion on genuine sim to
real pairs, we present TWINS, the first dataset focused on payload induced sim to real gaps across
multiple robots, standardized payload levels, and motion classes. TWINS records humanoid dy-
namics hierarchically, from single joints to full upper body motions with 3 different low-body gaits,
using four Unitree H1-2 units with end effector masses from 0 to 3 kg (standard calibration weights)
and actuation rates of 50 Hz and 100 Hz. The real data totals 30.17 hours, 11,298 sequences, and
307,273 synchronized frames. The distribution appears in Figure 2(c).

Each sequence is time synchronized with a matched high fidelity simulation replica in three widely
used humanoid training simulators (MuJoCo, Isaac Gym, Isaac Sim), enabling comparison of real
and simulated executions at the frame level and yielding a fourfold paired corpus of 120.68 (one real
trace plus three simulated replicas). For every frame we record joint positions qsim, qreal, velocities
q̇sim, q̇real, accelerations q̈sim, q̈real, torques τsim, τreal, payload P , and motor temperature Treal.
Further details of our collection pipeline and dataset on different robots are in Section A.2.

3.3 SIM-TO-REAL GAP ANALYSIS

After post-processing the paired data TWINS, we conduct a targeted analysis of the sim-to-real gap
to guide operator design for payload-induced nonlinearities. The analysis tests concordance with the
block wise identification in Section 3.1, determines whether the effect is concentrated in the upper
body or extends to the whole body, and quantifies differences across simulators when reproducing
the same motion under matched control.

(a) Same motion with different lower-body gaits

(b) Same motion with different payloads

(c) Same motion across different simulators

Figure 3: Gap Analysis. (a) The outer ellipse marks a shared kinematic envelope across gaits, while
the central PCA trajectory of a single motion shows only minor variations with overall consistency.
(b) Heavier payloads yield larger state gaps and longer delays. (c) Simulator comparison: Isaac
Gym oscillates more, while MuJoCo and Isaac Sim track more stably.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Same motion with different lower-body gaits We execute 17 upper-body motion sequences un-
der three lower-body conditions: bipedal locomotion, static squat, and stance support only. As
shown in Figure 3(a), the outer ellipse marks the shared kinematic envelope, while the center trajec-
tory is the PCA trace of a single motion; across gaits, this trace is nearly retraced with only small
phase/offset shifts. With envelopes matched, the upper-body sim-to-real gap is therefore largely in-
sensitive to the lower-body condition, and residual differences are dominated by payload-amplified
channels. We quantify this via joint-wise normalized RMSE, commanded–measured phase lag,
and torque-saturation incidence. Note that, unlike fixed-base dual-arm platforms, upper-body ac-
tions in humanoids couple back to locomotion and can stress the gait controller; full experiments
and analysis are in Section 5.2.

Same motion with different payloads As shown in Figure 3(b), each colored trajectory plots
the joint-wise sim–real residual over time. Increasing payload amplifies both residual magnitude
and phase lag, yielding larger state gaps and longer delays. Across TWINS, payload consistently
widens the gap, and the residual grows nonlinearly with payload mass, in line with the block-wise
identification trends reported in Section 3.1.

Same motion across different simulators Current methods always apply sim-to-sim evaluation
as the cross-validation before hardware deployment (He et al., 2025; Liu et al., 2024). To charac-
terize simulator-specific differences and their dependence on payload, we compare identical mo-
tions across MuJoCo, Isaac Gym, and Isaac Sim under matched controllers and simulator-adapted
generic parameters over a standardized payload grid. Experiments Figure 3(c) show that MuJoCo
yields smoother trajectories but larger peaks in high-acceleration segments; Isaac Gym exhibits oc-
casional joint-level jitter; Isaac Sim achieves the most stable alignment in our evaluations, but still
leaves a nonlinear gap during interaction. To stay aligned with prevailing practice and minimize
simulator-induced confounds, we adopt Isaac Sim for subsequent experiments, as it exhibits the
smallest sim-to-real gap in our analysis. We also release paired data for MuJoCo and Isaac Gym to
enable cross-simulator comparisons and support future research. More results in Section A.3.

In summary, across payload levels, all simulators show a nonlinear increase in error relative to real
hardware, with simulator-specific modes. This pattern persists across lower-body gaits: when kine-
matic envelopes are matched, the distributions of upper-body error and phase metrics remain closely
aligned. The discrepancy arises from coupled channels—gravity, friction, Coriolis and inertial cou-
pling, actuator limits and efficiency drift, sensing noise, and delays—that a pointwise function map-
ping cannot capture or generalize. A nonlinear operator is better suited: GapONet provides a com-
pact, transferable representation by mapping context functions to corrective control signals across
trajectories, payload schedules, actuation rates, and robot morphologies.

4 METHOD

We propose GapONet, a payload-conditioned nonlinear operator that maps simulation context func-
tions to a residual actions for hardware. GapONet learns a functional correspondence from simula-
tor space to real dynamics and introduces actuation functions that encode command and feedback
histories. We then propose the sensor predictor, which enables parallel RL training of GapONet,
overcoming the high energy consumption of the original approach while maintaining generalization
beyond pointwise regression.

4.1 PROBLEM FORMULATION

Previous methods lack an explicit model of both the simulator and the real world (Mehta et al.,
2020; Tobin et al., 2017; Matas et al., 2018; Shi et al., 2019; Xiao et al., 2024; He et al., 2025),
which reduces distributional diversity and constrains generalization. We therefore propose actua-
tion functions, which bridge the gap between the simulator and the real world by learning a surro-
gate mapping in the function space. These functions characterize the mapping from actions (together
with task-specific parameters) to state transitions, under different joint configurations and dynamics,
both in simulation and on the real robot.

Formally, bridging the sim-to-real gap can be posed as learning an operator that maps U sim to U real

rather than approximating multiple collected dynamics, where U denotes the underlying function

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

space. Each element of U , i.e., an actuation function U , is associated with a natural coordinate
representation ξ ≜ (q, q̇), corresponding to joint positions and velocities. With this, an actuation
function is written as Uξ : A → Q × V . The goal of GapONet is to learn an operator G such that
G(U sim

ξ) ≈ U real
ξ .

4.2 NETWORK STRUCTURE

To learn the operator effectively, we adopt a DeepONet (Lu et al., 2019)-style architecture in which
a branch network encodes the output of actuation functions as the conditioning function and a trunk
network encodes the variables over which generalization is supposed to occur as queries. Our ratio-
nale for selecting DeepONet is detailed in Section A.5.

Inspired by dynamic modeling (He et al., 2025), our model (GapONet) predicts delta actions for
each joint, compensating for discrepancies between simulated and real-world dynamics (Craig,
2009). Here, we define the input of actuation functions as the sensor xt = {(qt, q̇t)}. Specifically,
given k fixed sensor locations x1, . . . , xk, we first query the simulated actuation function:

Si(U
sim
ξ) = ∆f sim(sξsim, xi) = U sim

ξ (xi), i = 1, . . . , k. (2)

These outputs are then embedded into a latent representation via the Branch Net:

B(U sim
ξ) = [B1(U

sim
ξ (x1)), . . . ,Bk(U

sim
ξ (xk))], (3)

where each component Bi captures a distinct feature of the actuation state, allowing the network to
decompose complex dynamics into interpretable subcomponents.

The Trunk Net encodes query signals consisting of both the payload and the current action:

y ∈ Y = P ×A, T (y) = [T1(y), . . . , Tk(y)], (4)

where A and P denote actions and payloads, respectively. This serves to condition the latent space,
aligning actuator dynamics with task objectives.

Finally, Branch and Trunk features are fused:

Gθ(ξ, y) = B(U sim
ξ) · T (y) =

k∑
i=1

Bi(U
sim
ξ (xi)) · Ti(y), (5)

yielding the delta action ∆aj = Gj for each joint j. This correction augments the simulator’s
nominal command, bridging the sim-to-real gap. The overall operator is then defined as:

G(U sim
ξ)(yt) = ∆f sim

(
sξsim, at +Gθ(U

sim
ξ (yt))

)
. (6)

4.3 GPU-PARALLEL OPERATOR LEARNING

A key challenge arises when applying this network in parallel Reinforcement Learning (RL) envi-
ronments: computing sensor values for every ξ is computationally prohibitive. To address this, we
introduce a sensor model Sϕ, which predicts sensor readings directly from the actuation coordinates
ξ:

Lsensor = Eξ

[∑
i

||∆f sim(sξsim, xi)− (Sϕ(ξ))i||22

]
. (7)

Optimizing ϕ yields a surrogate function space U surr ≜ Sϕ(U sim). By interpreting Sϕ as an operator
mapping U sim

ξ to U surr
ξ with approximately equal sensor output, our framework reduces to learning

an operator from U surr to U real, with the training objective:

minimize dist(G(Sϕ(U
sim
ξ)), U real

ξ). (8)

If the distance metric is defined analogously to L2 distance in the function space, this can be refor-
mulated as a RL problem with reward:

rt = −w||(st+1
real − streal)− G(U surr

ξ)(yt)||22, (9)

where sreal, y are sampled from TWINS.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 EXPERIMENT

Our experimental evaluation comprises two parts: Section 5.1 evaluates GapONet ’s zero-shot gen-
eralization to unseen robots and motions; Section 5.2 measures improvements in humanoid locomo-
tion stability through online residual compensation on hardware.

5.1 ZERO-SHOT MOTION TRACKING

GapONet can generalize to unseen target joint-position sequence (motion) under the branch–trunk
architecture. To test this capability beyond our dataset TWINS, we collected an unseen-motion test
set of 100 sim–real pairs: 35 sequences at 0 kg, 23 at 1 kg, 22 at 2 kg, and 20 at 3 kg. The test
set also spans three lower-body gaits in a 6:3:1 ratio for static stance, squat, and locomotion. For
quantitative assessment, we report Large Gap Ratio (the percentage of frames whose error exceeds
a predefined threshold), IQR (the interquartile range of the gap over all motions), and Gap Range
(the framewise gap range from minimum to maximum).

We benchmark GapONet with four baselines: (i) an MLP learned dynamics model (He et al.,
2025), (ii) a Transformer learned dynamics model that exploits temporal context better, (iii) system
identification, a classical approach to bridging the sim-to-real gap, and (iv) PD control with official
gains. Each experiment is repeated multiple times, and we report the mean and standard deviation in
the table. As shown in Table 1, GapONet attains the best or tied-best scores on nearly all metrics,
with a pronounced improvement in LGR. These results indicate smoother, more controllable zero-
shot gap bridging than the learned dynamics baselines and consistent gains over system identification
across motions from multiple robots.

Table 1: Zero-shot sim-to-real gap on unseen-motion test set across four payloads.

Method
0 kg 1 kg

LGR(%)
(↓)

IQR (↓) Range (↓) LGR(%)
(↓)

IQR (↓) Range (↓)

PD control 12.7±3.3 0.138±0.007 0.538±0.019 10.6±0.1 0.139±0.028 0.667±0.011

MLP 10.0±0.8 0.108±0.012 0.480±0.088 10.8±0.1 0.125±0.002 0.589±0.029

Transformer 9.55±0.3 0.127±0.014 0.465±0.067 5.60±0.4 0.140±0.005 0.525±0.041

System Identification 12.4±0.3 0.141±0.015 0.505±0.032 9.01±1.0 0.140±0.029 0.609±0.122

GapONet (Ours) 0.09±0.03 0.093±0.016 0.449±0.117 0.22±0.11 0.115±0.013 0.537±0.148

Method
2 kg 3 kg

LGR(%)
(↓)

IQR (↓) Range (↓) LGR(%)
(↓)

IQR (↓) Range (↓)

PD control 11.2±0.1 0.205±0.001 0.625±0.038 12.8±0.1 0.499±0.008 0.642±0.060

MLP 10.8±0.1 0.252±0.003 0.621±0.023 12.2±0.9 0.460±0.013 0.668±0.060

Transformer 0.44±0.3 0.140±0.002 0.606±0.040 9.82±0.1 0.416±0.002 0.573±0.178

System Identification 9.53±0.7 0.193±0.102 0.601±0.031 12.1±0.5 0.494±0.003 0.611±0.127

GapONet (Ours) 0.39±0.10 0.161±0.004 0.578±0.112 0.84±0.23 0.317±0.005 0.498±0.157

5.2 LOCOMOTION TRAJECTORY TRACKING

Section 5.1 demonstrates the generalization and gap-solving capabilities of GapONet, but improv-
ing upper-body tracking alone is insufficient to prove system-level benefits. For broader humanoid
applications, lower-body motion must also be considered. As shown in Section 3.3, lower-body gaits
have minimal impact on upper-body motion distributions, while upper-body compensation affects
the lower-body dynamics through coupled torques and contact forces, influencing the center of mass
trajectory (Zhang et al., 2025). To further validate GapONet’s ability to address the upper-body
gap, we introduce an online residual compensation method that adapts to varying lower-body states.

We provide both qualitative and quantitative results to evaluate the performance of GapONet. We
conducted tests on 14 motion sequences (7 at 0 kg and 7 at 1 kg payloads) using a previously unseen
Unitree H1-2 robot. For quantitative assessment, we report Trajectory Consistency (velocity dis-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Sim-to-real gap in locomotion trajectory tracking on an unseen humanoid robot.

Method
Trajectory Consistency (↓) Smoothness (↓) Robustness (↓)

0 kg 1 kg 0 kg 1 kg 0 kg 1 kg

PD control 20.33±1.982 27.49±1.057 53.76±0.257 25.76±0.277 10.16±0.007 10.14±0.026

MLP 19.18±0.919 28.82±1.560 53.48±0.343 25.55±0.361 10.15±0.027 10.14±0.024

Transformer 19.13±0.689 29.05±1.576 53.57±0.290 26.56±0.385 10.14±0.007 10.16±0.012

System Identification 19.16±0.489 28.59±1.343 24.99±0.298 25.16±0.378 10.14±0.011 10.17±0.008

GapONet (Ours) 18.78±1.147 23.23±5.245 53.36±0.486 25.08±0.181 10.13±0.167 10.14±0.017

Values are reported as mean with superscript ± standard deviation (three decimals). The best result in each
column is highlighted in light green and bold.

crepancy between simulation and real data), Smoothness (mean acceleration gap), and Robustness
(per-joint gap with added noise). Each experiment was repeated multiple times, and the results are
presented as mean and standard deviation to ensure validity. Detailed metric calculations can be
found in Section A.6.

Results in Table 2 show that GapONet outperforms other methods in trajectory tracking, main-
taining excellent performance even with payloads, and exhibiting the smallest error growth. In
qualitative analysis, as shown in Figure 4, when a humanoid robot follows the same trajectory from
the same starting point with identical commands, the real execution trajectory (depicted by the white
lines) exhibits significant deviations. Robots without the residual model show frequent tilting and
large trajectory shifts, while the policy with GapONet follows better. Full video demonstrations
and more details can be found in Section A.6 and the supplementary material.

Tilt angle
𝝅

𝟐
− 𝜽

Tilt

angle
𝝅

𝟐
− 𝜽

(a) Trajectory tracking w/o GapONet

Right angle
Right angle

(b) Trajectory tracking with GapONet

Figure 4: Locomotion trajectory tracking. (a) shows trajectory tracking using PD control, where
the path (white line) deviates significantly, and the robot’s torso tilts drastically, indicating instability.
(b) shows the full-body motion after upper-body correction with GapONet. Although there is still
some rightward deviation, the trajectory is much more stable, and the robot’s torso remains upright.

These results collectively demonstrate the generalization and gap-solving capabilities of GapONet.
It not only outperforms current baselines on unseen motions under different payloads but also
achieves higher stability in lower-body locomotion on an unseen robot, laying the foundation for
improved performance in humanoid loco-manipulation tasks.

6 CONCLUSION

We present an end-to-end data-collection pipeline and curate 120+ hours of paired sim–real data
across multiple robots. We characterize payload-related parameters, compare sim-to-real gaps across
simulators, and assess the impact of lower-body actions on whole-body behavior. We then learn a
payload-conditioned nonlinear operator GapONetmapping simulation context functions to residual
actions for hardware. On zero-shot motion tracking, the large-gap ratio is 0.09%, with improved
robustness and smoothness in locomotion trajectory tracking, strengthening the basis for humanoid
loco-manipulation. Future work and limitations are discussed in Section A.8.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The dataset used and planned for release in this work has been fully anonymized and does not contain
any personal or individually identifiable information, but rather consists of a collection of publicly
accessible content. The paper does not include any analysis, reporting, or disclosure of private user
details, and care has been taken to ensure that all data handling aligns with privacy regulations and
ethical guidelines.

REPRODUCIBILITY STATEMENT

We include real-world experimental footage to substantiate the reported results and release a sub-
set of sim–real paired data for cross-validation; both are provided in the supplementary materials.
Key implementation details and experimental settings are described in the main paper (Section 4,
Section 5) and supplementary materials Section A.7.

REFERENCES

AgiBot-World-Contributors, Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng,
Shenyuan Gao, Xindong He, Xuan Hu, Xu Huang, Shu Jiang, Yuxin Jiang, Cheng Jing, Hongyang
Li, Jialu Li, Chiming Liu, Yi Liu, Yuxiang Lu, Jianlan Luo, Ping Luo, Yao Mu, Yuehan Niu,
Yixuan Pan, Jiangmiao Pang, Yu Qiao, Guanghui Ren, Cheng Ruan, Jiaqi Shan, Yongjian Shen,
Chengshi Shi, Mingkang Shi, Modi Shi, Chonghao Sima, Jianheng Song, Huijie Wang, Wenhao
Wang, Dafeng Wei, Chengen Xie, Guo Xu, Junchi Yan, Cunbiao Yang, Lei Yang, Shukai Yang,
Maoqing Yao, Jia Zeng, Chi Zhang, Qinglin Zhang, Bin Zhao, Chengyue Zhao, Jiaqi Zhao, and
Jianchao Zhu. Agibot world colosseo: A large-scale manipulation platform for scalable and
intelligent embodied systems, 2025.

Karl Johan Åström and Peter Eykhoff. System identification—a survey. Automatica, 7(2):123–162,
1971.

Filip Bjelonic and Marco Hutter. Pace dataset for sim-to-real transfer in legged robots: Joint dy-
namics identification and locomotion experiments across multiple robot platforms. 2025.

Filip Bjelonic, Fabian Tischhauser, and Marco Hutter. Towards bridging the gap: Systematic sim-
to-real transfer for diverse legged robots. arXiv preprint arXiv:2509.06342, 2025.

Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain randomiza-
tion for sim-to-real transfer. arXiv preprint arXiv:2110.03239, 2021.

John J Craig. Introduction to robotics: mechanics and control, 3/E. Pearson Education India, 2009.

Thomas Oliver de Jong, Khemraj Shukla, and Mircea Lazar. Deep operator neural network model
predictive control. arXiv preprint arXiv:2505.18008, 2025.

Nolan Fey, Gabriel B Margolis, Martin Peticco, and Pulkit Agrawal. Bridging the sim-to-real gap
for athletic loco-manipulation. arXiv preprint arXiv:2502.10894, 2025.

Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi, Yanjiang Guo, Yichen Liu, and Jianyu
Chen. Advancing humanoid locomotion: Mastering challenging terrains with denoising world
model learning. arXiv preprint arXiv:2408.14472, 2024.

Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris Kitani, Changliu Liu, and Guanya
Shi. Learning human-to-humanoid real-time whole-body teleoperation. arXiv preprint
arXiv:2403.04436, 2024.

Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi
He, Nikhil Sobanbab, Chaoyi Pan, et al. Asap: Aligning simulation and real-world physics for
learning agile humanoid whole-body skills. arXiv preprint arXiv:2502.01143, 2025.

Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environ-
ments. arXiv preprint arXiv:1707.02286, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Shashank Kushwaha, Jaewan Park, Seid Koric, Junyan He, Iwona Jasiuk, and Diab Abueidda. Ad-
vanced deep operator networks to predict multiphysics solution fields in materials processing and
additive manufacturing. Additive Manufacturing, 88:104266, 2024.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection
for robust imitation learning. In Conference on robot learning, pp. 143–156. PMLR, 2017.

Jae Yong Lee and Yeoneung Kim. Hamilton–jacobi based policy-iteration via deep operator learn-
ing. Neurocomputing, pp. 130515, 2025.

Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil Sreenath.
Robust and versatile bipedal jumping control through reinforcement learning. arXiv preprint
arXiv:2302.09450, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Yun Liu, Bowen Yang, Licheng Zhong, He Wang, and Li Yi. Mimicking-bench: A benchmark
for generalizable humanoid-scene interaction learning via human mimicking. arXiv preprint
arXiv:2412.17730, 2024.

Lennart Ljung. System identification. In Signal analysis and prediction, pp. 163–173. Springer,
1998.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Sha Luo, Hamidreza Kasaei, and Lambert Schomaker. Accelerating reinforcement learning for
reaching using continuous curriculum learning. In 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2020.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Jiageng Mao, Siheng Zhao, Siqi Song, Tianheng Shi, Junjie Ye, Mingtong Zhang, Haoran Geng,
Jitendra Malik, Vitor Guizilini, and Yue Wang. Learning from massive human videos for universal
humanoid pose control, 2024.

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via
reinforcement learning. The International Journal of Robotics Research, 43(4):572–587, 2024.

Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real reinforcement learning for de-
formable object manipulation. In Conference on Robot Learning, pp. 734–743. PMLR, 2018.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain
randomization. In Conference on Robot Learning, pp. 1162–1176. PMLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

AJ Miller, Fangzhou Yu, Michael Brauckmann, and Farbod Farshidian. High-performance re-
inforcement learning on spot: Optimizing simulation parameters with distributional measures.
arXiv preprint arXiv:2504.17857, 2025.

Fabio Muratore, Fabio Ramos, Greg Turk, Wenhao Yu, Michael Gienger, and Jan Peters. Robot
learning from randomized simulations: A review. Frontiers in Robotics and AI, 9:799893, 2022.

Kyung-Mi Na and Chang-Hun Lee. Physics-informed deep learning approach to solve optimal
control problem. In AIAA SCITECH 2024 Forum, pp. 0945, 2024.

Oliver Nelles. Nonlinear system identification. Measurement Science and Technology, 13(4):646–
646, 2002.

Yutao Ouyang and Jingzhi Cui. Bridging the sim-to-real gap for efficient and robust robotic skill
acquisition. In Tsinghua University Course: Advanced Machine Learning.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. In IEEE International Conference on Robotics
and Automation (ICRA), 2018.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learn-
ing agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 international conference on robotics and automation (icra), pp.
9784–9790. IEEE, 2019.

Jean-Jacques E Slotine and Weiping Li. On the adaptive control of robot manipulators. The inter-
national journal of robotics research, 6(3):49–59, 1987.

Nikhil Sobanbabu, Guanqi He, Tairan He, Yuxiang Yang, and Guanya Shi. Sampling-based sys-
tem identification with active exploration for legged robot sim2real learning. arXiv preprint
arXiv:2505.14266, 2025.

Mark W Spong, Seth Hutchinson, Mathukumalli Vidyasagar, et al. Robot modeling and control,
volume 3. Wiley New York, 2006.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. Robotics:
Science and Systems (RSS), 2018.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE transactions on
pattern analysis and machine intelligence, 44(9):4555–4576, 2021.

Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
normative data for robot manipulation, 2024.

Wenli Xiao, Haoru Xue, Tony Tao, Dvij Kalaria, John M Dolan, and Guanya Shi. Anycar to
anywhere: Learning universal dynamics model for agile and adaptive mobility. arXiv preprint
arXiv:2409.15783, 2024.

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonanthan Hurst, and Michiel Panne.
Learning locomotion skills for cassie: Iterative design and sim-to-real. In Conference on Robot
Learning, pp. 317–329. PMLR, 2020.

Zhaoming Xie, Xingye Da, Michiel Van de Panne, Buck Babich, and Animesh Garg. Dynamics
randomization revisited: A case study for quadrupedal locomotion. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4955–4961. IEEE, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jie Xu, Eric Heiden, Iretiayo Akinola, Dieter Fox, Miles Macklin, and Yashraj Narang. Neural robot
dynamics. arXiv preprint arXiv:2508.15755, 2025.

Bohao Zhang, Daniel Haugk, and Ram Vasudevan. System identification for constrained robots.
arXiv preprint arXiv:2408.08830, 2024.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. Ad-
vances in neural information processing systems, 33:21024–21037, 2020.

Xiang Zhang, Changhao Wang, Lingfeng Sun, Zheng Wu, Xinghao Zhu, and Masayoshi Tomizuka.
Efficient sim-to-real transfer of contact-rich manipulation skills with online admittance residual
learning. In Conference on Robot Learning, pp. 1621–1639. PMLR, 2023.

Yuanhang Zhang, Yifu Yuan, Prajwal Gurunath, Tairan He, Shayegan Omidshafiei, Ali-akbar Agha-
mohammadi, Marcell Vazquez-Chanlatte, Liam Pedersen, and Guanya Shi. Falcon: Learning
force-adaptive humanoid loco-manipulation. arXiv preprint arXiv:2505.06776, 2025.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs only for grammar/style rewrites and equation/notation formatting corrections.
We appreciate the steadily improving reasoning capabilities of LLMs, which helped us identify lin-
guistic issues more quickly and maintain a more consistent scholarly style. However, all research
ideation, theoretical development and formula derivations, methodological choices, and experimen-
tal design and execution were performed exclusively by the authors. Accordingly, the LLM did not
play a significant role in research ideation or writing and should not be regarded as a contributor.

A.2 DATA COLLECTION

A.2.1 LEGGED HUMANOID ROBOT

We collect paired sim–real data on two humanoids: the 1.8 m Unitree H1-2 and the 1.3 m Unitree
G1. Joint naming and kinematic locations are shown in Figure 5. In our setup, we log the full upper
body and locomotion-relevant joints (27-DoF configuration in code), along with IMU and actuator
telemetry.

ROS setup and topics Data acquisition is implemented as a ROS 2 Python node (rclpy, node
name deploy node). The node subscribes to low-level robot state messages and publishes
torque/position commands:

• Subscriptions: LowState (joint positions/velocities/currents, IMU, wireless remote),
used to buffer sensor streams and teleop events.

• Publications: LowCmd on topic lowcmd buffer at 50 Hz (control period ∆t ≈ 20ms).
Commands include per-joint PD terms and optional feedforward residuals (CRC is ap-
pended before transmission).

Teleoperation triggers (e.g., start/stop, emergency stop) are parsed from the wireless controller and
gate recording and command streaming.

What is recorded For each trial, we write files (per-trial timestamped) with the following datasets,
matching the code:

• command time list (s): wall-clock times when commands are produced.

• command val list: commanded action vectors (per 20 ms tick).

• robot/joint time list (s): time stamps associated with the sensed robot state.

• robot/joint angle list, robot/joint velocity list,
robot/joint current list, robot/joint temperature list: actua-
tor telemetry.

• robot/imu list, robot/ang vel list: IMU linear orientation proxies and angu-
lar rates.

• motion name, current time: metadata for the retargeted/teleop motion and file cre-
ation time.

Spatiotemporal synchronization We use a single monotonic clock started at node initialization
to time-stamp both the command loop and the sensor callback buffers. During acquisition, the
node executes a fixed-rate control loop (50 Hz) and performs rclpy.spin once with a short
timeout each tick; the current monotonic time is appended to both command time list and
robot/joint time list. This yields frame-accurate alignment between the actuation stream
and the sensed state at the controller cadence. Since logging and control are co-located on the
same machine, no cross-machine NTP is required; residual jitter is bounded by the loop period and
handled in post-processing by resampling to a common time base when needed.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Joint names and positions on Unitree H1-2 and G1 robots

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Libraries The implementation relies on rclpy (ROS 2), numpy, torch (policy inference/log-
ging utilities), mujoco (simulation), h5py (file I/O), and transforms3d (frame utilities). All
topics and message types (LowState, LowCmd, MotorState, IMUState) come from the
unitree hg.msg package.

Figure 6: Joint names and positions on RealMan WR75S robot

A.2.2 WHEELED HUMANOID ROBOT

We also collect motion execution data on dual-arm wheeled robots (RealMan). Our setup logs the
full arm joint configurations along with actuator telemetry through UDP communication using the
official RealMan API.

Communication Setup Data acquisition uses the RealMan official API with UDP communica-
tion. Position commands are sent to each arm at dedicated ports (8080, 8576), while real-time
state data is received through UDP callbacks on separate ports (8089, 8090). The system registers
callback functions to process telemetry streams containing joint positions, velocities, currents, and
temperatures.

Data Recording Structure For each trial, we save timestamped datasets in HDF5 format with the
following structure matching our dual-arm configuration:

• command time list (s): wall-clock timestamps when commands are issued.

• command val list: commanded action vectors for both arms concatenated (14-
dimensional for dual 7-DoF arms).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• robot1/joint time list, robot2/joint time list (s): sensor timestamps
for left and right arms respectively.

• robot1/joint angle list, robot2/joint angle list: joint positions in ra-
dians for each arm.

• robot1/joint velocity list, robot2/joint velocity list: joint veloci-
ties in rad/s for each arm.

• robot1/joint current list, robot2/joint current list: motor currents
for each arm.

• robot1/joint temperature list, robot2/joint temperature list: ac-
tuator temperatures for each arm.

• motion name, slowdown factor, current time: metadata for trial identification.

Spatiotemporal synchronization We employ a unified monotonic clock initialized at data collec-
tion start to timestamp both command transmission and sensor reception. During execution, com-
mands are sent via rm movej canfd API calls while the monotonic timestamp is recorded for
both command and sensor streams. Since both command generation and sensor processing occur on
the same machine with shared timing, cross-machine synchronization is unnecessary. The UDP call-
back mechanism ensures frame-accurate alignment between actuation commands and sensed states
at the controller frequency. Residual timing jitter is bounded by the loop period and handled through
post-processing resampling when temporal alignment is required for analysis. The system contin-
uously monitors joint enable flags and error codes, with joint disable events prioritized as critical
errors and other malfunctions classified as general errors, triggering immediate data cleanup and
graceful termination.

A.3 GAP ANALYSIS

A.3.1 PD CONTROL

We use a basic joint-space proportional–derivative controller to track commanded trajectories with
low latency. The proportional term corrects position error (stiffness), and the derivative term pro-
vides damping to reduce overshoot:

τ = Kp (qcmd − q) + Kd (q̇cmd − q̇). (10)
Here qcmd and q̇cmd are the desired joint position/velocity, q and q̇ are the measured states, and
Kp,Kd (typically diagonal, positive) set tracking stiffness and damping. Optional gravity/feedfor-
ward terms can be added when needed, but the above is the minimal PD law.

In equation 1, Kp(qcmd − q) +Kd(q̇cmd − q̇) is the standard joint-space PD action (typically diag-
onal gains). The extra linear terms Kv q̇ and Kc tanh(q̇/ε) model viscous damping and smoothed
Coulomb friction, respectively; ε > 0 regularizes the sign function to avoid chattering. The scalar
(or diagonal) P denotes the payload descriptor (e.g., mass/COM proxy). The bias Kpayload P pro-
vides a load-dependent offset, while KP sinP sin q and KP cosP cos q capture load-scaled gravity/-
COM components in joint coordinates. Velocity/acceleration couplings KP q̇P q̇ and KP q̈P q̈ ad-
dress payload-amplified damping/inertial effects. The constant τ0 compensates residual biases (e.g.,
calibration offsets).

Start from PD only (Kp,Kd), add Kv,Kc to reduce overshoot and stick–slip, then introduce
Kpayload, KP sin,KP cos for static/load gravity, and KP q̇,KP q̈ for dynamic load effects; keep all
gains bounded and ε small enough to smooth tanh(·) without degrading response.

A.3.2 MORE ANALYSIS RESULTS

We present additional qualitative results here Figure 7 and Figure 8; further videos are provided in
the supplementary materials.

A.4 NONLINEAR OPERATOR

What is an operator? In contrast to learning a finite-dimensional mapping f : Rn→Rm, operator
learning targets a mapping between function spaces, G : U → V , where the input u ∈ U is itself

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 1 2 3
Payload

0.0

0.2

0.4

0.6

0.8

1.0

R
²

Model Fit Quality vs Payload (All Joints)

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_shoulder_roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint
right_wrist_roll_joint

0 1 2 3
Payload

0

1

2

3

4

5

6

R
M

SE

Prediction Error vs Payload (All Joints)

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_shoulder_roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint
right_wrist_roll_joint

0 1 2 3
Payload

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

K
p

(P
ro

po
rti

on
al

 G
ai

n)

Proportional Gain vs Payload

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_elbow_joint
right_elbow_joint

0 1 2 3
Payload

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

K
d

(D
er

iv
at

iv
e

G
ai

n)

Derivative Gain vs Payload

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_elbow_joint
right_elbow_joint

0 1 2 3
Payload

5

4

3

2

1

0

1

K
_p

ay
lo

ad

Payload Sensitivity vs Payload

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_shoulder_roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint
right_wrist_roll_joint

0 1 2 3
Payload Level

left_elbow_joint

left_shoulder_pitch_joint

left_shoulder_roll_joint

left_shoulder_yaw_joint

left_wrist_roll_joint

right_elbow_joint

right_shoulder_pitch_joint

right_shoulder_roll_joint

right_shoulder_yaw_joint

right_wrist_roll_joint

Jo
in

t

0.0 -4.6 -4.9 -4.5

0.0 -0.8 -0.9 -1.0

0.0 1.4 1.4 0.8

0.0 0.7 0.7 0.7

0.0 -0.2 -0.3 -0.3

0.0 -3.6 -3.2 -3.2

0.0 -1.0 -1.1 -1.2

0.0 -1.4 -1.3 -1.1

0.0 -0.7 -0.8 -0.8

0.0 0.2 0.3 0.3

Payload Sensitivity Heatmap

4

3

2

1

0

1

Figure 7: Data analysis on payload-related parameters

a function and the output G(u) ∈ V is another function. Practically, we observe u via its sensor
samples at locations {xi}mi=1: {u(xi)}, and we query the output at arbitrary y-locations to obtain
values G(u)(y). This setup makes the learning objective function-to-function rather than pointwise
regression, and enables generalization to unseen inputs u and query points y.;

Why not “learn a function” directly? Classical approximation fits (x, y) pairs for one target
function. Operator learning instead aims to recover the rule that maps any admissible input func-
tion u to an output function G(u). To make this learnable from data, we draw a diverse family
of input functions—e.g., samples from Gaussian Random Fields (SE/RBF kernels with tunable
length-scales/variances) and orthogonal polynomial expansions (e.g., Chebyshev with random coef-
ficients)—so the model is trained across a rich subset of U rather than around a single curve. This
ensures the learned mapping reflects an operator over a function class, not merely a single function
fit.

Low-rank/separable viewpoint Many learned operators can be written (or approximated) in a
separable, low-rank form

Ĝ(u)(y) =

p∑
k=1

bk(u) tk(y), (11)

where bk(u) are functionals of the input function (computed from its samples) and tk(y) are basis
functions over the query variable y. This mirrors RKHS/separable-kernel and POD/SVD intuitions
and clarifies the roles of “encode the input function” versus “encode the query location.”;

We adopt this operator perspective to learn GapONet, a mapping from simulation context func-
tions to hardware-space responses, so that the model predicts an output function of state/time given
an input function describing simulated context—setting the stage for the DeepONet factorization
introduced next.

A.5 METHODS

A.5.1 WHY DO WE CHOOSE DEEPONET?

Our operator must (i) ingest simulation context functions with explicit payload conditioning, (ii)
answer at arbitrary query points (current actions, payload) across heterogeneous robots and sim-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(c) Same motion with different simulators (b) Same motion with different payloads(a) Same motion with different lower-body gaits

Figure 8: Results on all upper-body joints about the same motion with different payloads, simula-
tions, and lower-body gaits.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

ulators, (iii) train under a closed-loop RL objective without requiring paired function-to-function
supervision at every query, and (iv) support low-latency on-board inference.

We have considered some alternatives and trade-offs, for example:

• Fourier/Neural Operators (FNO family) (Li et al., 2020; Kovachki et al., 2023): excel on
fixed grids with spectral convolutions, but rely on discretization tied to resolution/geom-
etry; cross-morphology deployment (different joint layouts) typically needs regridding or
retraining, and spectral blocks add latency on embedded hardware.

• Graph/Galerkin/UNO-style operators (Kovachki et al., 2023): adapt to irregular mesh-
es/graphs but require topology-aligned parameterization; when robots or sensor layouts
change, weights/graphs must be remapped. Querying arbitrary state–time points is less
natural than function–query separation. Capacity is high, but so are data and compute
demands.

• Physics-informed neural operators (PINO): leverage known PDE residuals for sample effi-
ciency, yet our residual field (sim→real actuation gap with delays/saturation) lacks a clean
PDE form, making hard constraints difficult to specify and risking model-bias.

As for DeepONet’s branch–trunk decomposition (Lu et al., 2019; 2021) aligns directly with our
problem: the branch encodes context (multi-sensor histories, simulator traces, payload), and the
trunk indexes continuous query variables (state/time/joint), producing residual action/torque values
via a simple inner product. This yields (1) continuous space–time queries without grid lock-in,
(2) clean conditioning on payload and robot-specific context without graph/topology rewiring, (3)
RL-friendly training since supervision can be placed at arbitrary queried points along closed-loop
rollouts, and (4) low-latency deployment because inference reduces to lightweight embeddings plus
an inner product. Moreover, DeepONet comes with an operator-level universal approximation the-
orem that provides formal capacity guarantees for nonlinear operators (Lu et al., 2021), which we
found attractive given the diversity of simulators, payloads, and hardware.

In summary, we choose DeepONet because its function–query factorization, theoretical operator ap-
proximation guarantees, and efficient, payload-conditioned querying match our requirements better
than grid-bound spectral operators, topology-coupled graph variants, or physics-informed schemes
that presume known PDE structure (Lu et al., 2019; 2021; Li et al., 2020; Kovachki et al., 2023).
Our objective is to demonstrate that operator learning can achieve a mapping from simulation to
reality, thereby aiding sim-to-real transfer. Determining the optimal operator architecture is outside
the main scope of this work.

A.6 EXPERIMENT

A.6.1 METRICS

We report two metric families: (i) gap distribution (Table 1: large-gap ratio(LGR), interquartile
range (IQR), and gap range) and (ii) kinematic quality of lower-body (Table 2: smoothness, trajec-
tory consistency, and robustness). All metrics are computed per run and then aggregated by payload
mass (the environment groups trials by mass buckets).

Let qrealt , qsimt be joint trajectories (or end-effector signals) sampled at uniform ∆t. Define the gap
gt = qrealt − qsimt and its absolute value |gt|. Central-difference operators approximate derivatives.

Large-gap ratio (Table 1) Fraction of samples with absolute joint error exceeding a threshold
(0.5 rad by default):

Large-gap ratio =

∣∣{(t, i) : |gt,i| ≥ τ}
∣∣∣∣{(t, i)}∣∣ , τ = 0.5 rad. (12)

Captures the frequency of serious deviations.

Gap IQR (Table 1) Dispersion of absolute errors via the interquartile range:

G =
{
|gt,i| : t = 1, . . . , T, i = 1, . . . , J

}
, IQR = Q0.75(G)−Q0.25(G). (13)

Lower is a tighter error distribution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Gap range (Table 1) Extreme-case spread of absolute errors:
Range = max(|g|)−min(|g|). (14)

Highlights worst-case variability.

Trajectory consistency (Table 2) Discrepancy in the rate-of-change of velocity (a curvature-like
signal) between real and simulated motion:

v treal = ∇q treal, v tsim = ∇q tsim, κ treal = ∇v treal, κ tsim = ∇v tsim, (15)

TrajectoryConsistency =
1

T

T∑
t=1

∣∣κreal
t − κsim

t

∣∣ . (16)

Smaller values indicate that the simulator reproduces the evolution of motion patterns more faith-
fully.

Smoothness (Table 2) Discrepancy in accelerations between real and simulated trajectories:

Smoothness =
1

T

T∑
t=1

∣∣arealt − asimt

∣∣ , arealt = ∇2qrealt , asimt = ∇2qsimt . (17)

Lower scores mean closer kinematic smoothness to real motion.

Robustness (Table 2) Sensitivity of the sim–real gap to measurement noise. For noise levels
σ ∈ {σ1, . . . , σK},

Robustness =
1

K

K∑
k=1

[
1

T

T∑
t=1

∣∣∣(qrealt + ϵ
(k)
t

)
−

(
qsimt + ϵ̃

(k)
t

)
− gt

∣∣∣] , (18)

gt = qrealt − qsimt , ϵ
(k)
t , ϵ̃

(k)
t ∼ N (0, σ2

k). (19)

Smaller values indicate that the evaluation is stable under realistic perturbations.

Each motion is run at least six times. For each run, we compute every metric (optionally per joint and
then averaged); otherwise, only real-stream statistics are used as specified by each metric. We then
aggregate runs by payload/mass buckets and report means with standard errors. All three metrics
are discrepancy-style measures; by construction, smaller values indicate better performance.

A.6.2 LOCOMOTION TRAJECTORY TRACKING

We generate locomotion commands using a phase-based trajectory: a normalized phase ϕ ∈
[0, 1) advances at the control rate and indexes a trapezoidal base-velocity profile (acceler-
ate–cruise–decelerate–pause). Forward and backward segments alternate automatically, while lat-
eral velocity and yaw rate remain zero unless specified. The phase schedules lower-body gait timing
and yields desired joint trajectories for the legs, tracked by a joint-space PD controller at 50 Hz with
torque/rate limits and safety checks.

Fixed start pose and heading. Each real-robot run starts from the same world-frame pose—a fixed
position and heading—followed by a short smooth interpolation into the nominal stand pose before
the phase route is enabled. This ensures repeatable initial conditions, so the resulting base trajectory
in SE(2) (odometry or motion-capture) can be compared across runs to assess tracking quality, drift,
and sim–real alignment. Commands and sensor streams share a monotonic timestamp, keeping
phase, velocity setpoints, and measured joint/IMU signals time-aligned for evaluation.

A.7 IMPLEMENTATION DETAILS

A.7.1 NETWORK STRUCTURE

Overview. The training pipeline with GapONet consists of three components: a Sensor Predictor
to predict the sensor input of Branch Network, a Branch Network B(Uq(x)) that encodes sensor-
driven actuation functions and a Trunk Network T (y) that processes action queries. Both are im-
plemented as multi-layer perceptrons (MLPs), fused via dot product to yield the operator output
G(Uq(x))(y). These networks are trained end-to-end with Proximal Policy Optimization (PPO),
and optimized using Adam.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Sensor Predictor

• Input: For each time j at time step t, the Sensor Predictor receives a sequence of sensor
states over a k-step history window:

{qt−n
j , q̇t−n

j , qt−n
j,d }kn=0,

where qj , q̇j denote joint position and velocity, qj,d is the target position.

• History Length: k = 4

• Input Dimension: 10 joint num × (3 × history length + 1 current position) = 130-dim
vector

• Output: ∆q&∆q̇ × 10 joint = 20-dim vector

• Sensor Number: 20

• Learning Rate: 1× 10−4

Branch Net.

• Input: 20-dim vector of sensor predictor output × 20 sensor num = 400-dim vector

• Delta Action Duration: 1 step

• Architecture: 4-layer MLP with hidden sizes [256, 256, 256], each followed by ELU acti-
vation.

• Output: p-dimensional latent representation (p = 160 by default)

• Learning Rate: 1× 10−4

Trunk Net.

• Input: The Trunk Net receives the target query y = qt+1
j,d desired joint position + payload

• Input Dimension: 11

• Architecture: 2-layer MLP with hidden sizes [128, 128, 128], ELU activations

• Output: p-dimensional vector, same dimension as Branch output

• Learning Rate: 1× 10−4

Fusion. The operator output is computed as the dot product:

G(Uq(x))(y) =

p∑
i=1

Bi(x) · Ti(y).

Training Details.

• PPO update with clipping ratio ϵ = 0.2, batch size = 4096.

• Reward defined as rt = −∥qt+1 − qt+1
real ∥2.

• Temporal smoothness penalty Lgap with λ = 0.01.

• Training duration: 1 hour on 1 RTX 3090Ti GPU.

A.7.2 SIMULATIONS

We evaluate on MuJoCo 3.2.3, Isaac Gym 1.0rc4, and Isaac Sim 4.5.0. To enhance reproducibility,
each setting uses the simulator’s official default parameters. The software environments are:

• MuJoCo / Isaac Gym: Python 3.8.13, legged gym 1.0.0, PyTorch 2.4.1, torchvision 0.19.1.

• Isaac Sim: Python 3.10.4, isaaclab 0.40.21, PyTorch 2.5.1, torchvision 0.20.1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters for Branch Net.
Hyper-Parameters Values
History Length 4
Delta Action Duration 1
Sensor Number 20
Uq Input A, V, P, J

Uq Output ∆S

Layer Structure [256, 256, 128]

Output Number 10
Dropout 0.1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size 4096
γ Discount 0.99
Learning Rate 2× 10−5

GAE(λ) 0.95
TD(λ) 0.95
PPO Clip Threshold 0.2
T Episode Length 300

Table 4: Hyperparameters for Trunk Net.
Hyper-Parameters Values
History Length 4
Delta Action Duration 1
Sensor Number 20
y Input ad

Layer Structure [128, 128]

Output Number 10
Dropout 0.1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size 4096
γ Discount 0.99
Learning Rate 2× 10−5

GAE(λ) 0.95
TD(λ) 0.95
PPO Clip Threshold 0.2
T Episode Length 300

A.8 LIMITATION AND FUTURE WORK

Our dataset and analysis primarily target the upper body, and although we include tests on locomo-
tion trajectory tracking, the present system does not yet enable highly dynamic sim–real transfer for
full humanoids. Going forward, we will (i) extend the current pipeline to high-dynamics, whole-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

body loco-manipulation and to additional robot platforms, and (ii) address the strong dependence
on a stable locomotion policy—even with relative metrics, unreliable gaits can cause catastrophic
failures (cf. ‘videos/failure.mp4‘) that preclude testing. A second focus is to train a robust full-body
tracker for large-mass humanoids (e.g., H1-2), providing a stronger substrate for our operator-based
sim–real mapping.

24

	Introduction
	Related Work
	Data Collection and Gap Analysis
	Payload-aware System Identification
	TWINS Collection
	Sim-to-real Gap Analysis

	Method
	Problem Formulation
	Network Structure
	GPU-Parallel Operator Learning

	Experiment
	Zero-shot Motion Tracking
	Locomotion Trajectory Tracking

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Data Collection
	Legged humanoid robot
	Wheeled humanoid robot

	Gap Analysis
	PD control
	More analysis results

	Nonlinear Operator
	Methods
	Why do we choose DeepONet?

	Experiment
	Metrics
	Locomotion trajectory tracking

	Implementation Details
	Network Structure
	Simulations

	Limitation and Future Work

