
ITA: Image-Text Alignments for Multi-Modal Named Entity Recognition

Anonymous ACL submission

Abstract
Recently, Multi-modal Named Entity Recog-001
nition (MNER) has attracted a lot of attention.002
Most of the work utilizes image information003
through region-level visual representations ob-004
tained from a pretrained object detector and005
relies on an attention mechanism to model the006
interactions between image and text representa-007
tions. However, it is difficult to model such in-008
teractions as image and text representations are009
trained separately on the data of their respective010
modality and are not aligned in the same space.011
As text representations take the most important012
role in MNER, in this paper, we propose Image-013
text Alignments (ITA) to align image features014
into the textual space, so that the attention015
mechanism in transformer-based pretrained tex-016
tual embeddings can be better utilized. ITA017
first aligns the image into regional object tags,018
image-level captions and optical characters as019
visual contexts, concatenates them with the020
input texts as a new cross-modal input, and021
then feeds it into a pretrained textual embed-022
ding model. This makes it easier for the atten-023
tion module of a pretrained textual embedding024
model to model the interaction between the025
two modalities since they are both represented026
in the textual space. ITA further aligns the027
output distributions predicted from the cross-028
modal input and textual input views so that the029
MNER model can be more practical and ro-030
bust to noises from images. In our experiments,031
we show that ITA models can achieve state-of-032
the-art accuracy on multi-modal Named Entity033
Recognition datasets, even without image in-034
formation.035

1 Introduction036

Named Entity Recognition (NER) (Sundheim,037

1995) has attracted increasing attention in natu-038

ral language processing community. It has been039

applied to a lot of domains such as news (Tjong040

Kim Sang, 2002; Tjong Kim Sang and De Meulder,041

2003), E-commerce (Fetahu et al., 2021), social me-042

dia (Strauss et al., 2016; Derczynski et al., 2017)043

and bio-medicine (Doğan et al., 2014; Li et al., 044

2016). Several recent studies focus on improving 045

the accuracy of NER models through utilizing im- 046

age information (MNER) in tweets (Zhang et al., 047

2018; Moon et al., 2018; Lu et al., 2018). Most ap- 048

proaches to MNER use the attention mechanism to 049

model the interaction between image and text rep- 050

resentations (Yu et al., 2020; Zhang et al., 2021a; 051

Sun et al., 2021), in which image representations 052

are extracted from a pretrained object detector, i.e. 053

ResNet (He et al., 2016), and text representations 054

are extracted from pretrained textual embeddings, 055

i.e. BERT (Devlin et al., 2019). Since these mod- 056

els are separately trained on datasets of different 057

modalities and their feature representations are not 058

aligned, it is difficult for the attention mechanism to 059

model the interaction between the two modalities. 060

Recently, pretrained vision-language (V+L) 061

models such as LXMERT (Tan and Bansal, 2019), 062

UNITER (Chen et al., 2020) and Oscar (Li et al., 063

2020b) have achieved significant improvement on 064

several cross-modal tasks such as image caption- 065

ing, VQA (Agrawal et al., 2015), NLVR (Young 066

et al., 2014) and image-text retrieval (Suhr et al., 067

2019). Most pretrained V+L models are trained 068

on image-text pairs and simply concatenate text 069

features and image features as the input of pretrain- 070

ing. There are, however, two problems. First, texts 071

in these datasets mainly contain common nouns 072

instead of named entities1 which leads to an induc- 073

tive bias over common nouns and images. Second, 074

despite its important role in pretraining V+L mod- 075

els, the image modality only plays an auxiliary 076

role in MNER for disambiguation, and can some- 077

times even be discarded. These problems make 078

pretrained V+L models perform weaker than pre- 079

trained language models for MNER. 080

Pretrained textual embeddings such as BERT, 081

XLM-RoBERTa (Conneau et al., 2020) and LUKE 082

1https://visualgenome.org/data_
analysis/statistics
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(Yamada et al., 2020) have achieved state-of-the-art083

performance on various NER datasets through sim-084

ple fine-tuning of pretrained textual embeddings.085

Since most of the transformer-based pretrained tex-086

tual embeddings are trained over long texts, re-087

cent work (Akbik et al., 2019; Schweter and Akbik,088

2020; Yamada et al., 2020; Wang et al., 2021) has089

shown that introducing document-level contexts090

can significantly improve the accuracy of a NER091

model. The attention mechanism in transformer-092

based pretrained textual embeddings can utilize093

contexts to improve the token representation of a094

sequence. Moreover, pretrained V+L models such095

as Oscar and VinVL (Zhang et al., 2021b) can use096

object tags detected in images to significantly ease097

the alignments between text and image features.098

Therefore, the images in MNER can be converted099

to texts as well so that the image representations100

can be aligned to the space of text representations.101

As a result, the attention module of the pretrained102

textual embeddings have the capability to easily103

model the interactions between aligned image and104

text representations, without introducing a new at-105

tention module. In this paper, we propose ITA,106

a simple but effective framework for Image-Text107

Alignments. ITA converts an image into visual108

contexts in textual space by multi-level alignments.109

We concatenate the NER texts with the visual con-110

texts as a new cross-modal input view and then111

feed it into a pretrained textual embedding model112

to improve the token representations of NER texts,113

which are fed into a linear-chain CRF (Lafferty114

et al., 2001) layer for prediction. In practice, a115

MNER model should be robust when there is only116

text information, as images may be unavailable or117

can introduce noise. Sometimes it is even unde-118

sirable to use images as image feature extraction119

can be inefficient in online serving. Therefore, we120

further propose to utilize the cross-modal input121

view to improve the accuracy of textual input view,122

based on cross-view alignment that minimizes the123

KL divergence over the probability distributions of124

the two views.125

ITA can be summarized in four aspects:126

1. Object Tags as Local Alignment: ITA locally127

extracts object tags and its corresponding at-128

tributes of image regions from an object detec-129

tor.130

2. Image Captions as Global Alignment: ITA sum-131

marizes what the image is describing through132

predicting image captions from an image cap- 133

tioning model. 134

3. Optical Character Alignment: ITA extracts the 135

texts presented in the image via optical character 136

recognition (OCR). 137

4. Cross-View Alignment: we calculate the KL 138

divergence between the output distributions of 139

two input views. 140

We show in experiments that ITA can significantly 141

improve the model accuracy on MNER datasets 142

and achieve the state-of-the-art. The cross-view 143

alignment module can significantly improve both 144

the cross-modal and textual input views, and bridge 145

the performance gap between the two views. 146

2 Approaches 147

We consider the NER task as a sequence labeling 148

problem. Given a sentence w = {w1, · · · , wn} 149

with n tokens and its corresponding image I , an 150

sequence labeling model aims to predict a label 151

sequence y = {y1, · · · , yn} at each position. In 152

our framework, we focus on incorporating visual 153

information to improve the representations of the 154

input tokens by aligning visual and textual informa- 155

tion effectively. We use a visual context generator 156

to convert the image I into texts forming visual 157

contexts w′ = {w′
1, · · · , w′

m} with m tokens. We 158

concatenate the input text and visual contexts as a 159

cross-modal text+image (I+T) input view instead 160

of the text (T) input view. We feed the I+T input 161

into a pretrained textual embeddings model to get 162

stronger token representations of the input sentence. 163

Then the token representations are fed into a linear- 164

chain CRF layer to get the label sequence y. To 165

further improve the model accuracy of both input 166

views, we use the cross-view alignment module 167

to align the output distributions of I+T and T in- 168

put views during training. The architecture of our 169

framework is shown in Figure 1. 170

2.1 NER Model Architecture 171

We use a neural model with a linear-chain CRF 172

layer, a widely used approach for the sequence la- 173

beling problem (Huang et al., 2015; Akbik et al., 174

2018; Devlin et al., 2019). The input is fed 175

into a transformer-based pretrained textual embed- 176

dings model and the output token representations 177
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Figure 1: The architecture of ITA. ITA aligns an image into object tags, image captions and texts from OCR.
ITA takes them as visual contexts and then feeds them together with the input texts into the transformer-based
embeddings. In the cross-view alignment module, ITA minimizes the distance between the output distribution of
cross-modal inputs and textual inputs.

{r1, · · · , rn} are fed into the CRF layer:178

pθ(y|w) =

n∏
i=1

ψ(yi−1, yi, ri)∑
y′∈Y(w)

n∏
i=1

ψ(y′i−1, y
′
i, ri)

179

where θ is the model parameters, Y(w) is the set180

of all possible label sequences given the input w.181

Given the gold label sequence ŷ in the training182

data, the objective function of the model for the T183

input view is:184

LT(θ) = − log pθ(ŷ|w) (1)185

The loss can be calculated using Forward algo-186

rithm.187

2.2 Image-text Alignments188

The transformer-based pretrained textual embed-189

dings have strong representations over texts. There-190

fore, ITA converts the image information into tex-191

tual space through generating texts from the im-192

age so that the learning of the self-attention in the193

transformer-based model can be significantly eased194

compared with simply using image features from195

an object detector. We propose a local (LA), a196

global (GA) and an optical character alignment197

(OCA) approaches for alignments.198

Object Tags as Local Alignment Given an im-199

age, the image information can be decomposed into200

a set of objects in local regions. The object tags of201

each region textually describe the local information 202

in the image. To extract the objects, we use an ob- 203

ject detector OD to identify and locate the objects 204

in the image: 205

a,o = OD(I);where 206

a = {a1,a2, · · · ,al} and o = {o1, o2, · · · , ol} 207

The attribute predictions from the object detector 208

contain multiple attribute tags ai for each object 209

oi. We linearize and sort the objects in a descend- 210

ing order based on the confidences of the detection 211

model. For each object, we heuristically keep 0 to 212

3 attributes with confidence scores above a thresh- 213

old m. We linearize the attributes and put the at- 214

tributes before the corresponding objects since the 215

attributes are the adjectives describing the object 216

tags. As a result, we take the predicted l object tags 217

o and their attribute tags a from the object detector 218

as the locally aligned visual contexts wLA: 219

wLA = {a1, o1,a2, o2, · · · ,al, ol} 220

Image Captions as Global Alignment Though 221

the local alignment can localize the image into 222

objects, the objects cannot fully describe the of 223

the whole image. Image captioning is a task that 224

predicts the meaning of an image. Therefore, we 225

align the image into k image captions by an image 226

captioning model IC: 227

{w1,w2, · · · ,wk} = IC(I) 228

3



where {w1,w2, · · · ,wk} are captions generated229

from beam search with k beams. We concatenate230

the k captions together with a special separate to-231

ken [X] to form the aligned global visual contexts232

wGA:233

wGA=[w1, [X],w2, [X], · · · , [X],wk]234

The exact label (e.g. “[SEP]” in BERT) of the235

special [X] token depends on the selection of em-236

beddings.237

Optical Character Alignment Some image con-238

tain text when they are created to enrich the seman-239

tic information that the images want to convey. In240

order to better understand this type of image, we241

use an OCR model to identify and extract the texts242

in the image:243

wOCA = OCR(I)244

where wOCA are the texts extracted by the OCR245

model. Note that wOCA may be an empty text if246

there is no text in the image.247

We concatenate the input sentence and our248

aligned visual contexts to form the I+T input view249

ŵ = [w;w′], where w′ can be one of wLA, wGA,250

wOCA or the concatenation of all (we denote it as251

All). The transformer-based embeddings are fed252

with the I+T input view and then output image-253

text fused token representations for each token254

{r′1, · · · , r′n}. The token representations are fed255

into the CRF layer to get the probability distri-256

bution pθ(y|ŵ). Similar to Eq. 1, the objective257

function of the model for the I+T input view is:258

LI+T(θ) = − log pθ(ŷ|ŵ) (2)259

Cross-View Alignment There are several limita-260

tions in incorporating images into NER prediction:261

1) the images may not available in testing; 2) align-262

ing images to texts requires several pipelines in263

pre-processing instead of an end-to-end manner,264

which is so time-consuming that it is not applicable265

to some time-critical scenes such as online serving;266

3) the noise in the image can mislead the MNER267

model to make wrong predictions. To alleviate268

these issues, we propose Cross-View Alignment269

(CVA), which targets at reducing the gap between270

the I+T and T input views over the output distri-271

butions so that the MNER model can better utilize272

the textual information in the input. During train-273

ing, CVA minimizes the KL divergence over the274

probability distribution of I+T and T input views: 275

LCVA(θ)=KL(pθ(y|ŵ)||pθ(y|w)) (3) 276

Since the I+T input view has additional visual in- 277

formation in the input and we want the T input 278

view to match the accuracy of I+T input view, we 279

only back-propagate through pθ(y|w) in Eq. 3. 280

Therefore, Eq. 3 is equivalent to calculating the 281

cross-entropy loss over the two distributions: 282

LCVA(θ)=
∑

y∈Y(x)

pθ(y|ŵ) log pθ(y|w) (4) 283

As the set of all possible label sequences Y(x) is 284

exponential in size, we calculate the posterior dis- 285

tributions of each position pθ(yi|w) and pθ(yi|ŵ) 286

through forward-backward algorithm to approxi- 287

mate Eq. 4: 288

pθ(yk|∗)∝
∑

{y0,...,yk−1}

k∏
i=1

ψ(yi−1, yi, r
∗
i ) 289

×
∑

{yk+1,...,yn}

n∏
i=k+1

ψ(yi−1, yi, r
∗
i ) 290

LCVA(θ)=
n∑

i=1

pθ(yi|ŵ) log pθ(yi|w)) (5) 291

where r∗i represents either ri or r′i. 292

Training During training, we jointly train T and 293

I+T input views with the training objective in Eq. 294

1 and 2 together with the CVA alignment training 295

objective in Eq. 5. As a result, the final training 296

objective for ITA is: 297

LITA = LCVA + LT + LI+T 298

3 Experiments 299

We conduct experiments on two MNER datasets. 300

To show the effectiveness of our approaches, we 301

use two embedding settings and compare our ap- 302

proaches with previous multi-modal approaches. 303

3.1 Settings 304

Datasets We show the effectiveness of our ap- 305

proaches on Twitter-15, Twitter-17 and SNAP 306

Twitter datasets2 containing 4,000/1,000/3,357, 307

3,373/723/723 and 4,290/1,432/1,459 sentences 308

in train/development/test split respectively. The 309

2Twitter-15 and 17 datasets are available at https://
github.com/jefferyYu/UMT.
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Twitter-15 dataset is constructed by Zhang et al.310

(2018). The SNAP dataset is constructed by Lu311

et al. (2018) and the Twitter-17 dataset is a filtered312

version of SNAP constructed by Yu et al. (2020).313

Model Configuration For token representations,314

we use BERT base model to fairly compare with315

most of the recent work (Yu et al., 2020; Zhang316

et al., 2021a; Sun et al., 2021). Recently, XLM-317

RoBERTa has achieved state-of-the-art accuracy on318

various NER datasets by feeding the input together319

with contexts to the model. To further utilize the320

visual contexts in transformer-based embeddings,321

we use XLM-RoBERTa large (XLMR) model as322

another embedding in our experiments. To extract323

object tags and image captions of the image, we324

use VinVL (Zhang et al., 2021b), which is a pre-325

trained V+L model based on a newly pretrained326

large-scale object detector based on the ResNeXt-327

152 C4 architecture. We use the object detection328

module of VinVL to predict object tags and their329

corresponding attributes. The number of object330

tags and attributes varies over the images and is no331

more than 100. We set the threshold m to be 0.1332

for keeping the attributes of each object. For image333

captions, we use VinVL large model finetuned on334

MS-COCO (Lin et al., 2014) captions3 with CIDEr335

optimization (Rennie et al., 2017). In our exper-336

iments, we use a beam size of 5 with at most 20337

tokens for prediction and keep all the 5 captions338

as the visual contexts. For OCR, we use Tesser-339

act OCR4 (Smith, 2007), which is an open source340

OCR engine. We use the default configuration of341

the engine to extract texts in the image5.342

Training Configuration During training, we343

finetune the pretrained textual embedding model344

by AdamW (Loshchilov and Hutter, 2018) opti-345

mizer. In experiments we use the grid search to346

find the learning rate for the embeddings within347

[1× 10−6, 5× 10−4]. For BERT embeddings, we348

finetune the embeddings with a learning rate of349

5 × 10−5 with a batch size of 16. For XLMR350

embeddings, we use a learning rate of 5 × 10−6351

and a batch size of 4 instead. For the learning352

rate of the CRF layer, we use a grid search over353

[0.05, 0.5] and [0.005, 0.05] for BERT and XLMR354

respectively. The MNER models are trained for 10355

epochs and we report the average results from 5356

runs with different random seeds for each setting.357

3github.com/microsoft/Oscar
4github.com/tesseract-ocr/tesseract
5Please refer to Appendix for more statistics.

Twitter-15 Twitter-17 SNAP

Train
Modal Approach

Eval Eval Eval
Modal Modal Modal

T I+T T I+T T I+T
BERT-CRF

T BERT-CRF 74.79 - 85.18 - 85.98 -

I+T

ITA-LA - 75.18 - 85.67 - 86.26
ITA-GA - 75.17 - 85.75 - 86.72
ITA-OCA - 75.01 - 85.64 - 86.52
ITA-All - 75.15 - 85.78 - 86.79
ITA-LA+CVA 75.26 75.20 85.72 85.62 86.51 86.41
ITA-GA+CVA 75.45 75.52 85.96 85.85 86.42 86.39
ITA-OCA+CVA 75.26 75.30 85.73 85.79 86.64 86.59
ITA-All+CVA 75.67 75.60 85.98 85.72 86.83 86.75

XLMR-CRF
T XLMR-CRF 77.37 - 88.73 - 89.39 -

I+T

ITA-LA - 77.64 - 89.29 - 89.68
ITA-GA - 77.78 - 89.32 - 89.78
ITA-OCA - 77.94 - 89.31 - 89.64
ITA-All - 77.81 - 89.62 - 90.10
ITA-LA+CVA 77.87 77.93 89.45 89.90 89.85 89.91
ITA-GA+CVA 78.03 78.02 89.41 89.62 89.85 90.09
ITA-OCA+CVA 77.57 77.59 89.32 89.55 89.90 89.84
ITA-All+CVA 78.25 78.03 89.47 89.75 90.02 90.15

Table 1: A comparison of ITA and our baseline.

Approach Twitter-15 Twitter-17 SNAP
REPORTED F1 OF PREVIOUS APPROACHES

OCSGA♣ 72.92 - -
UMT† 73.41 85.31 -
RIVA‡ 73.80 - 86.80
RpBERTbase

♠ 74.40 - 87.40
UMGF⋄ 74.85 85.51 -

OUR REPRODUCTIONS
BERT-CRF 74.79 85.18 85.98
UMT 72.83 84.88 -
UMGF 74.42 85.27 -
Ours: ITA-All+CVA 76.01 86.45 87.44

Table 2: A comparison of our approaches and state-of-
the-art approaches. ♣: Wu et al. (2020); †: results are
from Yu et al. (2020); ‡: Sun et al. (2020), ♠: Sun et al.
(2021), note that RpBERTbase uses the test set to select
the best model; ⋄: results are from Zhang et al. (2021a).

3.2 Results 358

In Table 1, we compare our approaches with our 359

baselines with different training and evaluation 360

modalities (T for the text only input view and I+T 361

for the multi-modal input view). Results show 362

that ITA models are significantly stronger than our 363

BERT-CRF and XLMR-CRF baselines (Student’s 364

t-test with p < 0.05). For the aligned visual con- 365

texts, LA, GA and OCA are competitive in most 366

of the cases. To show the effectiveness of CVA, 367

we report the evaluation results of both input views 368

in evaluation. With CVA, the accuracy of both 369

input views can be improved, especially the T in- 370

put view. CVA can improve the T input view to 371
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be competitive with I+T input view. Moreover,372

the combination of all the alignments ITA-All+CVA373

can further improve the model accuracy in most374

of the cases. The accuracy of the MNER models375

can be significantly improved if we use XLMR em-376

beddings, which shows the importance of the text377

modality in MNER. With XLMR embeddings, the378

model accuracy can be further improved with ITA.379

The relative improvements over the baseline mod-380

els are sometimes higher with XLMR than with381

BERT, which shows that the visual contexts can be382

further utilized with stronger embeddings.383

In Table 2, we compare ITA with previous state-384

of-the-art approaches. For previous approaches, we385

report the results including OCSGA, UMT, RIVA,386

RpBERT, UMGF are the proposed approaches of387

Wu et al. (2020), Yu et al. (2020), Sun et al. (2020),388

Sun et al. (2021) and Zhang et al. (2021a) respec-389

tively. For fair comparison, we report the results390

of these models based on the BERT base embed-391

dings. Moreover, since most of these previous ap-392

proaches report the best model accuracy instead393

of the averaged model accuracy, we use the best394

model accuracy of ITA-All+CVA over 5 runs. We395

also report our reproduced results of UMT, UMGF396

on the corresponding datasets. The results show397

that ITA-All+CVA outperforms all of the previous398

approaches. On the SNAP dataset, RpBERTbase399

is competitive with ITA-All+CVA. However, we400

find that in the official code of RpBERT, the model401

checkpoint is selected by the F1 scores on the test402

set6 during training while we only use the develop-403

ment set during training. As a result, we believe404

RpBERT is not directly comparable with our mod-405

els. We would also like to rerun the official code406

of RpBERT with our setting, but we were unable407

to run its code correctly. Moreover, the fact that408

our BERT-CRF baseline achieves competitive ac-409

curacy with previous state-of-the-art multi-modal410

approaches shows that most of the previous work411

has not fully explored the strength of the text repre-412

sentations for the task.413

3.3 Comparison with Other Variants414

To further show the effectiveness of ITA, we per-415

form several comparisons between ITA and the416

following variants of the MNER model in Table 3:417

ITA-Random: We generate random image-text418

pairs for the model. For each sentence, we ran-419

domly select the image in the dataset and generate420

6github.com/Multimodal-NER/RpBERT

Twitter-15 Twitter-17 SNAP

Approach
Eval Eval Eval

Modal Modal Modal
T I+T T I+T T I+T

ITA-Random - 74.67 - 84.98 - 85.82
BERT-CRF+ImgFeat - 74.70 - 84.99 - 85.90
VinVL-CRF - 60.58 - 75.55 - 74.53
BERT+VinVL-CRF - 74.89 - 85.19 - 86.14
ITA-Joint 74.88 75.22 85.31 85.60 86.06 86.34

REFERENCES
RpBERT w/o Rp - 72.60 - - - 86.20
ITA-All+CVA 75.50 75.41 85.89 85.84 86.83 86.75

Table 3: A comparison of other variants of MNER mod-
els. IF: using image features as visual contexts.

the corresponding visual contexts. The noise of 421

random visual contexts makes the model accuracy 422

drop slightly comparing with our BERT-CRF base- 423

line, which shows the improvement of our approach 424

is from the visual contexts rather than extending 425

the input sequence length the embeddings. 426

ITA-Joint: It is an ablated model of ITA- 427

All+CVA. We train the ITA-All model for both input 428

views without the CVA loss in Eq. 5. The model 429

accuracy is improved moderately with only the T 430

input view while our ITA-All+CVA can improve 431

both input views significantly, which shows the 432

effectiveness of the CVA module of ITA. 433

BERT-CRF+ImgFeat: Instead of ITA, we can di- 434

rectly feed the image region features generated 435

from an object detector into the BERT. We use 436

ResNet-152 model to generate region features and 437

then feed the features into a linear layer to project 438

the region features into the same space of text 439

features in the BERT. Moreover, we compare the 440

model with RpBERT w/o Rp, which is an ablated 441

model of RpBERT and is equivalent to BERT- 442

CRF++ImgFeat over the usage of BERT embeddings. 443

Sun et al. (2021) showed RpBERT w/o Rp can 444

improve the model accuracy compared with their 445

baseline. However, our results show that the model 446

accuracy slightly drops comparing with our BERT- 447

CRF, which shows that it is difficult for the atten- 448

tion module of BERT to learn the relations of the 449

unaligned representations of two modalities. 450

VinVL-CRF: To show how the pretrained V+L 451

models perform on the NER task, we use VinVL 452

since it is a very recent state-of-the-art pretrained 453

V+L model on a lot of multi-modal tasks. We 454

feed the VinVL model with texts and images in the 455

MNER datasets and finetune the model over the 456

task. We take the text representations output from 457
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Figure 2: A relation between the number of captions
input to the MNER model and model accuracy. The
x-axis is the number of captions. The y-axis is the
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Figure 3: Averaged L2 distance between the token rep-
resentations without image input (ri) and with image
input (r′i). The error bars mean the standard deviation
over 5 runs.

VinVL as the input of the CRF layer. The accuracy458

of the finetuned VinVL model drops significantly459

compared to the BERT model, which shows that460

the inductive bias of the pretrained V+L model461

hurts the model accuracy on MNER.462

BERT+VinVL-CRF: As the VinVL model may463

lead to an inductive bias over the common nouns464

and the image, we jointly finetune the BERT and465

VinVL models and concatenate the output text rep-466

resentations of the two models. The accuracy is467

improved on a moderate scale, which shows BERT468

is complementary to VinVL for MNER.469

3.4 Analysis470

Effect of the Number of Captions Using more471

captions output from the captioning model can im-472

prove diversities of the visual contexts but can add473

noises to them as well. To better understand how474

the number of captions affects the model accu-475

racy, we change the beam size and keep all the476

sentences output from the captioning model. The477

trends in Figure 2 show that the model accuracy478

increases until 5 captions for all the datasets and479

gradually drops when the number of captions fur-480

ther increases for Twitter-15 and 17 datasets. The481

observation shows that using 5 captions keeps a482

good balance between the diversities and correct-483

ness of the captions.484

Twitter-15
LOC ORG PER OTHER

P R F1 P R F1 P R F1 P R F1
Base 80.0 83.8 81.8 65.9 61.0 63.3 84.2 86.8 85.4 44.2 44.2 44.1
ITA 81.1 84.2 82.6 68.8 60.6 64.4 84.0 87.2 85.6 44.9 44.6 44.8
∆ 1.1 0.4 0.8 2.8 -0.4 1.1 -0.2 0.4 0.1 0.8 0.5 0.6

Twitter-17
Base 85.5 84.4 84.9 83.5 83.8 83.7 90.7 90.8 90.7 68.9 65.1 66.9
ITA 86.0 83.7 84.8 83.9 84.2 84.0 91.9 90.9 91.4 73.7 64.3 68.6
∆ 0.5 -0.7 -0.1 0.3 0.4 0.4 1.2 0.1 0.7 4.8 -0.8 1.7

SNAP
Base 82.1 82.8 82.5 87.8 86.9 87.3 91.0 91.5 91.2 72.3 75.1 73.7
ITA 80.3 81.7 81.0 87.8 86.5 87.1 90.1 91.2 90.6 70.1 73.2 71.6
∆ 1.9 1.1 1.5 0.6 0.5 0.5 0.9 0.3 0.6 2.2 1.9 2.1

Table 4: A comparison between our ITA (ITA-All+CVA
with I+T inputs) model and the baseline (BERT-CRF)
in precision (P), recall (R) and F1. ∆ represents the
relevant improvement of ITA over the Baseline.

How ITA Eases the Cross-Modal Alignments 485

Previous work such as Moon et al. (2018); Sun 486

et al. (2021) visualized modality attention in sev- 487

eral cases to show the effectiveness of their ap- 488

proaches. However, visualizing the multi-layer 489

attention in transformer-based embeddings is rela- 490

tively difficult. Instead of studying special cases, 491

we statistically calculate the averaged L2 distance 492

between token representations ri and r′i from two 493

input modalities to show how the token representa- 494

tions depend on image information. In Figure 3, the 495

L2 distance ITA-All is significantly larger than that 496

of BERT-CRF+ImgFeat. Besides, the standard 497

deviation of BERT-CRF+ImgFeat is very large. 498

The observations show the image region features 499

make the alignment become difficult and unstable 500

while our visual contexts can significantly ease the 501

cross-modal alignments. Moreover, with CVA, the 502

L2 distance becomes much smaller and stable as 503

CVA aligns the two input views to reduce the depen- 504

dence on images, which shows the MNER model 505

can better utilize the textual information with CVA. 506

How Images Affect the NER Prediction To 507

study the effectiveness of the images over each 508

label, we show a comparison between our model 509

and our baselines in Table 4. When the relative 510

improvement of the F1 score is larger than 0.5, the 511

relative improvement of precision is larger than that 512

of recall. The observation shows that the main im- 513

provement of MNER is mainly because the images 514

can help the model to reduce false-positive predic- 515

tions for disambiguation on uncertain entities.7 516

7In Appendix, we show several cases to show the effective-
ness of ITA to affect NER prediction.
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4 Related Work517

Multi-modal Named Entity Recognition Most518

of the previous approaches to MNER focus on519

the interaction between image and text features520

through attention mechanisms. Moon et al. (2018)521

proposed a modality attention network to fuse the522

text and image features before the input to the BiL-523

STM layer. Lu et al. (2018) additionally used a524

visual attention gate for the output features of the525

BiLSTM layer. Zhang et al. (2018) proposed an526

adaptive co-attention network after the BiLSTM527

layer to model the interaction between image and528

text. Recently, Wu et al. (2020) proposed OCSGA,529

which use object labels to model the interaction530

between image and object labels in an additional531

dense co-attention layer. Compared with the work,532

we show a simpler and more effective way to uti-533

lize object labels and additionally use other align-534

ment approaches to further improve the model ac-535

curacy. Yu et al. (2020) proposed UMT, which536

utilized a multi-modal interaction module and an537

auxiliary entity span detection module for MNER.538

Zhang et al. (2021a) proposed UMGF, which uti-539

lizes a pretrained parser to create the graph connec-540

tion between visual object tags and textual words.541

They used a graph attention network to fuse the542

textual and visual features. In order to better543

model whether the image is related to the text, Sun544

et al. (2021) proposed RpBERT, which addition-545

ally trains on a text-image relation classification546

dataset proposed by Vempala and Preoţiuc-Pietro547

(2019) to prevent the negative effect of noisy im-548

ages. Comparing with RpBERT, we use CVA to let549

the NER model better utilize the input sentences550

without such kinds of supervision. All of these551

approaches focus on fusing the image and text fea-552

tures through the attention mechanism but ignore553

the gap between the image and text features while554

we propose to fully utilize the attention mecha-555

nism in the pretrained textual embeddings through556

aligning image features into textual space. Besides,557

some cross-media research also shows the effective-558

ness of OCR texts (Chen et al., 2016; Wang et al.,559

2020) and object tags (Wu et al., 2016) have been560

shown. Most of the approaches introduced a new561

attention module over cross-modal features while562

in comparison ITA effectively utilizes the attention563

module in the pretrained textual embeddings.564

Pretrained Vision-Language Models Inspired565

by related work on language model pretraining,566

visual-language pretraining (VLP) has recently at- 567

tracted a lot of attention (Li et al., 2019; Lu et al., 568

2019; Chen et al., 2020; Tan and Bansal, 2019; Li 569

et al., 2020a; Yu et al., 2021; Zhang et al., 2021b). 570

The pretrained V+L models are pretrained on large- 571

scale image-text pairs and have achieved state-of- 572

the-art accuracy over various vision-language tasks 573

such as image captioning, VQA, NLVR and image- 574

text retrieval. Recently, Li et al. (2020a) proposed 575

Oscar to add object tags in pretraining so that self- 576

attention can learn the image-text alignments easily. 577

Following Oscar, Zhang et al. (2021b) proposed 578

VinVL to train a large-scale object detector to im- 579

prove the pretrained V+L model’s accuracy. Com- 580

paring with VLP, MNER is a totally different task. 581

Firstly, the image-caption pairs are given in VLP 582

and the image and text are equally important in 583

pretraining for general representations. Therefore, 584

using global alignment is meaningless for VLP but 585

makes sense for MNER. In MNER, the input text 586

is not the caption of the image and the image may 587

not adds additional information to the input text. 588

Secondly, though captions and object tags are of- 589

ten utilized in VLP, how to effectively utilize the 590

captions and object tags of the image in MNER is 591

rarely considered. Finally, besides the local and 592

global alignments, another aspect of ITA is the op- 593

tical character alignment and cross-view alignment, 594

which is rarely considered in VLP. 595

5 Conclusion 596

In this paper, we propose Image-Text Alignments 597

for multi-modal named entity recognition, which 598

convert images into object labels, captions and 599

OCR texts to align the image representations into 600

textual space in a multi-level manner and form 601

a cross-modal input view. The model can effec- 602

tively utilize attention module of the transformer- 603

based embeddings. Considering noises, availability 604

of images and inference speed for practical use, 605

we propose cross-view alignment, which let the 606

MNER models better utilize the text information 607

in the input. In our experiments, we show that ITA 608

significantly outperforms previous state-of-the-art 609

approaches on MNER datasets. We also show that 610

most of the previous work failed to train a good 611

textual baseline while our textual baseline can eas- 612

ily match or even outperform previous multi-modal 613

approaches. In analysis, we further analyze how 614

ITA eases the cross-modal alignments and how the 615

images affect the NER prediction. 616

8



References617

Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Mar-618
garet Mitchell, C. L. Zitnick, Devi Parikh, and Dhruv619
Batra. 2015. Vqa: Visual question answering. Inter-620
national Journal of Computer Vision, 123:4–31.621

Alan Akbik, Tanja Bergmann, and Roland Vollgraf.622
2019. Pooled contextualized embeddings for named623
entity recognition. In Proceedings of the 2019 Con-624
ference of the North American Chapter of the Asso-625
ciation for Computational Linguistics: Human Lan-626
guage Technologies, Volume 1 (Long and Short Pa-627
pers), pages 724–728, Minneapolis, Minnesota. As-628
sociation for Computational Linguistics.629

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.630
Contextual string embeddings for sequence label-631
ing. In Proceedings of the 27th International Con-632
ference on Computational Linguistics, pages 1638–633
1649, Santa Fe, New Mexico, USA. Association for634
Computational Linguistics.635

Tao Chen, Xiangnan He, and Min-Yen Kan. 2016.636
Context-aware image tweet modelling and recom-637
mendation. In Proceedings of the 24th ACM interna-638
tional conference on Multimedia, pages 1018–1027.639

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed640
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and641
Jingjing Liu. 2020. Uniter: Universal image-text642
representation learning. In European conference on643
computer vision.644

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,645
Vishrav Chaudhary, Guillaume Wenzek, Francisco646
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-647
moyer, and Veselin Stoyanov. 2020. Unsupervised648
cross-lingual representation learning at scale. In Pro-649
ceedings of the 58th Annual Meeting of the Asso-650
ciation for Computational Linguistics, pages 8440–651
8451, Online. Association for Computational Lin-652
guistics.653

Leon Derczynski, Eric Nichols, Marieke van Erp, and654
Nut Limsopatham. 2017. Results of the WNUT2017655
shared task on novel and emerging entity recogni-656
tion. In Proceedings of the 3rd Workshop on Noisy657
User-generated Text, pages 140–147, Copenhagen,658
Denmark. Association for Computational Linguis-659
tics.660

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and661
Kristina Toutanova. 2019. BERT: Pre-training of662
deep bidirectional transformers for language under-663
standing. In Proceedings of the 2019 Conference of664
the North American Chapter of the Association for665
Computational Linguistics: Human Language Tech-666
nologies, Volume 1 (Long and Short Papers), pages667
4171–4186, Minneapolis, Minnesota. Association for668
Computational Linguistics.669
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A Appendix865

A.1 Details of Experiment Settings866

We run our code on Tesla V100 GPU with 16 GB867

memory. It takes about two hours to train a model.868

The size of model parameter is approximately equal869

to size of BERT/XLMR embeddings. Our code is870

based on transformers8 and flair9. We will release871

our code upon acceptance.872

A.2 Details of OCA873

Table 5 shows that the OCR system only finds about874

26% sentences have texts in the image and the875

extracted texts have an average of 28 tokens. The876

statistics show that ITA-OCA can help to improve877

the model accuracy with only 26% of the samples878

have OCR texts.879

A.3 Case Study880

Despite that images can generally help to improve881

the accuracy of the NER model, there are a lot of882

cases that the images may contain misleading infor-883

mation to hurt the model prediction. We study two884

cases for LA nad GA: 1) the entities are wrongly885

predicted by BERT-CRF baseline but are correctly886

predicted by ITA; 2) the entities are wrongly pre-887

dicted by ITA without CVA but are correctly pre-888

dicted by the baseline and ITA with CVA. Figure 4889

shows the two cases with two samples for each.890

Figure 4 (a) shows the first case, which shows891

the importance of the visual contexts. The base-892

line model failed to recognize the person entities893

“TWICE” and “Harry Potter” possibly because the894

two words are usually an adverb and a book name895

respectively. For the I+T input view, our MNER896

model is able to recognize the hints such as “two897

girls”, “young girl”, “a couple of young men” and898

“woman” in the visual contexts and then correctly899

predict the two entities. Figure 4 (b) shows the900

second case, which shows how the noises from the901

image mislead the model predictions. There are902

three- and two-person entities in gold labels but903

the visual contexts indicate that the top right image904

has “two baseball players” and the bottom right905

image has only “a woman”. As a result, ITA with-906

out CVA only predict two and one person entities907

according to the visual contexts in the two sam-908

ples respectively. However, with CVA, ITA takes909

a good balance in utilizing the textual and visual910

8github.com/huggingface/transformers
9github.com/flairNLP/flair

information and correctly predicts the entity labels 911

in both T and I+T input views. 912

For OCA, we study how the extracted texts can 913

help model prediction. In the upper sample of Fig- 914

ure 5, there are two “Donald” words in the image. 915

The baseline model failed to identify the latter one 916

while ITA-OCA can successfully identify both of 917

them. In the bottom of Figure 5, the texts in the im- 918

age are mainly talking about “HARRY STYLES”, 919

which helps the model prediction. 920

A.4 Discussion 921

In our paper, we use the captioning and object 922

detection model based on MSCOCO and visual 923

genome. The model performance could be if we 924

use domain-specific models (Twitter domain). For 925

OCA, the model accuracy may be poor if the OCR 926

system does not support a certain language. 927
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(a) Importance of visual context (b) Importance of Cross-View Alignment

Text: TWICE go unnoticed in Times Square during " TT " cover 
performance
Captions: two girls posing for a picture in front of a crowd ...
Object Tags: young girl, white shirt, building,girl, eye ...

Gold Labels:        S-PER | B-LOC | E-LOC | S-MISC
Baseline:               | B-LOC | E-LOC | S-MISC
ITA-All:                         S-PER | B-LOC | E-LOC | S-MISC
ITA-All+CVA (T):  S-PER | B-LOC | E-LOC | S-MISC
ITA-All+CVA (I+T): S-PER | B-LOC | E-LOC | S-MISC

Text: This is what Harry Potter ' s grown - up family looks like
Captions: a couple of young men and a woman posing for a picture . ...
Object Tags: man, woman, black tie, man, glasses ...

Gold Labels:           B-PER | E-PER
Baseline:                   B-MISC | E-MISC
ITA-All :                        B-PER | E-PER
ITA-All+CVA (T): B-PER | E-PER
ITA-All+CVA (I+T): B-PER | E-PER

Text: NBA : Lakers should target LeBron Durant - Johnson . . .
Captions: two baseball players standing next to each other . ...
Object Tags: men, blue shirt, man, gray shirt, short hair ...

Gold Labels:        S-ORG | S-ORG | S-PER | S-PER | S-PER
Baseline:                   S-ORG | S-ORG | S-PER | S-PER | S-PER
ITA-All:                          S-ORG | S-ORG | S-PER | B-PER | I-PER | E-PER
ITA-All+CVA (T): S-ORG | S-ORG | S-PER | S-PER | S-PER
ITA-All+CVA (I+T): S-ORG | S-ORG | S-PER | S-PER | S-PER

Text: @ HoulsbyMark Mark , meet my niece , well known concert violinist
Captions: a woman in a white dress holding a violin ....
Object Tags: smiling women, black hair, open mouth, brown eye, face ...

Gold Labels:           S-PER | S-PER
Baseline:                   S-PER | S-PER
ITA-All:   B-PER | E-PER
ITA-All+CVA (T):       S-PER | S-PER
ITA-All+CVA (I+T):       S-PER | S-PER

Figure 4: Examples of the positive and negative effects of images. The named entities in the text are col-
ored. The wrongly predicted entities are marked in bold and colored in red. The missing entities are
marked with ✖. We use BIOES format to represent the label spans (https://en.wikipedia.org/wiki/
Inside-outside-beginning_(tagging))

Text: Who knew ? If you turned Donald Duck upside down , you get 
the other Donald .
OCR: Donald Donald

Gold Labels:                     B-MISC | E-MISC | S-PER
Baseline:                           B-MISC | E-MISC
ITA-OCA:                        B-MISC | E-MISC | S-PER

Text: RT THIS PLEASE FOR HARRY STYLES TIX , I ' LL LOVE YOU 
FOREVER PLEASE :( # HarryStylesMNL
OCR: x Or i OKAY SO ME AND MY MADE A BESTFRIEND RIGHT NOW 
SHE SAID STARTING TODAY SHE SAID BASE ON THE RTS | MEA 
CONCERT TIX FOR GET , SHE 'LL BUY HARYY STYLES CONCERTS 
HOLYSHIY @ @ TUE DEADLINE IS JUNE 17 PLEASE GUYS H ELP ME 
Y'ALL I 'M SO DESPERATE @ ) PLEASE PLEASE HELP ME YALL - @ 
hoelyqoddess|

Gold Labels:                     B-PER | E-PER
Baseline:                           NA
ITA-OCA:                        B-PER | E-PER

Figure 5: Examples of the positive effects of OCA. The named entities in the text are colored.
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Twitter-15 Twitter-17 SNAP
Num Sents w/ OCR / Total Sents 2,049 / 8,288 (24.72%) 1,197 / 4,461 (26.83%) 1,869 / 7,181 (26.03%)
Avg. Length 27.72 27.00 28.93

Table 5: A statistic about the number of sentences has OCR texts and the average length of OCR texts.
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