Under review as submission to TMLR

Predictive Pipelined Decoding:
A Compute-Latency Trade-off for Exact LLM Decoding

Anonymous authors
Paper under double-blind review

Abstract

This paper presents Predictive Pipelined Decoding (PPD), an approach that speeds up
greedy decoding in Large Language Models (LLMs) while maintaining the exact same output
as the original decoding. Unlike conventional strategies, PPD employs additional compute
resources to parallelize the initiation of subsequent token decoding during the current token
decoding. This method reduces decoding latency and reshapes the understanding of trade-
offs in LLM decoding strategies. We have developed a theoretical framework that allows
us to analyze the trade-off between computation and latency. Using this framework, we
can analytically estimate the potential reduction in latency associated with our proposed
method, achieved through the assessment of the match rate, represented as peorrect- The
results demonstrate that the use of extra computational resources has the potential to
accelerate LLM greedy decoding.

1 Introduction

The recent advances in LLMs, especially transformers (Vaswani et al.||2017)), have brought a breakthrough to
the domain of natural language processing. The notable generative language models include GPT-3 (Brown
et al., [2020)), GPT-4 (OpenAl, 2023), PaLM (Chowdhery et al.,|[2022)), LaMDA (Thoppilan et al.||2022), OPT
(Zhang et al., 2022)), and LLaMA (Touvron et al., [2023)). The power of LLMs is primarily driven by their
enormous scale, often involving hundreds of billions of parameters (Hoffmann et al.l [2022). However, the
considerable size of these models can present challenges in practical applications where immediate responses
are crucial (Kasai et al., 2020)).

Generative transformers usually produce text sequences using auto-regressive decoding. After passing
through all layers of the transformer, each token is generated using the hidden representation from the
final layer of the transformer (Kim et al., [2023al). For faster decoding, some studies (Schuster et al.l [2022;
Tang et al.| 2023) have proposed approaches that aim for similar decoding results by only using a sub-network
of the transformer’s layers. However, these approaches do not guarantee the same decoding results when
using all layers.

In this paper, we introduce Predictive Pipelined Decoding (PPD), a new approach that lowers latency by
utilizing additional compute resources, while keeping the exact same greedy decoding results, as illustrated
in Figure[l] Our method is inspired by an approach called early-exiting, specifically as described by [Schuster
et al| (2022). Early-exiting allows the generation process to exit before reaching the final layer, enabling
predictions to be made earlier in the process. PPD shares similarities with early exit strategies as it also uti-
lizes intermediate representations to make early predictions on the next token. However, PPD distinguishes
itself by continuing the current token decoding without exiting. In other words, the main process remains
focused on the current token while other subprocesses early start the generation process with predicted next
token(s).

PPD accelerates decoding by parallelizing processes, each of which begins decoding from the top-k token
predictions of the specific transformer layer. Simultaneously, the main process continues to compute the
output of the final layer and predicts the next token. By aligning the results with the next token prediction
from the final layer, we can maintain the original decoding result.

Under review as submission to TMLR

0 N 0.5d® d @ 1.5d 2d 2.5d 3d__ Unittime
& T ; T >
: TL for main process d ; i : ; N
loves her E 7L for sub- ’:ocess PPD Tos—ze _"m dog B : main process
®) ! C !) i predwgtwons (~A went H : sub-processes
: Attention loves - p T : sending the result
hate — to the main process

i [short —

% T i cat —
" © her —» [
T Conventional De¢oding |
t 4 She — — _|oves ', her
* P hates toher e her —! ; = dog
She tloves Pt ! i i : i i |
went short

Figure 1: An overview of the proposed method. In a scenario where three words are generated from
a pre-trained transformer decoder with d layers, “She” is fed as an input for the decoder. PPD forecasts
the next token at an intermediate transformer layer, such as the top-3 tokens from the d/2-th layer. PPD
simultaneously launches three sub-processes, each feeding a predicted token into the model, while the main
process continues to forward the intermediate output to the final layer. Once the main process is complete,
PPD verifies if any predicted tokens match the main process’s final output. If a match is found, this method
reduces decoding latency, yielding results equivalent to those of conventional decoding methods. “TL” stands
for transformer layers.

To assess the potential benefits of our method, we conduct an analysis to determine the extent of latency
reduction and the associated compute resource costs. Also, we measure the match rate, the probability
that the early top-k predictions match the top-1 prediction from the final layer, with the commonly utilized
dataset in NLP such as SQUAD 1.1 (Rajpurkar et all [2016), WMT EN-FR (Bojar et all [2015), and
CNN/DM (Hermann et all 2015). We estimate the potential savings in latency and the corresponding
compute resources based on the match rate. However, it is essential to mention that we have not implemented
the algorithm, and this work is purely providing a performance modeling and analysis. We believe that once
properly implemented, the predicted latency reduction can be realized, but we leave it to the future work.

In summary, our main contributions are the followings: (1) a framework, which we call PPD, that boosts
the speed of the decoding, (2) a theoretical analysis of latency savings versus computing resource costs, and
(3) a measurement of match rate to estimate how effective PPD would be in an actual situation.

2 Related Work

Various strategies have been proposed to improve the inference speed of large-scale transformer models. These
include employing model pruning techniques (Fan et all 2019} [Gale et all [2019; Michel et all, [2019} [Voita)
let al., |2019; [Sanh et al. |2020; Kurtic et al.l |2022; [Kwon et al., 2022; Campos & Zhai, 2023); implementing
knowledge distillation methods to downsize the models (Jiao et al.l [2019; Sanh et all [2019); and adopting
quantization procedures (Zafrir et al., 2019} [Shen et al.| 2020; |Zadeh et al.| 2020 Kim et al.| |2021; Dettmers|
let al. 2022, Wu et all 2022} [Yao et all [2022} [Frantar et al.) [2022). However, these approaches do not
necessarily guarantee the original inference quality since they do not have a mechanism that verifies the
validity of the generated token.

Our research is inspired by early-exiting approaches (Liu et al.,[2021;|Schuster et al.;|2021;|Sun et al., 2022}
let al., 2021} |Yin et al. 2021} |Schuster et al.,|2022)) that utilize only the initial segments of transformer layers
for inference, rather than the entire network. Especially, [Schuster et al|(2022) implements an early-exiting
approach for decoder-only models in which one can select the layer to exit and check the confidence measure
of each token using a threshold function. However, the approach could not be as exact as conventional
decoding due to its dependency on a threshold-based confidence measure.

Similarly, with the goal of reducing the inference time of transformers, numerous studies (Kim et al., 2023b;
[Chen et al., [2023; [Leviathan et al., 2023)) have utilized two language models which are one smaller and one
larger. The smaller model rapidly generates output, while the larger model verifies its validity. Despite the

Under review as submission to TMLR

Algorithm 1 Predictive Pipelined Decoding (PPD)

1: Input: maximum number of tokens ¢, number of decoder layers d, intermediate layer number d (> 0.5d),
number of compute units k + 1, start token xq

2: Launch Process 0

3: Initialize:

4: t< 0

5. eps_flag (early prediction success flag) < False

6: while t < ¢ or z; # EOS do

7: for PID (Process ID) =0 do

8: if eps_flag = False then

9: Start forwarding from the 1st layer with z,

10: else

11: Start forwarding from (d — d 4 1)-th layer with h((io_)g
12: end if

13: Compute the hidden representation of the d-th layer hfio) in PID = 0.
14: Estimate the next token distribution ﬁ(mt+1‘hg)))

15: Select the top-k tokens :%Ei)l, - ,igi)l from p.

16: eps_ flag <+ False

17: if t =0 then

18: Replicate process 0 to generate processes 1 to k
19: end if

20: end for

21: for PID = 0,1, ...,k in parallel do

22: if PID = 0 then

23: Tyl ¢ argmaxy, ., ﬁ(xt+1|h£lo))

24: else

25: Compute hgil;) with JEETP)

26: if i’EiIlD) = Tt41 then

27: hfioz i< hfj;)

28: eps_flag <— True

29: end if

30: end if

31: end for

32: t+—t+1
33: end while

potential speed advantage, this method might not consistently match the exact output of larger models,
resulting in discrepancies since the larger model relies on the smaller model’s confidence score.

3 Predictive Pipelined Decoding

We introduce Predictive Pipelined Decoding (PPD), a low-latency decoding method that leverages multiple
compute resources. PPD utilizes an intermediate output of a transformer to predict the next token, which is
typically produced by the final layer’s output. This allows PPD to start the forward propagation of the next
sequence earlier than the conventional decoding. Despite this early start, the original forward propagation
continues uninterrupted up to the final layer. This parallel approach accelerates the conventional greedy
decoding process while ensuring the same decoding result.

In the following, we elaborate on the process of PPD. This method predicts the next token early at an
intermediate transformer layer. PPD employs an intermediate hidden representation h, e.g., %—th layer’s
output, to estimate the probability p(x|h) of the next token. This is done by applying a language modeling

Under review as submission to TMLR

classifier and a softmax activation to the hidden representation. Subsequently, PPD identifies the top-k
candidate tokens with regard to p(z|h) and initiates k parallel sub-processes. Each sub-process then inputs
the selected token into the transformer. In parallel, the main process continues to forward the intermediate
output up to the final layer.

Once the main process completes the forward propagation to the final layer, PPD checks if the decoded
next token from the final output matches any of the top-k next token candidates previously predicted from
the intermediate output. If a match is found, PPD only continues the forward propagation associated with
the matching token, disregarding the results from other processes. In cases where no matches are found, all
results from sub-processes are disregarded, and PPD proceeds with the output from the final layer. This
approach enables us to achieve decoding results identical to those of the original method while improving
latency efficiency. Figure [I] provides an overview of the proposed method. For subsequent rounds, the
main process repeatedly employs the output from the intermediate layer of sub-processes. The algorithm
description is provided in Algorithm

4 Theoretical Analysis

4.1 Model

For fixed k, PPD makes an early next-token prediction at the d-th intermediate layer out of the total d
layers in a transformer. We model that one of the top-k candidates from the early prediction will match the
actual top-1 at the final layer with probability 0 < pcorrect < 1. Furthermore, we model that these events,
occurring at each token prediction, are independent of one another. We define a sequence of consecutively
generated tokens as a run. PPD begins generating a run and continues until all candidates from the early
prediction no longer match the final prediction, at which point all sub-processes are disregarded. Counting
from the beginning of the generated token, we denote the i-th run’s length by X;, where X; > 1. Note
that X; ~ Geom(1 — Peorrect) €xcept for the last run, where Geom denotes the geometric distribution, and
E[X;] = 1/(1 — peorrect)- Assume that the length of the text to be generated is ¢ tokens, where ¢ > 1.
Then, we have Zfil X; = ¢, where N is a random variable that denotes the number of runs required to
completely generate ¢ tokens. We assume an equal amount of computational time is required for each layer
of the transformer, which is mainly due to the majority of layers being composed of the same self-attention
and feed-forward network. We refer to this consistent time requirement for one layer as one ‘time unit’.
Consequently, forward propagation through d layers of the transformer demands d time units.

4.2 Latency Analysis

Before delving into our exact analysis, we first present an approximate analysis for £ > 1 and d = d/2 (i.e.,
making an early prediction at the middle layer).

Let us first find the expression for V. Since £ > 1, we also have N > 1. Thus, we have / = N -
XX bt XN~ NE[X], where the last approximation is derived from the law of large numbers, with the
assumption that X;s are i.i.d.

Now, we compute the expected latency to generate £ tokens with PPD. For a run of length X, it takes

d+ (X — 1)% = w time units to generate the run. Please refer to Figure Thus, the total time to

generate the £ tokens is

dX;+1) dXX, Xi+N) _d(l+N) .
~ 2 2 2 W

By dividing the total latency by £, we get the per-token latency:

d(l+N) d(1+N/t) d(1+1/E[X4])

— ~
= ~

20 2 2

i), .

Under review as submission to TMLR

This reveals an intuitive relationship between the per-token latency and the probability of successful early
token prediction. If peorrect is close to 1, then the per-token latency becomes 0.5d, while if peorrect is close to
0, then the average per-token latency remains as d.

To run PPD with a fixed choice of k, one needs k& + 1 compute resources. However, at the beginning of
each run, only one compute resource is used. Thus, to compute the average compute resources required for
running PPD, we need the following calculation. For a run of length X, the first % time units requires one

compute resource, while the remaining %

compute resources spent for the run of length X is
generation of the N runs is

time units use k + 1 compute resources. Therefore, the total

w, and the total compute resources spent for the

M (k+1)dX;+d (k+1)dl+dN

i=1

By dividing the total compute resources by the total generation time, we get the average compute resources
per time unit:

w ~ (k+1)+1/E[X1] . k+2_pcorrect

~ _ 4
w 1+ I/E[Xl] 2 — Peorrect ()

If Peorrect 18 close to 1, then the average compute resources per time unit becomes k 4+ 1. Note that this
makes sense since when peorrect 1S 1, one can generate the whole text in one run, and hence all £+ 1 compute
units will be used almost all the time. If peorrect is close to 0, then the average compute units per time unit
becomes % This also makes sense as if the early prediction is always wrong, the run length is always 1.
For the first half unit time, we use one compute unit. For the second half unit time, we use k + 1 compute
units. Thus, on average, we use % compute units throughout the generation.

Recall that the above calculations are the approximate analysis, assuming that ¢ > 1 and d = d/2. The

following theorem provides the exact analysis without the assumption, when d > d /2.

Theorem 4.1 (Latency—co_mpute trade-off with PPD). Given Peorrect, K, and for fized £, if PPD makes
an early prediction at the d-th intermediate layer among d layers (d > d/2), then the expected latency to
generate a sequence of £ tokens is

dg — (d — d) (e - 1)pcorrect7

and the expected total compute units is

Al — (d — d)(€ — 1)peorrect + k(d — d)L.

Proof. For a run of length X, the time required to generate the run Tx is given by

Tx =d+ (X —1)d.

Therefore, the total per-token latency is

N N
> Tx, =) d+(X;-1)d
=1 =1

To compute the expected value of this quantity without assuming ¢, N > 1, we first need to identify the
distribution of N. Note that the expectation here is over different instances of sequence generations. Since NV
is the number of runs, N —1 is the number of times early predictions fail. Thus, N—1 = Bin(/—1, 1 —pcorrect)-

Under review as submission to TMLR

» Unit time

I : main process
: sub-processes

T : sending the result
to the main process

Figure 2: General flow chart of PPD. The given figure represents the total per-token latency and usage
of compute resources when the run’s length X and sub-processes k are both equal to 3 and the match rate
Peorrect 18 1. Also, we assume d > d/2. With the given setting and assumption, the total per-token latency

is d + 2d. Over the entirety of time, four compute resources are engaged for a duration of 3(d — d). The
remaining time makes use of just one compute resource.

Hence, N = 1+ Bin(¢ — 1,1 — peorrect)- Thus, E[N] =14 (¢ — 1)(1 — peorrect) = £ — (¢ — 1)Peorrect- With this,

we have

E[dl+ (d - d)N] = dt+ (d — d)E [N]
= CZK + (d - J)é — (d - J)(é - l)pcorrect

=dl— (d - d) (6 - 1)pc0rrcct-

For a run of length X, the (d — d)X time units require k + 1 compute resources while the remaining

Tx — (d — d)X time unit requires one compute resource. Therefore, the total compute resources spent for
the run of length X are

Tx —(d—d)X+k+1)d-d)X=d+ (X -1)d-(d-d)X + (k+1)(d-d)X
=dX +d—d+k(d—d)X
=(d+k(d—d)X +(d—d),

and the total compute resources spent for the entire text generation is

N
> (d+k(d—d)X; + (d—d) = (d+ k(d — d)){ + (d — d)N.

i=1

By computing the expected value of it, we have

E[(d+k(d—d))l+ (d—d)N] = (d+k(d— d))¢ + (d — d)E[N]
= (d+k(d—d))l+ (d—d)(¢ — (£ — 1)Peorrect)
(d+ (k+1)(d = d))f — (d — d)(£ = 1)peorrect
= (d+k(d—d))l = (d — d)(¢ — 1)pcorrect
=dl — (d— d)({ — 1)pcorrect + k(d — d)¢

O

Conventional decoding requires d¢ time units to generate ¢ tokens. However, in PPD, there is an expectation
that a proportion of (£ — 1)peorrect tokens accurately match the predictions made at the intermediate layer.

Under review as submission to TMLR

Prompt

We have provided context information below.

SQUAD {context}
Given this information, please answer the question: {question}
#+#4# Assistant:

##+# Instruction: Translate English sentence into French.

English: Sounds like a typical rugby club to me.

French: Ca m’a l'air d’étre un club de rugby typique. #

WMT EN-FR | English: At an English university, perhaps...

French: Dans une université anglaise, peut-étre... #

English: {source__sentence}

French:

Article

{context}

CNN/DM
Summarize the article

#+## Assistant:

Table 1: Prompts used for three NLP tasks on benchmark datasets.. We use the above formats
of prompts to evaluate the match rate peorrect- The terms “context”, “question", and “source_sentence'
represent the corresponding inputs for each task.

For these instances, parallel pre-computations up to the (d —d)-th layer result in time savings. Consequently,

it allows PPD to reduce the expected latency by (d — d)(¢ — 1)peorrect time units.

To achieve these savings, PPD employs one computational unit dedicated to the main process for df — (d —
d)(¢ — 1)pcorrect time units. In addition, PPD allocates & computational units for each of the ¢ tokens to
pre-compute the output of the (d — d)-th layer along with the predictions. Please refer to Figure |2| to help

understand the proof.

4.3 Simulations

Experimental Setup In order to theoretically estimate the potential improvements in decoding latency
in real-world NLP tasks, we examine the match rate, denoted by Peorrect- This match rate is empirically
estimated across multiple token geration processes by verifying if any of the top-k predicted tokens from the
intermediate layer match the top-1 token from the final layer.

We test the NLP tasks on three benchmark datasets: SQUAD 1.1 (Rajpurkar et al., |2016), WMT EN-
FR (Bojar et all 2015), and CNN/DM (Hermann et al., |2015]).

To be specific, SQUAD 1.1 [Rajpurkar et al.| (2016)) is a Question Answering dataset that has 10,570 test
pairs. WMT15 FR-EN [Bojar et al.| (2015) is a machine translation dataset that includes 1,500 test pairs of
English to French translations. CNN/DM Hermann et al.| (2015]) is a dataset for text summarization which
has 11,487 test pairs. For these datasets, we set the token length for text generation at 16 for SQUAD 1.1,
and 128 for both the WMT EN-FR and CNN/DM. We use their respective test datasets for evaluations.
The model for the test is Vicuna-13B (Chiang et al., [2023)), a transformer with a total of 40 layers.

We evaluate Peorrect from Vicuna-13B (Chiang et al.l 2023) trained by fine-tuning LLaMA (Touvron et al.,
2023) on user-shared dialogues collected from the website ShareGPTﬂ To the best of our knowledge, the
model proposed by [Chiang et al[(2023) demonstrates one of the highest performances among the 13B-sized

Thttps://sharegpt.com/

Under review as submission to TMLR

Layers

dataset k trained 10 20 30 35 37
1 N 5.88% 38.90% 62.90% 79.77% 88.01%
Y 15.45% 52.81% 72.34% 87.68% 91.67%
SQUAD | 3 N 9.25% 54.04% 77.92% 92.64% 97.67%
Y 23.48% 68.37% 87.49% 97.33% 98.91%
5 N 11.04% 60.15% 83.84% 95.85% 99.08%
Y 27.90% 74.15% 92.29% 98.81% 99.62%
1 N 2.40% 21.63% 39.69% 68.64% 78.15%
Y 11.06% 29.17% 48.20% 74.84% 82.69%
WMT 3 N 4.38% 31.69% 61.71% 85.03% 93.53%
Y 14.83% 41.14% 68.50% 89.84% 95.48%
5 N 5.57% 37.13% 68.84% 89.54% 96.41%
Y 16.82% 47.84% 75.46% 93.36% 97.67%
1 N 7.23% 32.08% 53.07% 68.90% 78.82%
Y 19.02% 43.65% 61.45% 78.46% 84.42%
N 12.84% 46.36% 68.14% 85.07% 93.81%
CNN/DM | 3 Y 27.57% 60.60% 78.55% 93.07% 96.62%
5 N 15.21% 52.51% 74.22% 90.04% 96.88%
Y 31.33% 67.33% 84.83% 96.06% 98.40%

Table 2: The result of Peorrect from Vicuna-13B. The match rate, Peorrect, represents the probability
where one of the top-k predictions from the intermediate layer matches the top-1 prediction from the final
layer. In the “trained” column, “N” signifies that the language modeling classifier, which is trained specifically
for the final layer, tests across all layers. Conversely, “Y” represents the classifier individually trained for
each layer.

open-source models currently available. We conduct text generation using the prompts provided in Table
and the test datasets. For each token generated, we compare the early predictions from the intermediate
layer to the final output. For example, we base the match rate evaluation on 10,570 x 16 comparisons for
the SQUAD 1.1 dataset. All experiments are conducted using the Huggingface Transformers library (Wolf
et al. 2020). We specifically probe the early prediction at the 15th, 20th, 30th, 35th, and 37th layers to
derive the match rate. please refer to Table

Furthermore, our analysis includes two different utilization of the language modeling classifier for estimating
the distribution of tokens over vocabulary. The first employs the common classifier across all layers, trained
specifically for the final layer, and the second uses the classifier trained for a given intermediate layer. To
train the language modeling classifier at an intermediate layer in Vicuna-13B, we employ the ShareGPT
dataset. We freeze all model parameters excluding those of the language modeling classifier. The training
process is performed on 8 A100 GPUs, and the hyperparameters can be found in the Table [3]in Appendix [A]

Result Table [2] shows the results of peorrect from Vicuna-13B. In the table, “N” denotes evaluations using
the original pre-trained language modeling classifier, while “Y” indicates evaluations with the fine-tuned
language modeling classifier for an intermediate layer. The results show that an increase in either k& or
the prediction layer number enhances the accuracy of early prediction. Furthermore, employing a language
modeling classifier trained for an intermediate layer leads to improvement in accuracy.

We provide the analysis of match rates with respect to token positions in Tables [4] to [6] in Appendix [B]
Consistent trends in token prediction are observed across various token positions when considering a specific
layer, k, and language modeling classifier.

Figure |3 illustrates the theoretical trade-off between latency and computational resources, derived from
Equation 2] and @l The probability peorrect applied in the curve is based on Peorrect values at the 20-th
intermediate layer, as presented in Table [2] With respect to the conventional greedy decoding, the curve

Under review as submission to TMLR

Trade-off Curve

1.00 A H € Conventional decoding i
k=1 k=3 k=5 SQUAD
- 0-95 A SQUAD +tr
00.90 ' (1.561, 0.892) wMT
o : ® WMT+tr
So.ss) CNN/DM
o : B CNN/DM + tr
0.80 _)
EC‘) n °
i [)
0.75 : .
2 A
© 0.70 a :
a : -,
0.65 4 "
' 34% latency reduction "a (4.973, 0.629)
0.60 3.2x compute resources
1 2 3 4 5 6

Average compute resources per time unit

Figure 3: Theoretical trade-off curve of average compute resources per time unit and per token
latency. The curve graph is derived from Equation [2|and 4] For example, with £ = 3 and while performing
the SQUAD task with a trained classifier, latency can be reduced by 34% at the expense of using 3.2 times
more computational resources. This is demonstrated using Vicuna-13B, a model with 40 layers, where the
intermediate layer is set to d/2. The notation “tr” indicates that the language modeling classifier has been
individually trained for each transformer decoder layer.

shows that normalized latency per token ranges from 0.629 (SQUAD+“tr”, k=5) to 0.892 (WMT, k=1).
This indicates potential latency improvements of between 10.8% and 37.1%, while preserving the output
quality comparable to the original decoding. However, it is important to note that these speed gains come at
the cost of additional computational resources, which can increase by a factor of 1.561 to nearly 4.973 times
the original consumption. For further insights into the trade-off between average computational resources
per token and latency, we refer the reader to Figure [df We illustrate the trade-off between latency and
compute resources per token for d = d/2. The “compute resources per token” is calculated by multiplication
of Equation [2 and [4

2+ k — DPcorrect

. 5)

Average compute resources per token ~

5 Limitations

While our method has the potential for latency improvements, this comes at the cost of increased computa-
tional requirements. To reduce the computation costs, future research should focus on better utilization of
GPU resources. It is also crucial to consider other factors that impact latency, such as GPU synchronization,
data transfer overhead, and communication and memory management overhead, as highlighted in [Kim et al.
(2023a)). The scope of our current work specifically targets greedy decoding, yet it is worth acknowledging
that other decoding algorithms (Holtzman et al.,|2019; Radford et al.l [2019; Wang et al., 2022|) have demon-
strated superior performance. Thus, future endeavors intend to extend our methodology to other decoding
methods.

6 Conclusion

We introduced PPD, a method aimed at reducing the decoding latency while maintaining the original
decoding result of LLM. Based on our theoretical analysis and empirical measurements, we identified the
potential of PPD to reduce latency. Furthermore, we demonstrated that training the language modeling
classifier for an intermediate transformer layer can effectively enhance early prediction accuracy, potentially
leading to further reductions in latency.

Under review as submission to TMLR

Trade-off Curve

1.00 — :
0.95 k=1 k=3 k=5
>] 3
L 0.90
S
L 0.85 C
i) ;
c 0.80 v ° :
[J] n R
A 0.75 ® @ Conventional decoding
iche A : SQUAD
- i A SQUAD + tr
P 0.70 " ; WMT
0.65 A u ® WMT +tr
' A CNN/DM
0.60 H CNN/DM + tr
1 2 3 4 5 6

Average compute resources per token

Figure 4: Theoretical trade-off curve of compute resources per token and latency. In this figure,
we change the x-axis of Figure E[, average compute resources per time unit, to average compute resources
per token. The model and experimental setting are the same as those used in Figure

References

Ondfej Bojar, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. Findings of the 2015 workshop on statistical machine translation. In Proceedings
of the Tenth Workshop on Statistical Machine Translation, pp. 1-46, Lisbon, Portugal, September 2015.
Association for Computational Linguistics. doi: 10.18653/v1/W15-3001. URL https://aclanthology.
org/Wi5-3001l

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Daniel Campos and ChengXiang Zhai. To asymmetry and beyond: Structured pruning of sequence to
sequence models for improved inference efficiency. arXiv preprint arXiv:2304.02721, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with speculative sampling. arXiv preprint arXiv:2302.01318,
2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/l

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication
for transformers at scale. Advances in Neural Information Processing Systems, 35:30318-30332, 2022.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with structured
dropout. arXiv preprint arXiv:1909.11556, 2019.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

10

https://aclanthology.org/W15-3001
https://aclanthology.org/W15-3001
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Under review as submission to TMLR

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural information processing
systems, 28, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degener-
ation. arXiw preprint arXiv:1904.09751, 2019.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert:
Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351, 2019.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A Smith. Deep encoder, shallow decoder:
Reevaluating non-autoregressive machine translation. arXiv preprint arXiv:2006.10569, 2020.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-only bert
quantization. In International conference on machine learning, pp. 5506-5518. PMLR, 2021.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc, Grace
Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of transformer
inference: a survey. arXiv preprint arXiv:2302.14017, 2023a.

Sehoon Kim, Karttikeya Mangalam, Jitendra Malik, Michael W Mahoney, Amir Gholami, and Kurt Keutzer.
Big little transformer decoder. arXiv preprint arXiv:2302.07863, 2023b.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for large language
models. arXiv preprint arXiv:2203.07259, 2022.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami. A
fast post-training pruning framework for transformers. arXiv preprint arXiv:2204.09656, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decod-
ing, 2023.

Yijin Liu, Fandong Meng, Jie Zhou, Yufeng Chen, and Jinan Xu. Faster depth-adaptive transformers. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 13424-13432, 2021.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in neural
information processing systems, 32, 2019.

OpenAl. Gpt-4 technical report, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 2383-2392, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems, 33:20378-20389, 2020.

11

https://aclanthology.org/D16-1264

Under review as submission to TMLR

Tal Schuster, Adam Fisch, Tommi Jaakkola, and Regina Barzilay. Consistent accelerated inference via
confident adaptive transformers. arXiv preprint arXiv:2104.08803, 2021.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing Systems, 35:
17456-17472, 2022.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pp. 8815-8821, 2020.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, Lingling Wu, Yilong He, Yuan Ni, Guotong Xie,
Xuanjing Huang, and Xipeng Qiu. A simple hash-based early exiting approach for language understanding
and generation. arXiv preprint arXiv:2205.01670, 2022.

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang, Yi Liang,
and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for accelerating unified vision lan-
guage model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10781-10791, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog applications. arXiv
preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, f.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint arXiv:1905.09418,
2019.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency improves
chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 38—45, Online, October 2020. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li, and Yuxiong He. Extreme compression for pre-trained
transformers made simple and efficient. arXiv preprint arXiv:2206.01859, 2022.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. Berxit: Early exiting for bert with better fine-tuning and
extension to regression. In Proceedings of the 16th conference of the Furopean chapter of the association
for computational linguistics: Main Volume, pp. 91-104, 2021.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zero-
quant: Efficient and affordable post-training quantization for large-scale transformers. Advances in Neural
Information Processing Systems, 35:27168-27183, 2022.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6

Under review as submission to TMLR

Hongxu Yin, Arash Vahdat, Jose Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. Adavit: Adaptive
tokens for efficient vision transformer. arXiv preprint arXiv:2112.07658, 2021.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. Gobo: Quantizing attention-based
nlp models for low latency and energy efficient inference. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 811-824. IEEE, 2020.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 2019 Fifth
Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-
NIPS), pp. 36-39. IEEE, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiw
preprint arXiv:2205.01068, 2022.

13

Under review as submission to TMLR

A Experiment Setting

Hyperparameter Value
Number of Epochs 3
Learning Rate 0.00002
Batch Size 128
Optimizer AdamW
Loss Function Cross-Entropy
Max Sequence Length 2048
Warmup ratio 0.04
Weight Decay 0.0

Table 3: Hyperparameters used for training a language modeling classifier for an intermediate layer.

14

Under review as submission to TMLR

B Additional Tables

Token position

SN

k Trained 1-2

3—4

5—6

78

9-10

11-12

13—-14

15—-16

Total

10 layers

0.80%
3.06%

7.29%
16.79%

6.02%
16.76%

5.66%
15.45%

5.93%
16.58%

6.62%
17.72%

7.02%
17.98%

7.66%
19.28%

5.88%
15.45%

1.43%
13.52%

11.74%
25.17%

9.31%
24.14%

9.23%
23.20%

9.70%
24.40%

10.53%
25.35%

10.61%
25.38%

11.40%
26.69%

9.25%
23.48%

1.91%
23.42%

14.34%
29.57%

11.11%
27.36%

11.11%
27.04%

11.70%
27.87%

12.38%
28.92%

12.52%
28.85%

13.25%
30.14%

11.04%
27.90%

20 layers

19.56%
37.54%

43.20%
56.01%

44.55%
56.53%

43.36%
55.93%

41.81%
54.96%

40.36%
53.92%

39.31%
53.69%

39.04%
53.93%

38.90%
52.81%

30.15%
51.10%

60.79%
72.95%

60.86%
72.39%

59.67%
71.82%

57.75%
71.24%

55.23%
69.80%

54.35%
68.60%

53.52%
69.06%

54.04%
68.37%

36.47%
57.37%

67.80%
79.05%

66.63%
78.03%

65.79%
77.62%

63.89%
76.92%

61.24%
75.63%

59.86%
74.05%

59.51%
74.53%

60.15%
74.15%

30 layers

55.05%
65.36%

70.19%
78.73%

66.48%
76.79%

66.25%
74.30%

64.72%
73.76%

61.70%
71.01%

60.42%
69.65%

58.39%
69.09%

62.90%
72.34%

71.66%
84.03%

85.21%
92.37%

81.68%
91.04%

80.46%
88.73%

79.86%
88.43%

76.47%
86.06%

74.84%
85.05%

73.15%
84.20%

77.92%
87.49%

78.84%
91.12%

90.15%
95.70%

87.94%
94.90%

86.12%
93.41%

85.43%
92.62%

82.22%
90.85%

80.77%
90.27%

79.30%
89.43%

83.84%
92.29%

35 layers

73.73%
82.74%

85.51%
91.32%

82.93%
90.70%

81.13%
88.20%

80.75%
88.25%

78.99%
87.39%

78.10%
86.96%

76.98%
85.89%

79.77%
87.68%

90.03%
96.26%

96.02%
98.58%

94.68%
98.32%

93.48%
97.88%

93.48%
97.65%

92.01%
97.11%

91.32%
96.70%

90.10%
96.11%

92.64%
97.33%

94.64%
98.55%

98.12%
99.44%

97.40%
99.38%

96.54%
99.19%

96.20%
98.87%

95.27%
98.711%

94.64%
98.37%

94.01%
97.98%

95.85%
98.81%

37 layers

82.12%
87.70%

91.66%
94.28%

90.79%
93.73%

88.70%
91.95%

88.90%
92.28%

87.89%
91.66%

87.58%
91.29%

86.44%
90.50%

88.01%
91.67%

96.84%
98.56%

98.86%
99.47%

98.57%
99.35%

98.09%
99.19%

98.02%
99.12%

97.55%
98.91%

97.04%
98.58%

96.37%
98.07%

97.67%
98.91%

99.04%
99.56%

K ZIK 2K 2K 2K 2K 2K 2| K 2K 2| 21K 2| 2K 2| 2| 2

99.62%
99.81%

99.53%
99.84%

99.30%
99.77%

99.17%
99.70%

99.03%
99.62%

98.71%
99.44%

98.28%
99.21%

99.08%
99.62%

Table 4: The token prediction results with respect to token positions in SQUAD.

15

Under review as submission to TMLR

Token position
d k Trained 1-16 17-32 33—-48 49-64 65—-80 81-96 97—112 113-128 Total
1 N 1.45% 2.01% 2.35% 2.12% 2.35% 2.66% 2.93% 3.30% | 2.40%
Y 3.60% 8.08% 9.60% 10.80% 12.02% 13.42% 14.92% 16.08% | 11.06%
10 layers 3 N 2.65% 3.74% 4.33% 4.35% 4.40% 4.74% 5.20% 5.60% | 4.38%
Y 5.53% 11.08% 13.33% 14.33% 15.86% 17.89% 19.75% 20.90% | 14.83%
5 N 3.54% 4.82% 5.50% 559% 5.58% 6.03% 6.51% 7.00% | 5.57%
Y 6.73% 13.00% 15.06% 15.92% 17.84% 20.24% 22.38% 23.43% | 16.82%
1 N 11.55% 16.65% 17.45% 20.37% 22.60% 25.95% 28.40% 30.08% | 21.63%
Y 13.60% 21.05% 24.03% 28.37% 31.07% 35.65% 38.65% 40.95% | 29.17%
90 layers 3 N 17.87% 24.17% 25.78% 29.95% 33.10% 38.50% 41.23% 42.89% | 31.69%
Y 22.08% 30.01% 33.97% 39.87% 43.90% 50.11% 53.63% 55.55% | 41.14%
5 N 22.33% 28.84% 30.29% 34.92% 39.20% 44.41% 47.65% 49.44% | 37.13%
Y 27.49% 36.51% 40.65% 46.85% 51.28% 57.24% 60.45% 62.28% | 47.84%
1 N 28.97% 32.49% 33.22% 38.12% 40.79% 45.30% 47.90% 50.70% | 39.69%
Y 32.79% 39.03% 40.70% 46.02% 50.68% 55.72% 58.84% 61.83% | 48.20%
30 layers 3 N 48.05% 53.57% 55.64% 60.53% 64.22% 67.84% 70.70% 73.16% | 61.71%
‘ Y 52.70% 59.63% 62.35% 66.78% 72.00% 75.52% 78.53% 80.46% | 68.50%
5 N 56.83% 61.02% 62.43% 66.80% T71.14% 75.01% 77.78% 79.71% | 68.84%
Y 61.77% 67.57% 69.711% 73.43% 78.43% 81.90% 84.68% 86.21% | 75.46%
1 N 59.78% 60.46% 62.65% 66.26% T71.51% 73.71% 76.38% 78.43% | 68.64%
Y 64.29% 66.23% 69.20% 73.04% 77.93% 80.60% 82.96% 84.49% | 74.84%
35 layers 3 N 79.89% 79.73% 80.28% 82.90% 86.58% 89.11% 90.45% 91.33% | 85.03%
Y 83.93% 86.30% 86.48% 88.28% 91.11% 93.23% 94.40% 94.97% | 89.84%
5 N 85.90% 86.35% 85.90% 87.53% 90.48% 92.51% 93.58% 94.05% | 89.54%
Y 89.22% 91.40% 90.74% 92.10% 94.12% 95.72% 96.65% 96.90% | 93.36%
1 N 73.90% 71.87% 72.45% 75.47% 80.09% 81.95% 84.05% 85.42% | 78.15%
Y 77.30% 76.32% 77.35% 80.82% 84.78% 86.85% 88.49% 89.58% | 82.69%
37 layers 3 N 91.86% 91.50% 91.50% 92.25% 93.83% 95.14% 95.84% 96.34% | 93.53%
Y 93.66% 94.02% 93.89% 94.69% 95.87% 96.79% 97.31% 97.64% | 95.48%
5 N 95.60% 95.69% 95.01% 95.56% 96.51% 97.23% 97.76% 97.90% | 96.41%
Y 96.69% 97.14% 96.75% 97.15% 97.81% 98.29% 98.66% 98.88% | 97.67%

Table 5: The token prediction results with respect to token positions in WMT EN-FR.

16

Under review as submission to TMLR

Token position
d k Trained | 1-16 17-32 33-48 49-64 65—80 81-96 97—112 113-128 | Total
1 N 0.85% 7.42% 7.43% 7.99% 8.26% 8.64% 8.711% 8.54% | 7.23%
Y 15.32% 17.20% 17.80% 18.56% 19.27% 20.29% 21.43% 22.27% | 19.02%
10 layers 3 N 12.75% 11.97% 12.01% 12.94% 13.25% 13.50% 13.33% 13.01% | 12.84%
Y 21.92% 25.55% 26.63% 27.63% 28.43% 29.43% 30.18% 30.78% | 27.57%
5 N 14.82% 14.31% 14.44% 15.46% 15.73% 16.05% 15.68% 15.21% | 15.21%
Y 24.98% 29.34% 30.45% 31.61% 32.41% 33.36% 33.99% 34.53% | 31.33%
1 N 33.34% 33.67% 31.85% 31.87% 31.46% 31.64% 31.50% 31.29% | 32.08%
Y 42.24% 44.45% 43.03% 43.09% 43.16% 43.75% 44.50% 45.01% | 43.65%
20 layers 3 N 47.68% 48.47% 46.01% 46.23% 45.82% 45.96% 45.64% 45.03% | 46.36%
Y 60.46% 61.38% 59.67% 59.98% 60.19% 60.76% 61.13% 61.25% | 60.60%
5 N 54.27% 54.68% 52.17% 52.40% 52.01% 52.06% 51.71% 50.80% | 52.51%
Y 67.83% 68.02% 66.35% 66.72% 66.88% 67.52% 67.71% 67.63% | 67.33%
1 N 57.17% 54.63% 52.49% 52.79% 52.35% 52.10% 51.86% 51.15% | 53.07%
Y 63.01% 62.35% 60.84% 61.26% 61.17% 61.15% 61.14% 60.68% | 61.45%
30 layers 3 N 70.92% 69.59% 67.80% 68.27% 68.06% 67.64% 67.01% 65.81% | 68.14%
Y 78.99% 79.32% 78.63% 78.98% 78.85% 78.58% 77.97% 77.05% | 78.55%
5 N 76.21% 75.51% 74.03% 74.51% 74.39% 74.05% 73.18% 71.88% | 74.22%
Y 84.95% 85.47% 85.31% 85.40% 85.32% 84.94% 84.10% 83.16% | 84.83%
1 N 70.56% 70.11% 68.56% 68.49% 68.45% 68.41% 68.40% 68.20% | 68.90%
Y 78.70% 79.48% 78.51% 78.44% 78.23% 78.27% 78.14% 77.92% | 78.46%
35 layers 3 N 85.92% 85.89% 85.16% 85.10% 85.00% 84.95% 84.61% 83.95% | 85.07%
Y 93.22% 93.69% 93.52% 93.44% 93.28% 93.02% 92.60% 91.80% | 93.07%
5 N 90.46% 90.66% 90.32% 90.27% 90.14% 89.99% 89.67% 88.83% | 90.04%
Y 96.33% 96.56% 96.49% 96.41% 96.24% 95.99% 95.59% 94.82% | 96.06%
1 N 79.38% 79.84% 78.79% 78.44% 78.36% 78.41% 78.57% 78.78% | 78.82%
Y 84.51% 85.32% 84.51% 84.30% 84.14% 84.12% 84.17% 84.27% | 84.42%
37 layers 3 N 93.72% 94.31% 94.07% 93.97% 93.78% 93.79% 93.57% 93.28% | 93.81%
Y 96.71% 97.02% 96.94% 96.85% 96.74% 96.52% 96.26% 95.91% | 96.62%
5 N 96.96% 97.20% 97.15% 97.13% 97.04% 96.88% 96.58% 96.12% | 96.88%
Y 98.64% 98.66% 98.60% 98.59% 98.50% 98.33% 98.11% 97.77% | 98.40%

Table 6: The token prediction results with respect to token positions in CNN/DM.

17

	Introduction
	Related Work
	Predictive Pipelined Decoding
	Theoretical Analysis
	Model
	Latency Analysis
	Simulations

	Limitations
	Conclusion
	Experiment Setting
	Additional Tables

