
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GAPONET : NONLINEAR OPERATOR LEARNING
FOR BRIDGING THE HUMANOID SIM-TO-REAL GAP

Anonymous authors
Paper under double-blind review

ABSTRACT

The sim-to-real gap, arising from imperfect actuator modeling, contact dynam-
ics, and environmental uncertainty, poses fundamental challenges for deploying
simulated policies on physical robots. In humanoids, object manipulation further
amplifies this gap: end-effector payloads alter joint inertia, gravity torques, and
transmission efficiency, introducing state- and payload-dependent nonlinearities.
Yet existing approaches lack both systematic analysis and a generalizable repre-
sentation of this payload-induced degradation. To address this limitation, we pro-
pose GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware. We then introduce a payload-
aware ⟨collect–analyze–solve⟩ framework to learn this operator GapONet. First,
we curate a sim-real paired dataset TWINS spanning multiple payloads, robots,
motions, actuation rates, and simulators, comprising more than 11,298 motion
sequences. Second, we perform payload-aware system identification to isolate
payload-related effects and quantify their contributions, and analyze sim-to-real
gaps across different simulators. Third, we train the operator GapONet to predict
delta action for real-time, generalized, payload-conditioned compensation. We
further introduce actuation functions and sensor predictors, which enable parallel
RL training of GapONet with substantially reduced energy consumption. While
tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps
below 0.09%, whereas competing methods remain near 10%. By correcting upper-
body gaps, GapONet also stabilizes lower-body locomotion tracking, laying the
foundation for improved performance in humanoid loco-manipulation tasks.

1 INTRODUCTION

Policies trained in simulation benefit from GPU acceleration and massively parallel sampling, en-
abling fast and scalable optimization under approximate physics such as mass, friction, and damp-
ing (Makoviychuk et al., 2021; Tan et al., 2018). However, object interactions in the real world often
diverge from these idealizations due to unmodeled or state-dependent effects, most notably in fric-
tion, inertia, and contact—leading to a persistent model–plant mismatch (Tobin et al., 2017; Zhao
et al., 2020). This sim-to-real gap is further exacerbated in humanoids that manipulate objects of
different masses. Variations in end-effector payload induce coupled drifts in equivalent joint inertia,
gravity–torque amplitudes via center-of-mass and lever-arm shifts, transmission friction and effi-
ciency, thereby altering closed-loop dynamics (Spong et al., 2006). Yet during policy training, these
payload-dependent adjustments are typically simplified or held fixed, which leaves the gap largely
unaddressed. The sim-to-real gap can grow in complex, nonpredictive ways, posing a substantial
obstacle to robust policy transfer and reliable real-world deployment (Zhang et al., 2023).

Prevailing approaches either calibrate simulators via system identification to tune masses, frictions,
and damping (Ljung, 1998; Åström & Eykhoff, 1971; Nelles, 2002); broaden training distributions
through domain randomization and observation noise to reduce overfitting (Mehta et al., 2020; Tobin
et al., 2017; Chen et al., 2021; Laskey et al., 2017; Zhang et al., 2020; Matas et al., 2018); or stage
learning with curricula or progressively harder terrains to harden policies over time (Luo et al., 2020;
Wang et al., 2021; Peng et al., 2020; Heess et al., 2017) to bridge the sim-to-real gap. However, the
interacted object (payload) is a structured operating condition, not mere noise (Slotine & Li, 1987):
it deterministically alters gravity loading, effective inertia, dissipation, and hence the closed-loop
gain/phase under PD control. Single-point identification cannot capture behavior across payloads,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

and domain randomization or curricula largely treat the payload as unstructured uncertainty. Thus,
while these strategies can improve robustness, they hinge on manual design (randomization ranges,
noise schedules, curriculum pacing) and provide limited diagnostic attribution. Critically, they do
not yield a generalizable representation of the sim-to-real gap for humanoid interaction.

(d) Model Evaluation

������ −∆��

Real-time On-board
Evaluation

GapONetPD Control

 � = {��−�:����� , ��−�:����� }

Sensor
Model

(b) Actuation Function

Gap Modeled as
Difference of Sim & Real’s
Actuation Function Space

Joint Pos.

Joint Vel.

 {�����}

 {�����}

Joint Torque
 {�����} Joint Pos.

Joint Vel.

 {������}

 {������}

Joint Torque
 {������}

Sim

Real

Surrogate
Actuation
Functions

Trunk Net
11dim

 (Joints + Payload)

Branch Net
40 dim

(Fixed Sensor Number) ℬ(��
����)

⊕
�� +∆��

(c) GapONet Training

 {∆�1...�����}
State Transitions

Action
Queries

RL

TWINS
Dataset

� ∽ �

 ��, � ∽ �

Func. Coords

Action & Payload

Simulator

 {∆� ���}

Sensor
Modeling

 {�1,...,�}
k-sensor queries

⊗

Action
Queries

SimulatorTWINS Transition
 ∆������ ∽ � ∆�����

Sim. Transition

��

Separate Control
Upper- &
Lower-body

Large-scale
Open-source
Human Motions

Retarget
Augmentation

Real-time
 Teleoperation

Different Payloads Different Robots Different Simulators
IsaacGym IsaacSimMujoco

(a) Data Collection in Multiple Robot Platforms

Wheeled 1.8m Humanoid 1.3m HumanoidTW
IN

S
D

at
as

et

Pa
ir

in
g

Figure 1: The overall architecture of both data collection and GapONet training. (a) TWINS, a
paired sim–real dataset via motion retargeting and real-time teleoperation across diverse payloads,
robots, and simulators. (b) The sim–real gap is formulated as a discrepancy between actuation func-
tion spaces, providing functional coordinates. (c) GapONet learns a payload-conditioned nonlinear
operator that maps simulation context to residual actions, and training uses parallel RL. (d) Online
evaluation on unseen hardware with PD control and sensor modeling to quantify sim–real alignment.

A complementary line of work learns dynamics directly from real data, either as state-transition
models or action-to-effect maps (Shi et al., 2019; Xiao et al., 2024; He et al., 2025). From a con-
trol standpoint, however, identifying payload-dependent dynamics from passive logs requires per-
sistence of excitation and explicit treatment of operating conditions. In practice, motion patterns,
contact regimes, and payload values co-vary, so a single black-box model fit to mixed data tends to
entangle payload effects with task-specific artifacts, yielding spurious correlations. As a result, such
models often need large volumes of paired sim–real trajectories to cover the space and still exhibit
poor cross-payload and unseen-motion generalization. The missing ingredient is a representation
that disentangles exogenous operating parameters from state evolution, rather than collapsing them
into a single dynamics model. Such a formulation enables a more faithful mapping between the
simulator and real-world domains.

We present a ⟨collect–analyze–solve⟩ framework to learn this representation for bridging the sim-
to-real gap in humanoids. We first curate TWINS, a time-synchronized sim–real corpus with a
structured factorial design. Unlike prior collections (Wu et al., 2024; Mao et al., 2024; AgiBot-
World-Contributors et al., 2025), our dataset design over diverse payload levels, humanoid plat-
forms, actuation rates, simulations, and motion families, enabling further controlled analyses. To
clarify the GapONet ’s learning target, we first perform gray-box, block-wise system identification
atop a PD control model, attributing error reductions to specific payload-related terms and quantify-
ing their contributions. We then analyze identical motions across payloads and simulators, showing
structured residuals dominated by actuator nonlinearities, which motivates a more generalizable
nonlinear operator rather than a pointwise approximation function.

We then propose GapONet, a payload-conditioned nonlinear operator that maps simulation context
functions to a residual actions for hardware. Our operator is parameterized with a branch–trunk
decomposition (Lu et al., 2019): The branch net encodes the local dynamics of the physical world in
which our robot resides as a function, and the trunk network encodes the input variables to that func-
tion, including payload weight and target pose. This separation provides a strong structural inductive
bias, disentangling the conditioning context from the queried response, thereby enhancing the oper-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ator’s generalization capacity. We also propose the sensor predictor, enabling parallel RL training
of GapONet with lower energy cost while preserving generalization beyond pointwise regression.
While tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps below
0.09%, whereas competing methods remain near 10%. By correcting upper-body gaps, GapONet
also stabilizes lower-body locomotion tracking, laying the foundation for improved performance in
humanoid loco-manipulation tasks.

This paper makes three primary contributions:

• We develop a sim-real data collection pipeline and we curate the first dataset TWINS fo-
cusing on payload-induced sim-real gap across multiple payloads, robots, motions, and
simulators.

• We reproduced over 30 hours of real data across four simulators and conducted controlled,
ceteris paribus comparisons, yielding quantitative evidence that sim-to-sim evaluation im-
proves the deployability of humanoid controllers.

• We introduce GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware, and demonstrate its training via RL.

2 RELATED WORK

Sim-to-Real Gap Sim-to-real research has largely moved from system identification—calibrating
masses, frictions, and control gains to align simulation with measurements (Sobanbabu et al., 2025;
Gu et al., 2024; Zhang et al., 2024)—to domain randomization, which perturbs dynamics and obser-
vations to harden policies (Peng et al., 2018; Xie et al., 2021; Mehta et al., 2020; Chen et al., 2021).
The former can deliver high fidelity but typically demands accurate structural assumptions and ex-
tensive hardware time—a challenge that extends not only to classical system identification (Ljung,
1998; Miller et al., 2025) but also to nonlinear methods such as neural-network (Hwangbo et al.,
2019; Boussaada et al., 2018; Kuschewski et al., 1993) and kernel-based models (Deisenroth et al.,
2013; Zhang et al., 2007), which likewise require substantial data and careful modeling assumptions;
the latter proved influential for legged and humanoid control (Xie et al., 2020; Margolis et al., 2024;
Li et al., 2023) yet can bias policies toward conservatism (He et al., 2024). In practice, both families
often require substantial manual retuning across agents, tasks, and operating regimes, motivating
data-driven directions that learn from collected data. One line models actuator nonlinearities with
fine granularity to capture motor-level effects (Hwangbo et al., 2019); another emphasizes residual
correction, learning delta actions for online compensation with lighter overhead (He et al., 2025).
In parallel, simulation–real fusion seeks coverage and speed from simulators while retaining real-
world grounding (Fey et al., 2025; Zhang et al., 2023; Bjelonic et al., 2025; Xu et al., 2025), and new
benchmarks standardize evaluation (Wu et al., 2024). Despite these advances, both simulator-centric
and data-centric pipelines still struggle with broad generalization under real-world variability (Mu-
ratore et al., 2022), which limits general gap-bridging in complex systems, such as humanoids.

Nonlinear Operator Learning Operator learning aims to model mappings between function
spaces, rather than pointwise input–output relations (Kovachki et al., 2023). In this setting,
Unstacked Deep Operator Network (DeepONet) provides a principled architecture with an operator-
level universal approximation guarantee (Lu et al., 2019). Its branch–trunk decomposition separately
embeds input functions and query variables, yielding a flexible and theoretically grounded represen-
tation (Hornik et al., 1989; Lu et al., 2021). Recent work has begun extending operator learning to
control and engineering, including Hamilton–Jacobi policy iteration (Lee & Kim, 2025), physics-
informed optimal control (Na & Lee, 2024), and operator-based model-predictive control (de Jong
et al., 2025). Beyond control, multiphysics applications demonstrate operator surrogates for solu-
tion fields in materials processing and additive manufacturing, highlighting scalability to complex
PDE-governed phenomena (Kushwaha et al., 2024). However, these efforts remain largely theory-
driven or tailored to specific domains, with limited focus on robotics sim-to-real—especially for
humanoids operating under shifting payload-dependent dynamics. This gap calls for an operator-
based formulation that can explicitly condition on task and environment variations and learn the
functional discrepancies between simulation and reality, while preserving sample efficiency and
real-time applicability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 DATA COLLECTION AND GAP ANALYSIS

End-effector payloads reshape joint dynamics and closed-loop behavior—raising reflected inertia,
shifting gravity torques, and coupling with actuator and contact nonlinearities. Divergent simulator
treatments of these effects produce a persistent, multi-factor sim-to-real gap. This section provides
a structured diagnosis: Section 3.1 isolates payload-induced terms via gray-box system identi-
fication; Section 3.3 compares simulators on identical payload-bearing motions under matched
controllers; Section 3.2 details TWINS and its collection pipeline.

\

Joint Angle (rad)
−1.5 −1.0

−0.5 0.0 0.5 1.0 1.5L_shou_pitch
R_shou_pitch

L_shou_roll
R_shou_roll

L_shou_yaw
R_shou_yaw
L_elbow

R_elbow
L_wrist_roll

R_wrist_roll

D
ensity

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
D

en
si

ty

Joint Name

(a) Payload-aware System Identification

(c) Data Distribution (b) Gap changes related to payload

Figure 2: System identification and data distribution (a) Prediction residuals after adding
payload-related parameters; notably, adding gravity compensation yields a clear improvement. (b)
The vertical axis shows the change in the joint-wise gap as the payload increases. (c) Data distribu-
tion of TWINS; the z-axis indicates the probability density of each joint action.

3.1 PAYLOAD-AWARE SYSTEM IDENTIFICATION

Using bipedal humanoids that demand precise control as exemplars (Unitree H1-2 and G1), both
operate under joint-space PD control tailored to locomotion (details in Section A.4.1). With added
end-effector payloads P , we adopt a gray-box identification scheme: start from a rigid PD baseline
and progressively augment the torque model with physically grounded terms salient in manipulation.
For each joint, we fit a linear in parameters regression that attributes the sim-to-real discrepancy to
gravity scaling, reflected inertia, actuator and transmission nonlinearities, and contact compliance,
and we quantify their marginal contributions:

τ = Kp (qcmd − q) + Kd (q̇cmd − q̇) + Kv q̇ + Kc tanh
(

q̇
ε

)
+ Kpayload P

+ KP sin P sin q + KP cos P cos q

+ KP q̇ P q̇ + KP q̈ P q̈

+ τ0.

(1)

Here, Kp and Kd are proportional and derivative gains; Kv and Kc model viscous and Coulomb
friction with ε smoothing the latter; Kpayload scales the main payload P ; KP sin and KP cos capture
gravity and posture coupling under payload; KP q̇ and KP q̈ model interactions between payload and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

joint velocity or acceleration; τ0 is a constant bias. The remaining symbols are τ for joint torque;
q, q̇, q̈ for joint position, velocity, and acceleration; qcmd, q̇cmd for commanded references; and P for
payload magnitude interpreted as mass or equivalent inertia at the end effector. All K coefficients
are identified per joint. This compact form separates baseline PD, friction, and payload dependent
effects and enables clear attribution of simulation to real error.

Using over 2,000 data collected from real robots, we fit Equation (1) by minimizing RMSE be-
tween its torque and measurements. Adding payload-dependent terms reduces error Figure 2(a),
with gravity compensation giving an early gain, but at higher payloads Equation (1) no longer cap-
tures the closed loop response Figure 2(b). The equation is not a replica of the simulator; it is a
control equivalent surrogate that covers dominant channels under matched controllers. Identifica-
tion on synchronized inputs with persistently exciting motions enables term level attribution, and
the residual exposes nonlinear dynamics not captured by compact models. Learning a nonlinear op-
erator, rather than a pointwise nonlinear function, better supports generalization across trajectories,
payload schedules, actuation rates, and robots by mapping context functions to control signals.

3.2 TWINS COLLECTION

Section 3.1 shows with block-wise identification that the prediction to measurement gap is nonlin-
ear and uncertain. Given the lack of suitable data, to validate this conclusion on genuine sim to
real pairs, we present TWINS, the first dataset focused on payload induced sim to real gaps across
multiple robots, standardized payload levels, and motion classes. TWINS records humanoid dy-
namics hierarchically, from single joints to full upper body motions with 3 different low-body gaits,
using four Unitree H1-2 units with end effector masses from 0 to 3 kg (standard calibration weights)
and actuation rates of 50 Hz and 100 Hz. The real data totals 30.17 hours, 11,298 sequences, and
307,273 synchronized frames. The distribution appears in Figure 2(c).

Each sequence is time synchronized with a matched high fidelity simulation replica in three widely
used humanoid training simulators (MuJoCo, Isaac Gym, Isaac Sim), enabling comparison of real
and simulated executions at the frame level and yielding a fourfold paired corpus of 120.68 (one real
trace plus three simulated replicas). For every frame we record joint positions qsim, qreal, velocities
q̇sim, q̇real, accelerations q̈sim, q̈real, torques τsim, τreal, payload P , and motor temperature Treal.
Further details of our collection pipeline and dataset on different robots are in Section A.3.

3.3 SIM-TO-REAL GAP ANALYSIS

After post-processing the paired data TWINS, we conduct a targeted analysis of the sim-to-real gap
to guide operator design for payload-induced nonlinearities. The analysis tests concordance with the
block wise identification in Section 3.1, determines whether the effect is concentrated in the upper
body or extends to the whole body, and quantifies differences across simulators when reproducing
the same motion under matched control.

Same motion with different lower-body gaits We execute 17 upper-body motion sequences un-
der three lower-body conditions: bipedal locomotion, static squat, and stance support only. As
shown in Figure 3(a), the outer ellipse marks the shared kinematic envelope, while the center trajec-
tory is the PCA trace of a single motion; across gaits, this trace is nearly retraced with only small
phase/offset shifts. With envelopes matched, the upper-body sim-to-real gap is therefore largely in-
sensitive to the lower-body condition, and residual differences are dominated by payload-amplified
channels. We quantify this via joint-wise normalized RMSE, commanded–measured phase lag,
and torque-saturation incidence. Note that, unlike fixed-base dual-arm platforms, upper-body ac-
tions in humanoids couple back to locomotion and can stress the gait controller; full experiments
and analysis are in Section 5.2.

Same motion with different payloads As shown in Figure 3(b), each colored trajectory plots
the joint-wise sim–real residual over time. Increasing payload amplifies both residual magnitude
and phase lag, yielding larger state gaps and longer delays. Across TWINS, payload consistently
widens the gap, and the residual grows nonlinearly with payload mass Figure 2(b), in line with the
block-wise identification trends reported in Section 3.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Same motion with different lower-body gaits

(b) The sim-real gap of the same motion with different payloads

(c) The joint angle of the same motion and payload across different simulators

Figure 3: Gap Analysis. (a) The outer ellipse marks a shared kinematic envelope across gaits, while
the central PCA trajectory of a single motion shows only minor variations with overall consistency.
(b) Payload-induced sim-to-real deviation during a squat posture, showing an increasing gap even in
a quasi-static state. (c) Joint-angle discrepancies across simulators (Mujuco, IssacGym, IsaacSim)
during locomotion, indicating a persistent gap under dynamic motion.

Same motion across different simulators Current methods always apply sim-to-sim evaluation
as the cross-validation before hardware deployment (He et al., 2025; Liu et al., 2024). To charac-
terize simulator-specific differences and their dependence on payload, we compare identical mo-
tions across MuJoCo, Isaac Gym, and Isaac Sim under matched controllers and simulator-adapted
generic parameters over a standardized payload grid. Experiments Figure 3(c) show that MuJoCo
yields smoother trajectories but larger peaks in high-acceleration segments; Isaac Gym exhibits oc-
casional joint-level jitter; Isaac Sim achieves the most stable alignment in our evaluations, but still
leaves a nonlinear gap during interaction. To stay aligned with prevailing practice and minimize
simulator-induced confounds, we adopt Isaac Sim for subsequent experiments, as it exhibits the
smallest sim-to-real gap in our analysis. We also release paired data for MuJoCo and Isaac Gym to
enable cross-simulator comparisons and support future research. More results in Section A.4.

In summary, across payload levels, all simulators show a nonlinear increase in error relative to real
hardware, with simulator-specific modes. This pattern persists across lower-body gaits: when kine-
matic envelopes are matched, the distributions of upper-body error and phase metrics remain closely
aligned. The discrepancy arises from coupled channels—gravity, friction, Coriolis and inertial cou-
pling, actuator limits and efficiency drift, sensing noise, and delays—that a pointwise function map-
ping cannot capture or generalize. A nonlinear operator is better suited: GapONet provides a com-
pact, transferable representation by mapping context functions to corrective control signals across
trajectories, payload schedules, actuation rates, and robot morphologies.

4 METHOD

We propose GapONet, a payload-conditioned nonlinear operator that maps simulation context func-
tions to a residual action for hardware. GapONet learns a functional correspondence from simulator
space to real dynamics and introduces actuation functions that encode command and feedback his-
tories. We then propose the sensor predictor, which enables parallel RL training of GapONet,
overcoming the high energy consumption of the original approach while maintaining generalization
beyond pointwise regression.

4.1 PROBLEM FORMULATION

Previous methods lack an explicit model of both the simulator and the real world (Mehta et al.,
2020; Tobin et al., 2017; Matas et al., 2018; Shi et al., 2019; Xiao et al., 2024; He et al., 2025),
thereby limiting their capacity to characterize both domains and constraining the achievable degree
of alignment between them. We therefore propose actuation functions, which formally model robot
actuation in both simulation and reality as functions. This approach thereby converts the problem of
modeling their discrepancies into one of finding a mapping between their respective function spaces.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

These functions characterize the mapping from actions (together with task-specific parameters) to
state transitions, under different joint configurations and dynamics, both in simulation and on the
real robot.

Formally, bridging the sim-to-real gap can be posed as learning an operator that maps U sim to U real

rather than approximating multiple collected dynamics, where U denotes the underlying function
space. Each actuation function U ∈ U—the family of actuation functions available to the system—
is parameterized by a natural coordinate ξ, which encodes the instantaneous joint dynamics deter-
mined by the system’s current state and joint configuration. Accordingly, our actuation function is
defined as Uξ : A× P → Q× V , where A, P , Q, and V denote the space of action, payload, joint
position, and joint velocity, respectively. The goal of GapONet is to learn an operator G that aligns
the discrepant humanoid motion distributions of simulation and the real world, i.e., G(U sim

ξ) ≈ U real
ξ

by producing residual actions.

4.2 NETWORK STRUCTURE

To effectively learn the operator, we adopt a DeepONet-style architecture (Lu et al., 2019). In this
framework, the input function is represented by its values at k fixed sensor locations, which are en-
coded by the Branch Network; the Trunk Network embeds the query coordinates, and the operator
output is obtained via their multiplicative fusion. This design provides a principled way to approxi-
mate nonlinear operators by separating the representation of the input function (via the Branch Net)
from the evaluation coordinates (via the Trunk Net). The rationale for adopting DeepONet, along
with a detailed discussion of its applicability to our problem setting, is provided in Section A.6. All
formal notation and value-space definitions are consolidated in Section A.6.2 for reference.

The value of k fixed locations are denoted as {xi}ki=1 where xi = (a, p), with a ∈ A and p ∈ P as
defined in Section 4.1. More details are in Section A.8. For each location x1, . . . , xk, we first query
the simulated actuation function U sim

ξ to obtain sensor readings Si:

Si(U
sim
ξ) = U sim

ξ (xi) = ∆f sim(sξsim, xi), i = 1, . . . , k, (2)

where ∆f sim denotes the simulator’s one-step update. S(U sim
ξ) = [S1(U

sim
ξ), . . . , Sk(U

sim
ξ)] de-

notes the concatenation of the k sensor values, providing a structured representation of the actuation
function. S(U sim

ξ) is then embedded into a latent representation via the Branch Net B:

B(U sim
ξ) = [B1(S(U

sim
ξ)), . . . ,Bn(S(U

sim
ξ))], (3)

where n denotes the number of branch features, with each Bi encoding a distinct feature of the
actuation function parameterized by the natural coordinates ξ, decomposing complex dynamics into
interpretable subcomponents.

The Trunk Net T encodes query signals that combine the payload and the current-timestep action:

y ∈ A× P, T (y) = [T1(y), . . . , Tn(y)], (4)

where the trunk features share the same dimension n as the branch features. We then define the op-
erator Gθ(ξ, y) by fusing the Branch output B(U sim

ξ) and the Trunk output T (y) through an element-
wise product:

Gθ(ξ, y) = B(U sim
ξ)⊙ T (y) =

[
B1(S(U

sim
ξ)) · T1(y), . . . ,Bn(S(U

sim
ξ)) · Tn(y)

]
, (5)

where each trunk feature Tj encodes the input queries in the coordinate system defined by the basis
output from the corresponding branch feature Bj .

Inspired by residual dynamics modeling (He et al., 2025), we do not directly supervise the operator
output Gθ(ξ, y) using data from TWINS. Instead, GapONet predicts a per-joint corrective delta
action, which is applied on top of the simulator’s nominal command. In this view, Gθ produces the
residual action needed to compensate for the mismatch between simulation and reality. The resulting
operator is defined as:

G(U sim
ξ)(yt) = ∆f sim

(
sξsim, at +Gθ(ξ, yt)

)
. (6)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 GPU-PARALLEL OPERATOR LEARNING

Training an operator to generate physically consistent delta actions is challenging, as it requires
real-time evaluations of a non-differentiable simulator and repeated computation of sensor values
for every actuation coordinate ξ. These constraints preclude direct supervised learning, motivating
our use of reinforcement learning (explained in Section A.6.3). To further improve efficiency, we
introduce a sensor model Sϕ that predicts sensor readings from near-history dynamics h, approxi-
mating the output of the actuation function parameterized by ξ:

Lsensor = Eξ

[∑
i

∥∥∥∆f sim(sξsim, xi)− (Sϕ(h))i

∥∥∥2
2

]
. (7)

Optimizing ϕ yields a surrogate function space U surr = Sϕ(U sim), where Sϕ maps each simulated
actuation function U sim

ξ to a smooth, computationally lightweight surrogate U surr
h with matching

sensor behavior. This surrogate space replaces the expensive and non-differentiable simulator-based
function space U sim with one that is differentiable, easy to sample, and amenable to large-scale
GPU-parallel training. As a result, learning the sim-to-real operator becomes a tractable problem
of mapping U surr to U real. We denote by D the TWINS dataset distribution over all collected tuples
(h, ξ, y) used for training, which gives rise to the following objective:

minimize
θ

Eh,ξ,y∼D

[∥∥G(U surr
h)(y)− U real

ξ (y)
∥∥2
2

]
. (8)

This objective minimizes the functional discrepancy between the surrogate and real actuation func-
tions. It can be equivalently expressed as a reinforcement-learning problem with the reward:

rt = −w
∥∥(st+1

real − streal)− G(U surr
h)(yt)

∥∥2
2
, (9)

where sreal and y are sampled from D. Maximizing the expected episodic reward under this reward
function aligns with Equation (8). In practice, we optimize θ with PPO Schulman et al. (2017). The
operator Gθ is trained as a stochastic policy, defined by Gθ(·) + N (0;σI), where σ is a learnable
parameter that gradually decays to zero during training. We adopt the standard clipped surrogate
objective:

LPPO(θ) = −Et[min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)] , (10)

where rt(θ) denotes importance sampling ratio, and At is the advantage computed from the reward
rt in Equation (9). This yields stable updates under non-differentiable dynamics. We provide pseudo
code for the training algorithm in Algorithm 1.

5 EXPERIMENT

Our experimental evaluation comprises two parts: Section 5.1 evaluates GapONet ’s zero-shot gen-
eralization to unseen robots and motions; Section 5.2 measures improvements in humanoid locomo-
tion stability through online residual compensation on hardware.

5.1 ZERO-SHOT MOTION TRACKING

GapONet can generalize to unseen target joint-position sequence (motion) under the branch–trunk
architecture. To test this capability beyond our dataset TWINS, we collected an unseen-motion test
set of 100 sim–real pairs: 35 sequences at 0 kg, 23 at 1 kg, 22 at 2 kg, and 20 at 3 kg. These
data are intentionally kept out of the training set in order to further test the model’s generalization
performance on unseen payload conditions. The test set also spans three lower-body gaits in a 6:3:1
ratio for static stance, squat, and locomotion. For quantitative assessment, we report Large Gap
Ratio (the percentage of frames whose error exceeds a predefined threshold), IQR (the interquartile
range of the gap over all motions), and Gap Range (the framewise gap range from minimum to
maximum).

In this motion tracking setting, the trained GapONet takes simulator-side inputs (action, payload,
joint position, and joint velocity) to produce a corrective atsim +∆at, which is added to the simula-
tor’s command to obtain st+1

sim and compared against time-synchronized real measurements st+1
real . We

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

benchmark GapONet with four baselines: (i) an MLP learned dynamics model (He et al., 2025),
(ii) a Transformer learned dynamics model that exploits temporal context better, (iii) system identi-
fication, a classical approach to bridging the sim-to-real gap, and (iv) PD control with official gains.
Each experiment is repeated multiple times, and we report the mean and standard deviation in the
table. As shown in Table 1, GapONet attains the best or tied-best scores on nearly all metrics, with
a pronounced improvement in LGR. These results indicate smoother, more controllable zero-shot
gap bridging than the learned dynamics baselines and consistent gains over system identification
across motions from multiple robots.

Table 1: Zero-shot sim-to-real gap on unseen-motion test set across four payloads.

Method
0 kg 1 kg

LGR(%)
(↓)

IQR (↓) Range (↓) LGR(%)
(↓)

IQR (↓) Range (↓)

PD control 12.7±3.3 0.138±0.007 0.538±0.019 10.6±0.1 0.139±0.028 0.667±0.011

MLP 10.0±0.8 0.108±0.012 0.480±0.088 10.8±0.1 0.125±0.002 0.589±0.029

Transformer 9.55±0.3 0.127±0.014 0.465±0.067 5.60±0.4 0.140±0.005 0.525±0.041

Domain Randomization 3.17±0.6 0.119±0.010 0.548±0.066 - - -
System Identification 12.4±0.3 0.141±0.015 0.505±0.032 9.01±1.0 0.140±0.029 0.609±0.122

Network-based SysID 12.5±0.06 0.154±0.019 0.441±0.001 13.1±0.65 0.129±0.031 0.538±0.002

Kernel-based SysID 13.3±0.14 0.155±0.019 0.497±0.006 8.84±2.37 0.129±0.015 0.588±0.002

GapONet (Ours) 0.09±0.03 0.093±0.016 0.449±0.117 0.22±0.11 0.115±0.013 0.537±0.148

Method
2 kg 3 kg

LGR(%)
(↓)

IQR (↓) Range (↓) LGR(%)
(↓)

IQR (↓) Range (↓)

PD control 11.2±0.1 0.205±0.001 0.625±0.038 12.8±0.1 0.499±0.008 0.642±0.060

MLP 10.8±0.1 0.252±0.003 0.621±0.023 12.2±0.9 0.460±0.013 0.668±0.060

Transformer 0.44±0.3 0.140±0.002 0.606±0.040 9.82±0.1 0.416±0.002 0.573±0.178

Domain Randomization - - - - - -
System Identification 9.53±0.7 0.193±0.102 0.601±0.031 12.1±0.5 0.494±0.003 0.611±0.127

Network-based SysID 12.8±0.05 0.198±0.001 0.609±0.001 12.5±0.5 0.415±0.074 0.626±0.074

Kernel-based SysID 8.88±1.23 0.183±0.001 0.618±0.005 8.45±0.06 0.478±0.075 0.605±0.51

GapONet (Ours) 0.39±0.10 0.161±0.004 0.578±0.112 0.84±0.23 0.317±0.005 0.498±0.157

5.2 LOCOMOTION TRAJECTORY TRACKING

Section 5.1 demonstrates the generalization and gap-solving capabilities of GapONet, but improv-
ing upper-body tracking alone is insufficient to prove system-level benefits. For broader humanoid
applications, lower-body motion must also be considered. As shown in Section 3.3, lower-body gaits
have minimal impact on upper-body motion distributions, while upper-body compensation affects
the lower-body dynamics through coupled torques and contact forces, influencing the center of mass
trajectory (Zhang et al., 2025). Motivated by this asymmetry, we further evaluate GapONet ’s abil-
ity to preserve lower-body locomotion stability by correcting upper-body discrepancies. To this end,
we deploy GapONet as an online residual compensator on hardware, enabling it to refine upper-
body actions in real time and thereby improve lower-body dynamics during locomotion. At each
time step, GapONet receives real-side inputs (action, payload, joint position, and joint velocity)
and predicts a corrective term (∆at). The executed command is then computed as a′t = atreal −∆at,
which is applied to the robot to obtain the next real state st+1

real . This state is compared against the
time-aligned simulated state st+1

sim . More details in Section A.7.6.

We provide both qualitative and quantitative results to evaluate the performance of GapONet. We
conducted tests on 14 motion sequences (7 at 0 kg and 7 at 1 kg payloads) using a previously unseen
Unitree H1-2 robot. For quantitative assessment, we report Trajectory Consistency (velocity dis-
crepancy between simulation and real data), Smoothness (mean acceleration gap), and Robustness
(per-joint gap with added noise). Each experiment was repeated multiple times, and the results are

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Sim-to-real gap in locomotion trajectory tracking on an unseen humanoid robot.

Method
Trajectory Consistency (↓) Smoothness (↓) Robustness (↓)

0 kg 1 kg 0 kg 1 kg 0 kg 1 kg

PD control 20.33±1.982 27.49±1.057 53.76±0.257 25.76±0.277 10.16±0.007 10.14±0.026

MLP 19.18±0.919 28.82±1.560 53.48±0.343 25.55±0.361 10.15±0.027 10.14±0.024

Transformer 19.13±0.689 29.05±1.576 53.57±0.290 26.56±0.385 10.14±0.007 10.16±0.012

System Identification 19.16±0.489 28.59±1.343 24.99±0.298 25.16±0.378 10.14±0.011 10.17±0.008

GapONet (Ours) 18.78±1.147 23.23±5.245 53.36±0.486 25.08±0.181 10.13±0.167 10.14±0.017

Values are reported as mean with superscript ± standard deviation (three decimals). The best result in each
column is highlighted in light green and bold.

presented as mean and standard deviation to ensure validity. Detailed metric calculations can be
found in Section A.7.

Results in Table 2 show that GapONet outperforms other methods in trajectory tracking, main-
taining excellent performance even with payloads, and exhibiting the smallest error growth. In
qualitative analysis, as shown in Figure 4, when a humanoid robot follows the same trajectory from
the same starting point with identical commands, the real execution trajectory (depicted by the white
lines) exhibits significant deviations. Robots without the residual model show frequent tilting and
large trajectory shifts, while the policy with GapONet follows better. Full video demonstrations
and more details can be found in Section A.7 and the supplementary material.

Tilt angle
𝝅

𝟐
− 𝜽

Tilt

angle
𝝅

𝟐
− 𝜽

(a) Trajectory tracking w/o GapONet

Right angle
Right angle

(b) Trajectory tracking with GapONet

Figure 4: Locomotion trajectory tracking. (a) shows trajectory tracking using PD control, where
the path (white line) deviates significantly, and the robot’s torso tilts drastically, indicating instability.
(b) shows the full-body motion after upper-body correction with GapONet. Although there is still
some rightward deviation, the trajectory is much more stable, and the robot’s torso remains upright.

These results collectively demonstrate the generalization and gap-solving capabilities of GapONet.
It not only outperforms current baselines on unseen motions under different payloads but also
achieves higher stability in lower-body locomotion on an unseen robot, laying the foundation for
improved performance in humanoid loco-manipulation tasks.

6 CONCLUSION

We present an end-to-end data-collection pipeline and curate 120+ hours of paired sim–real data
across multiple robots. We characterize payload-related parameters, compare sim-to-real gaps across
simulators, and assess the impact of lower-body actions on whole-body behavior. We then learn a
payload-conditioned nonlinear operator GapONetmapping simulation context functions to residual
actions for hardware. On zero-shot motion tracking, the large-gap ratio is 0.09%, with improved
robustness and smoothness in locomotion trajectory tracking, strengthening the basis for humanoid
loco-manipulation. Future work and limitations are discussed in Section A.9.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The dataset used and planned for release in this work has been fully anonymized and does not contain
any personal or individually identifiable information, but rather consists of a collection of publicly
accessible content. The paper does not include any analysis, reporting, or disclosure of private user
details, and care has been taken to ensure that all data handling aligns with privacy regulations and
ethical guidelines.

REPRODUCIBILITY STATEMENT

We include real-world experimental footage to substantiate the reported results and release a sub-
set of sim–real paired data for cross-validation; both are provided in the supplementary materials.
Key implementation details and experimental settings are described in the main paper (Section 4,
Section 5) and supplementary materials Section A.8.

REFERENCES

AgiBot-World-Contributors, Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng,
Shenyuan Gao, Xindong He, Xuan Hu, Xu Huang, Shu Jiang, Yuxin Jiang, Cheng Jing, Hongyang
Li, Jialu Li, Chiming Liu, Yi Liu, Yuxiang Lu, Jianlan Luo, Ping Luo, Yao Mu, Yuehan Niu,
Yixuan Pan, Jiangmiao Pang, Yu Qiao, Guanghui Ren, Cheng Ruan, Jiaqi Shan, Yongjian Shen,
Chengshi Shi, Mingkang Shi, Modi Shi, Chonghao Sima, Jianheng Song, Huijie Wang, Wenhao
Wang, Dafeng Wei, Chengen Xie, Guo Xu, Junchi Yan, Cunbiao Yang, Lei Yang, Shukai Yang,
Maoqing Yao, Jia Zeng, Chi Zhang, Qinglin Zhang, Bin Zhao, Chengyue Zhao, Jiaqi Zhao, and
Jianchao Zhu. Agibot world colosseo: A large-scale manipulation platform for scalable and
intelligent embodied systems, 2025.

Karl Johan Åström and Peter Eykhoff. System identification—a survey. Automatica, 7(2):123–162,
1971.

Qingwei Ben, Feiyu Jia, Jia Zeng, Junting Dong, Dahua Lin, and Jiangmiao Pang.
Homie: Humanoid loco-manipulation with isomorphic exoskeleton cockpit. arXiv preprint
arXiv:2502.13013, 2025.

Filip Bjelonic, Fabian Tischhauser, and Marco Hutter. Towards bridging the gap: Systematic sim-
to-real transfer for diverse legged robots. arXiv preprint arXiv:2509.06342, 2025.

Zina Boussaada, Octavian Curea, Ahmed Remaci, Haritza Camblong, and Najiba Mrabet Bellaaj.
A nonlinear autoregressive exogenous (narx) neural network model for the prediction of the daily
direct solar radiation. Energies, 11(3):620, 2018.

Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain randomiza-
tion for sim-to-real transfer. arXiv preprint arXiv:2110.03239, 2021.

Thomas Oliver de Jong, Khemraj Shukla, and Mircea Lazar. Deep operator neural network model
predictive control. arXiv preprint arXiv:2505.18008, 2025.

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for data-
efficient learning in robotics and control. IEEE transactions on pattern analysis and machine
intelligence, 37(2):408–423, 2013.

Nolan Fey, Gabriel B Margolis, Martin Peticco, and Pulkit Agrawal. Bridging the sim-to-real gap
for athletic loco-manipulation. arXiv preprint arXiv:2502.10894, 2025.

Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi, Yanjiang Guo, Yichen Liu, and Jianyu
Chen. Advancing humanoid locomotion: Mastering challenging terrains with denoising world
model learning. arXiv preprint arXiv:2408.14472, 2024.

Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris Kitani, Changliu Liu, and Guanya
Shi. Learning human-to-humanoid real-time whole-body teleoperation. arXiv preprint
arXiv:2403.04436, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi
He, Nikhil Sobanbab, Chaoyi Pan, et al. Asap: Aligning simulation and real-world physics for
learning agile humanoid whole-body skills. arXiv preprint arXiv:2502.01143, 2025.

Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environ-
ments. arXiv preprint arXiv:1707.02286, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

John G Kuschewski, Stefen Hui, and Stanislaw H Zak. Application of feedforward neural networks
to dynamical system identification and control. IEEE transactions on control systems technology,
1(1):37–49, 1993.

Shashank Kushwaha, Jaewan Park, Seid Koric, Junyan He, Iwona Jasiuk, and Diab Abueidda. Ad-
vanced deep operator networks to predict multiphysics solution fields in materials processing and
additive manufacturing. Additive Manufacturing, 88:104266, 2024.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection
for robust imitation learning. In Conference on robot learning, pp. 143–156. PMLR, 2017.

Jae Yong Lee and Yeoneung Kim. Hamilton–jacobi based policy-iteration via deep operator learn-
ing. Neurocomputing, pp. 130515, 2025.

Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil Sreenath.
Robust and versatile bipedal jumping control through reinforcement learning. arXiv preprint
arXiv:2302.09450, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Qiayuan Liao, Takara E Truong, Xiaoyu Huang, Guy Tevet, Koushil Sreenath, and C Karen Liu.
Beyondmimic: From motion tracking to versatile humanoid control via guided diffusion. arXiv
preprint arXiv:2508.08241, 2025.

Yun Liu, Bowen Yang, Licheng Zhong, He Wang, and Li Yi. Mimicking-bench: A benchmark
for generalizable humanoid-scene interaction learning via human mimicking. arXiv preprint
arXiv:2412.17730, 2024.

Lennart Ljung. System identification. In Signal analysis and prediction, pp. 163–173. Springer,
1998.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Sha Luo, Hamidreza Kasaei, and Lambert Schomaker. Accelerating reinforcement learning for
reaching using continuous curriculum learning. In 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Jiageng Mao, Siheng Zhao, Siqi Song, Tianheng Shi, Junjie Ye, Mingtong Zhang, Haoran Geng,
Jitendra Malik, Vitor Guizilini, and Yue Wang. Learning from massive human videos for universal
humanoid pose control, 2024.

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via
reinforcement learning. The International Journal of Robotics Research, 43(4):572–587, 2024.

Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real reinforcement learning for de-
formable object manipulation. In Conference on Robot Learning, pp. 734–743. PMLR, 2018.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain
randomization. In Conference on Robot Learning, pp. 1162–1176. PMLR, 2020.

AJ Miller, Fangzhou Yu, Michael Brauckmann, and Farbod Farshidian. High-performance re-
inforcement learning on spot: Optimizing simulation parameters with distributional measures.
arXiv preprint arXiv:2504.17857, 2025.

Fabio Muratore, Fabio Ramos, Greg Turk, Wenhao Yu, Michael Gienger, and Jan Peters. Robot
learning from randomized simulations: A review. Frontiers in Robotics and AI, 9:799893, 2022.

Kyung-Mi Na and Chang-Hun Lee. Physics-informed deep learning approach to solve optimal
control problem. In AIAA SCITECH 2024 Forum, pp. 0945, 2024.

Oliver Nelles. Nonlinear system identification. Measurement Science and Technology, 13(4):646–
646, 2002.

Romeo Ortega, Antonio Loria, Per Johan Nicklasson, and Hebertt Sira-Ramirez. Euler-lagrange
systems. In Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and
Electromechanical Applications, pp. 15–37. Springer, 1998.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. In IEEE International Conference on Robotics
and Automation (ICRA), 2018.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learn-
ing agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 international conference on robotics and automation (icra), pp.
9784–9790. IEEE, 2019.

Jean-Jacques E Slotine and Weiping Li. On the adaptive control of robot manipulators. The inter-
national journal of robotics research, 6(3):49–59, 1987.

Nikhil Sobanbabu, Guanqi He, Tairan He, Yuxiang Yang, and Guanya Shi. Sampling-based sys-
tem identification with active exploration for legged robot sim2real learning. arXiv preprint
arXiv:2505.14266, 2025.

Mark W Spong, Seth Hutchinson, Mathukumalli Vidyasagar, et al. Robot modeling and control,
volume 3. Wiley New York, 2006.

Yufang Sun. Automatic vibration control method for grasping end of flexible joint robot. Journal of
Vibroengineering, 25(8):1502–1515, 2023.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. Robotics:
Science and Systems (RSS), 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE transactions on
pattern analysis and machine intelligence, 44(9):4555–4576, 2021.

Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
normative data for robot manipulation, 2024.

Wenli Xiao, Haoru Xue, Tony Tao, Dvij Kalaria, John M Dolan, and Guanya Shi. Anycar to
anywhere: Learning universal dynamics model for agile and adaptive mobility. arXiv preprint
arXiv:2409.15783, 2024.

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonanthan Hurst, and Michiel Panne.
Learning locomotion skills for cassie: Iterative design and sim-to-real. In Conference on Robot
Learning, pp. 317–329. PMLR, 2020.

Zhaoming Xie, Xingye Da, Michiel Van de Panne, Buck Babich, and Animesh Garg. Dynamics
randomization revisited: A case study for quadrupedal locomotion. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4955–4961. IEEE, 2021.

Jie Xu, Eric Heiden, Iretiayo Akinola, Dieter Fox, Miles Macklin, and Yashraj Narang. Neural robot
dynamics. arXiv preprint arXiv:2508.15755, 2025.

Bohao Zhang, Daniel Haugk, and Ram Vasudevan. System identification for constrained robots.
arXiv preprint arXiv:2408.08830, 2024.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. Ad-
vances in neural information processing systems, 33:21024–21037, 2020.

Jian Zhang, Tadanobu Sato, and Susumu Iai. Novel support vector regression for structural system
identification. Structural Control and Health Monitoring: The Official Journal of the Interna-
tional Association for Structural Control and Monitoring and of the European Association for the
Control of Structures, 14(4):609–626, 2007.

Jiawen Zhang, Tao Zhao, Bin Guo, and Songyi Dian. Fuzzy fractional-order pid control for two-
wheeled self-balancing robots on inclined road surface. Systems Science & Control Engineering,
10(1):289–299, 2022.

Xiang Zhang, Changhao Wang, Lingfeng Sun, Zheng Wu, Xinghao Zhu, and Masayoshi Tomizuka.
Efficient sim-to-real transfer of contact-rich manipulation skills with online admittance residual
learning. In Conference on Robot Learning, pp. 1621–1639. PMLR, 2023.

Yuanhang Zhang, Yifu Yuan, Prajwal Gurunath, Tairan He, Shayegan Omidshafiei, Ali-akbar Agha-
mohammadi, Marcell Vazquez-Chanlatte, Liam Pedersen, and Guanya Shi. Falcon: Learning
force-adaptive humanoid loco-manipulation. arXiv preprint arXiv:2505.06776, 2025.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs only for grammar/style rewrites and equation/notation formatting corrections.
We appreciate the steadily improving reasoning capabilities of LLMs, which helped us identify lin-
guistic issues more quickly and maintain a more consistent scholarly style. However, all research
ideation, theoretical development and formula derivations, methodological choices, and experimen-
tal design and execution were performed exclusively by the authors. Accordingly, the LLM did not
play a significant role in research ideation or writing and should not be regarded as a contributor.

A.2 OPEN-SOURCE RELEASE

To support reproducibility and foster further research on humanoid sim-to-real transfer, we will re-
lease the full codebase, training pipelines, pretrained GapONet models, and the complete TWINS
dataset upon publication. The release includes (i) data collection and synchronization tools for
paired sim–real recording across payloads, robots, and simulators, (ii) operator-learning implemen-
tations with DeepONet-based architectures, (iii) reinforcement learning pipelines with surrogate
actuation functions and sensor predictors, and (iv) evaluation scripts for sim-to-sim and sim-to-real
benchmarking. All resources will be made publicly available under a permissive license, enabling
the community to build upon our framework, reproduce all experimental results, and extend the
dataset for broader loco-manipulation tasks.

A.3 DATA COLLECTION

A.3.1 LEGGED HUMANOID ROBOT

We collect paired sim–real data on two humanoids: the 1.8 m Unitree H1-2 and the 1.3 m Unitree
G1. Joint naming and kinematic locations are shown in Figure 5. In our setup, we log the full upper
body and locomotion-relevant joints (27-DoF configuration in code), along with IMU and actuator
telemetry.

ROS setup and topics Data acquisition is implemented as a ROS 2 Python node (rclpy, node
name deploy node). The node subscribes to low-level robot state messages and publishes
torque/position commands:

• Subscriptions: LowState (joint positions/velocities/currents, IMU, wireless remote),
used to buffer sensor streams and teleop events.

• Publications: LowCmd on topic lowcmd buffer at 50 Hz (control period ∆t ≈ 20ms).
Commands include per-joint PD terms and optional feedforward residuals (CRC is ap-
pended before transmission).

Teleoperation triggers (e.g., start/stop, emergency stop) are parsed from the wireless controller and
gate recording and command streaming.

What is recorded For each trial, we write files (per-trial timestamped) with the following datasets,
matching the code:

• command time list (s): wall-clock times when commands are produced.
• command val list: commanded action vectors (per 20 ms tick).
• robot/joint time list (s): time stamps associated with the sensed robot state.
• robot/joint angle list, robot/joint velocity list,
robot/joint current list, robot/joint temperature list: actua-
tor telemetry.

• robot/imu list, robot/ang vel list: IMU linear orientation proxies and angu-
lar rates.

• motion name, current time: metadata for the retargeted/teleop motion and file cre-
ation time.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Joint names and positions on Unitree H1-2 and G1 robots

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Spatiotemporal synchronization We use a single monotonic clock started at node initialization
to time-stamp both the command loop and the sensor callback buffers. During acquisition, the
node executes a fixed-rate control loop (50 Hz) and performs rclpy.spin once with a short
timeout each tick; the current monotonic time is appended to both command time list and
robot/joint time list. This yields frame-accurate alignment between the actuation stream
and the sensed state at the controller cadence. Since logging and control are co-located on the
same machine, no cross-machine NTP is required; residual jitter is bounded by the loop period and
handled in post-processing by resampling to a common time base when needed.

Libraries The implementation relies on rclpy (ROS 2), numpy, torch (policy inference/log-
ging utilities), mujoco (simulation), h5py (file I/O), and transforms3d (frame utilities). All
topics and message types (LowState, LowCmd, MotorState, IMUState) come from the
unitree hg.msg package.

Figure 6: Joint names and positions on RealMan WR75S robot

A.3.2 WHEELED HUMANOID ROBOT

We also collect motion execution data on dual-arm wheeled robots (RealMan). Our setup logs the
full arm joint configurations along with actuator telemetry through UDP communication using the
official RealMan API.

Communication Setup Data acquisition uses the RealMan official API with UDP communica-
tion. Position commands are sent to each arm at dedicated ports (8080, 8576), while real-time
state data is received through UDP callbacks on separate ports (8089, 8090). The system registers

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

callback functions to process telemetry streams containing joint positions, velocities, currents, and
temperatures.

Data Recording Structure For each trial, we save timestamped datasets in HDF5 format with the
following structure matching our dual-arm configuration:

• command time list (s): wall-clock timestamps when commands are issued.

• command val list: commanded action vectors for both arms concatenated (14-
dimensional for dual 7-DoF arms).

• robot1/joint time list, robot2/joint time list (s): sensor timestamps
for left and right arms respectively.

• robot1/joint angle list, robot2/joint angle list: joint positions in ra-
dians for each arm.

• robot1/joint velocity list, robot2/joint velocity list: joint veloci-
ties in rad/s for each arm.

• robot1/joint current list, robot2/joint current list: motor currents
for each arm.

• robot1/joint temperature list, robot2/joint temperature list: ac-
tuator temperatures for each arm.

• motion name, slowdown factor, current time: metadata for trial identification.

Spatiotemporal synchronization We employ a unified monotonic clock initialized at data collec-
tion start to timestamp both command transmission and sensor reception. During execution, com-
mands are sent via rm movej canfd API calls while the monotonic timestamp is recorded for
both command and sensor streams. Since both command generation and sensor processing occur on
the same machine with shared timing, cross-machine synchronization is unnecessary. The UDP call-
back mechanism ensures frame-accurate alignment between actuation commands and sensed states
at the controller frequency. Residual timing jitter is bounded by the loop period and handled through
post-processing resampling when temporal alignment is required for analysis. The system contin-
uously monitors joint enable flags and error codes, with joint disable events prioritized as critical
errors and other malfunctions classified as general errors, triggering immediate data cleanup and
graceful termination.

A.3.3 DATA SELECTION

We describe the amount of collected data in Section 3.2 and provide collection details in Section A.3.
All data in these two sections are used as the training set. To evaluate the generalization ability of
our operator, as stated in Section 5.1, we additionally collected an unseen-motion test set consisting
of 100 sim–real pairs: 35 sequences at 0 kg, 23 at 1 kg, 22 at 2 kg, and 20 at 3 kg. The test set
further spans three lower-body gaits in a 6:3:1 ratio for static stance, squat, and locomotion.

All motions used for collecting this test set are never used in the training dataset. To confirm the
distinction between the two sets, we conduct t-SNE visualization and KS statistical testing (Fig-
ure 7). The results show that in the three motion-critical dimensions—dof position, dof velocity,
and torque—the test dataset satisfies the zero-shot requirement described in our experiments.

A.4 GAP ANALYSIS

A.4.1 PD CONTROL

We use a basic joint-space proportional–derivative controller to track commanded trajectories with
low latency. The proportional term corrects position error (stiffness), and the derivative term pro-
vides damping to reduce overshoot:

τ = Kp (qcmd − q) + Kd (q̇cmd − q̇). (11)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: The t-SNE visualization and qualitative analysis results of the distribution of the train and
the test dataset.

Here qcmd and q̇cmd are the desired joint position/velocity, q and q̇ are the measured states, and
Kp,Kd (typically diagonal, positive) set tracking stiffness and damping. Optional gravity/feedfor-
ward terms can be added when needed, but the above is the minimal PD law.

In equation 1, Kp(qcmd − q) +Kd(q̇cmd − q̇) is the standard joint-space PD action (typically diag-
onal gains). The extra linear terms Kv q̇ and Kc tanh(q̇/ε) model viscous damping and smoothed
Coulomb friction, respectively; ε > 0 regularizes the sign function to avoid chattering. The scalar
(or diagonal) P denotes the payload descriptor (e.g., mass/COM proxy). The bias Kpayload P pro-
vides a load-dependent offset, while KP sinP sin q and KP cosP cos q capture load-scaled gravity/-
COM components in joint coordinates. Velocity/acceleration couplings KP q̇P q̇ and KP q̈P q̈ ad-
dress payload-amplified damping/inertial effects. The constant τ0 compensates residual biases (e.g.,
calibration offsets).

Start from PD only (Kp,Kd), add Kv,Kc to reduce overshoot and stick–slip, then introduce
Kpayload, KP sin,KP cos for static/load gravity, and KP q̇,KP q̈ for dynamic load effects; keep all
gains bounded and ε small enough to smooth tanh(·) without degrading response.

A.4.2 MORE ANALYSIS RESULTS

We present additional qualitative results here Figure 8 and Figure 9; further videos are provided in
the supplementary materials.

A.5 NONLINEAR OPERATOR

What is an operator? In contrast to learning a finite-dimensional mapping f : Rn→Rm, operator
learning targets a mapping between function spaces, G : U → V , where the input u ∈ U is itself
a function and the output G(u) ∈ V is another function. Practically, we observe u via its sensor
samples at locations {xi}mi=1: {u(xi)}, and we query the output at arbitrary y-locations to obtain
values G(u)(y). This setup makes the learning objective function-to-function rather than pointwise
regression, and enables generalization to unseen inputs u and query points y.;

Why not “learn a function” directly? Classical approximation fits (x, y) pairs for one target
function. Operator learning instead aims to recover the rule that maps any admissible input func-
tion u to an output function G(u). To make this learnable from data, we draw a diverse family
of input functions—e.g., samples from Gaussian Random Fields (SE/RBF kernels with tunable
length-scales/variances) and orthogonal polynomial expansions (e.g., Chebyshev with random coef-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 1 2 3
Payload

0.0

0.2

0.4

0.6

0.8

1.0

R
²

Model Fit Quality vs Payload (All Joints)

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_shoulder_roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint
right_wrist_roll_joint

0 1 2 3
Payload

0

1

2

3

4

5

6

R
M

SE

Prediction Error vs Payload (All Joints)

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_shoulder_roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint
right_wrist_roll_joint

0 1 2 3
Payload

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

K
p

(P
ro

po
rti

on
al

 G
ai

n)

Proportional Gain vs Payload

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_elbow_joint
right_elbow_joint

0 1 2 3
Payload

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

K
d

(D
er

iv
at

iv
e

G
ai

n)

Derivative Gain vs Payload

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_elbow_joint
right_elbow_joint

0 1 2 3
Payload

5

4

3

2

1

0

1

K
_p

ay
lo

ad

Payload Sensitivity vs Payload

left_shoulder_pitch_joint
right_shoulder_pitch_joint
left_shoulder_roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint
right_wrist_roll_joint

0 1 2 3
Payload Level

left_elbow_joint

left_shoulder_pitch_joint

left_shoulder_roll_joint

left_shoulder_yaw_joint

left_wrist_roll_joint

right_elbow_joint

right_shoulder_pitch_joint

right_shoulder_roll_joint

right_shoulder_yaw_joint

right_wrist_roll_joint

Jo
in

t

0.0 -4.6 -4.9 -4.5

0.0 -0.8 -0.9 -1.0

0.0 1.4 1.4 0.8

0.0 0.7 0.7 0.7

0.0 -0.2 -0.3 -0.3

0.0 -3.6 -3.2 -3.2

0.0 -1.0 -1.1 -1.2

0.0 -1.4 -1.3 -1.1

0.0 -0.7 -0.8 -0.8

0.0 0.2 0.3 0.3

Payload Sensitivity Heatmap

4

3

2

1

0

1

Figure 8: Data analysis on payload-related parameters

ficients)—so the model is trained across a rich subset of U rather than around a single curve. This
ensures the learned mapping reflects an operator over a function class, not merely a single function
fit.

Low-rank/separable viewpoint Many learned operators can be written (or approximated) in a
separable, low-rank form

Ĝ(u)(y) =

p∑
k=1

bk(u) tk(y), (12)

where bk(u) are functionals of the input function (computed from its samples) and tk(y) are basis
functions over the query variable y. This mirrors RKHS/separable-kernel and POD/SVD intuitions
and clarifies the roles of “encode the input function” versus “encode the query location.”;

We adopt this operator perspective to learn GapONet, a mapping from simulation context func-
tions to hardware-space responses, so that the model predicts an output function of state/time given
an input function describing simulated context—setting the stage for the DeepONet factorization
introduced next.

A.6 METHODS

A.6.1 WHY DO WE CHOOSE DEEPONET?

Our operator must (i) ingest simulation context functions with explicit payload conditioning, (ii)
answer at arbitrary query points (current actions, payload) across heterogeneous robots and sim-
ulators, (iii) train under a closed-loop RL objective without requiring paired function-to-function
supervision at every query, and (iv) support low-latency on-board inference.

We have considered some alternatives and trade-offs, for example:

• Fourier/Neural Operators (FNO family) (Li et al., 2020; Kovachki et al., 2023): excel on
fixed grids with spectral convolutions, but rely on discretization tied to resolution/geom-
etry; cross-morphology deployment (different joint layouts) typically needs regridding or
retraining, and spectral blocks add latency on embedded hardware.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(c) Same motion with different simulators (b) Same motion with different payloads(a) Same motion with different lower-body gaits

Figure 9: Results on all upper-body joints about the same motion with different payloads, simula-
tions, and lower-body gaits.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Graph/Galerkin/UNO-style operators (Kovachki et al., 2023): adapt to irregular mesh-
es/graphs but require topology-aligned parameterization; when robots or sensor layouts
change, weights/graphs must be remapped. Querying arbitrary state–time points is less
natural than function–query separation. Capacity is high, but so are data and compute
demands.

• Physics-informed neural operators (PINO): leverage known PDE residuals for sample effi-
ciency, yet our residual field (sim→real actuation gap with delays/saturation) lacks a clean
PDE form, making hard constraints difficult to specify and risking model-bias.

As for DeepONet’s branch–trunk decomposition (Lu et al., 2019; 2021) aligns directly with our
problem: the branch encodes context (multi-sensor histories, simulator traces, payload), and the
trunk indexes continuous query variables (state/time/joint), producing residual action/torque values
via a simple inner product. This yields (1) continuous space–time queries without grid lock-in,
(2) clean conditioning on payload and robot-specific context without graph/topology rewiring, (3)
RL-friendly training since supervision can be placed at arbitrary queried points along closed-loop
rollouts, and (4) low-latency deployment because inference reduces to lightweight embeddings plus
an inner product. Moreover, DeepONet comes with an operator-level universal approximation the-
orem that provides formal capacity guarantees for nonlinear operators (Lu et al., 2021), which we
found attractive given the diversity of simulators, payloads, and hardware.

In summary, we choose DeepONet because its function–query factorization, theoretical operator ap-
proximation guarantees, and efficient, payload-conditioned querying match our requirements better
than grid-bound spectral operators, topology-coupled graph variants, or physics-informed schemes
that presume known PDE structure (Lu et al., 2019; 2021; Li et al., 2020; Kovachki et al., 2023).
Our objective is to demonstrate that operator learning can achieve a mapping from simulation to
reality, thereby aiding sim-to-real transfer. Determining the optimal operator architecture is outside
the main scope of this work.

A.6.2 THE DEFINITIONS OF SYMBOLS

• Simulator f sim. We formalize simulators (e.g., Isaac Gym, MuJoCo) as functions f sim :
S×A → S that compute the next state from the current state and an action. The state space
S typically includes joint parameters (q, q̇), robot base states (e.g., root angular and linear
velocities), and other environmental variables. In our framework, we decompose a state
s ∈ S based on its influence on joint actuation: sξ denotes the states that directly influ-
ence the actuation of the joints, p represents payload, and sother encompasses all remaining
states that do not affect joint actuation. Consequently, the simulator can be expressed as
f sim(s, a) = f sim(sother, sξ, p, a). To focus on the joints, we define the desired state tran-
sition as ∆f sim(sξ, x) = (f sim(sother, sξ, p, ax))j − sξj , where the subscript j extracts only
the joint-related states (position and velocity) for transition computation, excluding unin-
fluential states such as root velocities.

• Clarification on States st and sξ. The description in Section 4 primarily uses sξ to denote
states, irrespective of the domain (simulation or real). However, specific equations (e.g.,
Equation (9)) employ st to emphasize that the state belongs to a trajectory at a specific time
t in TWINS. Each trajectory forms a dynamic path ξt, and thus st corresponds precisely to
sξt .

• Actuation Functions U sim
ξ , U real

ξ and U surr
h . The actuation function U sim

ξ is defined as
∆f sim(sξsim, ·) following Section 4.1. Its output U sim

ξ (a, p) = ∆f sim(sξsim, (a, p)) represents
the concatenation of delta joint position and delta joint velocity in R2J , where J is the
total number of joints. The real actuation function U real

ξ shares a similar formulation and
output dimension, but is defined using the real-world dynamics f real in place of f sim. In
contrast, the surrogate actuation function U surr

h also outputs values in R2J , but differs in
representation: it is the output of a sensor predictor, implemented as a neural network, with
inputs from h-step joint position, velocity and action history .

• Sensor Values, Branch Net B and Trunk Net T . Sensor values represent the state tran-
sitions of joints under a specific dynamics parameter ξ.The concatenated sensor vector

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

S(Uξ) lies in R2kJ , where 2J corresponds to the position and velocity changes across J
joints, and k denotes the number of sensor locations.For details on the computation of S,
refer to Section 4.3.The Branch Net B and Trunk Net T are both implemented as standard
multi-layer perceptrons (MLPs); their specific configurations are provided in Section A.8.

• Operator, G and Gθ. Gθ is an intermediate representation formed by the element-wise
dot-product of the Brand Net B and the Trunk Net T , where θ denotes the combined pa-
rameters of both B and T . If the dynamics parameter ξ can be represented as a real-number
vector, then for any input y, Gθ is deterministic, differentiable, and amenable to direct opti-
mization. However, rather than supervising Gθ directly, we interpret its outputs not as state
transitions, but as delta actions. We subsequently introduce ∆f sim to formulate G as the fi-
nal operator. This design choice is intrinsically linked to our decision to use Reinforcement
Learning (RL) in place of supervised learning; see Section A.6.3 for further justification.

A.6.3 WHY DO WE CHOOSE REINFORCEMENT LEARNING

Computational Prohibitivity. Direct computation of sensor values for each ξ is computationally
prohibitive under our setting, which requires evaluating the actuation function Uξ at k fixed locations
{xi}ki=1. To illustrate, consider a continuous motion execution involving a fixed trajectory of x
and ξ correlated with the current motion playback time. Direct evaluation of sensor values would
require saving a simulation checkpoint at every timestep t, executing all {xi}ki=1 in simulation, and
retrieving the corresponding values. Subsequently, all parallel environments would need to be reset
to ξ(t) before proceeding with the execution of x from the motion incorporating corrections from
our operator. This process significantly impedes execution efficiency: computing k sensor values
would slow down the motion trajectory execution by at least a factor of 1/k. To mitigate this, we
introduce a sensor predictor, thereby constructing a surrogate actuation function space.

Non-Differentiable Simulators. Once the surrogate actuation function space is constructed, the
remaining challenge is to optimize the operator that minimizes the multi-step transition discrepancy
between simulation and the real robot. However, this optimization objective depends on the simu-
lator’s internal dynamics—contact events, actuator nonlinearities, sensor latency, and frictional dis-
continuities—which are inherently non-differentiable. As a result, a supervised-learning formulation
would require backpropagating through the simulator, which is infeasible under GPU-based physics
engines such as Isaac Gym/Isaac Sim. In contrast, reinforcement learning treats the simulator as a
black-box transition model and optimizes the operator purely from trajectory-level rewards, without
requiring differentiability. This makes RL the only practical and efficient optimization framework
for training our operator in the presence of non-smooth, non-differentiable sim-to-real dynamics.

A.7 EXPERIMENT

A.7.1 METRICS

We report two metric families: (i) gap distribution (Table 1: large-gap ratio(LGR), interquartile
range (IQR), and gap range) and (ii) kinematic quality of lower-body (Table 2: smoothness, trajec-
tory consistency, and robustness). All metrics are computed per run and then aggregated by payload
mass (the environment groups trials by mass buckets).

Let qrealt , qsimt be joint trajectories (or end-effector signals) sampled at uniform ∆t. Define the gap
gt = qrealt − qsimt and its absolute value |gt|. Central-difference operators approximate derivatives.

Large-gap ratio (Table 1) Fraction of samples with absolute joint error exceeding a threshold
(0.5 rad by default):

Large-gap ratio =

∣∣{(t, i) : |gt,i| ≥ τ}
∣∣∣∣{(t, i)}∣∣ , τ = 0.5 rad. (13)

Captures the frequency of serious deviations.

We adopt the commonly used 0.5 rad threshold, which prior work Zhang et al. (2022); Sun (2023)
employs as a perturbation magnitude for identifying severe tracking failures rather than normal

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1: GapONet Training with PPO in Simulation
Input: Simulator f sim, real-world dataset D, learning rates αθ, αϕ, parallel environment count B, PPO

parameters Lbuffer, γ, λ, operator training steps N , sensor model training steps Nsensor, history length Nh
Initialize: Network parameters θ for Gθ , ϕ for Sϕ, PPO value function Vψ , PPO buffer DPPO
// Sensor Model Pre-training Phase
for iteration← 1 to Nsensor do

Sample initial states s0 ∈ RB×2J ; // Joint positions and velocities

Sample task parameters p ∈ RP ; // P = 1 for payload in our settings

Sample action sequence {at}h−1
t=0 where at ∈ RB×J

// Rollout in simulator to collect dynamics data
for t← 0 to h− 1 do

st+1 ← f sim(st, at, p); // State transition in simulation
end
// Compute sensor model training targets
I ← {(st, at) | t = 0, . . . , h− 1}; // History input
Lϕ ← MSE(sh − sh−1, Sϕ(I)); // Predict state transitions
ϕ← ϕ− αϕ∇ϕLϕ; // Update sensor model

end
// Operator Learning Phase with PPO
Initialize all environments as done
for iteration← 1 to N do

foreach environment marked done do
Sample trajectory from D with p ∈ RP , {at} ∈ RB×J , {streal} ∈ RB×S

Reset environment to initial state s0real
end
// Compute operator inputs and corrections
Construct history input I from recent states and actions
Compute surrogate sensor values: Ŝ ← Sϕ(I)
Form query vector: y ← (at, p)
Compute action correction: ∆at ← Gθ(h, y); // Using Equation (5)
// Step simulator with corrected actions

∆ŝsim ← ∆f sim(stsim, at +∆at, p)

Compute reward: rt ← −w
∥∥(st+1

real − s
t
real)−∆ŝsim

∥∥2

2
; // Using Equation (9)

// Store experience for PPO

Add transition (stsim,∆at, rt, s
t+1
sim) to DPPO

if iteration mod Lbuffer = 0 then
θ, ψ ← PPO Update(DPPO, γ, λ, αθ); // Update policy and value networks
Clear buffer: DPPO ← ∅

end
end
Output: Trained parameters θ∗, ϕ∗, ψ∗

fluctuations. This value is intentionally set far above typical joint-tracking errors in robot control.
Rrrors exceeding 0.5 rad correspond to catastrophic sim-to-real failures, making LGR a meaningful
indicator of such gaps.

To verify that the 0.5 rad threshold meaningfully reflects the natural distribution of the sim–real
gap, we analyzed the entire dataset Figure 10. The histogram shows that while most gaps are small,
there is a clear heavy tail, indicating that large deviations do occur and should be detected by a
threshold-based metric. The CDF curve further confirms that about 20% of all samples lie above
0.5 rad, meaning the threshold captures a substantial portion of true large-error events rather than
rare outliers. The percentile plot shows that 0.5 rad lies between the 75th and 90th percentiles,
aligning with the onset of severe deviations. Finally, the per-payload density curves demonstrate
that this heavy tail persists across payloads, so 0.5 rad consistently separates normal fluctuations
from genuinely large tracking failures. Together, these results show that the 0.5 rad threshold is not
arbitrary but well matched to the intrinsic structure of the gap distribution.

Gap IQR (Table 1) Dispersion of absolute errors via the interquartile range:

G =
{
|gt,i| : t = 1, . . . , T, i = 1, . . . , J

}
, IQR = Q0.75(G)−Q0.25(G). (14)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 10: Sim-real gap distribution analysis.

Lower is a tighter error distribution.

Gap range (Table 1) Extreme-case spread of absolute errors:

Range = max(|g|)−min(|g|). (15)

Highlights worst-case variability.

Trajectory consistency (Table 2) Discrepancy in the rate-of-change of velocity (a curvature-like
signal) between real and simulated motion:

v treal = ∇q treal, v tsim = ∇q tsim, κ treal = ∇v treal, κ tsim = ∇v tsim, (16)

TrajectoryConsistency =
1

T

T∑
t=1

∣∣κreal
t − κsim

t

∣∣ . (17)

Smaller values indicate that the simulator reproduces the evolution of motion patterns more faith-
fully.

Smoothness (Table 2) Discrepancy in accelerations between real and simulated trajectories:

Smoothness =
1

T

T∑
t=1

∣∣arealt − asimt

∣∣ , arealt = ∇2qrealt , asimt = ∇2qsimt . (18)

Lower scores mean closer kinematic smoothness to real motion.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Robustness (Table 2) Sensitivity of the sim–real gap to measurement noise. For noise levels
σ ∈ {σ1, . . . , σK},

Robustness =
1

K

K∑
k=1

[
1

T

T∑
t=1

∣∣∣(qrealt + ϵ
(k)
t

)
−

(
qsimt + ϵ̃

(k)
t

)
− gt

∣∣∣] , (19)

gt = qrealt − qsimt , ϵ
(k)
t , ϵ̃

(k)
t ∼ N (0, σ2

k). (20)

Smaller values indicate that the evaluation is stable under realistic perturbations.

Each motion is run at least six times. For each run, we compute every metric (optionally per joint and
then averaged); otherwise, only real-stream statistics are used as specified by each metric. We then
aggregate runs by payload/mass buckets and report means with standard errors. All three metrics
are discrepancy-style measures; by construction, smaller values indicate better performance.

A.7.2 LOCOMOTION TRAJECTORY TRACKING

We generate locomotion commands using a phase-based trajectory: a normalized phase ϕ ∈
[0, 1) advances at the control rate and indexes a trapezoidal base-velocity profile (acceler-
ate–cruise–decelerate–pause). Forward and backward segments alternate automatically, while lat-
eral velocity and yaw rate remain zero unless specified. The phase schedules lower-body gait timing
and yields desired joint trajectories for the legs, tracked by a joint-space PD controller at 50 Hz with
torque/rate limits and safety checks.

Fixed start pose and heading. Each real-robot run starts from the same world-frame pose—a fixed
position and heading—followed by a short smooth interpolation into the nominal stand pose before
the phase route is enabled. This ensures repeatable initial conditions, so the resulting base trajectory
in SE(2) (odometry or motion-capture) can be compared across runs to assess tracking quality, drift,
and sim–real alignment. Commands and sensor streams share a monotonic timestamp, keeping
phase, velocity setpoints, and measured joint/IMU signals time-aligned for evaluation.

A.7.3 ABLATION ON OPERATOR VS. MLP

We provide an ablation study comparing the proposed GapONet architecture against a standard
high-capacity MLP that is likewise conditioned on the payload and the simulation context, however,
its architecture differs fundamentally from the MLP baseline used in Section A.8.3. Specifically,
we replace the branch–trunk networks with a single MLP placed after the sensor model, which
we refer to as MLP-Sensor. Since our sensor model contains explicit history information, we
additionally compare against two alternative baselines: (i) an MLP that directly receives the raw
history without any processing (MLP-History), and (ii) a minimal MLP that does not incorporate
any history information (MLP-Pointwise).

To further validate our conclusions, we also construct MLP variants with different param-
eter scales—Small ([256, 128, 128]), Medium ([512, 256, 128]), and Large ([512, 512,
512])—and demonstrate that merely increasing model capacity does not yield improved per-
formance; rather, architectural design is essential. In total, this yields nine additional base-
lines: MLP-Pointwise-Small/Medium/Large, MLP-History-Small/Medium/Large, and MLP-
Sensor-Small/Medium/Large.

As shown in Table 3, by comparing MLP-Sensor-Small/Medium/Large with MLP-History-
Small/Medium/Large, we observe that when both models receive history information, the sen-
sor predictor provides limited benefit for the LGR and IQR metrics, but leads to a substantial im-
provement in the Range metric. However, both variants remain noticeably inferior to GapONet,
indicating that the zero-shot generalization capability primarily arises from the operator-learning
formulation rather than from the residual network structure itself.

By comparing MLP-Pointwise-Small/Medium/Large with GapONet, we find that their zero-shot
performance differs substantially. Although the MLP-Pointwise variants can achieve LGR scores
close to GapONet in the 0kg setting, the gap widens consistently as the payload increases: both

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

the magnitude and frequency of the errors grow significantly. This directly demonstrates that learn-
ing operators of actuator functions is necessary and superior to pointwise mappings, and that the
insufficiency of pointwise modeling fundamentally limits its ability to generalize.

In addition to the zero-shot comparisons above, we observe distinct training behaviors across the
three architectures and model sizes. As shown in Figure 11, under a unified network capacity,
the sensor-based architecture achieves the lowest joint angle error during training, followed by the
pointwise model, while the history-augmented MLP exhibits the highest error. When using the
pointwise method exclusively, training error increases with model size. The result suggests that the
sensor model effectively captures simulator dynamics and facilitates learning. This also confirms
that the poor performance of MLPs is not due to insufficient capacity. Furthermore, even though
the MLP-Sensor achieves training errors nearly as low as GapONet, it still underperforms on the
test set, indicating its limited generalization ability.

Table 3: Ablation study comparing GapONetwith different MLP architectures of matched capacity.

Method
0 kg 1 kg

LGR(%)
(↓)

IQR (↓) Range (↓) LGR(%)
(↓)

IQR (↓) Range (↓)

MLP-Pointwise-Small 0.08±0.04 0.093±0.016 0.646±0.083 0.77±0.80 0.213±0.009 0.670±0.061

MLP-Pointwise-Medium 0.08±0.05 0.095±0.010 0.651±0.087 0.71±0.79 0.214±0.010 0.665±0.06

MLP-Pointwise-Large 0.08±0.05 0.097±0.008 0.653±0.090 0.76±0.88 0.206±0.012 0.665±0.059

MLP-History-Small 0.10±0.06 0.098±0.009 0.662±0.087 1.04±1.10 0.213±0.009 0.679±0.074

MLP-History-Medium 0.09±0.06 0.096±0.009 0.658±0.077 0.98±1.06 0.213±0.008 0.682±0.069

MLP-History-Large 0.11±0.05 0.111±0.007 0.675±0.098 1.17±1.26 0.197±0.010 0.674±0.058

MLP-Sensor-Small 0.10±0.06 0.097±0.010 0.667±0.081 1.05±1.32 0.125±0.009 0.578±0.065

MLP-Sensor-Medium 0.09±0.06 0.094±0.009 0.658±0.081 0.90±1.10 0.123±0.008 0.572±0.063

MLP-Sensor-Large 0.09±0.05 0.093±0.009 0.651±0.076 0.87±1.03 0.128±0.007 0.572±0.066

GapONet (Ours) 0.09±0.03 0.093±0.016 0.449±0.117 0.22±0.11 0.115±0.013 0.537±0.148

Method
2 kg 3 kg

LGR(%)
(↓)

IQR (↓) Range (↓) LGR(%)
(↓)

IQR (↓) Range (↓)

MLP-Pointwise-Small 2.34±1.27 0.204±0.011 0.775±0.069 11.19±1.50 0.354±0.011 0.969±0.093

MLP-Pointwise-Medium 2.26±1.21 0.204±0.009 0.774±0.076 11.06±1.32 0.352±0.011 0.964±0.102

MLP-Pointwise-Large 2.19±1.23 0.200±0.011 0.780±0.075 10.76±1.53 0.355±0.011 0.976±0.096

MLP-History-Small 2.45±1.10 0.204±0.009 0.794±0.066 11.36±1.39 0.356±0.011 1.00±0.118

MLP-History-Medium 2.53±1.10 0.205±0.009 0.799±0.070 11.44±1.42 0.356±0.010 1.00±0.112

MLP-History-Large 2.43±1.16 0.199±0.009 0.792±0.077 10.74±1.57 0.358±0.011 0.999±0.104

MLP-Sensor-Small 2.64±1.32 0.207±0.010 0.618±0.065 11.62±1.40 0.357±0.012 0.991±0.137

MLP-Sensor-Medium 2.59±1.14 0.207±0.009 0.591±0.079 11.79±1.31 0.357±0.010 0.992±0.124

MLP-Sensor-Large 2.66±1.27 0.208±0.009 0.607±0.067 12.05±1.25 0.458±0.010 0.995±0.114

GapONet (Ours) 0.39±0.10 0.161±0.004 0.578±0.112 0.84±0.23 0.317±0.005 0.498±0.157

A.7.4 SUPPLEMENTARY EXPERIMENTS DURING THE REBUTTAL PERIOD

Compare to domain randomization. At present, Domain Randomization (DR) is indeed one of
the most widely used strategies for addressing sim-to-real transfer. However, DR and GapONet
differ in a fundamental way. Our operator learns a structured residual model that captures and
corrects the dynamical discrepancies between simulation and the real world, producing a delta action
that improves the execution of a given command on the physical robot. In contrast, DR expands the
parameter distribution of the simulator during training to improve robustness, and directly outputs
the next action at each timestep. While effective for robustness, DR does not explicitly model nor
correct the structural components of the sim-to-real gap. From a modeling perspective, DR seeks to

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 11: Joint position difference curves during training.

produce a more robust action, whereas GapONet produces a residual term that makes that action
actually work on real hardware.

Building on this distinction, we constructed a more direct and quantitative comparison against a
strong DR baseline for both experiments—Zero-shot Motion Tracking and Locomotion Trajectory
Tracking. For Experiment 1, we trained a whole-body tracker with domain randomization over
payload mass (0,1,2,3kg). The model receives the same inputs as GapONet ((qt, q̇t)) and outputs
the next-step action (at+1). The results have been added to Table 1, along with corresponding
videos in the supplementary material. The results show that DR-only control struggles to reach the
target joint angles for zero-shot motions, and as payload increases, the robot becomes increasingly
unstable. With a 1,2,3 kg payload, the DR policy fails to execute the motion entirely.

For Experiment 2, the lower-body controller provided in the main paper already uses DR to ensure
stable locomotion when the upper body is fixed. In the new ablation, we provide videos of the same
controller without domain randomization (included in the supplementary material). As shown, the
robot exhibits continuous swaying even during standing, and cannot serve as a valid comparison
baseline. Table 4

Compare to nonlinear system identification. As described in Section A.8.3, our nonlinear sys-
tem identification follows standard practice, fitting rigid-body dynamics using both MLP- and SVR-
based estimators. The Zero-shot Motion Tracking results in Table 1 show that all three nonlinear
SysID methods yield similar performance, with the kernel-based estimator achieving slightly lower
Large Gap Ratio and Gap Range. In contrast, the network-based estimator shows weaker zero-shot
generalization, indicating that overfitting to the training dataset cannot compensate for unseen mo-
tions. As for Locomotion Trajectory Tracking Table 2, all three SysID variants perform comparably
across all metrics, suggesting that nonlinear SysID alone neither improves nor degrades locomotion
tracking performance in this setting.

A.7.5 COMPUTATIONAL OVERHEAD

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 4: Sim-to-real gap in locomotion trajectory tracking on an unseen humanoid robot.
Method Trajectory Consistency (↓) Smoothness (↓) Robustness (↓)

PD control 20.33±1.982 53.76±0.257 10.16±0.007

PD control w/o DR - - -
MLP 19.18±0.919 53.48±0.343 10.15±0.027

Transformer 19.13±0.689 53.57±0.290 10.14±0.007

System Identification 19.16±0.489 24.99±0.298 10.14±0.011

Network-based SysID 19.05±0.175 25.47±0.408 10.15±0.157

Kernel-based SysID 19.11±0.465 25.84±0.246 10.17±0.078

GapONet (Ours) 18.78±1.147 53.36±0.486 10.13±0.167

Table 5: Real-time inference cost of each method on real robot
MLP Transformer GapONet

Time(s) 0.0001600 0.0001181 0.0003764

A.7.6 EXPLANATION OF THE TWO EXPERIMENT SETTINGS

This section provides a mathematically coherent justification for the residual-action design used in
both of our experiments. We formalize why the operator output Gθ(ξ, y) is added to the simulator
command during training, but subtracted from the real hardware command during online deploy-
ment. For any query y ∈ A× P , the simulated and real actuation functions yield

U sim
ξ (y) = ∆f sim(sξsim, y), U real

ξ (y) = ∆f real(sξreal, y), (21)

where the ∆f real can be treated as the real robot excuation process. And their discrepancy is

δξ(y) = U real
ξ (y)− U sim

ξ (y). (22)

Residual addition in simulation During training, the operator output Gθ(ξ, yt) produces a cor-
rective delta action added to the simulator command:

G(U sim
ξ)(yt) = ∆f sim

(
sξsim, at +Gθ(ξ, yt)

)
, (23)

where yt = (at, p). Linearizing the simulator dynamics around at gives ∆f sim(sξsim, at + Gθ) ≈
∆f sim(sξsim, at) + J sim

at
Gθ(ξ, yt), where J sim

at
is the simulator’s action ”Jacobian”, defined as

J sim
a =

(
∆si
∆aj

)
ij

, (24)

where ∆si
∆aj

represents the relative difference of desired state to action under ∆t of simulation . To

match the real transition, i.e., ∆f sim(sξsim, at +Gθ) ≈ ∆f real(streal, at). The correction must satisfy

J sim
at

Gθ(ξ, yt) ≈ δξ(yt), (25)
showing that the operator learns the action-space residual necessary to inject missing real-world
dynamics into the simulator.

Residual subtraction in the real world On hardware, the goal is inverted: we seek a cor-
rected real command a′t such that the real dynamics match the simulator’s nominal predic-
tion: ∆f real(sξreal, a

′
t) ≈ ∆f sim(sξsim, a

real
t). Leveraging Equation (23) gives ∆f real(sξreal, a

′
t) ≈

∆f sim(sξsim, a
′
t) + J sim

a′
t
Gθ(ξ, (a

′
t, p)) ≈ ∆f sim(sξsim, a

real
t) . With the approximation of Equation (25)

gives

J sim
a′
t
Gθ(ξ, y

′
t) ≈ ∆f sim(sξsim, a

real
t)−∆f sim(sξsim, a

′
t),

≈ J sim
a′
t
(areal

t − a′t), (26)

yields a′t−areal
t ≈ −Gθ(ξ, y

′
t). The a′t could be efficiently calculated with just a few steps of gradient

descent, that gradients are only required to flow through Trunk Net only, leading to the real-world
correction rule

areal-corr
t = areal

t −Gθ(ξ, y
′
t). (27)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Unified residual-action interpretation Equations equation 23 and equation 27 yield a consistent,
domain-symmetric residual-action formulation:

Simulation: asim-corr
t = at +Gθ(ξ, yt), Real: areal-corr

t = areal
t −Gθ(ξ, y

′
t)

Thus, the opposite signs arise naturally:

• In simulation: we add the residual to emulate missing real-world dynamics.

• In reality: we subtract the same residual to cancel hardware-specific biases and match the
nominal simulator behavior.

A.7.7 ROLE OF THE BRANCH-TRUNK DECOMPOSITION

We analyze how the Branch-Trunk decomposition adapts to different inputs through the following
experimental setup: we randomly sample initial joint positions, velocities, and action sequences,
execute the action sequences, and compare how the outputs of the Branch Net and Trunk Net vary
with payload mass under the same initial state and action sequence. We also record how the Trunk
Net output changes as each action in the sequence is executed under a fixed payload.

As shown in Figure 12, a clear trend emerges: compared to the baseline condition of 0kg payload,
the deviations of both Branch Net and Trunk Net outputs from the baseline increase with payload
mass. When the payload is held constant, the difference in Trunk Net outputs between consecutive
timesteps remains statistically consistent throughout the action sequence. These Branch Net results
demonstrate that our sensor model and Branch Net effectively capture non-linear variations in
system dynamics.

Figure 13 compares the relative influence of payload on the Branch Net versus the Trunk Net. The
results show that under the same change in payload, the deviation of the Branch Net output from
the baseline is significantly larger than that of the Trunk Net—on average, the Branch Net varia-
tion is 7.9 times greater. Moreover, the effect of payload on the Trunk Net itself is relatively small
compared to the effect of actions, accounting for only 20.35 % of the action-induced variation. This
indicates that in GapONet, the Branch Net primarily captures payload-dependent changes in
system dynamics, while the Trunk Net focuses more on encoding action information, and re-
mains payload-insensitive.

Figure 14 illustrates the impact of payload mass on outputs for different joints. It can be observed
that for both Branch Net and Trunk Net, the shoulder joints is most affected by payload, which
aligns with the intuition that payload exerts a greater torque on the shoulder joint. Quantitatively,
the influence of payload on the Trunk Net remains minimal compared to its effect on the Branch
Net.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Payload Mass (kg)

0.0

0.2

0.4

0.6

0.8

L2
 N

or
m

 D
iff

er
en

ce

 Output varies with payload
 Encodes payload-dependent dynamics

Branch Net: Payload-Dependent Dynamics

Branch Output Difference

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Payload Mass (kg)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

L2
 N

or
m

 D
iff

er
en

ce

 Output stable across payloads
 Encodes payload-independent dynamics

Trunk Net: Payload-Independent Dynamics

Trunk Output Difference (Mean)
±1 Std

t1 t2 t2 t3 t3 t4 t4 t5 t5 t6
Consecutive Timestep Pair

0.0

0.1

0.2

0.3

0.4

0.5

L2
 N

or
m

 C
ha

ng
e

 Output changes with actions
 Encodes action-dependent dynamics

Trunk Net: Action-Dependent Dynamics

Trunk Output Change (Mean ± Std)

Neural Network Decomposition Analysis: Branch vs Trunk Networks

Figure 12: Variation of Branch Net and Trunk Net’s values according to payload and action changes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Payload Mass (kg)

0.0

0.2

0.4

0.6

0.8
L2

 N
or

m
 D

iff
er

en
ce

 fr
om

 In
it

ia
l O

ut
pu

t

Comparison: Branch vs Trunk Response to Payload Changes
Branch Net (Payload-Dependent)
Trunk Net (Payload-Independent)

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Payload Mass (kg) 0
1

2
3

4
5

6
7

8
9

Joi
nt

 In
de

x

0.00

0.05

0.10

0.15

0.20

0.25

D
iff

er
en

ce

Payload × Joint: Branch (Red) vs Trunk (Blue)
(Averaged over Dimensions)

Branch
Trunk

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Payload Mass (kg) 0

2

4
6

8
10

12
14

Dim
en

sio
n I

nd
ex

0.00

0.05

0.10

0.15

0.20

D
iff

er
en

ce

Payload × Dimension: Branch (Red) vs Trunk (Blue)
(Averaged over Joints)

Branch
Trunk

3D Comparison: Branch vs Trunk Networks

Branch Net
(Payload Impact)

Trunk Net
(Payload Impact)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L2
 N

or
m

 D
iff

er
en

ce
 (

M
ax

)

0.8186

0.1031

Branch is 7.9x
more sensitive

Branch vs Trunk: Response to Payload Changes
(Branch has Large Impact Compared to Trunk)

Payload Impact
(on Trunk)

Action Impact
(on Trunk)

0.0

0.1

0.2

0.3

0.4

0.5

L2
 N

or
m

 C
ha

ng
e

0.1031
(20.3% of action impact)

0.5068
Payload impact is 20.35% of action impact

Trunk Net: Payload Impact vs Action Impact
(Payload has Small Impact Compared to Actions)

Figure 13: Comparison of payload and action’s impact on Branch Net and Trunk Net.

0.5 1.0 1.5 2.0 2.5 3.0
Payload Mass (kg)

left_shoulder_pitch_joint

left_shoulder_yaw_joint

left_shoulder_roll_joint

left_elbow_joint

right_shoulder_pitch_joint

right_shoulder_yaw_joint

right_shoulder_roll_joint

right_elbow_joint

left_wrist_roll_joint

right_wrist_roll_joint

Jo
in

t

Branch Net: Per-Joint Differences vs Payload

0.5 1.0 1.5 2.0 2.5 3.0
Payload Mass (kg)

left_shoulder_pitch_joint

left_shoulder_yaw_joint

left_shoulder_roll_joint

left_elbow_joint

right_shoulder_pitch_joint

right_shoulder_yaw_joint

right_shoulder_roll_joint

right_elbow_joint

left_wrist_roll_joint

right_wrist_roll_joint

Jo
in

t

Trunk Net: Per-Joint Differences vs Payload

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Sensitivity (Mean ± Std)

left_shoulder_pitch_joint

left_shoulder_yaw_joint

left_shoulder_roll_joint

left_elbow_joint

right_shoulder_pitch_joint

right_shoulder_yaw_joint

right_shoulder_roll_joint

right_elbow_joint

left_wrist_roll_joint

right_wrist_roll_joint

Jo
in

t

Branch Net: Per-Joint Sensitivity to Payload

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
Sensitivity (Mean ± Std)

left_shoulder_pitch_joint

left_shoulder_yaw_joint

left_shoulder_roll_joint

left_elbow_joint

right_shoulder_pitch_joint

right_shoulder_yaw_joint

right_shoulder_roll_joint

right_elbow_joint

left_wrist_roll_joint

right_wrist_roll_joint

Jo
in

t

Trunk Net: Per-Joint Sensitivity to Payload

0.00

0.05

0.10

0.15

0.20

Di
ffe

re
nc

e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Di
ffe

re
nc

e

Per-Joint Decomposition Analysis

Figure 14: Impact of payload on Branch Net and Trunk Net’s outputs on different joints.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

A.8 IMPLEMENTATION DETAILS

A.8.1 NETWORK STRUCTURE

Overview. The training pipeline with GapONet consists of three components: a Sensor Predictor
to predict the sensor input of Branch Network, a Branch Network B(Uq(x)) that encodes sensor-
driven actuation functions and a Trunk Network T (y) that processes action queries. Both are im-
plemented as multi-layer perceptrons (MLPs), fused via dot product to yield the operator output
G(Uq(x))(y). These networks are trained end-to-end with Proximal Policy Optimization (PPO),
and optimized using Adam.

Sensor Predictor

• Input: For each time j at time step t, the Sensor Predictor receives a sequence of sensor
states over a h-step history window:

{qt−n
j , q̇t−n

j , qt−n
j,d }hn=0,

where qj , q̇j denote joint position and velocity, qj,d is the target position.

• History Length: h = 4

• Input Dimension: 10 joint num × (3 × history length + 1 current position) = 130-dim
vector

• Output: ∆q&∆q̇ × 10 joint = 20-dim vector

• Sensor Number: 20

• Learning Rate: 1× 10−4

Branch Net.

• Input: 20-dim vector of sensor predictor output × 20 sensor num = 400-dim vector

• Delta Action Duration: 1 step

• Architecture: 3-layer MLP with hidden sizes [256, 256, 256], each followed by ELU acti-
vation.

• Output: p-dimensional latent representation (p = 160, i.e. 16 × 10 = num basis ×
num actions by default)

• Learning Rate: 1× 10−4

Trunk Net.

• Input: The Trunk Net receives the target query y = qt+1
j,d desired joint position + payload

• Input Dimension: 11

• Architecture: 3-layer MLP with hidden sizes [128, 128, 128], ELU activations

• Output: p-dimensional vector, same dimension as Branch output

• Learning Rate: 1× 10−4

Fusion. The operator output is computed as the dot product:

G(Uq(x))(y) =

J∑
i=1

Bi(x) · Ti(y),

where J is the number of actuated joints. Specifically, we reshape both output of Branch Net and
Trunk Net to 16× 10, perform Hadamard product and then sum over the first dimension.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Training Details.

• PPO update with clipping ratio ϵ = 0.2, batch size = 4096.

• Reward defined as rt = −∥qt+1 − qt+1
real ∥2.

• Temporal smoothness penalty Lgap with λ = 0.01.

• Training duration: 1 hour on 1 RTX 3090Ti GPU.

Table 6: Hyperparameters for Branch Net.
Hyper-Parameters Values
History Length 4
Delta Action Duration 1
Sensor Number 20
Uq Input A, V, P, J

Uq Output ∆S

Layer Structure [256, 256, 128]

Output Number 10
Dropout 0.1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size 4096
γ Discount 0.99
Learning Rate 2× 10−5

GAE(λ) 0.95
TD(λ) 0.95
PPO Clip Threshold 0.2
T Episode Length 300

A.8.2 SIMULATIONS

We evaluate on MuJoCo 3.2.3, Isaac Gym 1.0rc4, and Isaac Sim 4.5.0. To enhance reproducibility,
each setting uses the simulator’s official default parameters. The software environments are:

• MuJoCo / Isaac Gym: Python 3.8.13, legged gym 1.0.0, PyTorch 2.4.1, torchvision 0.19.1.

• Isaac Sim: Python 3.10.4, isaaclab 0.40.21, PyTorch 2.5.1, torchvision 0.20.1.

A.8.3 BASELINES

PD control As shown in Section A.4.1, we employ PD control to drive the humanoid robot in both
simulation and the real world. In the simulator, we use the ImplicitActuator API in IsaacLab
to compute the applied torque from the input action. For real hardware, we rely on the official APIs
provided by the Unitree and RealMan humanoid platforms to obtain the torque computed by their
onboard PD controllers. The corresponding implementation details and code real robot deploy.py
are included in the supplementary materials for reference.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters for Trunk Net.
Hyper-Parameters Values
History Length 4
Delta Action Duration 1
Sensor Number 20
y Input ad

Layer Structure [128, 128]

Output Number 10
Dropout 0.1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size 4096
γ Discount 0.99
Learning Rate 2× 10−5

GAE(λ) 0.95
TD(λ) 0.95
PPO Clip Threshold 0.2
T Episode Length 300

MLP For the MLP baseline, we follow the approach used in He et al. (2025). Specifically, the
collected sim–real paired data are fitted with an MLP to learn a mapping from the simulated action
to the real-world delta action. The model adopts a standard Actor–Critic architecture, where both
the actor and critic networks use a [1000,200] MLP with ELU activations. Training is conducted
using PPO Schulman et al. (2017), and the hyperparameters are summarized in Section A.8.3.

Table 8: Hyperparameters for PPO training in MLP baseline.
Hyper-Parameters Values
Value loss coef 1.0
Clip parameter 0.2
Entropy coef 0.0
Learning epochs 5
Mini batches 4
Learning rate 1× 10−4

Schedule adaptive
γ Discount 0.99
Desired KL 0.008
Environments 4096
Number of steps in each env 32

Transformer The Transformer baseline follows the same PPO training setup as the MLP base-
line He et al. (2025), with the only difference being the replacement of the actor–critic MLP with
a Transformer-based architecture. The hyperparameters used for training are identical to those of
the MLP baseline, as shown in Section A.8.3. We also implement a Transformer-based baseline
using an Actor–Critic architecture. The observation (250-dimensional) is first projected to a 128-

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

dimensional embedding, followed by a two-layer Transformer encoder with dmodel = 128, four
attention heads, feedforward dimension 512, and GELU activation. The actor maps the encoded
feature to a 10-dimensional Gaussian action distribution (with a learnable scalar log-std), while the
critic shares the same encoder and outputs a scalar value.

Domain Randomization We adopt the motion-tracking policy widely used in industry Liao et al.
(2025). Since the original policy was trained on the Unitree G1 robot, we replace the URDF and
related configuration files with those of the H1-2 platform and retrain the motion tracker using im-
itation learning. The hyper-parameter of humanoid body is calculated by System Identification in
the next prargraph. To better align with our paper’s setting involving varying payloads, we addi-
tionally apply domain randomization on the payload: during imitation learning, the payload mass is
randomized by sampling from 0, 1, 2, 3. This improves the robustness and stability of the tracker
under different payload conditions. The reward terms used for training our tracker are listed in
Section A.8.3:

Table 9: Reward formulation for training tracker with domain randomization.
Reward Terms Equation Weights
Body Position exp

(
−
(

1
|Btarget|

∑
b∈Btarget

∥pdes
b −pb∥2

0.32

))
1.0

Body Orientation exp
(
−
(

1
|Btarget|

∑
b∈Btarget

∥ log(Rdes
b R⊤

b)∥2

0.42

))
1.0

Body Linear velocity exp
(
−
(

1
|Btarget|

∑
b∈Btarget

∥vdes
b −vb∥2

1.02

))
1.0

Body Angular velocity exp
(
−
(

1
|Btarget|

∑
b∈Btarget

∥ωdes
b −ωb∥2

3.142

))
1.0

Anchor Position (Optional) exp
(
−∥pdes

anchor−panchor∥2

0.32

)
0.5

Anchor Orientation (Optional) exp
(
−∥ log(Rdes

anchorR
⊤
anchor)∥

2

0.42

)
0.5

System Identification We follow the standard practice of locally linearizing the joint-space dy-
namics around collected motion trajectories. Under the manipulator equation Ortega et al. (1998):
Ortega et al. (1998):

τ = M(q)q̈ + C(q, q̇)q̇ + g(q). (28)

Given the position error epos = qcmd − q and velocity error evel = q̇, we fit an affine model τ ≈
kpepos + kdevel + b, using ordinary least squares (scikit-learn LinearRegression). The input
feature matrix is X = [epos, evel] ∈ RN×2 and the target is the measured joint torque Y ∈ RN . We
estimate (kp, kd, b) using ordinary least squares. This yields a classical linear system-identification
baseline that captures the best local linear approximation to the underlying dynamics. Training is
instantaneous, as the solution is obtained via analytical least-squares minimization.

Network-based System Identification We further approximate the joint dynamics using a multi-
layer perceptron (MLP) Hwangbo et al. (2019), which learns a flexible nonlinear function

τ = fMLP(epos, evel). (29)

The MLP consists of two hidden layers of sizes (100, 50) with ReLU activations and is trained
using the Adam optimizer for up to 1000 iterations (MLPRegressor, max iter=1000,
activation=relu, solver=adam, random state=42). The trained model captures fric-
tional, configuration-dependent, and actuator nonlinearities. For interpretability and fair com-
parison to linear baselines, we optionally project the MLP predictions onto a PD-like form via:
fMLP(epos, evel) ≈ kpepos + kdevel + b. We additionally monitor the optimization status (final loss
value and number of iterations used) to ensure convergence and report the resulting R2 score on the
training dataset.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Kernel-based System Identification To capture nonlinear components of the joint dynam-
ics—such as friction, motor response nonlinearities, and configuration-dependent coupling—we
employ Support Vector Regression (SVR) with an RBF kernel Deisenroth et al. (2013) to model
the mapping

τ = fSVR(epos, evel). (30)
We train the regressor using scikit-learn’s SVR implementation with default hyperparameters
(kernel=rbf, C=1.0, ϵ=0.1, γ=scale). As with the MLP baseline, we optionally obtain PD-
like gains via linear projection of the predicted torques: fSVR(epos, evel) ≈ kpepos + kdevel + b.
Kernel methods provide strong nonlinear regression behavior while maintaining good sample effi-
ciency. This two-stage process yields interpretable rigid-body parameters (kp, kd, b) while allowing
the SVR to model nonlinear torque dependencies. All training uses the same feature matrix X and
target vector Y as in the linear baseline. The coefficient of determination R2 is computed to quantify
the quality of the nonlinear fit prior to linear projection.

Lower-body Locomotion Policy. To conduct the Locomotion Trajectory Tracking experiment,
we trained a lower-body locomotion policy capable of stable walking. The policy is adapted from
HOMIE Ben et al. (2025) with modifications for the H1-2 platform, including updates to the URDF
and the reward design. The full reward formulation and corresponding weights are listed in Sec-
tion A.8.3:

Table 10: Reward formulation for lower-body locomotion policy.
Reward Terms Equation Weights
x Vel. tracking exp

{
−4 ∥vx − vr,x∥22

}
1.5

y Vel. tracking exp
{
−4 ∥vy − vr,y∥22

}
1.0

Ang. Vel. tracking exp
{
−4 ∥ωyaw − ωr,yaw∥22

}
1.0

Base height tracking exp
{
−4 ∥ht − hr,t∥22

}
2.0

Lin. Vel. z v2r,z -0.5
Ang. Vel. xy ∥ωr,xy∥22 -0.025
Orientation ∥gx∥22 + ∥gy∥22 -1.5
Action rate ∥at − at−1∥22 -0.01

Hip joint deviation
∑

hip joints

∣∣θi − θdefault
i

∣∣2 -0.5

Ankle joint deviation
∑

ankle joints

∣∣θi − θdefault
i

∣∣2 -0.75

Squat knee −
∥∥∥(hr,t − ht)

(
qknee,t−qknee,min

qknee,max−qknee,min
− 1

2

)∥∥∥ -0.75

DoF Acc.
∑

all joints

∥∥∥ q̇t,i−q̇t−1,i

dt

∥∥∥2
2

−2.5× 10−7

DoF pos limits
∑

all joints outi -2.0
Feet air time ⊮{first contact}(Tair − 0.5) 0.05

Feet clearance
∑(

ptarget
z − piz

)2 · vixy -0.25

A.9 LIMITATION AND FUTURE WORK

Our dataset and analysis primarily target the upper body, and although we include tests on locomo-
tion trajectory tracking, the present system does not yet enable highly dynamic sim–real transfer for
full humanoids. Going forward, we will (i) extend the current pipeline to high-dynamics, whole-
body loco-manipulation and to additional robot platforms, and (ii) address the strong dependence
on a stable locomotion policy—even with relative metrics, unreliable gaits can cause catastrophic
failures (cf. ‘videos/failure.mp4‘) that preclude testing. A second focus is to train a robust full-body
tracker for large-mass humanoids (e.g., H1-2), providing a stronger substrate for our operator-based
sim–real mapping.

36

	Introduction
	Related Work
	Data Collection and Gap Analysis
	Payload-aware System Identification
	TWINS Collection
	Sim-to-real Gap Analysis

	Method
	Problem Formulation
	Network Structure
	GPU-Parallel Operator Learning

	Experiment
	Zero-shot Motion Tracking
	Locomotion Trajectory Tracking

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Open-Source Release
	Data Collection
	Legged humanoid robot
	Wheeled humanoid robot
	Data Selection

	Gap Analysis
	PD control
	More analysis results

	Nonlinear Operator
	Methods
	Why do we choose DeepONet?
	The definitions of symbols
	Why do we choose Reinforcement Learning

	Experiment
	Metrics
	Locomotion trajectory tracking
	Ablation on Operator vs. MLP
	Supplementary experiments during the Rebuttal period
	Computational Overhead
	Explanation of the two experiment settings
	Role of the Branch-Trunk Decomposition

	Implementation Details
	Network Structure
	Simulations
	Baselines

	Limitation and Future Work

