Under review as a conference paper at ICLR 2026

GAPONET: NONLINEAR OPERATOR LEARNING
FOR BRIDGING THE HUMANOID SIM-TO-REAL GAP

Anonymous authors
Paper under double-blind review

ABSTRACT

The sim-to-real gap, arising from imperfect actuator modeling, contact dynam-
ics, and environmental uncertainty, poses fundamental challenges for deploying
simulated policies on physical robots. In humanoids, object manipulation further
amplifies this gap: end-effector payloads alter joint inertia, gravity torques, and
transmission efficiency, introducing state- and payload-dependent nonlinearities.
Yet existing approaches lack both systematic analysis and a generalizable repre-
sentation of this payload-induced degradation. To address this limitation, we pro-
pose GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware. We then introduce a payload-
aware (collect-analyze—solve) framework to learn this operator GapONet. First,
we curate a sim-real paired dataset TWINS spanning multiple payloads, robots,
motions, actuation rates, and simulators, comprising more than 11,298 motion
sequences. Second, we perform payload-aware system identification to isolate
payload-related effects and quantify their contributions, and analyze sim-to-real
gaps across different simulators. Third, we train the operator GapONet to predict
delta action for real-time, generalized, payload-conditioned compensation. We
further introduce actuation functions and sensor predictors, which enable parallel
RL training of GapONet with substantially reduced energy consumption. While
tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps
below 0.09%, whereas competing methods remain near 10%. By correcting upper-
body gaps, GapONet also stabilizes lower-body locomotion tracking, laying the
foundation for improved performance in humanoid loco-manipulation tasks.

1 INTRODUCTION

Policies trained in simulation benefit from GPU acceleration and massively parallel sampling, en-
abling fast and scalable optimization under approximate physics such as mass, friction, and damp-
ing (Makoviychuk et al.,|2021} Tan et al.,|2018)). However, object interactions in the real world often
diverge from these idealizations due to unmodeled or state-dependent effects, most notably in fric-
tion, inertia, and contact—leading to a persistent model—plant mismatch (Tobin et al.l [2017; [Zhao
et al., |2020). This sim-to-real gap is further exacerbated in humanoids that manipulate objects of
different masses. Variations in end-effector payload induce coupled drifts in equivalent joint inertia,
gravity—torque amplitudes via center-of-mass and lever-arm shifts, transmission friction and effi-
ciency, thereby altering closed-loop dynamics (Spong et al.,|2006). Yet during policy training, these
payload-dependent adjustments are typically simplified or held fixed, which leaves the gap largely
unaddressed. The sim-to-real gap can grow in complex, nonpredictive ways, posing a substantial
obstacle to robust policy transfer and reliable real-world deployment (Zhang et al., 2023)).

Prevailing approaches either calibrate simulators via system identification to tune masses, frictions,
and damping (Ljung, |1998; Astrom & Eykhoff] [1971}; Nelles} |2002); broaden training distributions
through domain randomization and observation noise to reduce overfitting (Mehta et al.| [2020; Tobin
et al., 2017; (Chen et al.| 2021} |Laskey et al., [2017}; |Zhang et al., [2020; Matas et al., |2018)); or stage
learning with curricula or progressively harder terrains to harden policies over time (Luo et al.,2020;
Wang et al., 2021} Peng et al., [2020; Heess et al.,[2017)) to bridge the sim-to-real gap. However, the
interacted object (payload) is a structured operating condition, not mere noise (Slotine & Lil [1987):
it deterministically alters gravity loading, effective inertia, dissipation, and hence the closed-loop
gain/phase under PD control. Single-point identification cannot capture behavior across payloads,

Under review as a conference paper at ICLR 2026

and domain randomization or curricula largely treat the payload as unstructured uncertainty. Thus,
while these strategies can improve robustness, they hinge on manual design (randomization ranges,
noise schedules, curriculum pacing) and provide limited diagnostic attribution. Critically, they do
not yield a generalizable representation of the sim-to-real gap for humanoid interaction.

(a) Data Collection in Multiple Robot Platforms (d) Model Evaluation

1y Real-time On-board
Large-scale n
Open-source b
Human Motions & 4

i

-1

Retarget
Augmentation

> & ={aisth sty

TWINS
Dataset

Separate Control
Upper- &
Lower-body

Different Payloads Different Robots

Real-time
Teleoperation

Sensor
Model

et

PD Control <= GapONet

|

Pairing

Different Simul:

(¢) GapONet Training

Action

(b) Actuation Function . ap-D Action Ve Trunk Net Queries
ap=D T Quers o e —_—
@™ Action & Payload ai+Aa
Joint P U &-D ®
@sm i - Func. Coords sumogate {ASTYK} Branch Net | \
Joint Vel {qrey ~ Sensor Actuation State Transitions “wdm
) ¢ ! e -> ! Pt S ot surr
(e3im) . Yo pos — Modeling Functions BUHT) N
Joint T greal STWINS ' . - &
orque {ar V‘) Al Noatoset 2 {Assim} Sim. Transition
Gap Modeled Joint Vel _ gatase 1 %ﬁ ASFEU D RL — B
ference of Sim & Real’s y 4 mEm Wik TWINS Transition As? Simulator

Sim
Actuation Function Space Simulator k-sensor queries —

Figure 1: The overall architecture of both data collection and GapONet training. (a) TWINS, a
paired sim-real dataset via motion retargeting and real-time teleoperation across diverse payloads,
robots, and simulators. (b) The sim-real gap is formulated as a discrepancy between actuation func-
tion spaces, providing functional coordinates. (c) GapONet learns a payload-conditioned nonlinear
operator that maps simulation context to residual actions, and training uses parallel RL. (d) Online
evaluation on unseen hardware with PD control and sensor modeling to quantify sim-real alignment.

A complementary line of work learns dynamics directly from real data, either as state-transition
models or action-to-effect maps (Shi et al.| 2019} [Xiao et al, 2024; [He et all [2025). From a con-
trol standpoint, however, identifying payload-dependent dynamics from passive logs requires per-
sistence of excitation and explicit treatment of operating conditions. In practice, motion patterns,
contact regimes, and payload values co-vary, so a single black-box model fit to mixed data tends to
entangle payload effects with task-specific artifacts, yielding spurious correlations. As a result, such
models often need large volumes of paired sim-real trajectories to cover the space and still exhibit
poor cross-payload and unseen-motion generalization. The missing ingredient is a representation
that disentangles exogenous operating parameters from state evolution, rather than collapsing them
into a single dynamics model. Such a formulation enables a more faithful mapping between the
simulator and real-world domains.

We present a (collect—analyze—solve) framework to learn this representation for bridging the sim-
to-real gap in humanoids. We first curate TWINS, a time-synchronized sim-real corpus with a
structured factorial design. Unlike prior collections (Wu et al, 2024; Mao et al., [2024; [AgiBot-|
[World-Contributors et al [2025), our dataset design over diverse payload levels, humanoid plat-
forms, actuation rates, simulations, and motion families, enabling further controlled analyses. To
clarify the GapONet ’s learning target, we first perform gray-box, block-wise system identification
atop a PD control model, attributing error reductions to specific payload-related terms and quantify-
ing their contributions. We then analyze identical motions across payloads and simulators, showing
structured residuals dominated by actuator nonlinearities, which motivates a more generalizable
nonlinear operator rather than a pointwise approximation function.

We then propose GapONet, a payload-conditioned nonlinear operator that maps simulation context
functions to a residual actions for hardware. Our operator is parameterized with a branch—trunk
decomposition (Lu et al.| 2019): The branch net encodes the local dynamics of the physical world in
which our robot resides as a function, and the trunk network encodes the input variables to that func-
tion, including payload weight and target pose. This separation provides a strong structural inductive
bias, disentangling the conditioning context from the queried response, thereby enhancing the oper-

Under review as a conference paper at ICLR 2026

ator’s generalization capacity. We also propose the sensor predictor, enabling parallel RL training
of GapONet with lower energy cost while preserving generalization beyond pointwise regression.
While tracking unseen motions, GapONet keeps the incidence of large sim-to-real gaps below
0.09%, whereas competing methods remain near 10%. By correcting upper-body gaps, GapONet
also stabilizes lower-body locomotion tracking, laying the foundation for improved performance in
humanoid loco-manipulation tasks.

This paper makes three primary contributions:

* We develop a sim-real data collection pipeline and we curate the first dataset TWINS fo-
cusing on payload-induced sim-real gap across multiple payloads, robots, motions, and
simulators.

* We reproduced over 30 hours of real data across four simulators and conducted controlled,
ceteris paribus comparisons, yielding quantitative evidence that sim-to-sim evaluation im-
proves the deployability of humanoid controllers.

* We introduce GapONet, a payload-conditioned nonlinear operator that maps simulation
context functions to residual actions for hardware, and demonstrate its training via RL.

2 RELATED WORK

Sim-to-Real Gap Sim-to-real research has largely moved from system identification—calibrating
masses, frictions, and control gains to align simulation with measurements (Sobanbabu et al., 2025}
Gu et al., 2024} Zhang et al.,|2024)—to domain randomization, which perturbs dynamics and obser-
vations to harden policies (Peng et al.|[2018; Xie et al.|[2021; Mehta et al.,[2020; (Chen et al.| [2021).
The former can deliver high fidelity but typically demands accurate structural assumptions and ex-
tensive hardware time—a challenge that extends not only to classical system identification (Ljung}
1998 Miller et al., [2025) but also to nonlinear methods such as neural-network (Hwangbo et al.
2019; Boussaada et al.l [2018; |Kuschewski et al., [1993)) and kernel-based models (Deisenroth et al.}
2013 [Zhang et al.,[2007), which likewise require substantial data and careful modeling assumptions;
the latter proved influential for legged and humanoid control (Xie et al.,2020; [Margolis et al., 2024
Li et al.,|2023)) yet can bias policies toward conservatism (He et al.,|2024])). In practice, both families
often require substantial manual retuning across agents, tasks, and operating regimes, motivating
data-driven directions that learn from collected data. One line models actuator nonlinearities with
fine granularity to capture motor-level effects (Hwangbo et al., 2019); another emphasizes residual
correction, learning delta actions for online compensation with lighter overhead (He et al.l [2025).
In parallel, simulation—-real fusion seeks coverage and speed from simulators while retaining real-
world grounding (Fey et al., 2025;|Zhang et al., [2023} Bjelonic et al.,[2025;|Xu et al.,|2025)), and new
benchmarks standardize evaluation (Wu et al.,|2024). Despite these advances, both simulator-centric
and data-centric pipelines still struggle with broad generalization under real-world variability (Mu-
ratore et al., [2022), which limits general gap-bridging in complex systems, such as humanoids.

Nonlinear Operator Learning Operator learning aims to model mappings between function
spaces, rather than pointwise input—output relations (Kovachki et al.| [2023). In this setting,
Unstacked Deep Operator Network (DeepONet) provides a principled architecture with an operator-
level universal approximation guarantee (Lu et al.| 2019)). Its branch—trunk decomposition separately
embeds input functions and query variables, yielding a flexible and theoretically grounded represen-
tation (Hornik et al [1989; [Lu et al.| 2021). Recent work has begun extending operator learning to
control and engineering, including Hamilton—Jacobi policy iteration (Lee & Kim), [2025), physics-
informed optimal control (Na & Lee, 2024)), and operator-based model-predictive control (de Jong
et al.,2025)). Beyond control, multiphysics applications demonstrate operator surrogates for solu-
tion fields in materials processing and additive manufacturing, highlighting scalability to complex
PDE-governed phenomena (Kushwaha et al., 2024)). However, these efforts remain largely theory-
driven or tailored to specific domains, with limited focus on robotics sim-to-real—especially for
humanoids operating under shifting payload-dependent dynamics. This gap calls for an operator-
based formulation that can explicitly condition on task and environment variations and learn the
functional discrepancies between simulation and reality, while preserving sample efficiency and
real-time applicability.

Under review as a conference paper at ICLR 2026

3 DATA COLLECTION AND GAP ANALYSIS

End-effector payloads reshape joint dynamics and closed-loop behavior—raising reflected inertia,
shifting gravity torques, and coupling with actuator and contact nonlinearities. Divergent simulator
treatments of these effects produce a persistent, multi-factor sim-to-real gap. This section provides
a structured diagnosis: [Section 3.1] isolates payload-induced terms via gray-box system identi-

fication; [Section 3.3| compares simulators on identical payload-bearing motions under matched
controllers; details TWINS and its collection pipeline.

2.00

Total Improvement: 13.9%

Prediction Error vs Payload (All Joints)

4= Lot

— Trend (Qu

0.9648
|
e — - - -

1=0.0141

21130 0027 i-o0m1 -2 5
050

o)}

3
g

RMSE (N/m)

L

4
0.00
PD PD+P PD+P+GC PD+P+GC+F PD+P+GC+F+P-v PD+P+GC+F 0
PviPa A o
(a) Payload-aware System Identification = o
} X3 s
g iz :
g i
g | ©o2 f e |
< 0.50 -
IRl anteME
R_wrist_roll . [') ‘
L_wrist_roll } N 1 L =
R”elbow 'V = ! :T:
F gttt ‘f “\ ke - ‘F
J; F) ”&‘\‘
(o) A, 0
0 R_shou_roll r:
[/\/a L _shou roll LA 1 0
e RishouT})itch > —, A, 0 .) ;
L_shou_pitc! S o-0s 00 %% Pqad)
“Joint Angle (Payload
(c) Data Distribution (b) Gap changes related to payload

Figure 2: System identification and data distribution (a) Prediction residuals after adding
payload-related parameters; notably, adding gravity compensation yields a clear improvement. (b)
The vertical axis shows the change in the joint-wise gap as the payload increases. (c) Data distribu-
tion of TWINS; the z-axis indicates the probability density of each joint action.

3.1 PAYLOAD-AWARE SYSTEM IDENTIFICATION

Using bipedal humanoids that demand precise control as exemplars (Unitree H1-2 and G1), both
operate under joint-space PD control tailored to locomotion (details in [Section A.4.T). With added
end-effector payloads P, we adopt a gray-box identification scheme: start from a rigid PD baseline
and progressively augment the torque model with physically grounded terms salient in manipulation.
For each joint, we fit a linear in parameters regression that attributes the sim-to-real discrepancy to
gravity scaling, reflected inertia, actuator and transmission nonlinearities, and contact compliance,
and we quantify their marginal contributions:

™ = Ky (doma = @) + Ka(Goma —d) + Ko + K, tanh(£)
+ Kpayload P
4+ Kpgin Psing + Kpcos P cosq (D
+ KpgPq + Kpi P
+ 70.
Here, K, and K are proportional and derivative gains; K, and K. model viscous and Coulomb

friction with € smoothing the latter; K ay10ad Scales the main payload P; Kp gy, and Kp .5 capture
gravity and posture coupling under payload; K p; and K p; model interactions between payload and

Under review as a conference paper at ICLR 2026

joint velocity or acceleration; 7 is a constant bias. The remaining symbols are 7 for joint torque;
q, g, ¢ for joint position, velocity, and acceleration; ¢emd, Gemd for commanded references; and P for
payload magnitude interpreted as mass or equivalent inertia at the end effector. All K coefficients
are identified per joint. This compact form separates baseline PD, friction, and payload dependent
effects and enables clear attribution of simulation to real error.

Using over 2,000 data collected from real robots, we fit by minimizing RM SFE be-
tween its torque and measurements. Adding payload-dependent terms reduces error [Figure 2(a),
with gravity compensation giving an early gain, but at higher payloads no longer cap-
tures the closed loop response [Figure 2(b). The equation is not a replica of the simulator; it is a
control equivalent surrogate that covers dominant channels under matched controllers. Identifica-
tion on synchronized inputs with persistently exciting motions enables term level attribution, and
the residual exposes nonlinear dynamics not captured by compact models. Learning a nonlinear op-
erator, rather than a pointwise nonlinear function, better supports generalization across trajectories,
payload schedules, actuation rates, and robots by mapping context functions to control signals.

3.2 TWINS COLLECTION

shows with block-wise identification that the prediction to measurement gap is nonlin-
ear and uncertain. Given the lack of suitable data, to validate this conclusion on genuine sim to
real pairs, we present TWINS, the first dataset focused on payload induced sim to real gaps across
multiple robots, standardized payload levels, and motion classes. TWINS records humanoid dy-
namics hierarchically, from single joints to full upper body motions with 3 different low-body gaits,
using four Unitree H1-2 units with end effector masses from 0 to 3 kg (standard calibration weights)
and actuation rates of 50 Hz and 100 Hz. The real data totals 30.17 hours, 11,298 sequences, and
307,273 synchronized frames. The distribution appears in [Figure 2|c).

Each sequence is time synchronized with a matched high fidelity simulation replica in three widely
used humanoid training simulators (MuJoCo, Isaac Gym, Isaac Sim), enabling comparison of real
and simulated executions at the frame level and yielding a fourfold paired corpus of 120.68 (one real
trace plus three simulated replicas). For every frame we record joint positions gsim, qreal, Velocities

Gsim s Greals accelerations §sim, Greal, tOrqUes Tsim, Treal, payload P, and motor temperature 7iea)-
Further details of our collection pipeline and dataset on different robots are in[Section A.3

3.3 SIM-TO-REAL GAP ANALYSIS

After post-processing the paired data TWINS, we conduct a targeted analysis of the sim-to-real gap
to guide operator design for payload-induced nonlinearities. The analysis tests concordance with the
block wise identification in determines whether the effect is concentrated in the upper
body or extends to the whole body, and quantifies differences across simulators when reproducing
the same motion under matched control.

Same motion with different lower-body gaits We execute 17 upper-body motion sequences un-
der three lower-body conditions: bipedal locomotion, static squat, and stance support only. As
shown in|Figure 3|a), the outer ellipse marks the shared kinematic envelope, while the center trajec-
tory is the PCA trace of a single motion; across gaits, this trace is nearly retraced with only small
phase/offset shifts. With envelopes matched, the upper-body sim-to-real gap is therefore largely in-
sensitive to the lower-body condition, and residual differences are dominated by payload-amplified
channels. We quantify this via joint-wise normalized RM SE, commanded—measured phase lag,
and torque-saturation incidence. Note that, unlike fixed-base dual-arm platforms, upper-body ac-
tions in humanoids couple back to locomotion and can stress the gait controller; full experiments

and analysis are in[Section 3.

Same motion with different payloads As shown in [Figure 3(b), each colored trajectory plots
the joint-wise sim-real residual over time. Increasing payload amplifies both residual magnitude
and phase lag, yielding larger state gaps and longer delays. Across TWINS, payload consistently
widens the gap, and the residual grows nonlinearly with payload mass [Figure 2[b), in line with the

block-wise identification trends reported in|Section 3.1

Under review as a conference paper at ICLR 2026

Difference (rad)

Time (s)

(b) The sim-real gap of the same motion with different payloads

PC2 (15.3%)

L o, "4,

Joint Angle (rad)
|

\\ﬂ"w,~Vl\v.uf\vlkvrf\v~w/\w~wh\/’\

O R 5 o 5
PC1 (81.5%)
(a) Same motion with different lower-body gaits (¢) The joint angle of the same motion and payload across different simulators

Time (s)

Figure 3: Gap Analysis. (a) The outer ellipse marks a shared kinematic envelope across gaits, while
the central PCA trajectory of a single motion shows only minor variations with overall consistency.
(b) Payload-induced sim-to-real deviation during a squat posture, showing an increasing gap even in
a quasi-static state. (c) Joint-angle discrepancies across simulators (Mujuco, IssacGym, IsaacSim)
during locomotion, indicating a persistent gap under dynamic motion.

Same motion across different simulators Current methods always apply sim-to-sim evaluation
as the cross-validation before hardware deployment (He et al., 2025} [Liu et al., 2024)). To charac-
terize simulator-specific differences and their dependence on payload, we compare identical mo-
tions across MuJoCo, Isaac Gym, and Isaac Sim under matched controllers and simulator-adapted
generic parameters over a standardized payload grid. Experiments [Figure 3|c) show that MuJoCo
yields smoother trajectories but larger peaks in high-acceleration segments; Isaac Gym exhibits oc-
casional joint-level jitter; Isaac Sim achieves the most stable alignment in our evaluations, but still
leaves a nonlinear gap during interaction. To stay aligned with prevailing practice and minimize
simulator-induced confounds, we adopt Isaac Sim for subsequent experiments, as it exhibits the
smallest sim-to-real gap in our analysis. We also release paired data for MuJoCo and Isaac Gym to
enable cross-simulator comparisons and support future research. More results in

In summary, across payload levels, all simulators show a nonlinear increase in error relative to real
hardware, with simulator-specific modes. This pattern persists across lower-body gaits: when kine-
matic envelopes are matched, the distributions of upper-body error and phase metrics remain closely
aligned. The discrepancy arises from coupled channels—agravity, friction, Coriolis and inertial cou-
pling, actuator limits and efficiency drift, sensing noise, and delays—that a pointwise function map-
ping cannot capture or generalize. A nonlinear operator is better suited: GapONet provides a com-
pact, transferable representation by mapping context functions to corrective control signals across
trajectories, payload schedules, actuation rates, and robot morphologies.

4 METHOD

We propose GapONet, a payload-conditioned nonlinear operator that maps simulation context func-
tions to a residual action for hardware. GapONet learns a functional correspondence from simulator
space to real dynamics and introduces actuation functions that encode command and feedback his-
tories. We then propose the sensor predictor, which enables parallel RL training of GapONet,
overcoming the high energy consumption of the original approach while maintaining generalization
beyond pointwise regression.

4.1 PROBLEM FORMULATION

Previous methods lack an explicit model of both the simulator and the real world (Mehta et al.,
2020; (Tobin et al., 2017; Matas et al.l [2018; |[Sh1 et al., 2019; Xiao et al., 2024; He et al.| [2025)),
thereby limiting their capacity to characterize both domains and constraining the achievable degree
of alignment between them. We therefore propose actuation functions, which formally model robot
actuation in both simulation and reality as functions. This approach thereby converts the problem of
modeling their discrepancies into one of finding a mapping between their respective function spaces.

Under review as a conference paper at ICLR 2026

These functions characterize the mapping from actions (together with task-specific parameters) to
state transitions, under different joint configurations and dynamics, both in simulation and on the
real robot.

Formally, bridging the sim-to-real gap can be posed as learning an operator that maps U/*™ to /™
rather than approximating multiple collected dynamics, where I/ denotes the underlying function
space. Each actuation function U € U/—the family of actuation functions available to the system—
is parameterized by a natural coordinate &, which encodes the instantaneous joint dynamics deter-
mined by the system’s current state and joint configuration. Accordingly, our actuation function is
definedas Ug : A x P — @ x V, where A, P, (), and V denote the space of action, payload, joint
position, and joint velocity, respectively. The goal of GapONet is to learn an operator G that aligns
the discrepant humanoid motion distributions of simulation and the real world, i.e., G(Ug‘m) ~ U, éeal
by producing residual actions.

4.2 NETWORK STRUCTURE

To effectively learn the operator, we adopt a DeepONet-style architecture (Lu et al.,[2019). In this
framework, the input function is represented by its values at & fixed sensor locations, which are en-
coded by the Branch Network; the Trunk Network embeds the query coordinates, and the operator
output is obtained via their multiplicative fusion. This design provides a principled way to approxi-
mate nonlinear operators by separating the representation of the input function (via the Branch Net)
from the evaluation coordinates (via the Trunk Net). The rationale for adopting DeepONet, along
with a detailed discussion of its applicability to our problem setting, is provided in[Section A.6] All
formal notation and value-space definitions are consolidated in[Section A.6.2|for reference.

The value of k fixed locations are denoted as {x;}X_; where z; = (a, p), witha € Aand p € P as

defined in|Section 4.1} More details are in For each location 1, . . ., x%, we first query

the simulated actuation function U, gim to obtain sensor readings S;:

Si(UE™) = U™ (z;) = Af™(sS,,20), i=1,...,k 2)

sim?

where A f*™ denotes the simulator’s one-step update. S (Ugim) = [Sl(Ugim), ce Sk(Ugim)] de-
notes the concatenation of the % sensor values, providing a structured representation of the actuation
function. S(U. g‘m) is then embedded into a latent representation via the Branch Net 3:

BUE™) = [B1 (SUE™). ... B (S(UE™)] N

where n denotes the number of branch features, with each B; encoding a distinct feature of the
actuation function parameterized by the natural coordinates £, decomposing complex dynamics into
interpretable subcomponents.

The Trunk Net 7 encodes query signals that combine the payload and the current-timestep action:
ye Ax P Ty =[Ti(y), .., Tay)l,)

where the trunk features share the same dimension n as the branch features. We then define the op-
erator Giy(&, y) by fusing the Branch output B(U$™) and the Trunk output 7 (y) through an element-
wise product:

Go(&,y) = BUE™) © T(y) = [Bi(S(UE™) - Ti(y), ..., Ba(SWUE™) - Tu(w)], 5

where each trunk feature 7; encodes the input queries in the coordinate system defined by the basis
output from the corresponding branch feature ;.

Inspired by residual dynamics modeling (He et al.| |2025)), we do not directly supervise the operator
output Gy(&,y) using data from TWINS. Instead, GapONet predicts a per-joint corrective delta
action, which is applied on top of the simulator’s nominal command. In this view, Gy produces the
residual action needed to compensate for the mismatch between simulation and reality. The resulting
operator is defined as:

GUE™) () = AF™ (60 + GolE)) ©)

Under review as a conference paper at ICLR 2026

4.3 GPU-PARALLEL OPERATOR LEARNING

Training an operator to generate physically consistent delta actions is challenging, as it requires
real-time evaluations of a non-differentiable simulator and repeated computation of sensor values
for every actuation coordinate £. These constraints preclude direct supervised learning, motivating
our use of reinforcement learning (explained in [Section A.6.3). To further improve efficiency, we
introduce a sensor model .S, that predicts sensor readings from near-history dynamics h, approxi-
mating the output of the actuation function parameterized by &:

1

: (N
2

Optimizing ¢ yields a surrogate function space U*"™ = S, (U*™), where S, maps each simulated
actuation function Ugim to a smooth, computationally lightweight surrogate U;"" with matching
sensor behavior. This surrogate space replaces the expensive and non-differentiable simulator-based
function space U*™ with one that is differentiable, easy to sample, and amenable to large-scale
GPU-parallel training. As a result, learning the sim-to-real operator becomes a tractable problem
of mapping U™ to U™, We denote by D the TWINS dataset distribution over all collected tuples
(h,&,y) used for training, which gives rise to the following objective:

Esensor = EE

5 5,00

miniamize Ep¢yD {HQ(UZ””)(y) — Ugreal(y)Hﬂ . 3

This objective minimizes the functional discrepancy between the surrogate and real actuation func-
tions. It can be equivalently expressed as a reinforcement-learning problem with the reward:

o=]| 5L~ stea) ~ GO @O ®

where s, and y are sampled from D. Maximizing the expected episodic reward under this reward
function aligns with[Equation (8)] In practice, we optimize ¢ with PPO[Schulman et al| (2017). The
operator Gy is trained as a stochastic policy, defined by Gy(-) + N(0; oI), where ¢ is a learnable
parameter that gradually decays to zero during training. We adopt the standard clipped surrogate
objective:

Lppo(0) = —E¢[min (r:(0) Ay, clip(r¢(0),1 —€,14¢€) Ay)], (10)

where 7:(6) denotes importance sampling ratio, and A; is the advantage computed from the reward
r, in[Equation (9)] This yields stable updates under non-differentiable dynamics. We provide pseudo

code for the training algorithm in

5 EXPERIMENT

Our experimental evaluation comprises two parts: [Section 3. 1|evaluates GapONet ’s zero-shot gen-
eralization to unseen robots and motions;[Section 5.2| measures improvements in humanoid locomo-
tion stability through online residual compensation on hardware.

5.1 ZERO-SHOT MOTION TRACKING

GapONet can generalize to unseen target joint-position sequence (motion) under the branch—trunk
architecture. To test this capability beyond our dataset TWINS, we collected an unseen-motion test
set of 100 sim-real pairs: 35 sequences at 0 kg, 23 at 1 kg, 22 at 2 kg, and 20 at 3 kg. These
data are intentionally kept out of the training set in order to further test the model’s generalization
performance on unseen payload conditions. The test set also spans three lower-body gaits in a 6:3:1
ratio for static stance, squat, and locomotion. For quantitative assessment, we report Large Gap
Ratio (the percentage of frames whose error exceeds a predefined threshold), IQR (the interquartile
range of the gap over all motions), and Gap Range (the framewise gap range from minimum to
maximum).

In this motion tracking setting, the trained GapONet takes simulator-side inputs (action, payload,
joint position, and joint velocity) to produce a corrective a’, + Aay, which is added to the simula-

sim
tor’s command to obtain s’;"! and compared against time-synchronized real measurements s’"'. We

real *

Under review as a conference paper at ICLR 2026

benchmark GapONet with four baselines: (i) an MLP learned dynamics model (He et al., 2025,
(i1) a Transformer learned dynamics model that exploits temporal context better, (iii) system identi-
fication, a classical approach to bridging the sim-to-real gap, and (iv) PD control with official gains.
Each experiment is repeated multiple times, and we report the mean and standard deviation in the
table. As shown in[Table 1| GapONet attains the best or tied-best scores on nearly all metrics, with
a pronounced improvement in LGR. These results indicate smoother, more controllable zero-shot
gap bridging than the learned dynamics baselines and consistent gains over system identification
across motions from multiple robots.

Table 1: Zero-shot sim-to-real gap on unseen-motion test set across four payloads.

Method Okg 1 kg

LGR(%) IQR(}) Range(l) LGR(%) IQR(l) Range(])

@3] @3]

PD control 127533 0.138%0-007 (.538%0:019 10 6101 (,139%0:028 (66740011
MLP 10‘0i048 0'108i0A012 0'480i0A088 10.8i0'1 0'125i0.002 0.589i0'029
Transformer 9.55+0-3 0.127%0:014 () 465%0.067 5 604 0.140%0-005 (.525%0.041
Domain Randomization 3.17%0:6 0.119%0:010 () 548+0-066 - - -
System Identification 124%03 0.141%0:015 50510032 9 o1 #1:0 (140%0:029 (0 609*0-122
Network-based SysID ~ 12.5F006 01540019 0,441 +0-001 131065 (9, 199*0:031 5380-002
Kernel-based SysID 1335014 015550019 (49720006 g gqt2:37 () 1p9E0-015 () 588+0-002
GapONet (Ours) 0.09+0-03 (,093+0-016 44940117 22011 (,115%0-013 () 537+0-148
Method 2kg 3kg

LGR(%) IQR() Range() LGR(%) IQR({) Range(])

®)

PD control 11.2%01 020510001 (0 625%0-038 1 801 () 499F0-008 () 647+0-060
MLP 10.8%01 0.252£0.003 (60 £0.023 |9 5£0.9 0.460%0-013 ()68 L0-060
Transformer 0.44%03 (.140%0-002 (,60610040 9 g2*0-1 (9 416%0:002 (57310178
Domain Randomization - - - - - -
System Identification 9.5307 0.193%0:102 06010031 12105 (0.494%0-003 () 611£0-127
Network-based SysID 12.8%0-05 ,198+0-001 () 0gt0-001 13 5£0-5 (9 415+0-074 () gp+0-074
Kernel-based SysID 8.88%F123 (0.183%0-001 () 618+0:005 g 45+0.06 (§ 478+0-075 () (5+0-51
GapONet (Ours) 0.390-10 0,161%0:004 (57850112 84023 (,317%0-005 (,498+0-157

5.2 LOCOMOTION TRAJECTORY TRACKING

[Section 5.1]demonstrates the generalization and gap-solving capabilities of GapONet, but improv-
ing upper-body tracking alone is insufficient to prove system-level benefits. For broader humanoid
applications, lower-body motion must also be considered. As shown in[Section 3.3] lower-body gaits
have minimal impact on upper-body motion distributions, while upper-body compensation affects
the lower-body dynamics through coupled torques and contact forces, influencing the center of mass
trajectory (Zhang et al.| 2025). Motivated by this asymmetry, we further evaluate GapONet ’s abil-
ity to preserve lower-body locomotion stability by correcting upper-body discrepancies. To this end,
we deploy GapONet as an online residual compensator on hardware, enabling it to refine upper-
body actions in real time and thereby improve lower-body dynamics during locomotion. At each
time step, GapONet receives real-side inputs (action, payload, joint position, and joint velocity)

and predicts a corrective term (Aay). The executed command is then computed as a; = al,,; — Aay,

which is applied to the robot to obtain the next real state s’!. This state is compared against the
time-aligned simulated state sﬁi;l. More details in
We provide both qualitative and quantitative results to evaluate the performance of GapONet. We
conducted tests on 14 motion sequences (7 at 0 kg and 7 at 1 kg payloads) using a previously unseen
Unitree H1-2 robot. For quantitative assessment, we report Trajectory Consistency (velocity dis-
crepancy between simulation and real data), Smoothness (mean acceleration gap), and Robustness
(per-joint gap with added noise). Each experiment was repeated multiple times, and the results are

Under review as a conference paper at ICLR 2026

Table 2: Sim-to-real gap in locomotion trajectory tracking on an unseen humanoid robot.

Method Trajectory Consistency ({.) Smoothness ({) Robustness ({)

Okg 1kg Okg kg 0 kg 1 kg
PD control 00331982 97 49+1.057 537610257 95 76%0-277 10 16E0-007 1(.14%0-026
MLP 19.18%0:919 g g +1.560 53.48%0:343 95 55+0.361 () 15%0.027 10 14+0-024
Transformer 19.13%0:689 99 05%1-576 53 570290 96 560385 () 14F0-007 1(),16+0-012
System Identification ~ 19.16%0-459 28 591343 24,99£0-298 95 160578 0 14+0-011 10 17+0-008
GapONet (Ours) 18.78F1147 232355245 533650456 25,08*F0151 10.13F0-107 10.14+0-017

Values are reported as mean with superscript & standard deviation (three decimals). The best result in each
column is highlighted in light green and bold.

presented as mean and standard deviation to ensure validity. Detailed metric calculations can be

found in[Section A7l

Results in show that GapONet outperforms other methods in trajectory tracking, main-
taining excellent performance even with payloads, and exhibiting the smallest error growth. In
qualitative analysis, as shown in [Figure 4] when a humanoid robot follows the same trajectory from
the same starting point with identical commands, the real execution trajectory (depicted by the white
lines) exhibits significant deviations. Robots without the residual model show frequent tilting and
large trajectory shifts, while the policy with GapONet follows better. Full video demonstrations
and more details can be found in and the supplementary material.

(a) Trajectory tracking w/o 8apONet " . '3 - 3 - % h 3 j

(b) Trajectory tracking with GapONet M S . - v :_v_ﬁr‘ .. |

Figure 4: Locomotion trajectory tracking. (a) shows trajectory tracking using PD control, where
the path (white line) deviates significantly, and the robot’s torso tilts drastically, indicating instability.
(b) shows the full-body motion after upper-body correction with GapONet. Although there is still
some rightward deviation, the trajectory is much more stable, and the robot’s torso remains upright.

These results collectively demonstrate the generalization and gap-solving capabilities of GapONet.
It not only outperforms current baselines on unseen motions under different payloads but also
achieves higher stability in lower-body locomotion on an unseen robot, laying the foundation for
improved performance in humanoid loco-manipulation tasks.

6 CONCLUSION

We present an end-to-end data-collection pipeline and curate 120+ hours of paired sim-real data
across multiple robots. We characterize payload-related parameters, compare sim-to-real gaps across
simulators, and assess the impact of lower-body actions on whole-body behavior. We then learn a
payload-conditioned nonlinear operator GapONet mapping simulation context functions to residual
actions for hardware. On zero-shot motion tracking, the large-gap ratio is 0.09%, with improved
robustness and smoothness in locomotion trajectory tracking, strengthening the basis for humanoid
loco-manipulation. Future work and limitations are discussed in

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The dataset used and planned for release in this work has been fully anonymized and does not contain
any personal or individually identifiable information, but rather consists of a collection of publicly
accessible content. The paper does not include any analysis, reporting, or disclosure of private user
details, and care has been taken to ensure that all data handling aligns with privacy regulations and
ethical guidelines.

REPRODUCIBILITY STATEMENT

We include real-world experimental footage to substantiate the reported results and release a sub-
set of sim-real paired data for cross-validation; both are provided in the supplementary materials.
Key implementation details and experimental settings are described in the main paper (Section 4|

and supplementary materials

REFERENCES

AgiBot-World-Contributors, Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng,
Shenyuan Gao, Xindong He, Xuan Hu, Xu Huang, Shu Jiang, Yuxin Jiang, Cheng Jing, Hongyang
Li, Jialu Li, Chiming Liu, Yi Liu, Yuxiang Lu, Jianlan Luo, Ping Luo, Yao Mu, Yuehan Niu,
Yixuan Pan, Jiangmiao Pang, Yu Qiao, Guanghui Ren, Cheng Ruan, Jiaqi Shan, Yongjian Shen,
Chengshi Shi, Mingkang Shi, Modi Shi, Chonghao Sima, Jianheng Song, Huijie Wang, Wenhao
Wang, Dafeng Wei, Chengen Xie, Guo Xu, Junchi Yan, Cunbiao Yang, Lei Yang, Shukai Yang,
Maoqing Yao, Jia Zeng, Chi Zhang, Qinglin Zhang, Bin Zhao, Chengyue Zhao, Jiaqi Zhao, and
Jianchao Zhu. Agibot world colosseo: A large-scale manipulation platform for scalable and
intelligent embodied systems, 2025.

Karl Johan Astrém and Peter Eykhoff. System identification—a survey. Automatica, 7(2):123-162,
1971.

Qingwei Ben, Feiyu Jia, Jia Zeng, Junting Dong, Dahua Lin, and Jiangmiao Pang.
Homie: Humanoid loco-manipulation with isomorphic exoskeleton cockpit. arXiv preprint
arXiv:2502.13013, 2025.

Filip Bjelonic, Fabian Tischhauser, and Marco Hutter. Towards bridging the gap: Systematic sim-
to-real transfer for diverse legged robots. arXiv preprint arXiv:2509.06342, 2025.

Zina Boussaada, Octavian Curea, Ahmed Remaci, Haritza Camblong, and Najiba Mrabet Bellaaj.
A nonlinear autoregressive exogenous (narx) neural network model for the prediction of the daily
direct solar radiation. Energies, 11(3):620, 2018.

Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei Wang. Understanding domain randomiza-
tion for sim-to-real transfer. arXiv preprint arXiv:2110.03239, 2021.

Thomas Oliver de Jong, Khemraj Shukla, and Mircea Lazar. Deep operator neural network model
predictive control. arXiv preprint arXiv:2505.18008, 2025.

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for data-
efficient learning in robotics and control. IEEE transactions on pattern analysis and machine
intelligence, 37(2):408-423, 2013.

Nolan Fey, Gabriel B Margolis, Martin Peticco, and Pulkit Agrawal. Bridging the sim-to-real gap
for athletic loco-manipulation. arXiv preprint arXiv:2502.10894, 2025.

Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi, Yanjiang Guo, Yichen Liu, and Jianyu
Chen. Advancing humanoid locomotion: Mastering challenging terrains with denoising world
model learning. arXiv preprint arXiv:2408.14472, 2024.

Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris Kitani, Changliu Liu, and Guanya

Shi. Learning human-to-humanoid real-time whole-body teleoperation. arXiv preprint
arXiv:2403.04436, 2024.

11

Under review as a conference paper at ICLR 2026

Tairan He, Jiawei Gao, Wenli Xiao, Yuanhang Zhang, Zi Wang, Jiashun Wang, Zhengyi Luo, Guanqi
He, Nikhil Sobanbab, Chaoyi Pan, et al. Asap: Aligning simulation and real-world physics for
learning agile humanoid whole-body skills. arXiv preprint arXiv:2502.01143, 2025.

Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environ-
ments. arXiv preprint arXiv:1707.02286, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359-366, 1989.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1-97, 2023.

John G Kuschewski, Stefen Hui, and Stanislaw H Zak. Application of feedforward neural networks

to dynamical system identification and control. IEEFE transactions on control systems technology,
1(1):37-49, 1993.

Shashank Kushwaha, Jaewan Park, Seid Koric, Junyan He, Iwona Jasiuk, and Diab Abueidda. Ad-
vanced deep operator networks to predict multiphysics solution fields in materials processing and
additive manufacturing. Additive Manufacturing, 88:104266, 2024.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart: Noise injection
for robust imitation learning. In Conference on robot learning, pp. 143—156. PMLR, 2017.

Jae Yong Lee and Yeoneung Kim. Hamilton—jacobi based policy-iteration via deep operator learn-
ing. Neurocomputing, pp. 130515, 2025.

Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil Sreenath.
Robust and versatile bipedal jumping control through reinforcement learning. arXiv preprint
arXiv:2302.09450, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Qiayuan Liao, Takara E Truong, Xiaoyu Huang, Guy Tevet, Koushil Sreenath, and C Karen Liu.
Beyondmimic: From motion tracking to versatile humanoid control via guided diffusion. arXiv
preprint arXiv:2508.08241, 2025.

Yun Liu, Bowen Yang, Licheng Zhong, He Wang, and Li Yi. Mimicking-bench: A benchmark
for generalizable humanoid-scene interaction learning via human mimicking. arXiv preprint
arXiv:2412.17730, 2024.

Lennart Ljung. System identification. In Signal analysis and prediction, pp. 163—173. Springer,
1998.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218-229, 2021.

Sha Luo, Hamidreza Kasaei, and Lambert Schomaker. Accelerating reinforcement learning for
reaching using continuous curriculum learning. In 2020 International Joint Conference on Neural
Networks (IJCNN), pp. 1-8. IEEE, 2020.

12

Under review as a conference paper at ICLR 2026

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Jiageng Mao, Siheng Zhao, Siqi Song, Tianheng Shi, Junjie Ye, Mingtong Zhang, Haoran Geng,
Jitendra Malik, Vitor Guizilini, and Yue Wang. Learning from massive human videos for universal
humanoid pose control, 2024.

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via
reinforcement learning. The International Journal of Robotics Research, 43(4):572-587, 2024.

Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real reinforcement learning for de-
formable object manipulation. In Conference on Robot Learning, pp. 734-743. PMLR, 2018.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain
randomization. In Conference on Robot Learning, pp. 1162-1176. PMLR, 2020.

AJ Miller, Fangzhou Yu, Michael Brauckmann, and Farbod Farshidian. High-performance re-
inforcement learning on spot: Optimizing simulation parameters with distributional measures.
arXiv preprint arXiv:2504.17857, 2025.

Fabio Muratore, Fabio Ramos, Greg Turk, Wenhao Yu, Michael Gienger, and Jan Peters. Robot
learning from randomized simulations: A review. Frontiers in Robotics and Al, 9:799893, 2022.

Kyung-Mi Na and Chang-Hun Lee. Physics-informed deep learning approach to solve optimal
control problem. In AIAA SCITECH 2024 Forum, pp. 0945, 2024.

Oliver Nelles. Nonlinear system identification. Measurement Science and Technology, 13(4):646—
646, 2002.

Romeo Ortega, Antonio Loria, Per Johan Nicklasson, and Hebertt Sira-Ramirez. Euler-lagrange
systems. In Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and
Electromechanical Applications, pp. 15-37. Springer, 1998.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer
of robotic control with dynamics randomization. In IEEE International Conference on Robotics
and Automation (ICRA), 2018.

Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learn-
ing agile robotic locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 international conference on robotics and automation (icra), pp.
9784-9790. IEEE, 2019.

Jean-Jacques E Slotine and Weiping Li. On the adaptive control of robot manipulators. The inter-
national journal of robotics research, 6(3):49-59, 1987.

Nikhil Sobanbabu, Guangi He, Tairan He, Yuxiang Yang, and Guanya Shi. Sampling-based sys-
tem identification with active exploration for legged robot sim2real learning. arXiv preprint
arXiv:2505.14266, 2025.

Mark W Spong, Seth Hutchinson, Mathukumalli Vidyasagar, et al. Robot modeling and control,
volume 3. Wiley New York, 2006.

Yufang Sun. Automatic vibration control method for grasping end of flexible joint robot. Journal of
Vibroengineering, 25(8):1502—-1515, 2023.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. Robotics:
Science and Systems (RSS), 2018.

13

Under review as a conference paper at ICLR 2026

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. /IEEE transactions on
pattern analysis and machine intelligence, 44(9):4555-4576, 2021.

Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
normative data for robot manipulation, 2024.

Wenli Xiao, Haoru Xue, Tony Tao, Dvij Kalaria, John M Dolan, and Guanya Shi. Anycar to
anywhere: Learning universal dynamics model for agile and adaptive mobility. arXiv preprint
arXiv:2409.15783, 2024.

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonanthan Hurst, and Michiel Panne.
Learning locomotion skills for cassie: Iterative design and sim-to-real. In Conference on Robot
Learning, pp. 317-329. PMLR, 2020.

Zhaoming Xie, Xingye Da, Michiel Van de Panne, Buck Babich, and Animesh Garg. Dynamics
randomization revisited: A case study for quadrupedal locomotion. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4955-4961. IEEE, 2021.

Jie Xu, Eric Heiden, Iretiayo Akinola, Dieter Fox, Miles Macklin, and Yashraj Narang. Neural robot
dynamics. arXiv preprint arXiv:2508.15755, 2025.

Bohao Zhang, Daniel Haugk, and Ram Vasudevan. System identification for constrained robots.
arXiv preprint arXiv:2408.08830, 2024.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. Ad-
vances in neural information processing systems, 33:21024-21037, 2020.

Jian Zhang, Tadanobu Sato, and Susumu Iai. Novel support vector regression for structural system
identification. Structural Control and Health Monitoring: The Official Journal of the Interna-
tional Association for Structural Control and Monitoring and of the European Association for the
Control of Structures, 14(4):609—626, 2007.

Jiawen Zhang, Tao Zhao, Bin Guo, and Songyi Dian. Fuzzy fractional-order pid control for two-
wheeled self-balancing robots on inclined road surface. Systems Science & Control Engineering,
10(1):289-299, 2022.

Xiang Zhang, Changhao Wang, Lingfeng Sun, Zheng Wu, Xinghao Zhu, and Masayoshi Tomizuka.
Efficient sim-to-real transfer of contact-rich manipulation skills with online admittance residual
learning. In Conference on Robot Learning, pp. 1621-1639. PMLR, 2023.

Yuanhang Zhang, Yifu Yuan, Prajwal Gurunath, Tairan He, Shayegan Omidshafiei, Ali-akbar Agha-
mohammadi, Marcell Vazquez-Chanlatte, Liam Pedersen, and Guanya Shi. Falcon: Learning
force-adaptive humanoid loco-manipulation. arXiv preprint arXiv:2505.06776, 2025.

Wenshuai Zhao, Jorge Pefla Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737-744. IEEE, 2020.

14

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs only for grammar/style rewrites and equation/notation formatting corrections.
We appreciate the steadily improving reasoning capabilities of LLMs, which helped us identify lin-
guistic issues more quickly and maintain a more consistent scholarly style. However, all research
ideation, theoretical development and formula derivations, methodological choices, and experimen-
tal design and execution were performed exclusively by the authors. Accordingly, the LLM did not
play a significant role in research ideation or writing and should not be regarded as a contributor.

A.2 OPEN-SOURCE RELEASE

To support reproducibility and foster further research on humanoid sim-to-real transfer, we will re-
lease the full codebase, training pipelines, pretrained GapONet models, and the complete TWINS
dataset upon publication. The release includes (i) data collection and synchronization tools for
paired sim-real recording across payloads, robots, and simulators, (ii) operator-learning implemen-
tations with DeepONet-based architectures, (iii) reinforcement learning pipelines with surrogate
actuation functions and sensor predictors, and (iv) evaluation scripts for sim-to-sim and sim-to-real
benchmarking. All resources will be made publicly available under a permissive license, enabling
the community to build upon our framework, reproduce all experimental results, and extend the
dataset for broader loco-manipulation tasks.

A.3 DATA COLLECTION

A.3.1 LEGGED HUMANOID ROBOT

We collect paired sim-real data on two humanoids: the 1.8 m Unitree H1-2 and the 1.3 m Unitree
G1. Joint naming and kinematic locations are shown in In our setup, we log the full upper
body and locomotion-relevant joints (27-DoF configuration in code), along with IMU and actuator
telemetry.

ROS setup and topics Data acquisition is implemented as a ROS 2 Python node (rclpy, node
name deploy._node). The node subscribes to low-level robot state messages and publishes
torque/position commands:

» Subscriptions: LowState (joint positions/velocities/currents, IMU, wireless remote),
used to buffer sensor streams and teleop events.

* Publications: LowCmd on topic 1owcmd buf fer at 50 Hz (control period At = 20 ms).
Commands include per-joint PD terms and optional feedforward residuals (CRC is ap-
pended before transmission).

Teleoperation triggers (e.g., start/stop, emergency stop) are parsed from the wireless controller and
gate recording and command streaming.

Whatis recorded For each trial, we write files (per-trial timestamped) with the following datasets,
matching the code:

* command-time_list (s): wall-clock times when commands are produced.
e command_val_list: commanded action vectors (per 20 ms tick).
* robot/joint_time_list (s): time stamps associated with the sensed robot state.

* robot/joint_angle_list, robot/joint_velocity_list,
robot/joint_current_list, robot/Jjoint_temperature_list: actua-
tor telemetry.

* robot/imu_list, robot/ang.vel_list: IMU linear orientation proxies and angu-
lar rates.

* motion_name, current_time: metadata for the retargeted/teleop motion and file cre-
ation time.

15

Under review as a conference paper at ICLR 2026

Shoulder Joint Shoulder Joint Shoulder Joint

Arm Joint Arm Joint
Upper Arm
Elbow Joint Elbow Joint Forearm

Waist Joint o
Wrist Joint Wrist Joint Hip joint
Leg Joint

3D LiDAR Depth Camera
Shoulder Joint Moto Shoulder Joint Mota Microphone Array
Speaker
Smart Battery

{ ! Elbow Joint Motor

<&

|

\
IT
oy

fl ol
11 Waist Joint Motor X 1
Hip Joint Motor

Forearm
Hollow joint wiring of the

Hand whole machine

Contains planetary gearbox
gear drive

Knee Joint Motor

Ankle Joint Motor<<] — Ankle Joint Motor
Connecting Rod
rotation

Figure 5: Joint names and positions on Unitree H1-2 and G1 robots

16

Under review as a conference paper at ICLR 2026

Spatiotemporal synchronization We use a single monotonic clock started at node initialization
to time-stamp both the command loop and the sensor callback buffers. During acquisition, the
node executes a fixed-rate control loop (50 Hz) and performs rclpy.spin_once with a short
timeout each tick; the current monotonic time is appended to both command_time_list and
robot/joint_time_list. This yields frame-accurate alignment between the actuation stream
and the sensed state at the controller cadence. Since logging and control are co-located on the
same machine, no cross-machine NTP is required; residual jitter is bounded by the loop period and
handled in post-processing by resampling to a common time base when needed.

Libraries The implementation relies on rclpy (ROS 2), numpy, torch (policy inference/log-
ging utilities), mujoco (simulation), h5py (file I/O), and t ransforms3d (frame utilities). All
topics and message types (LowState, LowCmd, MotorState, IMUState) come from the
unitree_hg.msg package.

Depth Camera

Depth Camera Shoulder Joint Motor

Shoulder Joint Motor

Elbow Joint
Motor

Elbow Jomt
Motor

Wrist Joint
Motor

‘Wrist Jomnt
Motor

L)

Lower Body
Motor

Figure 6: Joint names and positions on RealMan WR75S robot

A.3.2 WHEELED HUMANOID ROBOT

We also collect motion execution data on dual-arm wheeled robots (RealMan). Our setup logs the
full arm joint configurations along with actuator telemetry through UDP communication using the
official RealMan APL

Communication Setup Data acquisition uses the RealMan official API with UDP communica-
tion. Position commands are sent to each arm at dedicated ports (8080, 8576), while real-time
state data is received through UDP callbacks on separate ports (8089, 8090). The system registers

17

Under review as a conference paper at ICLR 2026

callback functions to process telemetry streams containing joint positions, velocities, currents, and
temperatures.

Data Recording Structure For each trial, we save timestamped datasets in HDF5 format with the
following structure matching our dual-arm configuration:

e command-time_list (s): wall-clock timestamps when commands are issued.

e command_val_list: commanded action vectors for both arms concatenated (14-
dimensional for dual 7-DoF arms).

* robotl/joint_time_list, robot2/joint_time_list (s): sensor timestamps
for left and right arms respectively.

e robotl/joint_angle_list, robot2/joint_angle_list: joint positions in ra-
dians for each arm.

* robotl/joint_velocity_list, robot2/joint_velocity_list: joint veloci-
ties in rad/s for each arm.

e robotl/joint_current_list, robot2/joint_current_list: motor currents
for each arm.

* robotl/joint_temperature_list, robot2/joint_temperature_list: ac-
tuator temperatures for each arm.

e motion_name, slowdown_factor, current_t ime: metadata for trial identification.

Spatiotemporal synchronization We employ a unified monotonic clock initialized at data collec-
tion start to timestamp both command transmission and sensor reception. During execution, com-
mands are sent via rm_movej_canfd API calls while the monotonic timestamp is recorded for
both command and sensor streams. Since both command generation and sensor processing occur on
the same machine with shared timing, cross-machine synchronization is unnecessary. The UDP call-
back mechanism ensures frame-accurate alignment between actuation commands and sensed states
at the controller frequency. Residual timing jitter is bounded by the loop period and handled through
post-processing resampling when temporal alignment is required for analysis. The system contin-
uously monitors joint enable flags and error codes, with joint disable events prioritized as critical
errors and other malfunctions classified as general errors, triggering immediate data cleanup and
graceful termination.

A.3.3 DATA SELECTION

We describe the amount of collected data in[Section 3.2]and provide collection details in[Section A3}

All data in these two sections are used as the training set. To evaluate the generalization ability of
our operator, as stated in[Section 5.1] we additionally collected an unseen-motion test set consisting
of 100 sim-real pairs: 35 sequences at 0 kg, 23 at 1 kg, 22 at 2 kg, and 20 at 3 kg. The test set
further spans three lower-body gaits in a 6:3:1 ratio for static stance, squat, and locomotion.

All motions used for collecting this test set are never used in the training dataset. To confirm the
distinction between the two sets, we conduct t-SNE visualization and KS statistical testing
lure 7). The results show that in the three motion-critical dimensions—dof_position, dof_velocity,
and torque—the test dataset satisfies the zero-shot requirement described in our experiments.

A.4 GAP ANALYSIS

A.4.1 PD CONTROL

We use a basic joint-space proportional—derivative controller to track commanded trajectories with
low latency. The proportional term corrects position error (stiffness), and the derivative term pro-
vides damping to reduce overshoot:

T = Kp (QCmd _Q) + Ky (QCrrld_Q)- (11)

18

Under review as a conference paper at ICLR 2026

t-SNE (perplexity=15) t-SNE (perplexity=30) t-SNE (perpl 50)
eal_dof_positi (real_dof_positions) (real_dof_positions) Summary for real_dof positions
. o . Tain (n-11238) Tai (n-11298) .
] A Testin-100) 0 A Tt O rain: 11208 sequences
s0 + Test: 100 sequences
20 o « Features: 825 dims
~ 25 - - “ L)
o, o oo Y . S
7 o | 7o o 7ol we o0 n KL Div: 4,2118 + 5.5791
. < - B - o e, 'y * Tean Wasserstein: 01437 0.1628
201 0] e e e « Mean KS Stat: 0.5777 + 0.1886
s . DAY
401 20 * .
75 . S)gmhcant features: 50/50 (p<6.05)
* Mean p-value: 6.000340
R T T L N T T T % @ w0 » @ @ o
tsNE1 ESNE1 N1
+SNE (perplexity=15) t-SNE (perplexity=30) +-SNE (perplexity=50) .
(real_dof velocities) (real_dof velocities) (real_dof velocities) B8 (0P G C e D
L - e - Train (n=11298) | Train (n=11298) Train (n=11298) Data:
o - . A st (n=100) A Test(n=100) w0 A Test(n=100) « Train: 11298 sequences
- - - - 41 ., + Test: 100 sequences
“ly w3, e s] . Y 2 « Features: 825 dins
2 e
o -. o ha o o statistics:
2o . .| g0 e T o g o « Mean KL Div: 3.1996 + 4.4883
Saf = - 2] -"e | 2 « Mean Wasserstein: 0.0074 + 0.0167
- 20 A * Mean KS Stat: 6.3269 + 0.2231
o . 40 -
50 . w0 - Tests:
N 601 « Significant features: 46/50 (p<0.65)
80 50 * Mean p-value: 6.010293
P T & @ 2 G » © @ 0 N 1) B} W
ESNE 1 ESNE 1 LSNE 1
t-SNE (perplexity=15) t-SNE (perplexity=30) t-SNE (perplexity=50) Sunmary for real_dof torques
3% (real_dof_torques) (real_dof_torques) (realidnf}orques) o
e (ne 112081 - w© o 11208 - Data:
N 3 R ,\ b 7> Train: 11298 sequences
" - i : Tests 100 sequences
50 o . (d + Features: 825
= 10 ’
o T e o oy 3 e Statistics:
FEIS H Yoo 4L 3d « Mean KL Div: 2.6660 = 4.0869
3 =) % NbYerw * Mean Wasserstein: 3.2605 = 5.1926
25 ‘ L4 ", - * Mean KS Stat: 0.3277 + 0.2050
- 2 2 ¢ % s
50 “ Tests:
40 Slgmh(an(features: 48/50 (p<0.05)
- 40 n p-value: 0.009488

Figure 7: The t-SNE visualization and qualitative analysis results of the distribution of the train and
the test dataset.

Here gcma and ¢emq are the desired joint position/velocity, ¢ and ¢ are the measured states, and
K,, K, (typically diagonal, positive) set tracking stiffness and damping. Optional gravity/feedfor-
ward terms can be added when needed, but the above is the minimal PD law.

In equation Kp(gema — ¢) + Kq(dema — ¢) is the standard joint-space PD action (typically diag-
onal gains). The extra linear terms K, ¢ and K tanh(g/e) model viscous damping and smoothed
Coulomb friction, respectively; € > 0 regularizes the sign function to avoid chattering. The scalar
(or diagonal) P denotes the payload descriptor (e.g., mass/COM proxy). The bias K},ay10ada P pro-
vides a load-dependent offset, while K p 4, P sin g and K p o5 P cos g capture load-scaled gravity/-
COM components in joint coordinates. Velocity/acceleration couplings Kp;P¢ and Kp;P§ ad-
dress payload-amplified damping/inertial effects. The constant 7y compensates residual biases (e.g.,
calibration offsets).

Start from PD only (K, K4), add K,, K. to reduce overshoot and stick—slip, then introduce
Kpayloads Kpsiny Kpcos for static/load gravity, and Kpy, Kpg for dynamic load effects; keep all
gains bounded and ¢ small enough to smooth tanh(-) without degrading response.

A.4.2 MORE ANALYSIS RESULTS

We present additional qualitative results here |Figure 8|and |Figure 95 further videos are provided in
the supplementary materials.

A.5 NONLINEAR OPERATOR

What is an operator? In contrast to learning a finite-dimensional mapping f : R™ —R™, operator
learning targets a mapping between function spaces, G : U — V, where the input v € U is itself
a function and the output G () € V is another function. Practically, we observe w via its sensor
samples at locations {z;}™: {u(z;)}, and we query the output at arbitrary y-locations to obtain
values G(u)(y). This setup makes the learning objective function-to-function rather than pointwise
regression, and enables generalization to unseen inputs v and query points y.;

Why not “learn a function” directly? Classical approximation fits (x,y) pairs for one target
function. Operator learning instead aims to recover the rule that maps any admissible input func-
tion u to an output function G(u). To make this learnable from data, we draw a diverse family
of input functions—e.g., samples from Gaussian Random Fields (SE/RBF kernels with tunable
length-scales/variances) and orthogonal polynomial expansions (e.g., Chebyshev with random coef-

19

Under review as a conference paper at ICLR 2026

Model Fit Quality vs Payload (All Joints)

Lo l
‘ 4
08 & T +
[I I
06
: I
. |
04 ¥
4 3
¥
02
00
0 1 2 3
Payload

Derivative Gain vs Payload

)
L

=35

'g —m— left_shoulder_pitch_joint
2z 30 right_shoulder_pitch_joint
] t_elbow_joint

825 right_elbow_joint

]

M

\

\V-C\H

1 2 3

Payload

4~ left_shoulder_pitch joint
tight_shoulder_pitch_joint
left_shoulder_roll_joint
tight_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint

4 right_elbow_joint

left_wrist_roll_joint

right_wrist_roll_joint

+
+
+
+

Prediction Error vs Payload (All Joints)

R

—
—s%
—

°

1 2 3
Payload

Payload Sensitivity vs Payload

tHithd

1

2
Payload

left_shoulderpitch_joint
right_shoulder_pitch_joint
left_shoulder roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint
right_wrist_roll_joint

left_shoulderpitch_joint
right_shoulder_pitch_joint
left_shoulder_roll_joint
right_shoulder_roll_joint
left_shoulder_yaw_joint
right_shoulder_yaw_joint
left_elbow_joint
right_elbow_joint
left_wrist_roll_joint

right_ wrist_roll_joint

Joint

Kp (Proportional Gain)

left_elbow_joint
left_shoulder_pitch_joint
left_shoulder_roll_joint
left_shoulder_yaw_joint
left_wrist_roll_joint
right_elbow_joint
right_shoulder_pitch_joint
right_shoulder_roll_joint
right_shoulder_yaw_joint

right_wrist_roll_joint

Figure 8: Data analysis on payload-related parameters

Proportional Gain vs Payload

—e— Ieft_shoulder pitch_joint '
right_shoulder_pitch_joint
—e— left_elbow_joint
—e— right_elbow_joint
7

1 2
Payload

Payload Sensitivity Heatmap

0.0

0.0 -0

0.0 X

0.0 [

0.0 BE

0.0

0.0

o 1 2 3
Payload Level

ficients)—so the model is trained across a rich subset of I/ rather than around a single curve. This

ensures the learned mapping reflects an operator over a function class, not merely a single function
fit.

Low-rank/separable viewpoint Many learned operators can be written (or approximated) in a
separable, low-rank form
P
Gu)(y) = > bir(u) te(y), (12)
k=1
where by (u) are functionals of the input function (computed from its samples) and ¢, (y) are basis

functions over the query variable y. This mirrors RKHS/separable-kernel and POD/SVD intuitions
and clarifies the roles of “encode the input function” versus “encode the query location.”;

We adopt this operator perspective to learn GapONet, a mapping from simulation context func-
tions to hardware-space responses, so that the model predicts an output function of state/time given
an input function describing simulated context—setting the stage for the DeepONet factorization
introduced next.

A.6 METHODS

A.6.1 WHY DO WE CHOOSE DEEPONET?

Our operator must (i) ingest simulation context functions with explicit payload conditioning, (ii)
answer at arbitrary query points (current actions, payload) across heterogeneous robots and sim-
ulators, (iii) train under a closed-loop RL objective without requiring paired function-to-function
supervision at every query, and (iv) support low-latency on-board inference.

We have considered some alternatives and trade-offs, for example:

* Fourier/Neural Operators (FNO family) (Li et al., 2020; [Kovachki et all, [2023): excel on
fixed grids with spectral convolutions, but rely on discretization tied to resolution/geom-
etry; cross-morphology deployment (different joint layouts) typically needs regridding or
retraining, and spectral blocks add latency on embedded hardware.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Same motion with different lower-body gaits (b) Same motion with different payloads (c) Same motion with different simulators

Figure 9: Results on all upper-body joints about the same motion with different payloads, simula-
tions, and lower-body gaits.

21

Under review as a conference paper at ICLR 2026

* Graph/Galerkin/UNO-style operators (Kovachki et al. [2023): adapt to irregular mesh-
es/graphs but require topology-aligned parameterization; when robots or sensor layouts
change, weights/graphs must be remapped. Querying arbitrary state—time points is less
natural than function—query separation. Capacity is high, but so are data and compute
demands.

* Physics-informed neural operators (PINO): leverage known PDE residuals for sample effi-
ciency, yet our residual field (sim—real actuation gap with delays/saturation) lacks a clean
PDE form, making hard constraints difficult to specify and risking model-bias.

As for DeepONet’s branch—trunk decomposition (Lu et al., [2019; |2021) aligns directly with our
problem: the branch encodes context (multi-sensor histories, simulator traces, payload), and the
trunk indexes continuous query variables (state/time/joint), producing residual action/torque values
via a simple inner product. This yields (1) continuous space—time queries without grid lock-in,
(2) clean conditioning on payload and robot-specific context without graph/topology rewiring, (3)
RL-friendly training since supervision can be placed at arbitrary queried points along closed-loop
rollouts, and (4) low-latency deployment because inference reduces to lightweight embeddings plus
an inner product. Moreover, DeepONet comes with an operator-level universal approximation the-
orem that provides formal capacity guarantees for nonlinear operators (Lu et al., 2021)), which we
found attractive given the diversity of simulators, payloads, and hardware.

In summary, we choose DeepONet because its function—query factorization, theoretical operator ap-
proximation guarantees, and efficient, payload-conditioned querying match our requirements better
than grid-bound spectral operators, topology-coupled graph variants, or physics-informed schemes
that presume known PDE structure (Lu et al., 2019} 2021} Li et al., 2020} |[Kovachki et al.l [2023).
Our objective is to demonstrate that operator learning can achieve a mapping from simulation to
reality, thereby aiding sim-to-real transfer. Determining the optimal operator architecture is outside
the main scope of this work.

A.6.2 THE DEFINITIONS OF SYMBOLS

+ Simulator f5™. We formalize simulators (e.g., Isaac Gym, MuJoCo) as functions f5™ :
S x A — S that compute the next state from the current state and an action. The state space
S typically includes joint parameters (g, ¢), robot base states (e.g., root angular and linear
velocities), and other environmental variables. In our framework, we decompose a state
s € S based on its influence on joint actuation: s* denotes the states that directly influ-
ence the actuation of the joints, p represents payload, and s°"" encompasses all remaining
states that do not affect joint actuation. Consequently, the simulator can be expressed as
fim(s,a) = fim(s°ther & p a). To focus on the joints, we define the desired state tran-
sition as A fSM(s¢,x) = (f5m(s°, s€,p, a,)); — 55, where the subscript j extracts only
the joint-related states (position and velocity) for transition computation, excluding unin-
fluential states such as root velocities.

+ Clarification on States s’ and s¢. The description in primarily uses s¢ to denote
states, irrespective of the domain (simulation or real). However, specific equations (e.g.,
IEquation (9)) employ s! to emphasize that the state belongs to a trajectory at a specific time
t in TWINS. Each trajectory forms a dynamic path &;, and thus s’ corresponds precisely to

&t
s8¢,

 Actuation Functions US™, Ure! and U pM. The actuation function Ugim is defined as
Afsm‘(sfiw -) following Its output Ugim(a, p) = Afsnn(sfim, (a, p)) represents

the concatenation of delta joint position and delta joint velocity in R?”/, where .J is the
total number of joints. The real actuation function U, ge“l shares a similar formulation and

output dimension, but is defined using the real-world dynamics ™ in place of f5™. In
contrast, the surrogate actuation function U;"™ also outputs values in R27, but differs in
representation: it is the output of a sensor predictor, implemented as a neural network, with
inputs from h-step joint position, velocity and action history .

* Sensor Values, Branch Net 5 and Trunk Net 7. Sensor values represent the state tran-
sitions of joints under a specific dynamics parameter £.The concatenated sensor vector

22

Under review as a conference paper at ICLR 2026

S(Uy) lies in R2¥7 where 2.J corresponds to the position and velocity changes across .J
joints, and k denotes the number of sensor locations.For details on the computation of .S,
refer to[Section 4.3 The Branch Net 5 and Trunk Net 7" are both implemented as standard
multi-layer perceptrons (MLPs); their specific configurations are provided in[Section A-§]

Operator, G and Gy. Gy is an intermediate representation formed by the element-wise
dot-product of the Brand Net 53 and the Trunk Net 7, where 6 denotes the combined pa-
rameters of both 5 and 7. If the dynamics parameter £ can be represented as a real-number
vector, then for any input y, G is deterministic, differentiable, and amenable to direct opti-
mization. However, rather than supervising Gy directly, we interpret its outputs not as state
transitions, but as delta actions. We subsequently introduce A f*'™ to formulate G as the fi-
nal operator. This design choice is intrinsically linked to our decision to use Reinforcement

Learning (RL) in place of supervised learning; see[Section A.6.3|for further justification.

A.6.3 WHY DO WE CHOOSE REINFORCEMENT LEARNING

Computational Prohibitivity. Direct computation of sensor values for each ¢ is computationally
prohibitive under our setting, which requires evaluating the actuation function Uy at k fixed locations
{x;}%_,. To illustrate, consider a continuous motion execution involving a fixed trajectory of x
and ¢ correlated with the current motion playback time. Direct evaluation of sensor values would
require saving a simulation checkpoint at every timestep ¢, executing all {z;}¥_, in simulation, and
retrieving the corresponding values. Subsequently, all parallel environments would need to be reset
to £(t) before proceeding with the execution of x from the motion incorporating corrections from
our operator. This process significantly impedes execution efficiency: computing k sensor values
would slow down the motion trajectory execution by at least a factor of 1/k. To mitigate this, we
introduce a sensor predictor, thereby constructing a surrogate actuation function space.

Non-Differentiable Simulators. Once the surrogate actuation function space is constructed, the
remaining challenge is to optimize the operator that minimizes the multi-step transition discrepancy
between simulation and the real robot. However, this optimization objective depends on the simu-
lator’s internal dynamics—contact events, actuator nonlinearities, sensor latency, and frictional dis-
continuities—which are inherently non-differentiable. As a result, a supervised-learning formulation
would require backpropagating through the simulator, which is infeasible under GPU-based physics
engines such as Isaac Gym/Isaac Sim. In contrast, reinforcement learning treats the simulator as a
black-box transition model and optimizes the operator purely from trajectory-level rewards, without
requiring differentiability. This makes RL the only practical and efficient optimization framework
for training our operator in the presence of non-smooth, non-differentiable sim-to-real dynamics.

A.7 EXPERIMENT

A.7.1 METRICS

We report two metric families: (i) gap distribution (Table 1: large-gap ratio(LGR), interquartile
range (IQR), and gap range) and (ii) kinematic quality of lower-body (Table 2: smoothness, trajec-
tory consistency, and robustness). All metrics are computed per run and then aggregated by payload
mass (the environment groups trials by mass buckets).

Let greal, g5im be joint trajectories (or end-effector signals) sampled at uniform At. Define the gap
gt = ¢ — g™ and its absolute value |g;|. Central-difference operators approximate derivatives.

Large-gap ratio (Table 1) Fraction of samples with absolute joint error exceeding a threshold
(0.5 rad by default):

[{(£,4) = |geal > 7}|

|{(t,z)}| , 7 =0.5rad. (13)

Large-gap ratio =

Captures the frequency of serious deviations.

We adopt the commonly used 0.5 rad threshold, which prior work [Zhang et al| (2022)); (2023)
employs as a perturbation magnitude for identifying severe tracking failures rather than normal

23

Under review as a conference paper at ICLR 2026

Algorithm 1: GapONet Training with PPO in Simulation

Input: Simulator f*™, real-world dataset D, learning rates o, a4, parallel environment count B, PPO
parameters Luufter, 7Y, A, Operator training steps N, sensor model training steps Ngensor, history length Nj,

Initialize: Network parameters 6 for Gg, ¢ for Sy, PPO value function Vi, PPO buffer Dppo

// Sensor Model Pre—training Phase

for iteration < 1 t0 Nyepsor do

Sample initial states sg € REx2J, // Joint positions and velocities

Sample task parameters p € R”; // P=1 for payload in our settings

Sample action sequence {a¢ }I'_) where a, € R?*’

// Rollout in simulator to collect dynamics data

fort < Otoh — 1do

‘ St41 < [(8¢, a4, p); // State transition in simulation
end
// Compute sensor model training targets
I+ {(st,ar) | t=0,...,h —1}; // History input
Ly < MSE(sp, — sp—1,54(1)); // Predict state transitions
@ — O —agVeLley; // Update sensor model

end

// Operator Learning Phase with PPO

Initialize all environments as done

for iteration <— 1 to N do

foreach environment marked done do
Sample trajectory from D with p € R, {a;:} € RE*7, {s%,} € RE*S
Reset environment to initial state sO,

end

// Compute operator inputs and corrections

Construct history input / from recent states and actions

Compute surrogate sensor values: S < Sy (1)

Form query vector: y < (at,p)

Compute action correction: Aas < Gg(h,y); // Using [Equation (5)

// Step simulator with corrected actions

Adgim <+ Af™(sh, ar + Aag, p)
i; // Using |Equation (9)

Compute reward: ¢ < —w || (slh! — sleu) — Adgim|
// Store experience for PPO
Add transition (8%, Aaz, 7¢, s to Depo
if iteration mod Ly, = O then
0,1 <+ PPO_Update(Dpro, v, A, a9); // Update policy and value networks

Clear buffer: Dppo < ()
end

end
Output: Trained parameters 6%, ¢*, 1™

fluctuations. This value is intentionally set far above typical joint-tracking errors in robot control.
Rrrors exceeding 0.5 rad correspond to catastrophic sim-to-real failures, making LGR a meaningful
indicator of such gaps.

To verify that the 0.5 rad threshold meaningfully reflects the natural distribution of the sim-real
gap, we analyzed the entire dataset[Figure T0} The histogram shows that while most gaps are small,
there is a clear heavy tail, indicating that large deviations do occur and should be detected by a
threshold-based metric. The CDF curve further confirms that about 20% of all samples lie above
0.5 rad, meaning the threshold captures a substantial portion of true large-error events rather than
rare outliers. The percentile plot shows that 0.5 rad lies between the 75th and 90th percentiles,
aligning with the onset of severe deviations. Finally, the per-payload density curves demonstrate
that this heavy tail persists across payloads, so 0.5 rad consistently separates normal fluctuations
from genuinely large tracking failures. Together, these results show that the 0.5 rad threshold is not
arbitrary but well matched to the intrinsic structure of the gap distribution.

Gap IQR (Table 1) Dispersion of absolute errors via the interquartile range:
g:{lgt,l| : tzla"'vTa 7::1"""]}7 IQR:QO75(g)_Q025(g) (14)

24

Under review as a conference paper at ICLR 2026

Sim-Real Gap Distribution (All Data)

— : == Median: 0.408 rad
LGR =21.22% Q75: 0.479 rad

i
1
1
40 i —— LGR Threshold: 0.5 rad
T O P90: 0.509 rad
23 1
‘® 1
c 1
© 1
ax i
1
1
10 1
| ﬂ
%.0 0.1 0.2 03 0.4 0.5 0.6 0.7
Sim-Real Gap (rad)
Cumulative Distribution Function (CDF) LGR Sensitivity to Threshold
10 LGR = 19.82% 100 —— LGR vs Threshold
> == 0.5 rad threshold
E 08---—m—mmmmmmmm e 80
Q
2 -
g 0.6 g o0 4
] 14
-% 04 9 w
Z _ (er=p1229)
S 02 20
° / COF
00 Threshold: 0.5 rad 0 Q7
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Sim-Real Gap (rad) Threshold (rad)
Percentile Distribution Distribution by Payload
0Okg (LGR=12.6%)
Pos| | oss2 35 1k§ ELGR:lS 1%;
P95 | | 0.635 30 2kg (LGR=53.9%)
3kg (LGR=17.5%)
Peo | | o500 2 —— 0.5 rad threshold
G 20
P5 _ ey == 0.5 rad threshold o
00 01 02 03 04 05 06 00 01 02 03 04 05 06 07
Gap Value (rad) Sim-Real Gap (rad)
Figure 10: Sim-real gap distribution analysis.
Lower is a tighter error distribution.
Gap range (Table 1) Extreme-case spread of absolute errors:
Range = max(|g|) — min(|g|). (15)

Highlights worst-case variability.

Trajectory consistency (Table 2) Discrepancy in the rate-of-change of velocity (a curvature-like
signal) between real and simulated motion:

,U_treal — Vq_treal’ ,U_tsim _ V(]-tsjm, K_treal — vv_treal’ H_tSim — VU_tSim, (16)

T
1 .
TrajectoryConsistency = T E |/{{ea1 — &P (17)
t=1

Smaller values indicate that the simulator reproduces the evolution of motion patterns more faith-
fully.

Smoothness (Table 2) Discrepancy in accelerations between real and simulated trajectories:
T
1 real sim real 2 real sim 2 sim
Smoothness = T E]at —ay™|, a; = Vo™, ai" = Vg, (18)
t=1
Lower scores mean closer kinematic smoothness to real motion.

25

Under review as a conference paper at ICLR 2026

Robustness (Table 2) Sensitivity of the sim-real gap to measurement noise. For noise levels
o€{ol,...,0k}

T

Robustness = — Z Z ’ real | e (sim éﬁ’“)) — Gt] ; (19)
k=1 t:l

g =g — g™, M &P ~ N(0,03). (20)

Smaller values indicate that the evaluation is stable under realistic perturbations.

Each motion is run at least six times. For each run, we compute every metric (optionally per joint and
then averaged); otherwise, only real-stream statistics are used as specified by each metric. We then
aggregate runs by payload/mass buckets and report means with standard errors. All three metrics
are discrepancy-style measures; by construction, smaller values indicate better performance.

A.7.2 LOCOMOTION TRAJECTORY TRACKING

We generate locomotion commands using a phase-based trajectory: a normalized phase ¢ €
[0,1) advances at the control rate and indexes a trapezoidal base-velocity profile (acceler-
ate—cruise—decelerate—pause). Forward and backward segments alternate automatically, while lat-
eral velocity and yaw rate remain zero unless specified. The phase schedules lower-body gait timing
and yields desired joint trajectories for the legs, tracked by a joint-space PD controller at 50 Hz with
torque/rate limits and safety checks.

Fixed start pose and heading. Each real-robot run starts from the same world-frame pose—a fixed
position and heading—followed by a short smooth interpolation into the nominal stand pose before
the phase route is enabled. This ensures repeatable initial conditions, so the resulting base trajectory
in SE(2) (odometry or motion-capture) can be compared across runs to assess tracking quality, drift,
and sim-real alignment. Commands and sensor streams share a monotonic timestamp, keeping
phase, velocity setpoints, and measured joint/IMU signals time-aligned for evaluation.

A.7.3 ABLATION ON OPERATOR VS. MLP

We provide an ablation study comparing the proposed GapONet architecture against a standard
high-capacity MLP that is likewise conditioned on the payload and the simulation context, however,
its architecture differs fundamentally from the MLP baseline used in Specifically,
we replace the branch—trunk networks with a single MLP placed after the sensor model, which
we refer to as MLP-Sensor. Since our sensor model contains explicit history information, we
additionally compare against two alternative baselines: (i) an MLP that directly receives the raw
history without any processing (MLP-History), and (ii) a minimal MLP that does not incorporate
any history information (MLP-Pointwise).

To further validate our conclusions, we also construct MLP variants with different param-
eter scales—Small ([256, 128, 128]), Medium ([512, 256, 128]), and Large ([512, 512,
512])—and demonstrate that merely increasing model capacity does not yield improved per-
formance; rather, architectural design is essential. In total, this yields nine additional base-
lines: MLP-Pointwise-Small/Medium/Large, MLP-History-Small/Medium/Large, and MLP-
Sensor-Small/Medium/Large.

As shown in by comparing MLP-Sensor-Small/Medium/Large with MLP-History-
Small/Medium/Large, we observe that when both models receive history information, the sen-
sor predictor provides limited benefit for the LGR and IQR metrics, but leads to a substantial im-
provement in the Range metric. However, both variants remain noticeably inferior to GapONet,
indicating that the zero-shot generalization capability primarily arises from the operator-learning
formulation rather than from the residual network structure itself.

By comparing MLP-Pointwise-Small/Medium/Large with GapONet, we find that their zero-shot
performance differs substantially. Although the MLP-Pointwise variants can achieve LGR scores
close to GapONet in the Okg setting, the gap widens consistently as the payload increases: both

26

Under review as a conference paper at ICLR 2026

the magnitude and frequency of the errors grow significantly. This directly demonstrates that learn-
ing operators of actuator functions is necessary and superior to pointwise mappings, and that the
insufficiency of pointwise modeling fundamentally limits its ability to generalize.

In addition to the zero-shot comparisons above, we observe distinct training behaviors across the
three architectures and model sizes. As shown in under a unified network capacity,
the sensor-based architecture achieves the lowest joint angle error during training, followed by the
pointwise model, while the history-augmented MLP exhibits the highest error. When using the
pointwise method exclusively, training error increases with model size. The result suggests that the
sensor model effectively captures simulator dynamics and facilitates learning. This also confirms
that the poor performance of MLPs is not due to insufficient capacity. Furthermore, even though
the MLP-Sensor achieves training errors nearly as low as GapONet, it still underperforms on the
test set, indicating its limited generalization ability.

Table 3: Ablation study comparing GapONet with different MLP architectures of matched capacity.

0 kg 1 kg

LGR(%) IQR (}) Range(]) LGR(%) IQR (}) Range ({)
(@5) (5]
MLP-Pointwise-Small 0.081004 (0,093%0-016 () 46+0-083 (77080 (9 213£0.009 (g7()£0-061

MLP-Pointwise-Medium ~ 0.08%°:°% 0,095F0-010 (0 51+0-087 (71£0.79 (9 214+0-010 (5+0-06
MLP-Pointwise-Large 0.08%0:95 (,097%0-008 () 653%0-090 () 76+0:88 () 206F0-012 () 66550-059

Method

MLP-History-Small 0.10F0:06 (.098E0-009 () g2 E0-087 | gqEL10 () 213+0.009 () ¢79+0.074
MLP-History-Medium 0.09E006 () 096E0-009 () £58+0-077 () ggE1.06 (3 513+0.008 () ggr+0.069
MLP-History-Large 0.11£005 (.111£0-007 () g75%0:098 | 17£1.26 (3 197+0.010 () g74+0.058
MLP-Sensor-Small O.IOiO'OG 0.097i0A010 0.667i0'081 1.05i1432 0.125i04009 0.578i0‘065
MLP-Sensor-Medium 0.09%0:96 (,094%0-009 () 658+0-081 () go+1-10 () 123+0-008 (y 577+0.063
MLP-Sensor-Large 0.09%0-05 0.093+0-:009 () g51+0.076 () @741.03 0.128%0-007 () 577+0.066
GapONet (Ours) 0.09%0:03 (,093%0-016 (0 449%0-117 224011 () 115%0-013 () 537+0-148
Method 2kg 3kg

LGR(%) IQR() Range(]) LGR(%) IQR({) Range({)

() W)

MLP-Pointwise-Small 234127 (0204%0-011 (0 775+0-069 11 19£1.50 () 354+0.011 () 969+0.093
MLP-Pointwise-Medium ~ 2.26%121 0.204F0:009 (9 774%0-076 11 ge+1-32 (9.352%0-011 () ggq+0-102
MLP-Pointwise-Large 2191123 02000011 7800075 10.76T193 (.355T0-011 (. 97610-096

MLP-History-Small 245E110 (3 9(4%0.009 (3 794+0.066 11 36+1.39 () 35¢+0.011 1 (£0.118
MLP-History-Medium 2537110 205%0:009 (0 799F0-070 1] gq+1.42 () 356+0-010 | #0112
MLP-History-Large 9. 43%1:16 () 199E0-009 () 79r+0.077 | 74£1.57 () 35+0.011 (ggg+0.104
MLP-Sensor-Small 2'64i1A32 0.207i0A010 0.618i0A065 11,62i1'40 0.357i0.012 0.991i04137
MLP-Sensor-Medium 2,591 14 () ()7E0.009 () 591£0.079 1| 79E1.31 () 35740.010 (j ggp+0.124
MLP-Sensor-Large 2 66F127 (2080009 () 67E0-067 19 5EL25 () 458%0.010 () gg5H0.114
GapONet (Ours) 0.395010 0.161+°-°°* 05780112 0.84%02% 0.317+000° (.498+0-1°7

A.7.4 SUPPLEMENTARY EXPERIMENTS DURING THE REBUTTAL PERIOD

Compare to domain randomization. At present, Domain Randomization (DR) is indeed one of
the most widely used strategies for addressing sim-to-real transfer. However, DR and GapONet
differ in a fundamental way. Our operator learns a structured residual model that captures and
corrects the dynamical discrepancies between simulation and the real world, producing a delta action
that improves the execution of a given command on the physical robot. In contrast, DR expands the
parameter distribution of the simulator during training to improve robustness, and directly outputs
the next action at each timestep. While effective for robustness, DR does not explicitly model nor
correct the structural components of the sim-to-real gap. From a modeling perspective, DR seeks to

27

Under review as a conference paper at ICLR 2026

Episode/joint_pos_diff Episode/joint_pos_diff
— MLP-P 1] — M Il = MLP-History-small - MLP-P d — M. di

A U A e A AR A Y
IV L W A

Fre A awhte
Adadiidbid 14 3

25

2
2
sep 18 me

0 5k 10k 15k 0 5k 10k 15k

Episode/joint_pos_diff Episode/joint_pos_diff

— MLP-Pointwise-small — MLP-Pointwise-large

35

25
v Step Ster

Figure 11: Joint position difference curves during training.

produce a more robust action, whereas GapONet produces a residual term that makes that action
actually work on real hardware.

Building on this distinction, we constructed a more direct and quantitative comparison against a
strong DR baseline for both experiments—Zero-shot Motion Tracking and Locomotion Trajectory
Tracking. For Experiment 1, we trained a whole-body tracker with domain randomization over
payload mass (0,1,2,3kg). The model receives the same inputs as GapONet ((¢;, ¢;)) and outputs
the next-step action (a;y1). The results have been added to along with corresponding
videos in the supplementary material. The results show that DR-only control struggles to reach the
target joint angles for zero-shot motions, and as payload increases, the robot becomes increasingly
unstable. With a 1,2,3 kg payload, the DR policy fails to execute the motion entirely.

For Experiment 2, the lower-body controller provided in the main paper already uses DR to ensure
stable locomotion when the upper body is fixed. In the new ablation, we provide videos of the same
controller without domain randomization (included in the supplementary material). As shown, the
robot exhibits continuous swaying even during standing, and cannot serve as a valid comparison
baseline.

Compare to nonlinear system identification. As described in our nonlinear sys-
tem identification follows standard practice, fitting rigid-body dynamics using both MLP- and SVR-
based estimators. The Zero-shot Motion Tracking results in show that all three nonlinear
SysID methods yield similar performance, with the kernel-based estimator achieving slightly lower
Large Gap Ratio and Gap Range. In contrast, the network-based estimator shows weaker zero-shot
generalization, indicating that overfitting to the training dataset cannot compensate for unseen mo-
tions. As for Locomotion Trajectory Tracking[Table 2] all three SysID variants perform comparably
across all metrics, suggesting that nonlinear SysID alone neither improves nor degrades locomotion
tracking performance in this setting.

A.7.5 COMPUTATIONAL OVERHEAD

28

Under review as a conference paper at ICLR 2026

Table 4: Sim-to-real gap in locomotion trajectory tracking on an unseen humanoid robot.

Method Trajectory Consistency () Smoothness (]) Robustness ({.)
PD control 20.33%1.982 53 76%0-257 10.16=0-007
PD control w/o DR - - -

MLP 19.18*0-91 53.48%0:343 10.15£0-027
Transformer 19.13+0-689 53.57%0-290 10.14%0-007
System Identification 19.16%0-489 24.99+0-298 10.14%0-011
Network-based SysID ~ 19.05F0-17 25.47+0-408 10.15%0-157
Kernel-based SysID ~ 19.11%0-465 25.8410:246 10.17%0-078
GapONet (Ours) 18.78+1-147 53.36+0-486 10.13+0-167

Table 5: Real-time inference cost of each method on real robot

MLP Transformer GapONet
Time(s) 0.0001600 0.0001181 0.0003764

A.7.6 EXPLANATION OF THE TWO EXPERIMENT SETTINGS

This section provides a mathematically coherent justification for the residual-action design used in
both of our experiments. We formalize why the operator output Gy (&, y) is added to the simulator
command during training, but subtracted from the real hardware command during online deploy-
ment. For any query y € A x P, the simulated and real actuation functions yield

Ugim() fSlm(st y) Ureal() Afrcal(sfeal’ y)’ (21)
where the A £ can be treated as the real robot excuation process. And their discrepancy is
0e(y) = U (y) = Ug™(y)- (22)

Residual addition in simulation During training, the operator output Gy (&, y;) produces a cor-
rective delta action added to the simulator command:

GUE™) (1) = AS™ (56 @t + Gol&,m1)) 23)

where yt = (ay,p). Linearizing the simulator dynamics around a; gives A f5m (st S0t + Go) =
Afsim (st Seim»> @t) + Jo Go(&, y¢), where J3™ is the simulator’s action "Jacobian”, defined as

i = (AS"') : (24)
Aaj),

where ﬁ‘aj represents the relative difference of desired state to action under At of simulation . To
J

match the real transition, i.e., A f5™(sS a, 4+ Gy) ~ Afreal(st |, ap). The correction must satisfy

sim?

JEmGo(&,yr) = O¢(yr), (25)
showing that the operator learns the action-space residual necessary to inject missing real-world
dynamics into the simulator.

Residual subtraction in the real world On hardware, the goal is inverted: we seek a cor-
rected real command a} such that the real dynamics match the simulator’s nominal predic-

tion: A f“’"l(Coa) = Afm(E aret), Leveragmg quation (23)| gives Afrl(st al) ~
Equation (25)

Afsim(st Saimy @r) + JZE”‘GQ (&, (), p)) = Afsim(sS 5%, ai) . With the approximation of
gives
TEmGo(€. 1) ~ AS™ (8 a) — AF™(sS, ab),
~ Sy (aft — ap), (26)
yields a; — — Gy(&,y;). The a} could be efficiently calculated with just a few steps of gradient

descent, that gradlents are only required to flow through Trunk Net only, leading to the real-world
correction rule

redl

a;eal—corr _ redl GG (§ yt) (27)

29

Under review as a conference paper at ICLR 2026

Unified residual-action interpretation Equations equation[23]and equation[27]yield a consistent,
domain-symmetric residual-action formulation:

Simulation: a§™™ = a; + Gy (&, yt), Real: aff°" = ¢! — Gy (&, y))

Thus, the opposite signs arise naturally:

* In simulation: we add the residual to emulate missing real-world dynamics.

* In reality: we subtract the same residual to cancel hardware-specific biases and match the
nominal simulator behavior.

A.7.7 ROLE OF THE BRANCH-TRUNK DECOMPOSITION

We analyze how the Branch-Trunk decomposition adapts to different inputs through the following
experimental setup: we randomly sample initial joint positions, velocities, and action sequences,
execute the action sequences, and compare how the outputs of the Branch Net and Trunk Net vary
with payload mass under the same initial state and action sequence. We also record how the Trunk
Net output changes as each action in the sequence is executed under a fixed payload.

As shown in a clear trend emerges: compared to the baseline condition of Okg payload,
the deviations of both Branch Net and Trunk Net outputs from the baseline increase with payload
mass. When the payload is held constant, the difference in Trunk Net outputs between consecutive
timesteps remains statistically consistent throughout the action sequence. These Branch Net results
demonstrate that our sensor model and Branch Net effectively capture non-linear variations in
system dynamics.

compares the relative influence of payload on the Branch Net versus the Trunk Net. The
results show that under the same change in payload, the deviation of the Branch Net output from
the baseline is significantly larger than that of the Trunk Net—on average, the Branch Net varia-
tion is 7.9 times greater. Moreover, the effect of payload on the Trunk Net itself is relatively small
compared to the effect of actions, accounting for only 20.35 % of the action-induced variation. This
indicates that in GapONet, the Branch Net primarily captures payload-dependent changes in
system dynamics, while the Trunk Net focuses more on encoding action information, and re-
mains payload-insensitive.

illustrates the impact of payload mass on outputs for different joints. It can be observed
that for both Branch Net and Trunk Net, the shoulder joints is most affected by payload, which
aligns with the intuition that payload exerts a greater torque on the shoulder joint. Quantitatively,
the influence of payload on the Trunk Net remains minimal compared to its effect on the Branch
Net.

Neural Network Decomposition Analysis: Branch vs Trunk Networks

Branch Net: Payload-Dependent Dynamics Trunk Net: Payload-Independent Dynamics Trunk Net: Action-Dependent Dynamics
012, output stable acr jes with actions T

055 payloads P2 t chang
+ Encodes payload-independent dynamics 0.5 [/ Encodes action-depengientdymamics

0.8 utp! ith payload
« Encodes payload-dependent dynamics

°
=

L2 Norm Difference
o
2
L2 Norm Difference
°
2
]
L2 Norm Change
s
o

0.02

—e— Trunk Output Difference (Mean)
—e— Branch Output Difference 0.00 *15td =3 Trunk Output Change (Mean + Std)

0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 t1-t2 2-t3 t3-t4 t4-t5 t5-t6
Payload Mass (kg) Payload Mass (kg) Consecutive Timestep Pair

Figure 12: Variation of Branch Net and Trunk Net’s values according to payload and action changes.

30

1620
1621

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651

1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

L2 Norm Difference (Max)

Joint

Joint

L2 Norm Difference from Initial Output
°
b

Comparison: Branch vs Trunk Response to Payload Changes

o.g | = Branch Net (Payload-Dependent)
—#- Trunk Net (Payload-Independent)

0.0
0.0 05 1.0 15 2.0 25 3.0
Payload Mass (kg)

Branch vs Trunk: Response to Payload Changes

(Branch has Large Impact Compared to Trunk)

0.8186
0.8
0.7
06
0.5

Branch is 7.9x

0.4 more sensitive
0.3
02
" *
0.0

Trunk Net
(Payload Impact) (Payload Impact)

L2 Norm Change

3D Comparison: Branch vs Trunk Networks
Payond ent:Branch (R vz Tk) Papiond x Dmension: Branch (R v Trun e
etk Rk

Pt

mol <
Vorsp 20t g
e,

Trunk Net: Payload Impact vs Action Impact
(Payload has Small Impact Compared to Actions)

0.5068
05 Payload impact is 20.35% of action impact
04
03
0.2

0.1031
01 |zn.3% of action lmiact|
0.0

Payload Impact Action Impact
(on Trunk)

Figure 13: Comparison of payload and action’s impact on Branch Net and Trunk Net.

Per-Joint Decomposition Analysis

Branch Net: Per-Joint Differences vs Payload

right_wrist_roll joint

left_wrist_roll_joint

0.20
s st i
et s ol o
0.15
g
ER——— g
2
g
i shouke ich o £
0.10
e o o
e g o i
0.05
[Ry———
e g s i
-0.00

0.5 1.0 15 2.0 25 3.0
Payload Mass (kg)

Branch Net: Per-Joint Sensitivity to Payload

right_wrist_roll joint

left_wrist_roll_joint

right_elbow_joint
right_shoulder_roll_joint
right_shoulder_yaw_joint
right_shoulder_pitch_joint
left_elbow_joint
left_shoulder_roll_joint
left_shoulder_yaw_joint

left_shoulder_pitch_joint

0.000 0.005 0.010 0.015 0.020

Sensitivity (Mean = Std)

0.025 0.030

Joint

Joint

Trunk Net: Per-Joint Differences vs Payload

right_wrist_roll_joint

Difference

left_wrist_roll_joint - 0.030
right_elbow_joint
- 0.025
right_shoulder_roll_joint
-0.020
right_shoulder_yaw_joint
right_shoulder_pitch joint 0,015 ;
left_elbow joint
-0.010
left_shoulder_rol_joint
left_shoulder_yaw_joint - 0.005
left_shoulder_pitch_joint
-0.000

0.5 1.0 15 2.0 25 3.0
Payload Mass (kg)

Trunk Net: Per-Joint Sensitivity to Payload

right_wrist_roll_joint

left_wrist_roll_joint
right_elbow_joint
right_shoulder_roll_joint
right_shoulder_yaw_joint
right_shoulder_pitch_joint
left_elbow joint
left_shoulder_roll joint
left_shoulder_yaw_joint

left_shoulder_pitch_joint

0.0000 0.0002 0.0004 0.0006 0.0008

Sensitivity (Mean * Std)

0.0010 0.0012

Figure 14: Impact of payload on Branch Net and Trunk Net’s outputs on different joints.

31

Under review as a conference paper at ICLR 2026

A.8 IMPLEMENTATION DETAILS
A.8.1 NETWORK STRUCTURE

Overview. The training pipeline with GapONet consists of three components: a Sensor Predictor
to predict the sensor input of Branch Network, a Branch Network B(U,(z)) that encodes sensor-
driven actuation functions and a Trunk Network 7 (y) that processes action queries. Both are im-
plemented as multi-layer perceptrons (MLPs), fused via dot product to yield the operator output
G(Uy(z))(y). These networks are trained end-to-end with Proximal Policy Optimization (PPO),
and optimized using Adam.

Sensor Predictor

 Input: For each time j at time step ¢, the Sensor Predictor receives a sequence of sensor
states over a h-step history window:
t— d—n t— h
{Qj i 4q; nvq]‘7dn}n,:o7
where ¢;, ¢; denote joint position and velocity, g; q is the target position.
* History Length: h =4

 Input Dimension: 10 joint num x (3 X history length + 1 current position) = 130-dim
vector

* Output: Ag&Ag x 10 joint = 20-dim vector
¢ Sensor Number: 20

* Learning Rate: 1 x 10~*

Branch Net.

 Input: 20-dim vector of sensor predictor output x 20 sensor num = 400-dim vector
* Delta Action Duration: 1 step

* Architecture: 3-layer MLP with hidden sizes [256, 256, 256], each followed by ELU acti-
vation.

* Qutput: p-dimensional latent representation (p = 160, i.e. 16 x 10 = num_basis X
num_-actions by default)

* Learning Rate: 1 x 10~*

Trunk Net.

* Input: The Trunk Net receives the target query y = q;i'il desired joint position + payload
¢ Input Dimension: 11

* Architecture: 3-layer MLP with hidden sizes [128, 128, 128], ELU activations

* Qutput: p-dimensional vector, same dimension as Branch output

* Learning Rate: 1 x 10~*

Fusion. The operator output is computed as the dot product:

where J is the number of actuated joints. Specifically, we reshape both output of Branch Net and
Trunk Net to 16 x 10, perform Hadamard product and then sum over the first dimension.

32

Under review as a conference paper at ICLR 2026

Training Details.

* PPO update with clipping ratio € = 0.2, batch size = 4096.

el

e Reward defined as r; = —Hth ~ Greal

* Temporal smoothness penalty Lg,, with A = 0.01.
* Training duration: 1 hour on 1 RTX 3090Ti GPU.

Table 6: Hyperparameters for Branch Net.

Hyper-Parameters Values
History Length 4

Delta Action Duration 1

Sensor Number 20

U,y Input AV P J
U, Output AS
Layer Structure [256, 256, 128]
Output Number 10
Dropout 0.1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size | 4096

~ Discount 0.99
Learning Rate 2x107°
GAE()) 0.95
TD(M) 0.95

PPO Clip Threshold 0.2

T Episode Length 300

A.8.2 SIMULATIONS

We evaluate on MuJoCo 3.2.3, Isaac Gym 1.0rc4, and Isaac Sim 4.5.0. To enhance reproducibility,
each setting uses the simulator’s official default parameters. The software environments are:

* MuJoCo / Isaac Gym: Python 3.8.13, legged_gym 1.0.0, PyTorch 2.4.1, torchvision 0.19.1.
* Isaac Sim: Python 3.10.4, isaaclab 0.40.21, PyTorch 2.5.1, torchvision 0.20.1.

A.8.3 BASELINES

PD control As shown in[Section A.4.1] we employ PD control to drive the humanoid robot in both
simulation and the real world. In the simulator, we use the ImplicitActuator APIin IsaacLab
to compute the applied torque from the input action. For real hardware, we rely on the official APIs
provided by the Unitree and RealMan humanoid platforms to obtain the torque computed by their
onboard PD controllers. The corresponding implementation details and code real_robot_deploy.py
are included in the supplementary materials for reference.

33

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameters for Trunk Net.

Hyper-Parameters Values
History Length 4

Delta Action Duration 1

Sensor Number 20

y Input aq

Layer Structure [128,128]
Output Number 10
Dropout 0.1
Samples Per Update Iteration 131072

Policy/Value Function Minibatch Size 16384
Discriminators/Encoder Minibatch Size | 4096

~ Discount 0.99
Learning Rate 2x107°
GAE()) 0.95
TD(N) 0.95
PPO Clip Threshold 0.2

T Episode Length 300

MLP For the MLP baseline, we follow the approach used in |He et al.| (2025). Specifically, the
collected sim-real paired data are fitted with an MLP to learn a mapping from the simulated action
to the real-world delta action. The model adopts a standard Actor—Critic architecture, where both
the actor and critic networks use a [1000,200] MLP with ELU activations. Training is conducted
using PPO[Schulman et al| (2017), and the hyperparameters are summarized in[Section A.8.3]

Table 8: Hyperparameters for PPO training in MLP baseline.

Hyper-Parameters Values
Value loss coef 1.0

Clip parameter 0.2
Entropy coef 0.0
Learning epochs 5

Mini batches 4
Learning rate 1x10~*
Schedule adaptive
~ Discount 0.99
Desired KL 0.008
Environments 4096
Number of steps in each env | 32

Transformer The Transformer baseline follows the same PPO training setup as the MLP base-
line He et al.| (2025), with the only difference being the replacement of the actor—critic MLP with
a Transformer-based architecture. The hyperparameters used for training are identical to those of
the MLP baseline, as shown in We also implement a Transformer-based baseline
using an Actor—Critic architecture. The observation (250-dimensional) is first projected to a 128-

34

Under review as a conference paper at ICLR 2026

dimensional embedding, followed by a two-layer Transformer encoder with d,,,q.; = 128, four
attention heads, feedforward dimension 512, and GELU activation. The actor maps the encoded
feature to a 10-dimensional Gaussian action distribution (with a learnable scalar log-std), while the
critic shares the same encoder and outputs a scalar value.

Domain Randomization We adopt the motion-tracking policy widely used in industry
(2025). Since the original policy was trained on the Unitree G1 robot, we replace the URDF and
related configuration files with those of the H1-2 platform and retrain the motion tracker using im-
itation learning. The hyper-parameter of humanoid body is calculated by System Identification in
the next prargraph. To better align with our paper’s setting involving varying payloads, we addi-
tionally apply domain randomization on the payload: during imitation learning, the payload mass is
randomized by sampling from 0, 1, 2, 3. This improves the robustness and stability of the tracker
under different payload conditions. The reward terms used for training our tracker are listed in

Section A.8.3|

Table 9: Reward formulation for training tracker with domain randomization.

Reward Terms Equation Weights
Body Position exp (— (I B S bes, - Hl’%%b”)) 10
Body Orientation exp (_ (m Zbesmgu W 10
Body Linear velocity exp((| Bmga\ e B W)) 1.0
Body Angular velocity exp((B e ergu H“"fl;;w)) 10
Anchor Position (Optional) eXp(“pmhw pmhﬂf“) 05
Anchor Orientation (Optional) eXp(Il 10g(3‘3§bw anchor) [) 0.5

System Identification We follow the standard practice of locally linearizing the joint-space dy-
namics around collected motion trajectories. Under the manipulator equation |Ortega et al.| (1998):

Ortega et al.| (1998):

™= M(q)j+ C(g,9)q + g(q)- (28)

Given the position error epos = g™ — ¢ and velocity error e = ¢, we fit an affine model 7 ~

kpepos + kqevel + b, using ordinary least squares (scikit-learn LinearRegression). The input
feature matrix is X = [epos, €vel] € RN *2 and the target is the measured joint torque Y € RN, We
estimate (k,, kq, b) using ordinary least squares. This yields a classical linear system-identification
baseline that captures the best local linear approximation to the underlying dynamics. Training is
instantaneous, as the solution is obtained via analytical least-squares minimization.

Network-based System Identification We further approximate the joint dynamics using a multi-
layer perceptron (MLP) Hwangbo et al.|(2019)), which learns a flexible nonlinear function

T = fmLp (eposa evel)- (29)

The MLP consists of two hidden layers of sizes (100, 50) with ReLU activations and is trained
using the Adam optimizer for up to 1000 iterations (MLPRegressor, max_iter=1000,
activation=relu, solver=adam, random_state=42). The trained model captures fric-
tional, configuration-dependent, and actuator nonlinearities. For interpretability and fair com-
parison to linear baselines, we optionally project the MLP predictions onto a PD-like form via:
FMLP (€pos, Evel) = kpepos + kqevel + b. We additionally monitor the optimization status (final loss
value and number of iterations used) to ensure convergence and report the resulting R? score on the
training dataset.

35

Under review as a conference paper at ICLR 2026

Kernel-based System Identification To capture nonlinear components of the joint dynam-
ics—such as friction, motor response nonlinearities, and configuration-dependent coupling—we
employ Support Vector Regression (SVR) with an RBF kernel Deisenroth et al.| (2013) to model
the mapping

T = fSVR(epOb‘y evel)- (30)
We train the regressor using scikit-learn’s SVR implementation with default hyperparameters
(kernel=rbf, C=1.0, e=0.1, y=scale). As with the MLP baseline, we optionally obtain PD-
like gains via linear projection of the predicted torques: fsvr(€pos; €vel) ~ kp€pos + kqevel + b.
Kernel methods provide strong nonlinear regression behavior while maintaining good sample effi-
ciency. This two-stage process yields interpretable rigid-body parameters (k,, kq, b) while allowing
the SVR to model nonlinear torque dependencies. All training uses the same feature matrix X and
target vector Y as in the linear baseline. The coefficient of determination R? is computed to quantify
the quality of the nonlinear fit prior to linear projection.

Lower-body Locomotion Policy. To conduct the Locomotion Trajectory Tracking experiment,
we trained a lower-body locomotion policy capable of stable walking. The policy is adapted from
HOMIE with modifications for the HI1-2 platform, including updates to the URDF
and the reward design. The full reward formulation and corresponding weights are listed in [Sec-
[tion A.8.3]

Table 10: Reward formulation for lower-body locomotion policy.

Reward Terms Equation Weights
. 2
x Vel. tracking exp{—4 vy — vp o |2} 1.5
. 2
y Vel. tracking exp{—4 llvy — vr7y||2} 1.0
Ang. Vel. tracking exp{fél llwyaw — wr,yang} 1.0
Base height tracking exp{ —4||hy — hyy H;} 2.0
Lin. Vel. z vp 0.5
Ang. Vel. xy wr .yl -0.025
Orientation ng||§ + ||gy||§ -1.5
Action rate lla; — az—1 ||§ -0.01
Hip joint deviation 2 hip joints |92- — ermh|2 -0.5
Ankle joint deviation | 3 e oims |0i — 05| -0.75
nee,t —qQknee,min 1
Squat knee s —) (Gt - 4)[| 075
DoF Acc. Sl jonts || L —25x 1077
: 2
DoF pos limits 2 all joints OUts -2.0
Feet air time W (first contacty (Tair — 0.5) 0.05
Feet clearance > (R - pfz)2 -vk, -0.25

A.9 LIMITATION AND FUTURE WORK

Our dataset and analysis primarily target the upper body, and although we include tests on locomo-
tion trajectory tracking, the present system does not yet enable highly dynamic sim—real transfer for
full humanoids. Going forward, we will (i) extend the current pipeline to high-dynamics, whole-
body loco-manipulation and to additional robot platforms, and (ii) address the strong dependence
on a stable locomotion policy—even with relative metrics, unreliable gaits can cause catastrophic
failures (cf. ‘videos/failure.mp4°) that preclude testing. A second focus is to train a robust full-body
tracker for large-mass humanoids (e.g., H1-2), providing a stronger substrate for our operator-based
sim-real mapping.

36

	Introduction
	Related Work
	Data Collection and Gap Analysis
	Payload-aware System Identification
	TWINS Collection
	Sim-to-real Gap Analysis

	Method
	Problem Formulation
	Network Structure
	GPU-Parallel Operator Learning

	Experiment
	Zero-shot Motion Tracking
	Locomotion Trajectory Tracking

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Open-Source Release
	Data Collection
	Legged humanoid robot
	Wheeled humanoid robot
	Data Selection

	Gap Analysis
	PD control
	More analysis results

	Nonlinear Operator
	Methods
	Why do we choose DeepONet?
	The definitions of symbols
	Why do we choose Reinforcement Learning

	Experiment
	Metrics
	Locomotion trajectory tracking
	Ablation on Operator vs. MLP
	Supplementary experiments during the Rebuttal period
	Computational Overhead
	Explanation of the two experiment settings
	Role of the Branch-Trunk Decomposition

	Implementation Details
	Network Structure
	Simulations
	Baselines

	Limitation and Future Work

