Under review as a conference paper at ICLR 2026

GAPONET: NONLINEAR OPERATOR LEARNING
FOR BRIDGING THE HUMANOID SIM-TO-REAL GAP

Anonymous authors
Paper under double-blind review

ABSTRACT

The sim-to-real gap, arising from imperfect actuator modeling, contact dynam-
ics, and environmental uncertainty, poses fundamental challenges for deploying
simulated policies on physical robots. In humanoids, object manipulation further
amplifies this gap: end-effector payloads alter joint inertia, gravity torques, and
transmission efficiency, introducing state- and payload-dependent nonlinearities.
Yet existing approaches lack both systematic analysis and a generalizable repre-
sentation of this payload-induced degradation. To address this limitation, we pro-
pose GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware. We then introduce a payload-
aware (collect-analyze—solve) framework to learn this operator GapONet. First,
we curate a sim-real paired dataset TWINS spanning multiple payloads, robots,
motions, actuation rates, and simulators, comprising more than 11,298 motion
sequences. Second, we perform payload-aware system identification to isolate
payload-related effects and quantify their contributions, and analyze sim-to-real
gaps across different simulators. Third, we train the operator GapONet to predict
delta action for real-time, generalized, payload-conditioned compensation. We
further introduce actuation functions and sensor predictors, which enable parallel
RL training of GapONet with substantially reduced energy consumption. While
tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps
below 0.09%, whereas competing methods remain near 10%. By correcting upper-
body gaps, GapONet also stabilizes lower-body locomotion tracking, laying the
foundation for improved performance in humanoid loco-manipulation tasks.

1 INTRODUCTION

Policies trained in simulation benefit from GPU acceleration and massively parallel sampling, en-
abling fast and scalable optimization under approximate physics such as mass, friction, and damp-
ing (Makoviychuk et al.,|2021} Tan et al.,|2018)). However, object interactions in the real world often
diverge from these idealizations due to unmodeled or state-dependent effects, most notably in fric-
tion, inertia, and contact—leading to a persistent model—plant mismatch (Tobin et al.l [2017; [Zhao
et al., |2020). This sim-to-real gap is further exacerbated in humanoids that manipulate objects of
different masses. Variations in end-effector payload induce coupled drifts in equivalent joint inertia,
gravity—torque amplitudes via center-of-mass and lever-arm shifts, transmission friction and effi-
ciency, thereby altering closed-loop dynamics (Spong et al.,|2006). Yet during policy training, these
payload-dependent adjustments are typically simplified or held fixed, which leaves the gap largely
unaddressed. The sim-to-real gap can grow in complex, nonpredictive ways, posing a substantial
obstacle to robust policy transfer and reliable real-world deployment (Zhang et al., 2023)).

Prevailing approaches either calibrate simulators via system identification to tune masses, frictions,
and damping (Ljung, |1998; Astrom & Eykhoff] [1971}; Nelles} |2002); broaden training distributions
through domain randomization and observation noise to reduce overfitting (Mehta et al.| [2020; Tobin
et al., 2017; (Chen et al.| 2021} |Laskey et al., [2017}; |Zhang et al., [2020; Matas et al., |2018)); or stage
learning with curricula or progressively harder terrains to harden policies over time (Luo et al.,2020;
Wang et al., 2021} Peng et al., [2020; Heess et al.,[2017)) to bridge the sim-to-real gap. However, the
interacted object (payload) is a structured operating condition, not mere noise (Slotine & Lil [1987):
it deterministically alters gravity loading, effective inertia, dissipation, and hence the closed-loop
gain/phase under PD control. Single-point identification cannot capture behavior across payloads,



Under review as a conference paper at ICLR 2026

and domain randomization or curricula largely treat the payload as unstructured uncertainty. Thus,
while these strategies can improve robustness, they hinge on manual design (randomization ranges,
noise schedules, curriculum pacing) and provide limited diagnostic attribution. Critically, they do
not yield a generalizable representation of the sim-to-real gap for humanoid interaction.
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Figure 1: The overall architecture of both data collection and GapONet training. (a) TWINS, a
paired sim-real dataset via motion retargeting and real-time teleoperation across diverse payloads,
robots, and simulators. (b) The sim-real gap is formulated as a discrepancy between actuation func-
tion spaces, providing functional coordinates. (c) GapONet learns a payload-conditioned nonlinear
operator that maps simulation context to residual actions, and training uses parallel RL. (d) Online
evaluation on unseen hardware with PD control and sensor modeling to quantify sim-real alignment.

A complementary line of work learns dynamics directly from real data, either as state-transition
models or action-to-effect maps (Shi et al.| 2019} [Xiao et al, 2024; [He et al [2025). From a con-
trol standpoint, however, identifying payload-dependent dynamics from passive logs requires per-
sistence of excitation and explicit treatment of operating conditions. In practice, motion patterns,
contact regimes, and payload values co-vary, so a single black-box model fit to mixed data tends to
entangle payload effects with task-specific artifacts, yielding spurious correlations. As a result, such
models often need large volumes of paired sim-real trajectories to cover the space and still exhibit
poor cross-payload and unseen-motion generalization. The missing ingredient is a representation
that disentangles exogenous operating parameters from state evolution, rather than collapsing them
into a single dynamics model. Such a formulation enables a more faithful mapping between the
simulator and real-world domains.

We present a (collect—analyze—solve) framework to learn this representation for bridging the sim-
to-real gap in humanoids. We first curate TWINS, a time-synchronized sim-real corpus with a
structured factorial design. Unlike prior collections (Wu et al.| [2024; [Mao et all, 2024} [AgiBot|
[World-Contributors et all, 2025)), our dataset design over diverse payload levels, humanoid plat-
forms, actuation rates, simulations, and motion families, enabling further controlled analyses. To
clarify the GapONet ’s learning target, we first perform gray-box, block-wise system identification
atop a PD control model, attributing error reductions to specific payload-related terms and quantify-
ing their contributions. We then analyze identical motions across payloads and simulators, showing
structured residuals dominated by actuator nonlinearities, which motivates a more generalizable
nonlinear operator rather than a pointwise approximation function.

We then propose GapONet, a payload-conditioned nonlinear operator that maps simulation context
functions to a residual actions for hardware. Our operator is parameterized with a branch—trunk
decomposition 2019): The branch net encodes the local dynamics of the physical world in
which our robot resides as a function, and the trunk network encodes the input variables to that func-
tion, including payload weight and target pose. This separation provides a strong structural inductive
bias, disentangling the conditioning context from the queried response, thereby enhancing the oper-
ator’s generalization capacity. We also propose the sensor predictor, enabling parallel RL training
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of GapONet with lower energy cost while preserving generalization beyond pointwise regression.
While tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps below
0.09%, whereas competing methods remain near 10%. By correcting upper-body gaps, GapONet
also stabilizes lower-body locomotion tracking, laying the foundation for improved performance in
humanoid loco-manipulation tasks.

This paper makes three primary contributions:

* We develop a sim-real data collection pipeline and we curate the first dataset TWINS fo-
cusing on payload-induced sim-real gap across multiple payloads, robots, motions, and
simulators.

* We reproduced over 30 hours of real data across four simulators and conducted controlled,
ceteris paribus comparisons, yielding quantitative evidence that sim-to-sim evaluation im-
proves the deployability of humanoid controllers.

* We introduce GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware, and demonstrate its training via RL.

2 RELATED WORK

Sim-to-Real Gap Sim-to-real research has largely moved from system identification—calibrating
masses, frictions, and control gains to align simulation with measurements (Sobanbabu et al., 2025}
Gu et al., [2024;|[Zhang et al., 2024)—to domain randomization, which perturbs dynamics and obser-
vations to harden policies (Peng et al., 2018} | Xie et al., 2021; Mehta et al., 2020; |Chen et al., [2021])).
The former can deliver high fidelity but typically demands accurate structural assumptions and ex-
tensive hardware time (Ljung, |1998} Miller et al.l |2025); the latter proved influential for legged
and humanoid control (Xie et al., 2020; Margolis et al., 2024; [L1 et al.| [2023)) yet can bias policies
toward conservatism (He et al.| [2024). In practice, both families often require substantial manual
retuning across agents, tasks, and operating regimes, motivating data-driven directions that learn
from collected data. One line models actuator nonlinearities with fine granularity to capture motor-
level effects (Hwangbo et al.| 2019); another emphasizes residual correction, learning delta actions
for online compensation with lighter overhead (He et al., |2025). In parallel, simulation—real fusion
seeks coverage and speed from simulators while retaining real-world grounding (Fey et al., 2025;
Zhang et al.| 2023} [Bjelonic et al.l[2025; Xu et al.| [2025; |Ouyang & Cuil), and new benchmarks stan-
dardize evaluation (Bjelonic & Hutter, 2025). Despite these advances, both simulator-centric and
data-centric pipelines still struggle with broad generalization under real-world variability (Muratore
et al.| 2022)), which limits general gap-bridging in complex systems, such as humanoids.

Nonlinear Operator Nonlinear operator learning. Rather than learning pointwise mappings, oper-
ator learning targets mappings between function spaces, where both inputs and outputs are functions
(Kovachki et al.| [2023). Within this paradigm, Unstacked Deep Operator Network (DeepONet) of-
fers a principled route to learn nonlinear operators via an operator-level universal approximation
result (Lu et al.l [2019). Its branch—trunk decomposition encodes input functions in the branch
network and query locations in the trunk, combining them (e.g., via inner products) to produce
function values; the construction connects to low-rank approximations and RKHS viewpoints, lend-
ing theoretical footing to the architecture (Hornik et al.l |{1989; Lu et al., 2021). Building on these
foundations, recent studies have pushed operator learning toward control and engineering settings:
formulations grounded in Hamilton—Jacobi policy iteration suggest a pathway to control-theoretic
operators (Lee & Kim, 2025); physics-informed treatments extend the approach to optimal control
(Na & Lee} [2024); and model-predictive control has been instantiated with deep operator networks
to handle online decision-making under dynamical constraints (de Jong et al., [2025). Beyond con-
trol, multiphysics applications demonstrate operator surrogates for solution fields in materials pro-
cessing and additive manufacturing, highlighting scalability to complex PDE-governed phenomena
(Kushwaha et al.| [2024). Despite this progress, most deployments remain either theory-centric or
domain-specific, with limited attention to robotics sim-to-real—in particular, to humanoid systems
subject to shifting operating conditions such as payload changes. This gap motivates operator-based
formulations that explicitly encode conditioning on task and environment variations while preserv-
ing sample efficiency and real-time viability.



Under review as a conference paper at ICLR 2026

3 DATA COLLECTION AND GAP ANALYSIS

End-effector payloads reshape joint dynamics and closed-loop behavior—raising reflected inertia,
shifting gravity torques, and coupling with actuator and contact nonlinearities. Divergent simulator
treatments of these effects produce a persistent, multi-factor sim-to-real gap. This section provides
a structured diagnosis: [Section 3.1] isolates payload-induced terms via gray-box system identi-

fication; [Section 3.3| compares simulators on identical payload-bearing motions under matched
controllers; details TWINS and its collection pipeline.
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Figure 2: System identification and data distribution (a) Prediction residuals after adding
payload-related parameters; notably, adding gravity compensation yields a clear improvement. (b)
The vertical axis shows the change in the joint-wise gap as the payload increases. (c) Data distribu-
tion of TWINS; the z-axis indicates the probability density of each joint action.

3.1 PAYLOAD-AWARE SYSTEM IDENTIFICATION

Using bipedal humanoids that demand precise control as exemplars (Unitree H1-2 and G1), both
operate under joint-space PD control tailored to locomotion (details in [Section A.3.1). With added
end-effector payloads P, we adopt a gray-box identification scheme: start from a rigid PD baseline
and progressively augment the torque model with physically grounded terms salient in manipulation.
For each joint, we fit a linear in parameters regression that attributes the sim-to-real discrepancy to
gravity scaling, reflected inertia, actuator and transmission nonlinearities, and contact compliance,
and we quantify their marginal contributions:

T = Kp (QCmd - Q) + Ky (q'cmd - Q) + K,q¢ + K. tanh(g)
+ Kpayload P
+ KPsinPSinq + KPCOSPCOSq (1)
+ KpePq + Kpi P
+ 7o.
Here, K, and K, are proportional and derivative gains; K, and K. model viscous and Coulomb
friction with € smoothing the latter; Kpay10aa scales the main payload P; Kp gy, and K p .5 capture

gravity and posture coupling under payload; K p; and K p; model interactions between payload and
joint velocity or acceleration; 7y is a constant bias. The remaining symbols are 7 for joint torque;
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q, q, ¢ for joint position, velocity, and acceleration; ¢emd, ¢emd for commanded references; and P for
payload magnitude interpreted as mass or equivalent inertia at the end effector. All K coefficients
are identified per joint. This compact form separates baseline PD, friction, and payload dependent
effects and enables clear attribution of simulation to real error.

Using over 2,000 data collected from real robots, we fit by minimizing RM SE be-
tween its torque and measurements. Adding payload-dependent terms reduces error [Figure 2a),
with gravity compensation giving an early gain, but at higher payloads [Equation (1)|no longer cap-
tures the closed loop response [Figure 2fb). The equation is not a replica of the simulator; it is a
control equivalent surrogate that covers dominant channels under matched controllers. Identifica-
tion on synchronized inputs with persistently exciting motions enables term level attribution, and
the residual exposes nonlinear dynamics not captured by compact models. Learning a nonlinear op-
erator, rather than a pointwise nonlinear function, better supports generalization across trajectories,
payload schedules, actuation rates, and robots by mapping context functions to control signals.

3.2 TWINS COLLECTION

shows with block-wise identification that the prediction to measurement gap is nonlin-
ear and uncertain. Given the lack of suitable data, to validate this conclusion on genuine sim to
real pairs, we present TWINS, the first dataset focused on payload induced sim to real gaps across
multiple robots, standardized payload levels, and motion classes. TWINS records humanoid dy-
namics hierarchically, from single joints to full upper body motions with 3 different low-body gaits,
using four Unitree H1-2 units with end effector masses from O to 3 kg (standard calibration weights)
and actuation rates of 50 Hz and 100 Hz. The real data totals 30.17 hours, 11,298 sequences, and
307,273 synchronized frames. The distribution appears in [Figure 2{c).

Each sequence is time synchronized with a matched high fidelity simulation replica in three widely
used humanoid training simulators (MuJoCo, Isaac Gym, Isaac Sim), enabling comparison of real
and simulated executions at the frame level and yielding a fourfold paired corpus of 120.68 (one real
trace plus three simulated replicas). For every frame we record joint positions ¢sim, qreal, Velocities
Gsim, Greal, accelerations Gsim, Greal, tOTQUES Tgim, Treal, Payload P, and motor temperature Tie,).
Further details of our collection pipeline and dataset on different robots are in

3.3 SIM-TO-REAL GAP ANALYSIS

After post-processing the paired data TWINS, we conduct a targeted analysis of the sim-to-real gap
to guide operator design for payload-induced nonlinearities. The analysis tests concordance with the
block wise identification in [Section 3.1] determines whether the effect is concentrated in the upper
body or extends to the whole body, and quantifies differences across simulators when reproducing
the same motion under matched control.
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Figure 3: Gap Analysis. (a) The outer ellipse marks a shared kinematic envelope across gaits, while
the central PCA trajectory of a single motion shows only minor variations with overall consistency.
(b) Heavier payloads yield larger state gaps and longer delays. (c) Simulator comparison: Isaac
Gym oscillates more, while MuJoCo and Isaac Sim track more stably.
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Same motion with different lower-body gaits We execute 17 upper-body motion sequences un-
der three lower-body conditions: bipedal locomotion, static squat, and stance support only. As
shown in|Figure 3|a), the outer ellipse marks the shared kinematic envelope, while the center trajec-
tory is the PCA trace of a single motion; across gaits, this trace is nearly retraced with only small
phase/offset shifts. With envelopes matched, the upper-body sim-to-real gap is therefore largely in-
sensitive to the lower-body condition, and residual differences are dominated by payload-amplified
channels. We quantify this via joint-wise normalized RM SE, commanded—measured phase lag,
and torque-saturation incidence. Note that, unlike fixed-base dual-arm platforms, upper-body ac-
tions in humanoids couple back to locomotion and can stress the gait controller; full experiments

and analysis are in[Section 3.

Same motion with different payloads As shown in [Figure 3(b), each colored trajectory plots
the joint-wise sim-real residual over time. Increasing payload amplifies both residual magnitude
and phase lag, yielding larger state gaps and longer delays. Across TWINS, payload consistently
widens the gap, and the residual grows nonlinearly with payload mass, in line with the block-wise

identification trends reported in

Same motion across different simulators Current methods always apply sim-to-sim evaluation
as the cross-validation before hardware deployment (He et al., 2025} [Liu et al., 2024)). To charac-
terize simulator-specific differences and their dependence on payload, we compare identical mo-
tions across MuJoCo, Isaac Gym, and Isaac Sim under matched controllers and simulator-adapted
generic parameters over a standardized payload grid. Experiments [Figure 3|c) show that MuJoCo
yields smoother trajectories but larger peaks in high-acceleration segments; Isaac Gym exhibits oc-
casional joint-level jitter; Isaac Sim achieves the most stable alignment in our evaluations, but still
leaves a nonlinear gap during interaction. To stay aligned with prevailing practice and minimize
simulator-induced confounds, we adopt Isaac Sim for subsequent experiments, as it exhibits the
smallest sim-to-real gap in our analysis. We also release paired data for MuJoCo and Isaac Gym to
enable cross-simulator comparisons and support future research. More results in

In summary, across payload levels, all simulators show a nonlinear increase in error relative to real
hardware, with simulator-specific modes. This pattern persists across lower-body gaits: when kine-
matic envelopes are matched, the distributions of upper-body error and phase metrics remain closely
aligned. The discrepancy arises from coupled channels—gravity, friction, Coriolis and inertial cou-
pling, actuator limits and efficiency drift, sensing noise, and delays—that a pointwise function map-
ping cannot capture or generalize. A nonlinear operator is better suited: GapONet provides a com-
pact, transferable representation by mapping context functions to corrective control signals across
trajectories, payload schedules, actuation rates, and robot morphologies.

4 METHOD

We propose GapONet, a payload-conditioned nonlinear operator that maps simulation context func-
tions to a residual actions for hardware. GapONet learns a functional correspondence from simula-
tor space to real dynamics and introduces actuation functions that encode command and feedback
histories. We then propose the sensor predictor, which enables parallel RL training of GapONet,
overcoming the high energy consumption of the original approach while maintaining generalization
beyond pointwise regression.

4.1 PROBLEM FORMULATION

Previous methods lack an explicit model of both the simulator and the real world (Mehta et al.,
2020; (Tobin et al., 2017; Matas et al.l [2018; |[Sh1 et al., 2019; Xiao et al., 2024; He et al.| [2025)),
which reduces distributional diversity and constrains generalization. We therefore propose actua-
tion functions, which bridge the gap between the simulator and the real world by learning a surro-
gate mapping in the function space. These functions characterize the mapping from actions (together
with task-specific parameters) to state transitions, under different joint configurations and dynamics,
both in simulation and on the real robot.

Formally, bridging the sim-to-real gap can be posed as learning an operator that maps 2/*™ to /™
rather than approximating multiple collected dynamics, where I/ denotes the underlying function
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space. Each element of U, i.e., an actuation function U, is associated with a natural coordinate
representation ¢ £ (g, ), corresponding to joint positions and velocities. With this, an actuation
function is written as Ug : A — () x V. The goal of GapONet is to learn an operator G such that
g(U21m> ~ Ugeal'

4.2 NETWORK STRUCTURE

To learn the operator effectively, we adopt a DeepONet (Lu et al.,[2019)-style architecture in which
a branch network encodes the output of actuation functions as the conditioning function and a trunk
network encodes the variables over which generalization is supposed to occur as queries. Our ratio-

nale for selecting DeepONet is detailed in

Inspired by dynamic modeling (He et al., 2025)), our model (GapONet) predicts delta actions for
each joint, compensating for discrepancies between simulated and real-world dynamics (Craig,
2009). Here, we define the input of actuation functions as the sensor x; = {(¢:,q¢)}. Specifically,

given k fixed sensor locations 1, . . ., xx, we first query the simulated actuation function:
Si(UE™) = Af™(s5, 1) = Us™(@), i=1,...,k. )
These outputs are then embedded into a latent representation via the Branch Net:
B(UE™) = [By(Ug™ (1)), ..., Be (U™ (zx))], 3)

where each component 53; captures a distinct feature of the actuation state, allowing the network to
decompose complex dynamics into interpretable subcomponents.

The Trunk Net encodes query signals consisting of both the payload and the current action:
yeY =PxA T@) =[N, Tk )

where A and P denote actions and payloads, respectively. This serves to condition the latent space,
aligning actuator dynamics with task objectives.

Finally, Branch and Trunk features are fused:

k
Go(&,y) = BU™) - T(y) = > _ Bi(U™ (1)) - Tily), 5)
i=1
yielding the delta action Aa’ = GV for each joint j. This correction augments the simulator’s
nominal command, bridging the sim-to-real gap. The overall operator is then defined as:
GUZ™) () = AF™ (85 01 + Co(UF™(w1)) ) ©)

4.3 GPU-PARALLEL OPERATOR LEARNING

A key challenge arises when applying this network in parallel Reinforcement Learning (RL) envi-
ronments: computing sensor values for every £ is computationally prohibitive. To address this, we
introduce a sensor model S, which predicts sensor readings directly from the actuation coordinates

&
ACsensor = E§

Z AL (50 20) — (5¢(€))¢|I§] : (7

Optimizing ¢ yields a surrogate function space U™ £ S, (14*™). By interpreting S, as an operator
mapping Ug™ to U™ with approximately equal sensor output, our framework reduces to learning
an operator from U/*""" to /™, with the training objective:

minimize dist(G(Ss(US™)), UEY). (8)

If the distance metric is defined analogously to L? distance in the function space, this can be refor-
mulated as a RL problem with reward:

re = —wl|(sigy’ = skear) — GU) (o) I3, ©)

where Sieq1, ¥ are sampled from TWINS.
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5 EXPERIMENT

Our experimental evaluation comprises two parts: [Section 5.1|evaluates GapONet ’s zero-shot gen-
eralization to unseen robots and motions; measures improvements in humanoid locomo-
tion stability through online residual compensation on hardware.

5.1 ZERO-SHOT MOTION TRACKING

GapONet can generalize to unseen target joint-position sequence (motion) under the branch—trunk
architecture. To test this capability beyond our dataset TWINS, we collected an unseen-motion test
set of 100 sim-real pairs: 35 sequences at 0 kg, 23 at 1 kg, 22 at 2 kg, and 20 at 3 kg. The test
set also spans three lower-body gaits in a 6:3:1 ratio for static stance, squat, and locomotion. For
quantitative assessment, we report Large Gap Ratio (the percentage of frames whose error exceeds
a predefined threshold), IQR (the interquartile range of the gap over all motions), and Gap Range
(the framewise gap range from minimum to maximum).

We benchmark GapONet with four baselines: (i) an MLP learned dynamics model (He et al.|
2025), (ii) a Transformer learned dynamics model that exploits temporal context better, (iii) system
identification, a classical approach to bridging the sim-to-real gap, and (iv) PD control with official
gains. Each experiment is repeated multiple times, and we report the mean and standard deviation in
the table. As shown in GapONet attains the best or tied-best scores on nearly all metrics,
with a pronounced improvement in LGR. These results indicate smoother, more controllable zero-
shot gap bridging than the learned dynamics baselines and consistent gains over system identification
across motions from multiple robots.

Table 1: Zero-shot sim-to-real gap on unseen-motion test set across four payloads.

Method Okg l'kg
LGR(%) IQR ({) Range ({) LGR(%) IQR () Range ()
) )
PD control 127533 0.138F0:007 0.538F001 10601 0.139F00%%  0.667F0:01!
MLP lO‘OiO‘S 0.108i0‘012 0.480i0.088 IO.SiO‘l 0.125i0<002 0.589i0'029
Transformer 95503 (1270014 (4650067 560E04 (9 140E0-005 (52580041
System Identification ~ 12.4%%%  0.141%00% ,505+0-032 9 ,01*10 01400029 0,609%C 1>
GapONet (Ours) 009509 0.09350010  0.449F0 117 02201 011550012 0.537+0148
Method kg 3ke
LGR(%) IQR (}) Range ({) LGR(%) IQR () Range ({)
(@) (5]
PD control 112701 02050001 (625+0:038 g gE01 () 499+0-008 () 647+0.060
MLP 10.8:|:0A1 0.252:|:OA003 0'621:EOA023 ]2.2:EOA9 0'460:EOA013 0.668:5:0060
Transformer 0440301405792 0,606=7010  9.82F0 T 041650002 (.573+0:178
System Identification ~ 9.53%%7  0.193%0-192 (601 %0031 12.1%05 (4940003 (9 611+0-127
GapONet (Ours) 0.391010  (.161F0-004 (57810112 g4%023  (,317%0-005 () 49840157

5.2 LoCOMOTION TRAJECTORY TRACKING

[Section 5.1]demonstrates the generalization and gap-solving capabilities of GapONet, but improv-
ing upper-body tracking alone is insufficient to prove system-level benefits. For broader humanoid
applications, lower-body motion must also be considered. As shown in[Section 3.3} lower-body gaits
have minimal impact on upper-body motion distributions, while upper-body compensation affects
the lower-body dynamics through coupled torques and contact forces, influencing the center of mass
trajectory (Zhang et al.l |2025). To further validate GapONet'’s ability to address the upper-body
gap, we introduce an online residual compensation method that adapts to varying lower-body states.

We provide both qualitative and quantitative results to evaluate the performance of GapONet. We
conducted tests on 14 motion sequences (7 at 0 kg and 7 at 1 kg payloads) using a previously unseen
Unitree H1-2 robot. For quantitative assessment, we report Trajectory Consistency (velocity dis-
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Table 2: Sim-to-real gap in locomotion trajectory tracking on an unseen humanoid robot.

Method Trajectory Consistency ({.) Smoothness ({) Robustness ({)

Okg 1kg Okg kg 0 kg 1 kg
PD control 00331982 97 49+1.057 537610257 95 76%0-277 10 16E0-007 1(.14%0-026
MLP 19.18%0:919 g g +1.560 53.48%0:343 95 55+0.361 () 15%0.027 10 14+0-024
Transformer 19.13%0:689 99 05%1-576 53 570290 96 560385 () 14F0-007 1(),16+0-012
System Identification ~ 19.16%0-459 28 591343 24,99£0-298 95 160578 0 14+0-011 10 17+0-008
GapONet (Ours) 18.78F1147 232355245 533650456 25,08*F0151 10.13F0-107 10.14+0-017

Values are reported as mean with superscript & standard deviation (three decimals). The best result in each
column is highlighted in light green and bold.

crepancy between simulation and real data), Smoothness (mean acceleration gap), and Robustness
(per-joint gap with added noise). Each experiment was repeated multiple times, and the results are
presented as mean and standard deviation to ensure validity. Detailed metric calculations can be
found in[Section A.6

Results in show that GapONet outperforms other methods in trajectory tracking, main-
taining excellent performance even with payloads, and exhibiting the smallest error growth. In
qualitative analysis, as shown in when a humanoid robot follows the same trajectory from
the same starting point with identical commands, the real execution trajectory (depicted by the white
lines) exhibits significant deviations. Robots without the residual model show frequent tilting and
large trajectory shifts, while the policy with GapONet follows better. Full video demonstrations
and more details can be found in and the supplementary material.

(a) Trajectory tracking w/o @apONet . 2 3 . 5 s _ 5 S :

(b) Trajectory tracking with GapONet 3 3‘1’ 1S :’T¥' 4, 3 :7¥ LT

Figure 4: Locomotion trajectory tracking. (a) shows trajectory tracking using PD control, where
the path (white line) deviates significantly, and the robot’s torso tilts drastically, indicating instability.
(b) shows the full-body motion after upper-body correction with GapONet. Although there is still
some rightward deviation, the trajectory is much more stable, and the robot’s torso remains upright.

These results collectively demonstrate the generalization and gap-solving capabilities of GapONet.
It not only outperforms current baselines on unseen motions under different payloads but also
achieves higher stability in lower-body locomotion on an unseen robot, laying the foundation for
improved performance in humanoid loco-manipulation tasks.

6 CONCLUSION

We present an end-to-end data-collection pipeline and curate 120+ hours of paired sim-real data
across multiple robots. We characterize payload-related parameters, compare sim-to-real gaps across
simulators, and assess the impact of lower-body actions on whole-body behavior. We then learn a
payload-conditioned nonlinear operator GapONet mapping simulation context functions to residual
actions for hardware. On zero-shot motion tracking, the large-gap ratio is 0.09%, with improved
robustness and smoothness in locomotion trajectory tracking, strengthening the basis for humanoid
loco-manipulation. Future work and limitations are discussed in
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ETHICS STATEMENT

The dataset used and planned for release in this work has been fully anonymized and does not contain
any personal or individually identifiable information, but rather consists of a collection of publicly
accessible content. The paper does not include any analysis, reporting, or disclosure of private user
details, and care has been taken to ensure that all data handling aligns with privacy regulations and
ethical guidelines.

REPRODUCIBILITY STATEMENT

We include real-world experimental footage to substantiate the reported results and release a sub-
set of sim-real paired data for cross-validation; both are provided in the supplementary materials.
Key implementation details and experimental settings are described in the main paper (Section 4}

and supplementary materials
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs only for grammar/style rewrites and equation/notation formatting corrections.
We appreciate the steadily improving reasoning capabilities of LLMs, which helped us identify lin-
guistic issues more quickly and maintain a more consistent scholarly style. However, all research
ideation, theoretical development and formula derivations, methodological choices, and experimen-
tal design and execution were performed exclusively by the authors. Accordingly, the LLM did not
play a significant role in research ideation or writing and should not be regarded as a contributor.

A.2 DATA COLLECTION
A.2.1 LEGGED HUMANOID ROBOT

We collect paired sim-real data on two humanoids: the 1.8 m Unitree H1-2 and the 1.3 m Unitree
G1. Joint naming and kinematic locations are shown in[Figure 3| In our setup, we log the full upper
body and locomotion-relevant joints (27-DoF configuration in code), along with IMU and actuator
telemetry.

ROS setup and topics Data acquisition is implemented as a ROS 2 Python node (rclpy, node
name deploy._node). The node subscribes to low-level robot state messages and publishes
torque/position commands:

* Subscriptions: LowState (joint positions/velocities/currents, IMU, wireless remote),
used to buffer sensor streams and teleop events.

* Publications: LowCmd on topic lowcmd buf fer at 50 Hz (control period At ~ 20 ms).
Commands include per-joint PD terms and optional feedforward residuals (CRC is ap-
pended before transmission).

Teleoperation triggers (e.g., start/stop, emergency stop) are parsed from the wireless controller and
gate recording and command streaming.

Whatis recorded For each trial, we write files (per-trial timestamped) with the following datasets,
matching the code:

e command_time_list (s): wall-clock times when commands are produced.
e command_val_list: commanded action vectors (per 20 ms tick).
* robot/Jjoint_time_list (s): time stamps associated with the sensed robot state.

* robot/joint_angle_list, robot/joint_velocity_list,
robot/joint_current_list, robot/Jjoint_temperature_list: actua-
tor telemetry.

e robot/imu_-list, robot/ang.-vel_list: IMU linear orientation proxies and angu-
lar rates.

* motion_name, current_time: metadata for the retargeted/teleop motion and file cre-
ation time.

Spatiotemporal synchronization We use a single monotonic clock started at node initialization
to time-stamp both the command loop and the sensor callback buffers. During acquisition, the
node executes a fixed-rate control loop (50 Hz) and performs rclpy.spin_once with a short
timeout each tick; the current monotonic time is appended to both command_time_list and
robot/Jjoint_time_list. This yields frame-accurate alignment between the actuation stream
and the sensed state at the controller cadence. Since logging and control are co-located on the
same machine, no cross-machine NTP is required; residual jitter is bounded by the loop period and
handled in post-processing by resampling to a common time base when needed.

14



Under review as a conference paper at ICLR 2026

Shoulder Joint Shoulder Joint Shoulder Joint

Arm Joint Arm Joint
Upper Arm
Elbow Joint Elbow Joint Forearm
Waist Joint L
Wrist Joint Wrist Joint Hip joint
Leg Joint

|w)
I}
o
=4
5
(@]
o
3
I
ot
S

3D LiDAR

Shoulder Joint Moto Microphone Array
Speaker

Smart Battery

o ! Upper Arm
Lo | fl ol .
Elbow Joint Motor< [z “i‘,iJ' Elbow Joint Motor

I, Waist Joint Motor X 1
Hip Joint Motor

Forearm
Hollow joint wiring of the

Hand whole machine

Contains planetary gearbox
gear drive

Knee Joint Motor

Ankle Joint Motor<] — Ankle Joint Motor
Connecting Rod
rotation

Figure 5: Joint names and positions on Unitree H1-2 and G1 robots
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Libraries The implementation relies on rclpy (ROS 2), numpy, torch (policy inference/log-
ging utilities), mujoco (simulation), h5py (file I/O), and t ransforms3d (frame utilities). All
topics and message types (LowState, LowCmd, MotorState, IMUState) come from the
unitree_hg.msg package.

Depth Camera Depth Camera Shoulder Joint Motor
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Elbow Joint
Motor

Elbow Joint
Motor

Wrist Jomnt
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Motor

L]

Lower Body
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Figure 6: Joint names and positions on RealMan WR75S robot

A.2.2 WHEELED HUMANOID ROBOT

We also collect motion execution data on dual-arm wheeled robots (RealMan). Our setup logs the
full arm joint configurations along with actuator telemetry through UDP communication using the
official RealMan APIL.

Communication Setup Data acquisition uses the RealMan official API with UDP communica-
tion. Position commands are sent to each arm at dedicated ports (8080, 8576), while real-time
state data is received through UDP callbacks on separate ports (8089, 8090). The system registers
callback functions to process telemetry streams containing joint positions, velocities, currents, and
temperatures.

Data Recording Structure For each trial, we save timestamped datasets in HDF5 format with the
following structure matching our dual-arm configuration:

e command_time_list (s): wall-clock timestamps when commands are issued.

e command_val_list: commanded action vectors for both arms concatenated (14-
dimensional for dual 7-DoF arms).
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* robotl/joint_time_list, robot2/joint_time_list (s): sensor timestamps
for left and right arms respectively.

* robotl/joint_angle_list, robot2/joint_angle_list: joint positions in ra-
dians for each arm.

* robotl/joint_velocity_list, robot2/joint_velocity_list: joint veloci-
ties in rad/s for each arm.

* robotl/joint_current_list, robot2/joint_current_list: motor currents
for each arm.

* robotl/joint_temperature_list, robot2/joint_temperature_list: ac-
tuator temperatures for each arm.

* motion_name, slowdown_factor, current_t ime: metadata for trial identification.

Spatiotemporal synchronization We employ a unified monotonic clock initialized at data collec-
tion start to timestamp both command transmission and sensor reception. During execution, com-
mands are sent via rm_movej_canfd API calls while the monotonic timestamp is recorded for
both command and sensor streams. Since both command generation and sensor processing occur on
the same machine with shared timing, cross-machine synchronization is unnecessary. The UDP call-
back mechanism ensures frame-accurate alignment between actuation commands and sensed states
at the controller frequency. Residual timing jitter is bounded by the loop period and handled through
post-processing resampling when temporal alignment is required for analysis. The system contin-
uously monitors joint enable flags and error codes, with joint disable events prioritized as critical
errors and other malfunctions classified as general errors, triggering immediate data cleanup and
graceful termination.

A.3 GAP ANALYSIS

A.3.1 PD CONTROL

We use a basic joint-space proportional—derivative controller to track commanded trajectories with
low latency. The proportional term corrects position error (stiffness), and the derivative term pro-
vides damping to reduce overshoot:

T = Kp (qcmd - Q) + Kd (qcmd - Q) (10)
Here gcma and ¢emq are the desired joint position/velocity, ¢ and ¢ are the measured states, and

K,, K  (typically diagonal, positive) set tracking stiffness and damping. Optional gravity/feedfor-
ward terms can be added when needed, but the above is the minimal PD law.

In equation[1} K (gema — ¢) + Ka(Gema — ¢) is the standard joint-space PD action (typically diag-
onal gains). The extra linear terms K, ¢ and K. tanh(q/e) model viscous damping and smoothed
Coulomb friction, respectively; € > 0 regularizes the sign function to avoid chattering. The scalar
(or diagonal) P denotes the payload descriptor (e.g., mass/COM proxy). The bias Kpay10ad P pro-
vides a load-dependent offset, while K p 4, P sin g and K p .o P cos g capture load-scaled gravity/-
COM components in joint coordinates. Velocity/acceleration couplings Kp;P¢ and Kp;P§ ad-
dress payload-amplified damping/inertial effects. The constant 7y compensates residual biases (e.g.,
calibration offsets).

Start from PD only (K, K4), add K,, K. to reduce overshoot and stick—slip, then introduce
Kpayloads Kpsin, Kp cos for static/load gravity, and Kpy, Kpg for dynamic load effects; keep all
gains bounded and ¢ small enough to smooth tanh(-) without degrading response.

A.3.2 MORE ANALYSIS RESULTS

We present additional qualitative results here [Figure 7] and [Figure 8} further videos are provided in
the supplementary materials.

A.4 NONLINEAR OPERATOR

What is an operator? In contrast to learning a finite-dimensional mapping f : R™ —R™, operator
learning targets a mapping between function spaces, G : U — V, where the input v € U is itself
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Figure 7: Data analysis on payload-related parameters

a function and the output G(u) € V is another function. Practically, we observe u via its sensor
samples at locations {xz;}™: {u(x;)}, and we query the output at arbitrary y-locations to obtain
values G(u)(y). This setup makes the learning objective function-to-function rather than pointwise
regression, and enables generalization to unseen inputs « and query points ¥.;

Why not “learn a function” directly? Classical approximation fits (x,y) pairs for one target
function. Operator learning instead aims to recover the rule that maps any admissible input func-
tion w to an output function G(u). To make this learnable from data, we draw a diverse family
of input functions—e.g., samples from Gaussian Random Fields (SE/RBF kernels with tunable
length-scales/variances) and orthogonal polynomial expansions (e.g., Chebyshev with random coef-
ficients)—so the model is trained across a rich subset of I/ rather than around a single curve. This

ensures the learned mapping reflects an operator over a function class, not merely a single function
fit.

Low-rank/separable viewpoint Many learned operators can be written (or approximated) in a
separable, low-rank form

p
Glu)(y) = Y blu)tu(y), (11
k=1
where by (u) are functionals of the input function (computed from its samples) and ¢ (y) are basis
functions over the query variable y. This mirrors RKHS/separable-kernel and POD/SVD intuitions
and clarifies the roles of “encode the input function” versus “encode the query location.”;

We adopt this operator perspective to learn GapONet, a mapping from simulation context func-
tions to hardware-space responses, so that the model predicts an output function of state/time given

an input function describing simulated context—setting the stage for the DeepONet factorization
introduced next.

A.5 METHODS
A.5.1 WHY DO WE CHOOSE DEEPONET?

Our operator must (i) ingest simulation context functions with explicit payload conditioning, (ii)
answer at arbitrary query points (current actions, payload) across heterogeneous robots and sim-
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ulators, (iii) train under a closed-loop RL objective without requiring paired function-to-function
supervision at every query, and (iv) support low-latency on-board inference.

We have considered some alternatives and trade-offs, for example:

* Fourier/Neural Operators (FNO family) (L1 et al., 2020; |[Kovachki et al.| [2023)): excel on
fixed grids with spectral convolutions, but rely on discretization tied to resolution/geom-
etry; cross-morphology deployment (different joint layouts) typically needs regridding or
retraining, and spectral blocks add latency on embedded hardware.

* Graph/Galerkin/UNO-style operators (Kovachki et al., 2023): adapt to irregular mesh-
es/graphs but require topology-aligned parameterization; when robots or sensor layouts
change, weights/graphs must be remapped. Querying arbitrary state—time points is less
natural than function—query separation. Capacity is high, but so are data and compute
demands.

* Physics-informed neural operators (PINO): leverage known PDE residuals for sample effi-
ciency, yet our residual field (sim—real actuation gap with delays/saturation) lacks a clean
PDE form, making hard constraints difficult to specify and risking model-bias.

As for DeepONet’s branch—trunk decomposition (Lu et al.| [2019; 2021)) aligns directly with our
problem: the branch encodes context (multi-sensor histories, simulator traces, payload), and the
trunk indexes continuous query variables (state/time/joint), producing residual action/torque values
via a simple inner product. This yields (1) continuous space—time queries without grid lock-in,
(2) clean conditioning on payload and robot-specific context without graph/topology rewiring, (3)
RL-friendly training since supervision can be placed at arbitrary queried points along closed-loop
rollouts, and (4) low-latency deployment because inference reduces to lightweight embeddings plus
an inner product. Moreover, DeepONet comes with an operator-level universal approximation the-
orem that provides formal capacity guarantees for nonlinear operators (Lu et al., 2021)), which we
found attractive given the diversity of simulators, payloads, and hardware.

In summary, we choose DeepONet because its function—query factorization, theoretical operator ap-
proximation guarantees, and efficient, payload-conditioned querying match our requirements better
than grid-bound spectral operators, topology-coupled graph variants, or physics-informed schemes
that presume known PDE structure (Lu et al., [2019; 2021} [Li et al., |2020; [Kovachki et al.| [2023)).
Our objective is to demonstrate that operator learning can achieve a mapping from simulation to
reality, thereby aiding sim-to-real transfer. Determining the optimal operator architecture is outside
the main scope of this work.

A.6 EXPERIMENT
A.6.1 METRICS

We report two metric families: (i) gap distribution (Table 1: large-gap ratio(LGR), interquartile
range (IQR), and gap range) and (ii) kinematic quality of lower-body (Table 2: smoothness, trajec-
tory consistency, and robustness). All metrics are computed per run and then aggregated by payload
mass (the environment groups trials by mass buckets).

Let gieal gsim be joint trajectories (or end-effector signals) sampled at uniform At. Define the gap
gt = ¢ — g™ and its absolute value |g;|. Central-difference operators approximate derivatives.

Large-gap ratio (Table 1) Fraction of samples with absolute joint error exceeding a threshold
(0.5 rad by default):

[{(t0) = lgea| > 7}

|{(t,z)}| , 7 =0.5rad. (12)

Large-gap ratio =
Captures the frequency of serious deviations.

Gap IQR (Table 1) Dispersion of absolute errors via the interquartile range:
g:{‘gtz| : t:]-v"'vTv izla"'vj}v IQR:QO75(g)_QO25(g) (13)

Lower is a tighter error distribution.
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Gap range (Table 1) Extreme-case spread of absolute errors:
Range = max(]g|) — min(lg|). (14)
Highlights worst-case variability.

Trajectory consistency (Table 2) Discrepancy in the rate-of-change of velocity (a curvature-like
signal) between real and simulated motion:

vitreal _ vqitreal’ U,tSim _ Vq,tSim, Hitreal _ V’U,treal, Ii,tSim — Vv,tSim, (15)
1 T

TrajectoryConsistency = T Z |n§eal — Ky (16)
t=1

Smaller values indicate that the simulator reproduces the evolution of motion patterns more faith-
fully.

Smoothness (Table 2) Discrepancy in accelerations between real and simulated trajectories:
T
1 real sim real 2 real sim 2 sim
Smoothness = T E ’at —ay™|, ay® = Vo™, ai™ = Vg, (17)
t=1
Lower scores mean closer kinematic smoothness to real motion.

Robustness (Table 2) Sensitivity of the sim-real gap to measurement noise. For noise levels
S {0'1,...,0'1(},

K T
1 1 real (k) im ~(k)
Robustness = o kz_l T; ‘(qte +¢ ) — (qf + & ) — gt‘ ) (18)
g =g — g™, et &t ~ N(0,07). (19)

Smaller values indicate that the evaluation is stable under realistic perturbations.

Each motion is run at least six times. For each run, we compute every metric (optionally per joint and
then averaged); otherwise, only real-stream statistics are used as specified by each metric. We then
aggregate runs by payload/mass buckets and report means with standard errors. All three metrics
are discrepancy-style measures; by construction, smaller values indicate better performance.

A.6.2 LOCOMOTION TRAJECTORY TRACKING

We generate locomotion commands using a phase-based trajectory: a normalized phase ¢ &
[0,1) advances at the control rate and indexes a trapezoidal base-velocity profile (acceler-
ate—cruise—decelerate—pause). Forward and backward segments alternate automatically, while lat-
eral velocity and yaw rate remain zero unless specified. The phase schedules lower-body gait timing
and yields desired joint trajectories for the legs, tracked by a joint-space PD controller at 50 Hz with
torque/rate limits and safety checks.

Fixed start pose and heading. Each real-robot run starts from the same world-frame pose—a fixed
position and heading—followed by a short smooth interpolation into the nominal stand pose before
the phase route is enabled. This ensures repeatable initial conditions, so the resulting base trajectory
in SE(2) (odometry or motion-capture) can be compared across runs to assess tracking quality, drift,
and sim-real alignment. Commands and sensor streams share a monotonic timestamp, keeping
phase, velocity setpoints, and measured joint/IMU signals time-aligned for evaluation.

A.7 IMPLEMENTATION DETAILS
A.7.1 NETWORK STRUCTURE

Overview. The training pipeline with GapONet consists of three components: a Sensor Predictor
to predict the sensor input of Branch Network, a Branch Network B(U,(z)) that encodes sensor-
driven actuation functions and a Trunk Network 7 (y) that processes action queries. Both are im-
plemented as multi-layer perceptrons (MLPs), fused via dot product to yield the operator output
G(U4(z))(y). These networks are trained end-to-end with Proximal Policy Optimization (PPO),
and optimized using Adam.
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Sensor Predictor

* Input: For each time j at time step ¢, the Sensor Predictor receives a sequence of sensor
states over a k-step history window:
t—n t—n _t—nik
{qJ‘ i 4; ", q];dn}n:o»
where g;, ¢; denote joint position and velocity, g; 4 is the target position.
e History Length: k£ =4

 Input Dimension: 10 joint num x (3 X history length + 1 current position) = 130-dim
vector

* Output: Ag&Ag x 10 joint = 20-dim vector
¢ Sensor Number: 20

* Learning Rate: 1 x 10~*

Branch Net.

* Input: 20-dim vector of sensor predictor output x 20 sensor num = 400-dim vector
* Delta Action Duration: 1 step

* Architecture: 4-layer MLP with hidden sizes [256, 256, 256], each followed by ELU acti-
vation.

* QOutput: p-dimensional latent representation (p = 160 by default)

* Learning Rate: 1 x 10~*

Trunk Net.

e Input: The Trunk Net receives the target query y = q;tll desired joint position + payload
* Input Dimension: 11

* Architecture: 2-layer MLP with hidden sizes [128, 128, 128], ELU activations

* Output: p-dimensional vector, same dimension as Branch output

* Learning Rate: 1 x 10~*

Fusion. The operator output is computed as the dot product:

Training Details.

* PPO update with clipping ratio € = 0.2, batch size = 4096.
* Reward defined as r; = —||g**! — ¢! ||2.
* Temporal smoothness penalty Lg,, with A = 0.01.

* Training duration: 1 hour on 1 RTX 3090Ti GPU.

A.7.2 SIMULATIONS

We evaluate on MuJoCo 3.2.3, Isaac Gym 1.0rc4, and Isaac Sim 4.5.0. To enhance reproducibility,
each setting uses the simulator’s official default parameters. The software environments are:

* MuJoCo / Isaac Gym: Python 3.8.13, legged_gym 1.0.0, PyTorch 2.4.1, torchvision 0.19.1.
* Isaac Sim: Python 3.10.4, isaaclab 0.40.21, PyTorch 2.5.1, torchvision 0.20.1.
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Table 3: Hyperparameters for Branch Net.

Hyper-Parameters Values
History Length 4

Delta Action Duration 1

Sensor Number 20

U, Input AV P J

U, Output AS

Layer Structure [256, 256, 128]
Output Number 10

Dropout 0.1

Samples Per Update Iteration 131072

Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size | 4096

~ Discount 0.99
Learning Rate 2x107°
GAE()) 0.95
TD(N) 0.95
PPO Clip Threshold 0.2

T Episode Length 300

Table 4: Hyperparameters for Trunk Net.

Hyper-Parameters Values
History Length 4

Delta Action Duration 1

Sensor Number 20

y Input aq

Layer Structure [128, 128]
Output Number 10
Dropout 0.1
Samples Per Update Iteration 131072

Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size | 4096

~ Discount 0.99
Learning Rate 2x107°
GAE()\) 0.95
TD(A) 0.95
PPO Clip Threshold 0.2

T Episode Length 300

A.8 LIMITATION AND FUTURE WORK
Our dataset and analysis primarily target the upper body, and although we include tests on locomo-

tion trajectory tracking, the present system does not yet enable highly dynamic sim—real transfer for
full humanoids. Going forward, we will (i) extend the current pipeline to high-dynamics, whole-
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body loco-manipulation and to additional robot platforms, and (ii) address the strong dependence
on a stable locomotion policy—even with relative metrics, unreliable gaits can cause catastrophic
failures (cf. ‘videos/failure.mp4°) that preclude testing. A second focus is to train a robust full-body
tracker for large-mass humanoids (e.g., H1-2), providing a stronger substrate for our operator-based
sim-real mapping.
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