
Planning in the Dark: LLM-Symbolic Planning Pipeline Without Experts

Sukai Huang1, Nir Lipovetzky1 and Trevor Cohn1,2*

1The University of Melbourne
2 Google

sukaih@student.unimelb.edu.au, {nir.lipovetzky, trevor.cohn}@unimelb.edu.au

Abstract

Large Language Models (LLMs) have shown promise in
solving natural language-described planning tasks, but their
direct use often leads to inconsistent reasoning and halluci-
nation. While hybrid LLM-symbolic planning pipelines have
emerged as a more robust alternative, they typically require
extensive expert intervention to refine and validate generated
action schemas. It not only limits scalability but also intro-
duces a potential for biased interpretation, as a single ex-
pert’s interpretation of ambiguous natural language descrip-
tions might not align with the user’s actual intent. To address
this, we propose a novel approach that constructs an action
schema library to generate multiple candidates, accounting
for the diverse possible interpretations of natural language
descriptions. We further introduce a semantic validation and
ranking module that automatically filter and rank the gener-
ated schemas and plans without expert-in-the-loop. The ex-
periments showed our pipeline maintains superiority in plan-
ning over the direct LLM planning approach. These findings
demonstrate the feasibility of a fully automated end-to-end
LLM-symbolic planner that requires no expert intervention,
opening up the possibility for a broader audience to engage
with AI planning with less prerequisite of domain expertise.

Code — https://github.com/Sino-Huang/Official-LLM-
Symbolic-Planning-without-Experts

Extended version — https://arxiv.org/abs/2409.15922

1 Introduction
The advent of Large Language Models (LLMs) has opened
new avenues for solving natural language-described plan-
ning tasks (Kojima et al. 2022). However, direct plan gen-
eration using LLMs, while seemingly straightforward, has
been criticized for inconsistent reasoning and hallucination,
which undermines their reliability in critical planning sce-
narios (Valmeekam et al. 2022, 2023; Huang et al. 2024).
In response, researchers have advocated for more robust ap-
proaches that combine the flexibility of LLMs with the cor-
rectness of symbolic planning to solve planning tasks (Palla-
gani et al. 2024; Oswald et al. 2024). To improve the sound-
ness of generated plans, a hybrid LLM-symbolic planning

*Now at Google DeepMind
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 Direct LLM Planning

Large Language Model

Symbolic Planner

Action Schema(s)

Book 1

Book 3

Book 2

Table

initial state

Book 1

Book 3

Book 2

Table

goal state

Domain desc.: managing books within a library…

Predicate desc.:

Action desc.:

Init state:

- Book 3 is on Book 1

- Book 2 is on the table

Goal state:

- Book 2 on top of Book 3

- Book 1 on top of Book 2

Plans

Problem Spec.

Predicate List

LLM-Symbolic Planning Pipeline2

	 (:������ pl�c�-��-���le
	 :��r�m�ters (?x - �oo�)
	 :pr�con��t��� (��ldi�� ?x)
	 :e����� (�n� (��� (��ldi�� ?x))
	 (�cces�ible ?x)
	 (�and�-f���)
	 (��-���le ?x))
)

Put a book you're holding onto the table

making it accessible.

 book x is on the table

book x is on top of book y on the shelf

it involves actions like moving books between tables
and shelves, ...

1. ��m�v� �oo� 3 f��� �oo� 1
2. pl�c� �oo� 3 �� ���le
3. pl�c� �oo� 2 �� �oo� 3
4. pl�c� �oo� 1 �� �oo� 2

Figure 1: An overview of direct plan generation vs. LLM-
symbolic planning pipelines.

pipeline has emerged. As shown in Figure 1, instead of re-
lying solely on LLMs to generate sequences of action plans
through in-context learning, this pipeline begins by lever-
aging LLMs to extract abstract symbolic action specifica-
tions from natural language descriptions, known as action
schemas. These schemas define the essential components
of an action in a structured format understandable by sym-
bolic planners. Once these schemas are generated, a classical
planner can take over to search for feasible plans that fulfill
the task specifications (Liu et al. 2023; Silver et al. 2024;
Guan et al. 2023; Kambhampati et al. 2024).

Yet, this method is brittle, as a single missing or contra-
dictory predicate in an action schema can prevent the plan-
ner from finding a valid plan. Thus, current pipelines of-
ten require multiple iterations of expert intervention to re-
fine and validate the generated action schemas. For instance,
Guan et al. (2023) reported that the expert took 59 iterations
to fix schema errors for a single task domain. This process
demands substantial time and expertise, which significantly
hinders the scalability of the method. More critically, due to
budget constraints, often only one expert is involved in the
process. This creates a critical vulnerability: the potential for
interpretation mismatch between the expert and the user. Ex-

User

LLM
Symbolic Planning

Task Representations

(e.g., Action schema)

Domain Expert

Limitation 1: Bottleneck and

Scalability

Bottleneck:

Review &

CorrectionLimitation 2: Subjective and Limited

Interpretation

Expert Biased Interpretation:

Categorize and arrange neatly.

NL-described

planning tasks
NL-described

planning tasks
NL-described

planning tasks

Symbolic Planning

Task Representations

(e.g., Action schema)

Symbolic Planning

Task Representations

(e.g., Action schema)

Ugh, 59

iterations to

fix this ONE

domain?!

I just want to

shelve these

quickly!

Domain Expert
NL desc. managing

books within a

library…

It MUST be

like this!

Books neatly

organized by

category.

New books

User Intent Interpretation: Shelve

quickly, any available space.

Figure 2: Illustration of the two limitations of expert-
dependent LLM-symbolic planning pipelines

perts, while knowledgeable, inevitably bring their own sub-
jective interpretations to the task descriptions, often formal-
izing them in a single, specific way. This limits the system to
a single perspective of the task. However, unlike formal lan-
guage designed to have an exact, context-independent mean-
ing, natural language inherently contains ambiguities that
yield diverse valid interpretations of the same description.
This ambiguity suggests that a straightforward, one-to-one
mapping from natural to formal languages – a typical case
when relying on a single expert – risks overlooking the in-
terpretation that the user actually intended (Moravcsik 1983)
(see Figure 2).

Regarding the issue with reliance on expert intervention,
we propose a novel pipeline that eliminates this dependency.
Specifically, our approach introduces two key innovations:

(1): We construct an action schema library to generate
multiple candidates, a strategy that has been overlooked in
prior work despite being a natural fit for capturing the inher-
ent ambiguity in natural language. By leveraging this library,
we also increase the likelihood of obtaining solvable action
schema sets – those have at least one valid plan that can be
found by a planner.

(2): We leverages sentence encoders1 to automatically
validate and filter generated action schemas. This mod-
ule ensures that the generated schemas closely align with
the task descriptions in the semantic space, effectively act-
ing like expert feedback. Our experiments demonstrate that
without expert intervention, our pipeline generates sound ac-
tion plans competitive with direct LLM-based plan genera-
tion, even in short-horizon planning tasks. Importantly, our
approach offers multiple schema sets and plan candidates,
preserving the diversity of interpretations inherent in am-
biguous natural language descriptions.

2 Related Work
Direct Plan Generation with LLMs: The use of LLMs
for direct action plan generation has been explored across
various domains, including embodied tasks (Wang et al.
2023; Xiang et al. 2024), and other language grounding en-
vironments (Ahn et al. 2022; Huang et al. 2022). These ap-
proaches are built upon the idea that LLMs’ reasoning capa-
bilities can be effectively elicited through in-context learn-
ing techniques, particularly the Chain-of-Thought (CoT) ap-
proach. CoT prompts the model to generate a series of in-
termediate reasoning steps before arriving at the final an-
swer, resulting in more coherent and logically sound rea-
soning (Wei et al. 2022). Building upon CoT, Yao et al.
(2024) proposed Tree-of-Thought (ToT) framework, which
explores multiple reasoning pathways, generating diverse
plans and ranking them based on self-verification heuristics.
These heuristics are verbalized confidence scores produced
by LLMs themselves, a method supported by studies show-
ing that LLMs are effective as zero-shot ranking models (Lin
et al. 2022; Hou et al. 2023; Zhuang et al. 2023).
Criticism and Hybrid Planning: Despite the promising
results, researchers have raised concerns about the reliability
and soundness of LLM-generated plans (Valmeekam et al.
2022, 2023; Huang et al. 2024). A critical issue highlighted
by Kambhampati et al. (2024) is that planning and reason-
ing tasks are typically associated with System 2 compe-
tency, which involves slow, deliberate, and conscious think-
ing (Sloman 1996; Kahneman 2011). However, LLMs, be-
ing essentially text generators, exhibit constant response
times regardless of the complexity of the question posed.
This behavior suggests that no first-principle reasoning is
occurring, contradicting the expectations for true planning
capabilities. To this end, researchers have explored hybrid
approaches. For instance, Thought of Search (Katz et al.
2024) involves the generation of successor function and goal
test code by LLMs, followed by their execution within an
external execution environment. The approach we focus on
involves utilizing LLMs to generate symbolic representa-
tions of tasks, which are then processed by external sym-
bolic planners to search for feasible plans (Liu et al. 2023;
Guan et al. 2023). However, existing pipelines emphasize
the necessity of expert intervention for action schema val-
idation and refinement. While Kambhampati et al. (2024)
proposed using LLMs as semi-expert critics to assess output
quality, this approach still necessitates expert involvement
for final decision-making. In contrast, our work strives to re-
duce the dependency on expert intervention, offering a more
accessible approach to hybrid LLM-symbolic planning that
also addresses the inherent ambiguity in natural language
descriptions.

3 Problem Setting and Background
We consider a scenario where an agent generates action
plans for natural language-described planning tasks. A task
description typically consists of: (1) a domain description
outlining general task information and possible high-level

1Sentence encoders are neural network models that transform
sentences into vector representations, capturing semantic meaning

Sorted

Step 1:

Building a Diverse Schema Library

LLMs

PDDL

Predicate:

…

Action Schema

Set:

…

Step 2:

Semantic Coherence Filtering

Sentence

Encoder

Semantic Sim. Score: 0.37

Semantic Sim. Score: 0.46

Semantic Sim. Score 0.17

Semantic Sim. Score: 0.15

Symbolic

Planner

(e.g., Dual-BWFS)

PlansPlansPlans

Sentence

Encoder PlansPlansRanked

Plans

N
LLMs
LLMs

Action Schema

Parameter:

…

Preconditions:

…

Effects:

…

M N

Action Schema

Parameter:

…

Preconditions:

…

Effects:

…

M N
Action Schema

Parameter:

…

Preconditions:

…

Effects:

…

Step 3:

Plan Scoring and Ranking

Cumul. Sim. Score: 0.78

Cumul. Sim. Score: 0.64

Cumul. Sim. Score: 0.47

generate

Diverse action schema candidates

Action schema candidates
Conformal Prediction

Combinations

Filtered candidates

NL-described

Planning Tasks

(Configured for High Diversity)

PDDL

Predicate:

…

Action Schema

Set:

…

Task Entity

PDDL snippets
Natural Language

description

in free form

representation

in symbolic

representation

they are referring to

the same entity, but

encoded differently

Sentence

Encoder
expected to output similar

semantic vector representations

Similar semantic embeddings

Assumption in the filtering mechanism

Sentence

Encoder

Figure 3: An overview of the proposed pipeline, it first constructs diverse action schema candidates to cover various interpreta-
tions of the natural language descriptions. Then, it filters out low-confidence candidates to ensure the generation candidates are
semantically aligned with the descriptions. Lastly, it produces and ranks multiple plans using a symbolic planner. The filtering
mechanism is grounded in the concept of semantic equivalence across different representations of the same content.

actions, and (2) a problem instance description specify-
ing the initial and goal states. The study of LLM-symbolic
planning pipelines is grounded in the formal framework of
classical planning, which relies on symbolic representations
of planning tasks. These representations are typically ex-
pressed using the Planning Domain Definition Language
(PDDL) (Aeronautiques et al. 1998; Haslum et al. 2019).
In brief, a PDDL description is defined by ⟨D,ΠD⟩, where:

• D = ⟨P,A⟩ is the domain specification: P is the set of
predicates that can either hold true or false, and A is the
set of action schemas. Each action schema α ∈ A is de-
fined as a tuple α = ⟨par , pre, eff ⟩, where par details
the parameters, and pre and eff are the preconditions
and effects, respectively. Both pre and eff are typically
expressed as conjunctive logical expressions using pred-
icate logic.

• ΠD = ⟨O, I,G⟩ is the problem instance: O is the set of
objects to interact with, I is the initial state, and G is the
goal state that the agent needs to achieve.

A solution to the planning task is a sequence of grounded
actions (π = (a0, ..., an)) that transforms the initial state I
to the goal state G. Each grounded action ai is an instantia-
tion of an action schema α ∈ A and predicates, where the
parameters in α are replaced with specific objects from O.

To bridge natural language descriptions and formal plan-
ning representations, we introduce a natural language proxy
layer, denoted as Z(·), for these task specifications. For
example, Z(D) represents the natural language equivalent
of the domain specification D. The two approaches, direct

LLM planning and LLM-symbolic planning, can then be ex-
pressed in Eq 1 and Eq 2, respectively:

π ∼ PLLM(· | Z(D),Z(ΠD)) (1)

Â ∼ PLLM (· | Z(D)) ; ΠD ∼ PLLM (· | Z(ΠD))

π = f
(
⟨P, Â⟩,ΠD

)
(2)

In these equations, PLLM(·) represents the generation pro-
cess of LLMs, and f is the symbolic planner that search
for sound plans. While we largely adhere to the problem
setting of previous research (e.g., Liu et al. (2023), Guan
et al. (2023)), we introduce a crucial refinement by specify-
ing a precise predicate set (P) for each domain descriptions.
This controlled setting addresses a key challenge in evaluat-
ing across different methodologies. Without a standardized
predicate set, variations in domain understanding can lead
to diverse and potentially incomparable outputs, hindering
meaningful evaluation.

4 Methodology
As illustrated in Figure 3, the proposed pipeline stands in
contrast to existing expert-dependent approaches and con-
sists of three key steps: (1) Building a Diverse Schema Li-
brary (§4.1), (2) Semantic Coherence Filtering (§ 4.2) and
(3) Plan Scoring and Ranking (§ 4.4).

4.1 Building a Diverse Schema Library
A key challenge in translating natural language descriptions
into symbolic action schemas is the inherent ambiguity of

language itself. Different interpretations of the same de-
scription can lead to variations in action schemas, impacting
the downstream plan generation process. To ensure we ex-
plore a wide range of interpretations and effectively cover
the user’s intent, we utilize multiple LLM instances, de-
noted as {P 1

LLM, P 2
LLM, ..., PN

LLM}, and set their temperature
hyperparameter high to encourage diverse outputs. Each will
then generate its own set of action schemas Âi ∼ P i

LLM(· |
Z(D)), where Âi = (α̂i1, α̂i2, ..., α̂iM). Here, α̂ij , where
i ∈ [1, ..N] and j ∈ [1, ...,M], represents the generated ac-
tion schema of j-th action in the domain by the i-th LLM
instance.

The generated schemas α̂ij from all models are then ag-
gregated into a single library. Since each domain comprises
M actions, a “set” of action schemas refers to a complete
collection where each action in the domain is associated with
one corresponding schema. Therefore, all possible combina-
tion of action schemas within the library can generate ap-
proximately

(
N
1

)M
different sets of action schemas.

In addition, existing pipelines rely heavily on expert inter-
vention, partly because individual LLMs struggle to gener-
ate solvable sets of schemas – those that a planner can suc-
cessfully use to construct a plan. This reliance becomes even
more pronounced as the number of actions increases, with
the probability of obtaining a solvable set of schemas from
a single LLM diminishing exponentially. In contrast, our
approach, by constructing a diverse pool of action schema
sets, substantially improves the probability of finding a solv-
able set. Our analysis (detailed in Appendix A) demonstrates
that, under reasonable assumptions, this probability can in-
crease from less than 0.0001% with a single LLM to over
95% when using multiple LLM instances.

Note that the solvability of a set of action schemas can
be efficiently verified by leveraging the completeness fea-
ture of modern symbolic planners. If a plan can be found
for a given problem using the generated schemas, the set
is deemed solvable. Importantly, modern symbolic planners
have advanced capabilities that allow them to efficiently re-
ject unsolvable schema sets. This is achieved by the ability to
prove delete-free reachability in polynomial time (Bonet and
Geffner 2001). Furthermore, modern planners are designed
to operate efficiently on multithread CPU and the efficiency
of the process should not be a cause for concern. See Ap-
pendix D for more details.

4.2 Semantic Coherence Filtering
The previous method alone faces two limitations. First, as
task complexity grows, the “brute-force” approach of com-
bining and evaluating all possible sets becomes increasingly
inefficient. Second, solvability does not guarantee semantic
correctness – schemas may not accurately reflect the task
descriptions, potentially leading to incorrect or nonsensical
plans. Therefore, it is crucial to implement a filtering mech-
anism that autonomously assesses the semantic correctness
of individual action schemas, filtering out low-quality can-
didates before they enter the combination process.

Our approach is grounded in the concept of semantic
equivalence across different representations of the same con-

tent, as discussed by Weaver (1952) in his memorandum
“Translation.” Weaver emphasized that the most effective
way to translate between languages is to go deeper to un-
cover a shared “common base of meaning” between lan-
guage representations, illustrating this by noting that “a Rus-
sian text is really written in English, but it has been encoded
using different symbols.” This principle is crucial in our con-
text, where task descriptions in natural language and their
corresponding structured symbolic representations should
exhibit high semantic similarity, reflecting the same shared
meaning despite different syntactic forms (see right side of
Figure 3).

Recent developments in language models as code assis-
tants (Chen, Tworek et al. 2021; Rozière, Gehring et al.
2024) further support this assumption, demonstrating that
these models can decode the underlying semantics of struc-
tured symbolic representations. Inspired by this, we propose
a filtering step that leverages a sentence encoder E(·) to gen-
erate embeddings for both the action descriptions E(Z(α))
and the generated schemas E(α̂). Then, we compute the
cosine similarity between these embeddings to quantify se-
mantic relatedness and filter out action schemas with low
scores.

Specifically, we employ a conformal prediction (CP)
framework (see Appendix B) to statistically guarantee that
true positive action schema candidates have a high probabil-
ity of being preserved while minimizing the size of the fil-
tered set (Sadinle et al. 2019). In this process, a threshold q̂
will be calculated based on a user-specified confidence level
1 − ϵ. Action schemas with cosine similarity scores below
this threshold are filtered out from the library.

This process (illustrated in step 2 of Figure 3) significantly
reduces the number of candidate sets of action schemas to
ΠM

i=1(mi), where mi is the number of action schemas that
pass the semantic validation for the i-th action. This pre-
filtering approach not only reduces the computational load
on the symbolic planner, increasing efficiency, but also en-
sures that generated schemas closely align with the semantic
meaning of the task descriptions.

4.3 Finetuning with Manipulated Action Schemas
Hard negative samples have been shown to enhance repre-
sentation learning by capturing nuanced semantic distinc-
tions (Robinson et al. 2023). In our context, we found that
structured action schemas are particularly ideal for generat-
ing hard negatives. By manipulating predicates in the pre-
condition or effect expressions of true action schemas, we
create hard negatives with subtle differences. During fine-
tuning, a triplet loss function is employed, where each train-
ing sample consists of a triplet: the natural language descrip-
tion of an action (Z(α)), the true action schema (α), and a
negative sample (αneg). A negative sample is of three types –
(1) Easy Negatives: action schemas from other planning do-
mains (inter-domain mismatch); (2) Semi-Hard Negatives:
action schemas from the same domain but referring to dif-
ferent actions (intra-domain mismatch); and (3) Hard Nega-
tives: As shown in Table 1, we employ four types of manip-
ulations – swap, negation, removal, and addition – to manip-

ulate the reference2 action schema of the domain.
Through this process, the sentence encoder learns to em-

bed natural language descriptions closer to their correspond-
ing action schemas while distancing them from negative
samples in the semantic space.

4.4 Plan Generation and Ranking
Action schemas that more accurately represent the intended
tasks described in natural language are likely to yield higher-
quality, more reliable plans. Leveraging this causal relation-
ship, we assess and rank the generated plans based on the
cumulative semantic similarity scores of their constituent
action schemas. Specifically, we feed each solvable set of
action schemas into a classical planner, which generates a
corresponding plan. Then, the ranking score for a plan is
calculated as

∑M
i=1

E(Z(αi))·E(α̂i)
∥E(Z(αi))∥∥E(α̂i)∥ , where Z(αi) is the

natural language description of the i-th action in the do-
main, α̂i is the corresponding generated action schema and
E(·) is already defined in Sec 4.2. It ensures that the struc-
tured symbolic model comprising the plans are semantically
aligned with the descriptions of the planning domain (see
step 3 in Figure 3). Furthermore, this approach allows for
optional lightweight expert intervention as a final, non-
iterative step. By presenting the ranked schema sets and their
corresponding plans, experts can determine the most appro-
priate one, providing a balance between autonomy and ex-
pert guidance.

Overall, our pipeline bridges the gap between ambiguous
task descriptions and the precise requirements of symbolic
planners. By generating a diverse pool of action schemas
and leveraging semantic similarity for validation and rank-
ing, we achieve two key advancements. First, we reduce the
dependency on expert intervention, making the process more
accessible and efficient. Second, we preserve the inherent
ambiguity of natural language, offering users multiple valid
interpretations of the task and their corresponding plans.

5 Experiments
Our experiments test the following hypotheses: (H1) Se-
mantic equivalence across different representations, as dis-
cussed by Weaver, holds true in our context. (H2) Ambi-
guity in natural language descriptions leads to multiple in-
terpretations. (H3) Our pipeline produces multiple solvable
candidate sets of action schemas and plans without expert
intervention, providing users with a range of options. (H4)
Our pipeline outperforms direct LLM planning approaches
in plan quality, demonstrating the advantage of integrating
LLM with symbolic planning method. See Appendix for
other experiments outside the scope of these hypotheses.

5.1 Experimental Setup
Task and Model Setup. We introduces several key en-
hancements that distinguish it from previous work. (1) Novel

2A reference domain model is only used for reference when
we create manipulated versions of action schemas. We do this to
recognize that natural language can be interpreted in various ways,
rather than presupposing a one-to-one correspondence with a single
ground truth schema, as discussed in Sec 1.

Test Domains: We carefully selected three test domains en-
suring they are unfamiliar to LLMs – Libraryworld: a mod-
ified version of the classic Blockworld domain; Minecraft:
resource gathering and crafting domain inspired by the game
Minecraft; and Dungeon: a domain originally proposed by
Chrpa et al. (2017). This approach addresses a significant is-
sue: many IPC3 domains have likely been leaked into LLM
training data (see Appendix C). For training and calibration
of the sentence encoder, we used domains from IPC and
PDDLGym (Silver and Chitnis 2020). (2) LLM Selection:
We use the open-source GLM (Hou et al. 2024) over pro-
prietary models like GPT-4, aligning with our commitment
to accessible planning systems. (3) Ambiguity Examination:
We tested our pipeline on two types of task descriptions to
assess the impact of ambiguity – (a) detailed descriptions
following the established style of Guan et al. (2023), and
(b) layman descriptions provided by five non-expert partic-
ipants4 who, unfamiliar with PDDL, described the domains
and actions based on reference PDDL snippets. (4) Symbolic
Planner: We used DUAL-BWFS (Lipovetzky and Geffner
2017) planner for plan generation as well as checking if the
generated schema sets are solvable. (5) LLM Prompt Engi-
neering: We use the CO-STAR and CoT framework to guide
LLMs in generating outputs (see Appendix E).
Baselines. We evaluate our pipeline against two key base-
lines: (1) The previous LLM-symbolic planning pipeline pro-
posed by Guan et al. (2023), which involves expert interven-
tion for action schema validation and refinement; and (2) Di-
rect LLM-based planning using Tree-of-Thought (ToT) (Yao
et al. 2024), which generates multiple plans and ranks them
based on self-verification heuristics.

5.2 Semantic Equivalence Analysis
To investigate H1, we initially assessed the cosine simi-
larity of sentence embeddings for pairs of action schemas
and their corresponding natural language descriptions, both
when they were matched and when they were mismatched.
We employed two pre-trained, extensive sentence encoders:
text-embedding-3-large and sentence-t5-xl. These models,
without any fine-tuning, demonstrated higher cosine sim-
ilarity for matched pairs compared to mismatched ones.
This finding suggests that the ability to detect such equiv-
alence is an inherent feature of high-quality sentence em-
bedding models, not merely an artifact of fine-tuning. How-
ever, OpenAI text-embedding-3-large model is bad for its
accessibility, a lightweight encoder all-roberta-large-v1 al-
lows for better speed and improved accuracy through fine-
tuning, which is good in practice. The performance of the
fine-tuned roberta model is shown in Figure 4. The substan-
tial improvement in the model’s capacity to identify hard
negatives – mismatched pairs with subtle differences – is a
direct result of our dedicated training weights allocation. We
deliberately designed our training data selection to include a
ratio of easy, semi-hard, and hard negatives as [0.0, 0.4, 0.6],

3International Planning Competition, a benchmark event for au-
tomated planning systems using PDDL.

4Business school students with no prior knowledge of PDDL
programming or computational logic

Manipulation Type Description Example

Swap Exchanges a predicate between
preconditions and effects

Precondition: (at ?x ?y)
Effect: (not (at ?x ?z))
→
Precondition: (not (at ?x ?z))
Effect: (at ?x ?y)

Negation Negates a predicate in either
preconditions or effects

Precondition: (clear ?x)
→
Precondition: (not (clear ?x))

Removal Removes a predicate from
either preconditions or effects

Precondition: (and (on ?x ?y) (clear ?x))
→
Precondition: (on ?x ?y)

Addition
Adds mutually exclusive (mutex)
predicates to preconditions or
effects (Helmert 2009)

Effect: (on-table ?x)
→
Effect: (and (on-table ?x) (holding ?x))

Table 1: Types of Manipulations for Generating Synthesized Hard Negative Action Schemas in Training Data. Mutexes are
predicates that cannot be true simultaneously, e.g., one cannot hold a book and have it on a table simultaneously.

NL Desc. vs. Action Schema

0.2

0.0

0.2

0.4

0.6

0.8

C
o
si

n
e

S
im

 S
co

re

Similarity Score btw. NL Desc. and Various Action Schema

True Positive

Easy Negative

Semi-Hard Negative

Hard Negative

finetuned model:

Figure 4: The sentence encoder enhances the
identification of mismatched pairs by fine-
tuning with negative samples.

7 10

Number of LLMs Instances

103

104

105

C
o
m

b
in

a
ti

o
n

s
 #

6689

31483

11390

48905

6689

31483

11390

48905

272

3419

993

8039

Total vs. Viable Combinations
(No CP Filtering)

Total - Detailed

Total - Layman

Viable - Detailed

Viable - Layman

Total - Detailed

Total - Layman

 - Detailed

 - Layman

Solvable

Solvable

Figure 5: More LLM instances
generate more solvable schemas
without an expert.

7 10 15

Number of LLMs Instances

101

102

103

104

C
o
m

b
in

a
ti

o
n

s
 #

379

1051 12521070

3327

27789

379

1051 12521070

3327

27789

8

242
307

376

828

5781

Total vs. Viable Combinations
(With CP Filtering,)

Total - Detailed

Total - Layman

Viable - Detailed

Viable - Layman

Total - Detailed

Total - Layman

 - Detailed

 - Layman

Solvable

Solvable

Solvable means a plan can

be found by the symbolic planner

Figure 6: With CP, a large number of can-
didates are pruned, thereby improving ef-
ficiency.

respectively (see Appendix E.7). This ratio was strategically
chosen to concentrate on hard negatives, as LLMs are more
likely to make hard-negative mistakes when generating ac-
tion schemas. By prioritizing hard negatives in our training
dataset, we aimed to enhance the model’s ability to filter out
low-quality action schemas during the semantic coherence
filtering step.

5.3 Pipeline Performance and Efficiency
Our pipeline’s performance and efficiency are highlighted
through several key observations. Firstly, the use of action
schema library effectively produces solvable action schema
sets without requiring expert-in-the-loop, as demonstrated
in Figure 5. Notably, deploying 10 LLM instances is suffi-
cient to generate solvable schema sets for all test domains,
supporting H3. Secondly, Figures 5 and 6 reveal a clear pat-
tern: when confronted with inherently ambiguous layman
descriptions from non-expert participants, our pipeline gen-
erates a significantly increased number of distinct solvable
schema sets (e.g., from 3419 to 8039 when LLM# = 10 w/o
CP), thereby supporting H2. This increase is primarily at-

Model Planning
Mechanism

Expert
Input #

Action
Schema # Plan # Heuristic

Type
Soundness

w.r.t. Schemas

Tree-of-Thought
(Yao et al. 2024) Pure LLM 0 N/A Multiple Self

Verification No

Guan et al. (2023) Hybrid ≈ 59 Single Single Expert
Validation Yes

Ours Hybrid ≤ 1 Multiple Multiple Semantic
Sim. Scores Yes

Table 2: Contrasts Our Pipeline with Existing Works. Note
that the property of generating sound (logical correct) plans
has been highlighted as a feature of the hybrid planner in
prior work (Liu et al. 2023; Guan et al. 2023). However,
there is no guarantee that the schemas are fully correct w.r.t.
what the user actually wants. Thus, we are weakening the
property to soundness w.r.t. schemas.

tributed to the diverse selection of predicates within the ac-
tion schemas. Each predicate selection reflects a different
interpretation of the problem, with each schema set empha-
sizing distinct features deemed critical for planning.

For instance, in the Libraryworld domain, we observed
that some schema sets generated by some LLM instances

Rank 1st Rank 2nd Rank 3rd Rank 4th Rank 5th Avg. Rank

Gold 14 4 4 1 1 1.79
Ours 4 18 11 5 10 2.97
ToT 6 2 9 18 13 3.62

Table 3: Blind plan ranking eval.: Four assessors compared
the top two plans from each approach to gold plans.

take into account the ‘category’ property of books when con-
structing actions such as stacking books on a shelf. This
means that, according to these schema sets, only books
within the same category can be stacked together, which is a
more organized way of arranging books. Consequently, this
leads to different planning outcomes that reflect the varied
interpretations of the user query at hand, which are a di-
rect result of the ambiguity present in the layman’s descrip-
tion and the flexibility it provides to LLMs in making such
choices.

The pipeline’s ability to generate a range of potential in-
terpretations in response to ambiguous inputs is a critical
advantage. It ensures that all intended aspects of the user’s
description can be captured, even when the description is
imprecise or incomplete.

Thirdly, the integration of conformal prediction in the fil-
tering step demonstrates a significant improvement in effi-
ciency, as evidenced by Figure 6. With the confidence level
1 − ϵ set to 0.8, the pipeline filtered out a large number of
candidates, reducing the total number of combinations to
3.3% of the original (1051 out of 31483) but meanwhile,
the ratio of solvable schemas (verified by the planner) in-
creased from 10.9% to 23.0%. This result strongly supports
H3, highlighting the pipeline’s ability to efficiently gen-
erate solvable and semantically coherent schema sets. See
Table 2 for a comprehensive comparison of our pipeline
with existing LLM-based planning approaches. Notably, the
initial low ratio of solvable schema sets (10.9%) under-
scores the challenge faced within the LLM-symbolic plan-
ning paradigm, which may explain why expert intervention
has been a common practice in the past.

5.4 Human Evaluation on Plan Quality
To further validate our approach, we conducted a human
evaluation comparing the top two plan candidates generated
by our pipeline against those from the ToT framework and
a gold-standard plan derived from the reference PDDL do-
main model. Four expert assessors with extensive PDDL ex-
perience ranked the plans based on their feasibility in solv-
ing the given problems. The results, summarized in Table 3,
clearly support H4.

For a deeper insight into our pipeline’s capabilities, we
specifically tested the Sussman Anomaly, a well-known
planning problem that requires simultaneous consideration
of multiple subgoals, as solving them in the wrong order can
undo previous progress (see Figure 1). As shown in Table 4,
ToT approaches using various LLMs, including state-of-the-
art models like GPT-4o, consistently fail to solve this prob-
lem. The failure arises from the mistaken assumption that the
first subgoal mentioned (i.e., placing book 1 on top of book

Model Action Plan Score

ToT GLM Take book2 from table, Place book2 on book3,
Take book1 from table, Place book1 on book2 Heuristic: 9.0

ToT GPT-3.5

Take book2, Place book2 on book3,
Place book1 on table, Place book1 on book2,
Remove book3, Place book3 on book2,
Place book1 on book2, Check out book1

Heuristic: 5.11

ToT GPT-4o (1) Take book2 from table, Place book2 on book3,
Take book1 from table, Place book1 on book2 Heuristic: 8.5

ToT GPT-4o (2)

Take book2 from table, Take book3,
Place book3 on table, Place book2 on table,
Take book3 from table, Place book2 on table,
Place book3 on book1, Take book2 from table,
Place book2 on book3, Depth limit reached

Heuristic: 7.89

Ours GLM (1)
Remove book3 from book1, Take book1 from table,
Place book1 on book2, Take book2 from table,
Place book2 on book3

RankScr: 0.724

Ours GLM (2)
Remove book3 from book1, Take book2 from table,
Place book2 on book3, Take book1 from table,
Place book1 on book2

RankScr: 0.788

Table 4: Performance on Sussman Anomaly problem of ToT
approach vs. ours. Both approaches generate multiple plans:
ToT uses beam search, while ours generates multiple plans
by feeding diverse sets of action schemas into a classical
planner, with each set producing its own corresponding plan.

2) should be addressed first, leading to incorrect plans. Inter-
estingly, GPT-3.5 and GPT-4o exhibited different behaviors
when faced with this problem. While GPT-3.5 consistently,
yet incorrectly, asserted it had completed the problem, GPT-
4o occasionally exhibited awareness of the plan’s incom-
pleteness. However, even with this heightened awareness,
GPT-4o was unable to identify the correct path within the
given depth limit. In contrast, our pipeline generates a range
of plans, including suboptimal ones, but excels at identifying
and prioritizing the most promising candidates through its
ranking process that is based on the cumulative cosine simi-
larity scores of generated action schemas. By strictly adher-
ing to semantic alignment between these schemas and natu-
ral language descriptions, and by using a symbolic planner,
the system avoids being misled by the tendency – observed
in both humans and LLMs – to reason in a linear manner.
This tendency involves prioritizing subgoals based on their
order of appearance rather than considering their underly-
ing logical dependencies. Such linear reasoning can lead to
noninterleaved planning, where subgoals are tackled in the
order they are presented and each must be fully completed
before addressing the next one, which is a pitfall in complex
planning problems like the Sussman Anomaly.

5.5 Failure Case Analysis
Schema Set with No Plan Found: We encountered in-
stances where no solvable action schema set was generated,
primarily due to limitations in the LLM’s reasoning capabil-
ities. The use of open-source LLMs, while more accessible,
may result in a lower success rate compared to more ad-
vanced proprietary models like GPT-4o. Specifically, with 7
LLM instances, we observed occasional failures of gener-
ating solvable sets action schemas for the libraryworld and
minecraft domains. Nevertheless, solvable schema sets were
consistently obtained across all domains when the number
of LLM instances was increased to 10 (see Appendix F for

a breakdown of schema set yield by LLM instance count).
Unexpected Preference: In the Dungeon domain, human
assessors unexpectedly preferred ToT-generated plans over
both the reference plan and the proposed pipeline’s plans.
Further analysis revealed that the ToT plans consistently in-
cluded a step: grabbing a sword. Interestingly, grabbing a
sword was not a necessary step for solving the given prob-
lem. Consequently, symbolic planners, focused on optimal
pathfinding, excluded this step from their plans. However,
this “unnecessary” step of acquiring a sword aligns with
common strategies in Dungeon games, where players typ-
ically prioritize preparedness. Thus, this action strongly ap-
pealed to human assessors, causing them to rank the ToT-
generated plans higher.

6 Conclusion
Existing LLM-symbolic planners offer limited and poten-
tially biased schema options due to expert-in-the-loop. Our
work presents a 3-step pipeline that learn symbolic PDDL
models over ambiguous natural language descriptions. Our
findings demonstrate that a full end to end hybrid planner is
possible without expert intervention, paving the way for de-
mocratizing planning systems for a broader audience. One
limitation in this work is the lack of direct evaluation meth-
ods for assessing the quality of generated action schema sets.
Metrics like “bisimulation” (Coulter et al. 2022) or “heuris-
tic domain equivalence” (Oswald et al. 2024) require the
generated schema sets to have the same action parameters
as a predefined reference set. This approach doesn’t suit our
context, where action parameters are flexible and inferred in
real-time from natural language descriptions.

Acknowledgements
Sukai Huang is supported by Melbourne Research Scholar-
ship established by The University of Melbourne.

This research was supported by The University of Mel-
bourne’s Research Computing Services and the Petascale
Campus Initiative.

References
Aeronautiques, C.; Howe, A.; Knoblock, C.; McDermott,
I. D.; Ram, A.; Veloso, M.; Weld, D.; Sri, D. W.; Barrett,
A.; Christianson, D.; et al. 1998. Pddl— the planning do-
main definition language. Technical Report, Tech. Rep.
Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.;
David, B.; Finn, C.; Gopalakrishnan, K.; Hausman, K.; Her-
zog, A.; Ho, D.; Hsu, J.; Ibarz, J.; Ichter, B.; Irpan, A.;
Jang, E.; Ruano, R. M. J.; Jeffrey, K.; Jesmonth, S.; Joshi,
N. J.; Julian, R. C.; Kalashnikov, D.; Kuang, Y.; Lee, K.-H.;
Levine, S.; Lu, Y.; Luu, L.; Parada, C.; Pastor, P.; Quiambao,
J.; Rao, K.; Rettinghouse, J.; Reyes, D. M.; Sermanet, P.;
Sievers, N.; Tan, C.; Toshev, A.; Vanhoucke, V.; Xia, F.;
Xiao, T.; Xu, P.; Xu, S.; and Yan, M. 2022. Do As I Can,
Not As I Say: Grounding Language in Robotic Affordances.
In Conference on Robot Learning.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.

Chen, M.; Tworek, J.; et al. 2021. Evaluating Large Lan-
guage Models Trained on Code. arXiv:2107.03374.

Chrpa, L.; et al. 2017. The fifth international competition on
knowledge engineering for planning and scheduling: Sum-
mary and trends. AI Magazine, 38(1): 104–106.

Coulter, A.; Ilie, T.; Tibando, R.; and Muise, C. 2022. The-
ory Alignment via a Classical Encoding of Regular Bisimu-
lation. In Proceedings of the Workshop on Knowledge En-
gineering for Planning and Scheduling (KEPS) at ICAPS.
ICAPS.

Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambham-
pati, S. 2023. Leveraging pre-trained large language models
to construct and utilize world models for model-based task
planning. Advances in Neural Information Processing Sys-
tems, 36: 79081–79094.

Haslum, P.; Lipovetzky, N.; Magazzeni, D.; Muise, C.;
Brachman, R.; Rossi, F.; and Stone, P. 2019. An introduc-
tion to the planning domain definition language, volume 13.
Springer.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence, 173(5-6):
503–535.

Hou, Y.; Zhang, J.; Lin, Z.; Lu, H.; Xie, R.; McAuley, J.; and
Zhao, W. X. 2023. Large Language Models are Zero-Shot
Rankers for Recommender Systems. In European Confer-
ence on Information Retrieval.

Hou, Z.; Niu, Y.; Du, Z.; Zhang, X.; Liu, X.; Zeng, A.;
Zheng, Q.; Huang, M.; Wang, H.; Tang, J.; and Dong, Y.
2024. ChatGLM-RLHF: Practices of Aligning Large Lan-
guage Models with Human Feedback. arXiv:2404.00934.

Huang, L.; Yu, W.; Ma, W.; Zhong, W.; Feng, Z.; Wang, H.;
Chen, Q.; Peng, W.; Feng, X.; Qin, B.; and Liu, T. 2024. A
Survey on Hallucination in Large Language Models: Prin-
ciples, Taxonomy, Challenges, and Open Questions. ACM
Transactions on Information Systems.

Huang, W.; Abbeel, P.; Pathak, D.; and Mordatch, I. 2022.
Language models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International con-
ference on machine learning, 9118–9147. PMLR.

Kahneman, D. 2011. Thinking, fast and slow. macmillan.

Kambhampati, S.; Valmeekam, K.; Guan, L.; Verma, M.;
Stechly, K.; Bhambri, S.; Saldyt, L. P.; and Murthy, A. B.
2024. Position: LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks. In Forty-first International
Conference on Machine Learning.

Katz, M.; et al. 2024. Thought of Search: Planning
with Language Models Through The Lens of Efficiency.
arXiv:2404.11833.

Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2022. Large language models are zero-shot reason-
ers. Advances in neural information processing systems, 35:
22199–22213.

Lin, S. C.; et al. 2022. Teaching Models to Express Their
Uncertainty in Words. Trans. Mach. Learn. Res., 2022.

Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In AAAI Conference on Artificial Intelligence.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas,
J.; and Stone, P. 2023. LLM+P: Empowering Large
Language Models with Optimal Planning Proficiency.
arXiv:2304.11477.
Moravcsik, J. M. 1983. Natural languages and formal lan-
guages: a tenable dualism. In Language, Logic and Method,
225–239. Springer.
Oswald, J.; Srinivas, K.; Kokel, H.; Lee, J.; Katz, M.; and
Sohrabi, S. 2024. Large Language Models as Planning Do-
main Generators. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 34,
423–431.
Pallagani, V.; Roy, K.; Muppasani, B.; Fabiano, F.; Loreg-
gia, A.; Murugesan, K.; Srivastava, B.; Rossi, F.; Horesh,
L.; and Sheth, A. 2024. On the Prospects of Incorporat-
ing Large Language Models (LLMs) in Automated Planning
and Scheduling (APS). In International Conference on Au-
tomated Planning and Scheduling.
Robinson, J. D.; Chuang, C.-Y.; Sra, S.; and Jegelka, S.
2023. Contrastive Learning with Hard Negative Samples.
In International Conference on Learning Representations.
Rozière, B.; Gehring, J.; et al. 2024. Code Llama: Open
Foundation Models for Code. arXiv:2308.12950.
Sadinle, M.; et al. 2019. Least ambiguous set-valued clas-
sifiers with bounded error levels. Journal of the American
Statistical Association, 114(525): 223–234.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Envi-
ronments from PDDL Problems. In ICAPS Workshop on
Bridging the Gap Between AI Planning and Reinforcement
Learning (PRL).
Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J. B.; Kael-
bling, L.; and Katz, M. 2024. Generalized planning in pddl
domains with pretrained large language models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, 20256–20264.
Sloman, S. A. 1996. The empirical case for two systems of
reasoning. Psychological Bulletin, 119: 3–22.
Valmeekam, K.; Marquez, M.; Sreedharan, S.; and Kamb-
hampati, S. 2023. On the planning abilities of large lan-
guage models-a critical investigation. Advances in Neural
Information Processing Systems, 36: 75993–76005.
Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2022. PlanBench: An Extensible Benchmark for
Evaluating Large Language Models on Planning and Rea-
soning about Change. In Neural Information Processing
Systems.
Wang, Z.; Cai, S.; Chen, G.; Liu, A.; Ma, X.; and Liang, Y.
2023. Describe, Explain, Plan and Select: Interactive Plan-
ning with LLMs Enables Open-World Multi-Task Agents.
In Neural Information Processing Systems.
Weaver, W. 1952. Translation. In Proceedings of the Con-
ference on Mechanical Translation.

Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in neural information processing systems, 35:
24824–24837.
Xiang, J.; Tao, T.; Gu, Y.; Shu, T.; Wang, Z.; Yang, Z.; and
Hu, Z. 2024. Language models meet world models: Em-
bodied experiences enhance language models. Advances in
neural information processing systems, 36.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao,
Y.; and Narasimhan, K. 2024. Tree of thoughts: Deliber-
ate problem solving with large language models. Advances
in Neural Information Processing Systems, 36.
Zhuang, S.; Liu, B.; Koopman, B.; and Zuccon, G. 2023.
Open-source Large Language Models are Strong Zero-shot
Query Likelihood Models for Document Ranking. In
Findings of the Association for Computational Linguistics:
EMNLP 2023, 8807–8817.

A Probabilistic Analysis for Action Schema
Combinations

Let’s consider a domain consisting of M actions, where the
probability of generating a correct action schema for each
action is p. The probability of obtaining a solvable (i.e., cor-
rectly formed and usable by the symbolic planner) set of
action schemas for the domain is then pM . pM diminishes
exponentially as M increases. For instance, with p = 0.05
(based on observations from Guan et al. (2023)) and M = 5,
the probability of obtaining a solvable set of action schemas
from vanilla LLMs is only 0.00003125%. In contrast, by
combining the action schemas generated by each LLM in-
stance, we can obtain approximately

(
N
1

)M
different sets of

action schemas, resulting in a vast number of action schema
set candidates.
Success Analysis: Assume each action schema αij has an
independent probability pij of being solvable. For simplic-
ity, let’s assume pij = p for all i and j. A set of action
schemas in the PDDL domain model is considered as solv-
able if all its action schemas are solvable. Therefore, the
probability that a generated set of action schemas is not solv-
able is (1 − pM), and the probability that none of the gen-
erated sets are solvable is (1 − pM)N

M

and the probability
of at least one combination is solvable is 1− (1− pM)N

M

.
For large N , as long as p ∈ (0, 1), (1− pM)N

M

approaches
0. For example, with 10 LLM instances, a domain of 5 ac-
tions, and a solvability probability of 0.05, the probability
of obtaining at least one solvable set of action schemas is
1− (1− (0.05)5)5

10

= 1− 0.0484 = 95.2%.

B Conformal Prediction Details
With a user-specified confidence level 1 − ϵ, we calculate
the ⌈(n+1)(1−ϵ)⌉

n empirical quantile of the cosine similarity
scores for true positive pairs in the calibration set, denoted
as q̂, where n is the size of the calibration data pairs. Statisti-
cally, it ensures that at least 1−ϵ fraction of the true positive
pairs will have a cosine similarity score greater than q̂. We
then use q̂ as the threshold to filter out action schemas with
cosine similarity scores below this value. Statistically, this
approach guarantees a high probability of preserving true
positive action schema candidates while minimizing the size
of the filtered set (Sadinle et al. 2019). For an illustration of
this process, see step 2 in Figure 3. The pseudo-code for cal-
culating the empirical quantile is shown in Algorithm 1.

During our experiments, we set ϵ = 0.2 to ensure a high
confidence level while maintaining a reasonable number of
solvable action schema candidates. This choice was based
on the trade-off between the confidence level and the number
of solvable action schema candidates generated. A higher
ϵ leads to a more stringent filtering process, resulting in
a smaller number of solvable action schema candidates so
as to save computational resources. In our experiments, the
pretrained model all-roberta-large-v1’s q̂ value at ϵ = 0.2
was 0.398. Thus, any action schema with a cosine similarity
score below 0.398 was filtered out, ensuring that only high-
quality action schemas were passed to the symbolic planner.

Algorithm 1: Calculate Empirical Quantile (q̂)

Require: Calibration set {Z(α), α}n, where Z(α) is natu-
ral language description of the corresponding true
action schema α;
n is the size of the calibration set;
Significance level ϵ;
Sentence encoder model E

1: ▷ Obtain the Cosine Similarity Score ◁

2: {e}n ←
{

E(Z(α))·E(α)
∥E(Z(α))∥∥E(α)∥

}
n

3: ▷ Compute quantile level ◁

4: qlevel ← ⌈(n−1)×(1−ϵ)⌉
n

5: ▷ Compute empirical quantile ◁
6: q̂ ← np.quantile({e}n, qlevel, method=‘lower’)
7: return q̂

C Domain Leakage Investigation
Methodology

To determine whether the testing PDDL domains had been
leaked to the training data of the large language models
(LLMs), we conducted a specific investigation. This in-
volved providing the LLMs with partial information about
the PDDL domains, specifically the types, predicates, and
the first action schema. Following this, we asked the LLMs
to generate the remaining content of the domain.

In our findings, the LLMs were able to accurately gen-
erate the complete action schemas for the well-known
blocksworld, tyreworld, and logistics environments, which
have been extensively used in prior research, indicating that
LLMs had likely been exposed to these domains during pre-
training. In contrast, for the testing domains used in our
experiments, namely minecraft, dungeon, and libraryworld,
the LLMs were unable to reconstruct the complete action
schemas based on the partial information provided, thereby
ensuring the integrity of our experimental conditions.

D Symbolic Planner Details
Modern symbolic planners can efficiently verify the solv-
ability of a generated schema set by leveraging its ability
to prove delete-free reachability in polynomial time (Bonet
and Geffner 2001). This leads to very quick verification of
whether the generated schema set is viable for generating a
plan. Additionally, modern planners can run efficiently on a
single CPU thread, and multiple problem instances can be
solved in parallel if more CPUs are available. For instance,
an AMD Ryzen 5900 with 32 threads can easily check the
solvability of up to 20,000 generated schema sets within 2
minutes. By applying a Conformal Prediction (CP) filtering
mechanism, we can further reduce the number of schema
sets that need to be checked, allowing us to verify solvabil-
ity within seconds, as most unsuitable sets are filtered out.

E Experiments Details
This section consists of the following:

• §E.1: Detailed natural language descriptions and reference PDDL models for the testing domains Libraryworld and Dun-
geon.

• §E.2: Details on the CO-STAR prompt engineering framework used for LLM prompt engineering.
• §E.3: Prompt template used for generating action schemas, including how to structure few-shot learning examples in the

prompt and how to obtain CoT reasoning examples automatically from advanced LLMs.
• §E.4: Prompt template used for Tree-of-Thought direct LLM-based planning.
• §E.5: Syntax correction process for the generated action schemas.
• §E.7: LLM model configurations and training configurations for the sentence encoder model.
• §F.1: Additional experiments and results, that are outside of the scope of the hypotheses but provide additional insights into

the pipeline’s performance.

E.1 Testing Tasks Specifications
Domain Description: This domain is structured to allow organizing and managing books within a

library setting. The actions and predicates support the movement of books between tables
and shelves, ensuring that conditions like accessibility and the librarian’s hands being
free are met. Additionally, it includes managing book categories, shelf space, and check

-out/return processes to reflect a more complex library system.

Action Description:
take-from-table:

detailed: Imagine you’re a librarian managing a table full of books. The ’take-from-table
’ action allows you to pick up a book that is on the table, provided it is accessible and
your hands are free. This action simulates the scenario where you find a book on the

table, ensure it’s not covered by any other book, and then pick it up, thus holding it in
your hands.
ambiguous: Pick up a book from the table if it’s not covered and your hands are empty.

place-on-shelf:
detailed: Consider a librarian holding a book and standing near a shelf. The ’place-on-
shelf’ action involves placing the held book on top of another book on the shelf, given
that the book on the shelf is accessible. This action results in the held book becoming
accessible, the book on the shelf becoming inaccessible, and the librarian’s hands
becoming free.
ambiguous: Put a book you’re holding on top of another accessible book on the shelf.

...
Predicate List:
(on-shelf ?x ?y - book) ;; ?x is on top of ?y on the shelf
(on-table ?x - book) ;; ?x is on the table
(accessible ?x - book) ;; ?x is accessible (not covered)
(hands-free) ;; The hands of the librarian are free
(holding ?x - book) ;; The librarian is holding ?x
(belongs-to-category ?x - book ?cat - category) ;; ?x belongs to the category ?cat
(shelf-empty ?cat - category) ;; The shelf for category ?cat is empty
(shelf-overflow ?cat - category) ;; The shelf for category ?cat is full
(book-request ?book - book) ;; There is a request for book ?book
(return-due ?book - book) ;; Book ?book is due for return
(checked-out ?book - book) ;; Book ?book is checked out

Listing 1: Libraryworld Domain Descriptions
Initial State Description: In the library, there are three books: Book1, Book2, and Book3.

Book3 is on top of Book1 and they are both on the shelf, while Book2 is on the table.
Book1 can also be considered as on the table it is just at the bottom of the shelf. Both
Book2 and Book3 are accessible, meaning they can be interacted with. The library worker’s
hands are free. Book1 belongs to the Fiction category, Book2 belongs to the NonFiction

category, and Book3 belongs to the Reference category.

Goal State Description: The goal is to have Book2 on top of Book3, and also Book1 on top of
Book2.

Listing 2: Libraryworld Problem Descriptions

(define (domain libraryworld)
(:requirements :strips :typing :negative-

preconditions)
(:types book category)
(:predicates

(on-shelf ?x ?y - book)
(on-table ?x - book)
(accessible ?x - book)
(hands-free)
...

)
(:action take-from-table

:parameters (?x - book)
:precondition (and (accessible ?x) (on
-table ?x) (hands-free))
:effect (and (not (on-table ?x))

(not (accessible ?x))
(not (hands-free))
(holding ?x))

)
(:action place-on-table

:parameters (?x - book)
:precondition (holding ?x)
:effect (and (not (holding ?x))

(accessible ?x)
(hands-free)
(on-table ?x))

)
...
)

Listing 3: Libraryworld Reference PDDL Domain Model

(define (problem organize-books)
(:domain libraryworld)
(:objects

Book1 Book2 Book3 - book
Fiction Non_Fiction Reference -
category

)
(:init

(on-table Book1)
(on-shelf Book3 Book1)
(on-table Book2)
(accessible Book2)
(accessible Book3)
(hands-free)
(belongs-to-category Book1 Fiction)
(belongs-to-category Book2 Non_Fiction
)
(belongs-to-category Book3 Reference)
...

)
(:goal

(and
(on-shelf Book2 Book3)
(on-shelf Book1 Book2)

)
)
)

Listing 4: Libraryworld Reference PDDL Problem Model

Domain Description: Help the hero to get out of dungeon! A hero woke up in a dungeon full of
monsters and traps (perhaps the party last night went wrong...) and needs your help to
get out. Here are basic facts for the dungeon domain: - The dungeon contains rooms that
are **connected** by corridors (dungeon can thus be represented by undirected graph) -
each room can be **empty**, or can have a **monster** in it, or can have a **trap** in it
, or can have a **sword** in it - one of the empty rooms is the **goal**: it has an exit,
so the hero can escape.

Action Description:
move:

detailed: The hero can **move** to an adjacent room (connected by a corridor) that has
not been destroyed (i.e., the hero has not already visited the room). When this action is
executed, the original cell get destroyed.
ambiguous: Hero can move if the - hero is at current location - cells are connected, -
there is no trap in current loc, and - destination does not have a trap/monster.

pick-sword:
detailed: **Pickup** the sword if present in the room the hero is currently in and the
hero is empty handed.
ambiguous: Hero picks a sword if he’s in the same location.

...
Predicate List:
(at-hero ?loc - cells) ;; Hero’s cell location
(at-sword ?s - swords ?loc - cells) ;; Sword cell location
(has-monster ?loc - cells) ;; Indicates if a cell location has a monster
(has-trap ?loc - cells) ;; Indicates if a cell location has a trap
(is-destroyed ?obj) ;; Indicates if a chell or sword has been destroyed
(connected ?from ?to - cells) ;; connects cells
(arm-free) ;; Hero’s hand is free
(holding ?s - swords) ;; Hero’s holding a sword
(trap-disarmed ?loc) ;; It becomes true when a trap is disarmed

Listing 5: Dungeon Domain Descriptions

Initial State Description: In the dungeon, the hero starts at cell5, with free hands ready
for action. The hero is aware of the dungeon’s layout, which consists of multiple
interconnected cells. A sword is located in cell4. The dungeon contains dangerous
monsters located in cell3 and cell8, and a trap is present in cell2. The hero must
navigate this treacherous environment, using the connections between the cells to move
around. The connections are as follows:

Cell1 is connected to cell2.
Cell2 is connected to cell1 and cell3.
Cell3 is connected to cell2 and cell4.
Cell4 is connected to cell3 and cell5.
Cell5 is connected to cell4 and cell8.
Cell6 is connected to cell7.
Cell7 is connected to cell6 and cell8.
Cell8 is connected to cell7 and cell5.
Cell2 is also connected to cell6.
Cell3 is also connected to cell7.
Cell4 is also connected to cell8.

Goal State Description: The hero’s ultimate objective is to reach cell1 safely.

Listing 6: Dungeon Problem Descriptions

(define (domain rpggame)
(:requirements :typing :negative-

preconditions
)
(:types

swords cells
)
(:predicates

(at-hero ?loc - cells)
(at-sword ?s - swords ?loc - cells)
(has-monster ?loc - cells)
(has-trap ?loc - cells)
...

)
(:action move

:parameters (?from ?to - cells)
:precondition (and

(connected ?from ?to)
(at-hero ?from)

(not (has-trap ?from))
(not (is-destroyed ?to))
(not (has-trap ?to))
(not (has-monster ?to))

)
:effect (and

(at-hero ?to)
(is-destroyed ?from)
(not (at-hero ?from))

)
)

...
)

Listing 7: Dungeon Reference PDDL Domain Model

(define (problem p1-dangeon)
(:domain rpggame)
(:objects

cell1 cell2 cell3 cell4 cell5 cell6
cell7 cell8 - cells
sword1 - swords

)
(:init

;Initial Hero Location
(at-hero cell5)
;He starts with a free arm
(arm-free)
;Initial location of the swords
(at-sword sword1 cell4)
;Initial location of Monsters
(has-monster cell3)
(has-monster cell8)
;Initial location of Traps
(has-trap cell2)

;Graph Connectivity
(connected cell1 cell2)
(connected cell2 cell1)
(connected cell2 cell3)
(connected cell3 cell2)
(connected cell3 cell4)
(connected cell4 cell3)
(connected cell4 cell5)
...

)
(:goal (and

(at-hero cell1)
))

)

Listing 8: Dungeon Reference PDDL Problem Model

E.2 CO-STAR Framework
The CO-STAR framework is a structured template for craft-
ing effective prompts for LLMs. Developed by GovTech
Singapore’s Data Science and Artificial Intelligence Divi-
sion, CO-STAR is designed to improve the quality of LLM-
generated responses by systematically addressing key as-
pects that influence output.

The CO-STAR acronym stands for: Context (C): Provide
background information on the task; Objective (O): Define
the specific task you want the LLM to perform; Style (S):
Specify the desired writing style for the LLM’s response;
Tone (T): Set the attitude or emotional quality of the re-
sponse; Audience (A): Identify the intended recipients of
the response; Response (R): Outline the expected format of
the response.

E.3 Prompt Template for Action Schema
Generation and Obtaining CoT Reasoning
Examples

Based on the CO-STAR framework, we designed a struc-
tured prompt template for generating action schemas. The
template includes the following components:

System: # CONTEXT #
You are a tool called PDDL Modeling

Assistant. \
You are a technical experts in constructing

Planning Domain Definition Language (
PDDL) models via the natural language
context.

OBJECTIVE
* Construct parameters, preconditions and

effects based on the domain information,
action description and the action name.

* All variables in the preconditions and
effects must be listed in the action’s
parameters. This restriction helps
maintain the action’s scope and prevents
ambiguity in the planning process.

* Do not use predicates that are not defined
in the available predicates list to

construct the preconditions and effects.
* When the natural language description is

ambiguous or certain predicate changes
are implied, make reasonable assumptions
based on common sense to fill up the

implicit predicate in the PDDL action.

STYLE
Follow the writing style of technical

experts. The output can be parsed by a
machine, so it is important to follow
the structured format.

TONE
Be precise and concise in constructing the

PDDL action. The PDDL action should be
clear and unambiguous.

AUDIENCE

Your audience is someone who is trying to
learn how to construct PDDL actions from
natural language descriptions.

RESPONSE
The response should be in the following

format:

Explanation: [Your explanation here]

Response:
Parameters:
1. ?x - [type]: [parameter description]
2. ...

Preconditions:
‘‘‘
(and

([predicate_1] ?x)
)
‘‘‘

Effects:
‘‘‘
(and

(not ([predicate_2] ?x))
([predicate_2] ?x)
...

)
‘‘‘

We further include two example query-answer pairs to fa-
cilitate in-context learning for LLMs. The example are taken
from the training domains rather than the testing domains to
ensure the integrity of the experimental conditions.
Example Human: One or two examples from

other domains for illustrating the input
and output formats.

Here are two examples from the newspapers
domain for demonstrating the output
format.

Domain information: This domain is
structured to model a simple newspaper
delivery system, where the main tasks
involve picking up newspapers from a
home base, moving to different locations
, and delivering the papers to locations
that require them.

A list of available predicates
1. (at ?loc - loc) ;; the agent is at loc

location
2. (is_Home_Base ?loc - loc) ;; the location

is the home base
3. (satisfied ?loc - loc) ;; the location

has received the newspaper
4. (wants_Paper ?loc - loc) ;; the location

needs a newspaper
5. (unpacked ?paper - paper) ;; the paper is

unpacked
6. (carrying ?paper - paper) ;; the agent is

carrying the paper
Example 1

Action Description: RoboDelivery is at the
home base (loc_home).

There is an unpacked newspaper (paper1) at
the home base.

RoboDelivery performs the pick-up action.

Preconditions: RoboDelivery is at
loc_home (which is the home base), and
paper1 is unpacked.
Effects: RoboDelivery is now carrying
paper1, and paper1 is no longer unpacked
.

Action name: pick-up

Your answer:

Example AI: **Explanation:**

Let’s imagine a situation where someone,
like a delivery person, needs to pick up
newspapers from a place, like a home

base, and deliver them to various
locations. This situation can be broken
down into smaller, specific steps to
make it easy for a computer to
understand and execute. This is where
the action schema you mentioned comes
into play.

The action is called "pick-up," and it
involves the delivery person picking up
newspapers to deliver. This action is
defined in a language called PDDL, which
is like giving a computer a recipe to

follow.

1. **Parameters**: These are like
ingredients in a recipe. Here, the
ingredients are any newspaper (‘?paper‘)
and a location (‘?loc‘), which in this

scenario is the home base.

2. **Preconditions**: These are conditions
that must be true before the action can
start. Think of it like checking if you
have all your ingredients before you
start cooking.
- ‘(at ?loc)‘: The delivery person must
be at the location specified (‘?loc‘).
This makes sure they are actually at the
home base to pick up the newspapers.

- ‘(is_Home_Base ?loc)‘: The location
where they are must be the home base.
This is crucial because newspapers ready
to be delivered are stored here.

- ‘(unpacked ?paper)‘: The newspapers
need to be unpacked and ready to be
picked up. It ensures the newspapers are
not in boxes or still bundled up,

making them easy to grab and go.

3. **Effects**: These describe what happens

after the action is completed.
- ‘(not (unpacked ?paper))‘: The
newspaper is no longer in an unpacked
state at the base because it has been
picked up.
- ‘(carrying ?paper)‘: The newspaper is
now being carried by the delivery person
, ready to be delivered to someone who
needs it.

This schema helps the computer understand
exactly what needs to happen when the "
pick-up" action is called in the program
. By specifying preconditions, we ensure
the action makes sense (you can’t pick

up a newspaper if you’re not there or if
the papers aren’t ready). The effects

tell the computer how the world changes
after the action, like the newspaper
moving from being unpacked at the base
to being carried for delivery.

By breaking down tasks this way, we help the
computer efficiently and correctly

handle tasks that seem simple to us but
are quite detailed when programmed.

Response:
Parameters:
1. ?from - loc: [short description of the

parameter]
2. ?to - loc: [short description of the

parameter]

Preconditions:
‘‘‘
(at ?from)
‘‘‘

Effects:
‘‘‘
(and

(not (at ?from))
(at ?to)

)
‘‘‘

As demonstrated in the example above, we include a de-
tailed explanation section. This approach, known as Chain-
of-Thought (CoT), has been shown to enhance LLMs’ rea-
soning capabilities by explicitly prompting them to show in-
termediate steps in their reasoning process.

The following section presents the actual query-response
pairs generated by the LLMs during the action schema gen-
eration process.

System: [SAME AS THE PREVIOUS EXAMPLE]
Human: Question: Here is the task.
A natural language description of the domain
Domain information: This domain is

structured to allow organizing and
managing books within a library setting.

The actions and predicates support the
movement of books between tables and
shelves, ensuring that conditions like
accessibility and the librarian’s hands
being free are met. Additionally, it
includes managing book categories, shelf
space, and check-out/return processes

to reflect a more complex library system
.

A list of available predicates
1. (on-shelf ?x ?y - book) ;; ?x is on top

of ?y on the shelf
2. (on-table ?x - book) ;; ?x is on the

table
3. (accessible ?x - book) ;; ?x is

accessible (not covered)
4. (hands-free) ;; The hands of the

librarian are free
5. (holding ?x - book) ;; The librarian is

holding ?x
6. (belongs-to-category ?x - book ?cat -

category) ;; ?x belongs to the category
?cat

7. (shelf-empty ?cat - category) ;; The
shelf for category ?cat is empty

8. (shelf-overflow ?cat - category) ;; The
shelf for category ?cat is full

9. (book-request ?book - book) ;; There is a
request for book ?book

10. (return-due ?book - book) ;; Book ?book
is due for return

11. (checked-out ?book - book) ;; Book ?book
is checked out

Action Description: Imagine you’re a
librarian managing a table full of books
. The ’take-from-table’ action allows
you to pick up a book that is on the
table, provided it is accessible and
your hands are free. This action
simulates the scenario where you find a
book on the table, ensure it’s not
covered by any other book, and then pick
it up, thus holding it in your hands.

Action name: take-from-table

Your answer:

AI: **Explanation:**
In the context of a library, the "take-from-

table" action represents the physical
act of a librarian picking up a book
from a table. This action is only
feasible under certain conditions, which
are represented by the preconditions of
the action. The effects describe the

outcome or the change in the state of
the world once the action is executed.

The parameters of the action are the book
that is to be picked up and potentially
the table it is on, though the table is

not explicitly mentioned in the
available predicates, so we’ll focus on
the book.

The preconditions ensure that:
1. The book is on the table and accessible,

meaning it’s not obscured or covered by
other books.

2. The librarian’s hands are free,
indicating that they are not currently
holding any other book.

Once these conditions are met, the librarian
can perform the "take-from-table"

action, which results in two main
effects:

1. The book is no longer on the table, as it
is now being held by the librarian.

2. The librarian is no longer hands-free, as
they are now holding the book.

This action is a fundamental part of
managing books within the library,
allowing the librarian to move books
from tables to shelves or to handle
checkouts and returns.

Response:
Parameters:
1. ?book - book: [The book that the

librarian will pick up from the table]

Preconditions:
‘‘‘
(and

(on-table ?book)
(accessible ?book)
(hands-free)

)
‘‘‘

Effects:
‘‘‘
(and

(not (on-table ?book))
(not (hands-free))
(holding ?book)

)
‘‘‘

We can see that the LLM-generated response closely
aligns with the expected format, demonstrating the effective-
ness of the prompt template in guiding the LLM to generate
accurate action schemas.

E.4 Prompt Template for ToT Direct Planning

The Tree-of-Thought (ToT) direct planning approach uses a
prompt template similar in structure to that used for action
schema generation. The key distinction lies in the system
prompt, which instructs the LLM to generate plans rather
than action schemas. The system prompt for ToT direct plan-
ning is as follows:
System: # CONTEXT #

You are a tool called Automated Planning
Action Planner.

You are a technical expert in constructing
and evaluating the quality of action
plans via the natural language context.

OBJECTIVE
* Add only one more action to the given

action plan sequence towards achieving
the goal state.

* Provide the action name and the objects
that this action will interact with.

* Evaluate the confidence score that
continuing with the suggested action
plan will eventually lead to the goal
state.

* Determine if the action plan has already
reached the goal state.

* Output only one action at each step and
stop.

* You should think step by step, you think
think more steps.

...
RESPONSE
The response should be in the following

format:

Response:
1. Action {n}: [Action Name]
2. Objects:

- ?x - [type]: [object description]
- ...

3. Updated Action Plan:
- [Action 1 and the objects involved]
- [Action 2 and the objects involved]
- ...
- [Action {n} and the objects involved]

Confidence Evaluation:
[Analyze the updated action plan, then at

the last line conclude "The confidence
score is {s}", where s is an integer
from 1 to 10]

Goal State Check:
[Briefly analyze the current state, then at

the last line conclude "The planning is
continuing" or "The planning is
completed"]

E.5 Syntax Correction Process
After obtaining the raw outputs from the LLMs, our pipeline
post-processes these outputs into structured PDDL snippets,
correcting any potential syntax errors present in the initial
generation. Although previous research has demonstrated
that LLMs can effectively correct syntax errors when given
feedback from validation tools (Guan et al. 2023; Rozière,
Gehring et al. 2024; Silver et al. 2024), this approach is
computationally expensive because it requires numerous it-
erative calls to the LLM.

As our work primarily focuses on addressing semantic
(factual) errors in LLM outputs, we opted for a more effi-

cient approach to syntax correction. Instead of using LLMs,
we employed the PDDL parser tool from https://github.
com/jan-dolejsi/vscode-pddl to directly correct syntax er-
rors. This tool specifically addresses syntax errors, thus it
will not introduce any semantic changes to the generated
PDDL snippets.

E.6 Problem Instance Generation Process
Our work assume that problem instances are described with
sufficient precision, allowing for a straightforward transla-
tion into PDDL problem snippets for use by an external sym-
bolic planner. By “trivial,” we mean that this translation can
be effectively handled by a modern machine translation sys-
tem. The core challenge of our study lies in interpreting the
more ambiguous natural language descriptions of the plan-
ning task domain to generate varied solvable schema sets.
Consequently, we assume an oracle problem instance trans-
lator in our pipeline, which can be easily implemented using
existing tools like the PDDL parser mentioned in the syntax
correction process.

E.7 Model and Training Configurations
LLM configuration is as follows:

Table 5: LLM model configuration

Parameter Action Schema Generation Direct Plan Generation

model name glm-4-0520
glm-4-0520,

gpt-4o-2024-05-13,
gpt-3-turbo

top p 0.3 0.80

temperature 0.3 0.99

max tokens 1024 1024

tree breadth - 3

tree depth ratio -
1.5

tree depth = ratio *
referece plan length)

The finetuning configuration for the sentence encoder
model is as follows:

Table 6: Sentence Encoder Finetuning Configs

Parameter Value

train negative weights

[0.0, 0.4, 0.6]
(ratio of selecting easy,
semi-hard, hard negatives
from the training dataset)

train batch size 256

training epoch 40

sentence encoder all-roberta-large-v1

Finetuning Details: The sentence encoder model was
fine-tuned on a dataset of 200,000 synthesized samples gen-
erated by action schema manipulation. The process utilized
an NVIDIA A100 80GB PCIe GPU on a Linux 5.14.0 sys-
tem. It takes about 11 hours to complete the training process.
More details can be found in the code repository.

F Extra Results

Cos-Sim Scores between NL Desc. and Symbolic Action Schema in Vanilla Sentence Encoder
model:

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

NL Desc vs. Action Schema Desc + Explanation vs. Action Schema
Comparison Mode

C
os

in
e

S
im

 S
co

re

Positive (Correct Match)
Easy Negative (Inter-Domain Mismatch)
Semi-Hard Negative (Intra-Domain Mismatch)
Hard Negative (Manipulated Action)

Figure 7: The pre-trained sentence-t5-xl sentence encoder demonstrates semantic alignment for matched action schemas
and misalignment for mismatched ones, supporting the concept of semantic equivalence across different representations of the
same entity.

Table 7: Detailed action schema generation results of the proposed pipeline without CP filtering

Domain Name Desc Granularity LLM instance # Total Combinations Solved Combinations Distinct Plan # Avg. Plan Length Applied CP Threshold CP Threshold Value
libraryworld detailed 7 18144 0 N/A N/A False N/A
libraryworld detailed 10 86400 4560 7 6.57 False N/A
libraryworld ambiguous 7 26460 0 N/A N/A False N/A
libraryworld ambiguous 10 124416 17976 7 5.14 False N/A
dungeon detailed 7 600 600 5 4 False N/A
dungeon detailed 10 2800 2099 5 4 False N/A
dungeon ambiguous 7 360 180 1 5 False N/A
dungeon ambiguous 10 700 140 1 5 False N/A
minecraft detailed 7 1323 216 2 3 False N/A
minecraft detailed 10 5250 3598 4 3 False N/A
minecraft ambiguous 7 7350 2800 5 3 False N/A
minecraft ambiguous 10 21600 6000 6 3 False N/A

Table 8: Detailed action schema generation results of the proposed pipeline WITH CP filtering

Domain Name Desc Granularity LLM instance # Total Combinations Solved Combinations Distinct Plan # Avg. Plan Length Applied CP Threshold CP Threshold Value
libraryworld detailed 7 672 0 N/A N/A True 0.398
libraryworld detailed 10 2160 60 2 5 True 0.398
libraryworld detailed 15 2340 104 2 5 True 0.398
libraryworld ambiguous 7 252 0 N/A N/A True 0.398
libraryworld ambiguous 10 3240 560 6 5.3 True 0.398
libraryworld ambiguous 15 37440 852 10 6.3 True 0.398
dungeon detailed 7 24 24 3 4 True 0.398
dungeon detailed 10 48 36 3 4 True 0.398
dungeon detailed 15 128 96 1 4 True 0.398
dungeon ambiguous 7 18 9 1 5 True 0.398
dungeon ambiguous 10 20 4 1 5 True 0.398
dungeon ambiguous 15 168 108 3 4 True 0.398
minecraft detailed 7 441 0 N/A N/A True 0.398
minecraft detailed 10 945 630 2 3 True 0.398
minecraft detailed 15 1287 720 5 3 True 0.398
minecraft ambiguous 7 2940 1120 6 3 True 0.398
minecraft ambiguous 10 6720 1920 6 3 True 0.398
minecraft ambiguous 15 45760 16384 8 2.63 True 0.398

Justification why tested with problems that only need short plans:
Our focus on problems requiring short plans stems from two key reasons:

• Focus on Schema Set Construction: The primary challenge in LLM-symbolic planning lies in accurately constructing the
action schema set. Once this set is correctly defined, plan generation is handled by the symbolic planner, and the length of
the plan becomes no more a crucial factor in evaluating the LLM-symbolic planning pipeline’s performance. Our approach
excels in generating accurate action schema sets, ensuring reliable plan generation regardless of length.

• Limitations of Direct LLM Planning Models: Direct LLM planning models like “Tree of Thoughts” (ToT) suffer from in-
herent limitations in long-term planning due to their probabilistic nature. Accuracy diminishes exponentially with each step.
For example, even with a 99% per-step accuracy, the probability of a correct 100-step plan plummets to 36.6%. This makes
direct LLM planners unsuitable for long-term planning. Thus, for fair comparison, we focus on the reasoning capabilities of
different approaches under rational plan lengths.

Implication: Our justification highlights a significant advantage of the LLM-symbolic planning pipeline: the quality of plan
generation is not affected by the length of the plan, but rather by the quality of the action schema set. This means that our pipeline
can be generalized to plan generation of any length. In contrast, direct LLM planning models are fundamentally limited in their
ability to guarantee soundness in long-term planning.

Table 9: Detailed Plan for ToT direct planning models in Sussman Anomaly testing case

Model Plan Heuristic

ToT GLM [“take-from-table Book2”, “place-on-shelf Book2 Book3”, “take-from-table Book1”, “place-on-shelf Book1 Book2”] 9.0

ToT GLM [“take-from-table Book2”, “place-on-shelf Book2 onto Book3”, “take-from-table Book1”, “place-on-shelf Book1 onto Book2”] 9.0

ToT GLM [“take-from-table Book2”, “place-on-shelf Book2 onto Book3”, “remove-from-shelf Book1”, “place-on-shelf Book1 onto Book2”] 9.0

ToT GPT-3 [“take-from-table Book2”, “place-on-shelf Book2 Book3”, “place-on-table Book1”, ”place-on-shelf Book1 Book2”,
“remove-from-shelf Book3”, “place-on-shelf Book3 Book2”, “place-on-shelf Book1 Book2”, “check-out Book1”] 5.11

ToT GPT-3 [”take-from-table Book2”, “place-on-shelf Book2 Book3”, “place-on-table Book1”, “place-on-shelf Book1 Book2”,
“remove-from-shelf Book3”, “place-on-shelf Book3 Book2”, “remove-from-shelf Book2”, “place-on-shelf Book2 Book1”] 5.11

ToT GPT-3 [“take-from-table Book2”, “place-on-shelf Book2 Book3”, “place-on-table Book1”, “place-on-shelf Book1 Book2”,
“place-on-shelf Book1 Book3”, “place-on-shelf Book2 Book1”, “place-on-shelf Book2 Book3”, “remove-from-shelf Book2”, “place-on-shelf Book2 Book1”] 4.11

ToT GPT-4 [“take-from-table (Book2)”, “place-on-shelf (Book2, Book3)”, “take-from-table (Book1)”, “place-on-shelf (Book1, Book2)”] 8.5

ToT GPT-4 [“take-from-table(Book2)”, “place-on-shelf(Book2, Book3)”, “take-from-table(Book1)”, “place-on-shelf(Book1, Book2)”] 8.5

ToT GPT-4 [“take-from-table(Book2)”, “remove-from-shelf(Book3)”, “place-on-table(Book3)”, “place-on-table(Book2)”,
“take-from-table(Book2)”, “place-on-table(Book2, Book3)”, “take-from-table(Book1)”, “place-on-table(Book1, Book2)”, “take-from-table(Book1)”] 8.33

ToT GPT-4 [“take-from-table(Book2)”, “remove-from-shelf(Book3)”, “place-on-table(Book3)”, “place-on-table(Book2)”,
“take-from-table(Book2)”, “place-on-table(Book1)”, “take-from-table(Book3)”, “place-on-shelf(Book3, Book1)”, “take-from-table(Book1)”] 7.89

ToT GPT-4 [“take-from-table(Book2)”, “remove-from-shelf(Book3)”, “place-on-table(Book3)”, “place-on-table(Book2)”,
“take-from-table(Book3)”, “place-on-table(Book2)”, “place-on-table(Book3)”, “take-from-table(Book2)”, “place-on-shelf(Book2, Book3)”] 7.78

ToT GPT-4 [“take-from-table(Book2)”, “remove-from-shelf(Book3)”, “place-on-table(Book3)”, “place-on-table(Book2)”,
“take-from-table(Book3)”, “place-on-table(Book2)”, “place-on-table(Book3)”, “take-from-table(Book2)”, “place-on-table(Book3)”] 7.44

Table 10: Detailed Plan for the proposed LLM-symbolic planning pipeline in Sussman Anomaly testing case

Model Plan RankScr

Ours GLM [“(remove-from-shelf book3 book1)”, “(take-from-table book2)”, “(place-on-shelf book2 book3)”,
“(take-from-table book1)”, “(place-on-shelf book1 book2)”] 0.788

Ours GLM [“(take-from-table book2)”, “(place-on-shelf book2 book3)”, “(remove-from-shelf book3 book1)”,
“(take-from-table book1)”, “(place-on-shelf book1 book2)”] 0.770

Ours GLM [“(remove-from-shelf book3 book1)”, “(take-from-table book1)”, “(place-on-shelf book1 book2)”,
“(take-from-table book2)”, “(place-on-shelf book2 book3)”] 0.724

Ours GLM [“(remove-from-shelf book3 book1 reference)”, “(take-from-table book2)”, “(place-on-shelf book2 book3)”,
“(take-from-table book1)”, “(place-on-shelf book1 book2)”] 0.632

Ours GLM
[“(remove-from-shelf book3 book1)”, “(take-from-table book1)”, “(place-on-table book3)”,
“(check-out book1)”, “(take-from-table book2)”, “(place-on-table book1)”,
“(place-on-shelf book2 book3)”, “(take-from-table book1)”, “(return-book book1)”, “(place-on-shelf book1 book2)”]

0.569

Ours GLM [“(take-from-table book2)”, “(place-on-shelf book2 book3)”, “(remove-from-shelf book3 book1)”,
“(check-out book1)”, “(place-on-shelf book1 book2)”] 0.552

Ours GLM [“(take-from-table book2 reference)”, “(place-on-shelf book2 book3)”, “(remove-from-shelf book3 book1 reference)”,
“(take-from-table book1 reference)”, “(place-on-shelf book1 book2)”] 0.512

For more detailed generated action schema sets and plans, please go to the following folders in the code repository:

• data/07 model output/tree of thought plans

• data/07 model output/llm to domain to plans

F.1 Extra Experiments Outside the Main Scope

Evaluating the Quality of Action Schema Generation We evaluate the diversity and solvability of domains, with the qual-
ity assessment being conducted solely through plans against the Tree of Thought (ToT) for two primary reasons. Firstly,
the absence of schemas for ToT means that the evaluation of the planner can only be carried out at the plan level. Sec-
ondly, we do not assume there exists a single ground truth schema set for a given natural language described planning prob-
lem. It is because a quality examination using a ground truth (GT) domain contradicts our assumption that a natural lan-
guage problem description can have multiple interpretations, and that a one-to-one mapping from an ambiguous description
to formal formats is inherently flawed, as mentioned on Section 1. To gauge the ambiguity of the description, refer to the
data/01 raw/pddl domain/*/*/data.py files, where there is considerable freedom in determining which predicates
to include, particularly for layman settings.

Predicate-level evaluation with a GT schema, such as F1, overlooks the overall synergy of individual actions in the modeling
process and would be biased towards a single perspective, as discussed on the limitation of the current single expert-in-loop
approach. Our objective is to make planning systems more accessible to a wider range of users, which renders predicate-level
quality evaluation an indirect measure of success. For the purpose of completeness, we provide the evaluation results against
the GT domain in Table 11.

Table 11: Evaluating the accuracy of generated action schemas against the ground truth domain data involves a predicate-level
analysis, which yields metrics such as precision, recall, and the F1 score. Due to the inherent ambiguity of natural language
descriptions, the generated schema set will not perfectly align with the ground truth schema set. Furthermore, the evaluation
results fail to reflect the final quality of the generated plans within our hybrid LLM planning pipeline.

Info Granularity Eval w.r.t. GT domain
Precis. Recall F1

Layman 0.696 0.617 0.654
Detailed 0.679 0.636 0.657

It is evident in Table 11 that the schema set generated from natural language descriptions will not perfectly align with the
ground truth schema set. The primary reason for this discrepancy lies in the inherent ambiguity of natural language, which
cannot precisely capture the exact intentions of the original schema author. Consequently, metrics such as precision, recall,
and F1 score are inadequate to assess the quality of the generated plans within our hybrid Large Language Model (LLM)
planning pipeline. Therefore, the evaluation of the quality of the generated action schema in relation to the ground truth model
is considered a secondary measure of assessment.

To see how ambiguous the natural language descriptions are, we are posting the following examples of the natural language
descriptions of the actions for the barman domain:
ACTION_DESC_DICT = {

’clean-shaker’ : {
"layman": "The robot cleans an empty shaker.",
"detailed": "Clean the empty shaker. The action is related to whether the shaker is

empty and whether barman holds the shaker.",
},
’clean-shot’ : {

"layman": "The robot cleans a used shot glass.",
"detailed": "clean the shot, it is depending on the conditions that whether the shot

is empty and the precondition also need to know about whether barman holds the container.
",
},
’empty-shaker’ : {

"layman": "The robot empties a shaker that has been shaken, changing its level.",
"detailed": "Pour the contents out of the shaker. Things that are related to this

action are whether the shaker is shacked or not, whether the shaker contains the cocktail
or not and whether the shaker level goes back to empty level.",
},
’empty-shot’ : {

"layman": "The robot empties a shot glass it’s holding.",
"detailed": "empty the shot. It depends on whether the container has beverage and

whether barman holds the container.",
},
’fill-shot’ : {

"layman": "The robot fills an empty, clean shot glass with an ingredient from a
dispenser.",

"detailed": "use a hand to hold a clean shot and fill ingredient that comes from the
dispenser.",
},
’grasp’ : {

"layman": "The robot uses a hand to pick up a container from the table.",
"detailed": "The action that barman is grasping is depending on the precondition that

whether the container is in barman’s hands or on the table.",
},
’leave’ : {

"layman": "The robot places a container it’s holding back onto the table.",
"detailed": "The action that barman is going to leave their container from his hand

on to table.",
},
’pour-shaker-to-shot’ : {

"layman": "The robot pours a beverage from a shaker into an empty, clean shot glass."
,

"detailed": "Pour the shaken alcohol into a clean empty shot glass. The action is
related to whether the shot is empty and clean, and whether the barman holds the shot and
also it will affects the shaker level. ",
},
’pour-shot-to-clean-shaker’ : {

"layman": "The robot pours an ingredient from a shot glass into a clean shaker,
changing its level.",

"detailed": "Pour the hard liquor and other ingredients into a clean empty shaker and
shake. The action is depending on the conditions that whether the shaker is empty and

clean and also whether barman holds and shakes the shaker.",
},
’pour-shot-to-used-shaker’ : {

"layman": "Similar to the previous action, but the shaker already contains
ingredients and isn’t clean.",

"detailed": "Pour the hard liquor and other ingredients into the used shaker. It
depends on whether the barman start shaking or not. Also you need to hold the shot.",
},
’refill-shot’ : {

"layman": "The robot refills a shot glass with the same ingredient it previously
contained.",

"detailed": "refill the shot with the same ingredient. The action is depending on the
conditions that whether the shot is empty and used and whether barman holds the shot.",
},
’shake’ : {

"layman": "The robot shakes a shaker containing two ingredients to make a cocktail.",
"detailed": "make cocktail with two ingredients. The action that whether barman

shakes the shaker is depending on the preconditions that whether the shaker has cocktail
or ingredient and whether barman holds and shakes the shaker.",
},

}

The “barman” PDDL domain snippets of the PDDL expert are as follows:
(define (domain barman)
(:requirements :typing :strips)
(:types

hand level beverage dispenser container - object
ingredient cocktail - beverage
shot shaker - container

)
(:predicates

(ontable ?c - container)
(holding ?h - hand ?c - container)
(handempty ?h - hand)
(empty ?c - container)
(contains ?c - container ?b - beverage)
(clean ?c - container)
(used ?c - container ?b - beverage)

(dispenses ?d - dispenser ?i - ingredient)
(shaker-empty-level ?s - shaker ?l - level)
(shaker-level ?s - shaker ?l - level)
(next ?l1 ?l2 - level)
(unshaked ?s - shaker)
(shaked ?s - shaker)
(cocktail-part1 ?c - cocktail ?i - ingredient)
(cocktail-part2 ?c - cocktail ?i - ingredient)

)

(:action grasp
:parameters (?h - hand ?c - container)
:precondition (and (ontable ?c) (handempty ?h))
:effect (and (not (ontable ?c))

(not (handempty ?h))
(holding ?h ?c))

)

(:action leave
:parameters (?h - hand ?c - container)
:precondition (holding ?h ?c)
:effect (and (not (holding ?h ?c))

(handempty ?h)
(ontable ?c))

)

(:action fill-shot
:parameters (?s - shot ?i - ingredient ?h1 ?h2 - hand ?d - dispenser)
:precondition (and (holding ?h1 ?s)

(handempty ?h2)
(dispenses ?d ?i)
(empty ?s)
(clean ?s))

:effect (and (not (empty ?s))
(contains ?s ?i)
(not (clean ?s))
(used ?s ?i))

)

(:action refill-shot
:parameters (?s - shot ?i - ingredient ?h1 ?h2 - hand ?d - dispenser)
:precondition (and (holding ?h1 ?s)

(handempty ?h2)
(dispenses ?d ?i)
(empty ?s)
(used ?s ?i))

:effect (and (not (empty ?s))
(contains ?s ?i))

)

(:action empty-shot
:parameters (?h - hand ?p - shot ?b - beverage)
:precondition (and (holding ?h ?p)

(contains ?p ?b))
:effect (and (not (contains ?p ?b))

(empty ?p))
)

(:action clean-shot
:parameters (?s - shot ?b - beverage ?h1 ?h2 - hand)
:precondition (and (holding ?h1 ?s)

(handempty ?h2)
(empty ?s)
(used ?s ?b))

:effect (and (not (used ?s ?b))

(clean ?s))
)

(:action pour-shot-to-clean-shaker
:parameters (?s - shot ?i - ingredient ?d - shaker ?h1 - hand ?l ?l1 - level)
:precondition (and (holding ?h1 ?s)

(contains ?s ?i)
(empty ?d)
(clean ?d)
(shaker-level ?d ?l)
(next ?l ?l1))

:effect (and (not (contains ?s ?i))
(empty ?s)
(contains ?d ?i)
(not (empty ?d))
(not (clean ?d))
(unshaked ?d)
(not (shaker-level ?d ?l))
(shaker-level ?d ?l1))

)

(:action pour-shot-to-used-shaker
:parameters (?s - shot ?i - ingredient ?d - shaker ?h1 - hand ?l ?l1 - level)
:precondition (and (holding ?h1 ?s)

(contains ?s ?i)
(unshaked ?d)
(shaker-level ?d ?l)
(next ?l ?l1))

:effect (and (not (contains ?s ?i))
(contains ?d ?i)
(empty ?s)
(not (shaker-level ?d ?l))
(shaker-level ?d ?l1))

)

(:action empty-shaker
:parameters (?h - hand ?s - shaker ?b - cocktail ?l ?l1 - level)
:precondition (and (holding ?h ?s)

(contains ?s ?b)
(shaked ?s)
(shaker-level ?s ?l)
(shaker-empty-level ?s ?l1))

:effect (and (not (shaked ?s))
(not (shaker-level ?s ?l))
(shaker-level ?s ?l1)
(not (contains ?s ?b))
(empty ?s))

)

(:action clean-shaker
:parameters (?h1 ?h2 - hand ?s - shaker)
:precondition (and (holding ?h1 ?s)

(handempty ?h2)
(empty ?s))

:effect (and (clean ?s))
)

(:action shake
:parameters (?b - cocktail ?d1 ?d2 - ingredient ?s - shaker ?h1 ?h2 - hand)
:precondition (and (holding ?h1 ?s)

(handempty ?h2)
(contains ?s ?d1)
(contains ?s ?d2)
(cocktail-part1 ?b ?d1)
(cocktail-part2 ?b ?d2)

(unshaked ?s))
:effect (and (not (unshaked ?s))

(not (contains ?s ?d1))
(not (contains ?s ?d2))
(shaked ?s)
(contains ?s ?b))

)

(:action pour-shaker-to-shot
:parameters (?b - beverage ?d - shot ?h - hand ?s - shaker ?l ?l1 - level)
:precondition (and (holding ?h ?s)

(shaked ?s)
(empty ?d)
(clean ?d)
(contains ?s ?b)
(shaker-level ?s ?l)
(next ?l1 ?l))

:effect (and (not (clean ?d))
(not (empty ?d))
(contains ?d ?b)
(shaker-level ?s ?l1)
(not (shaker-level ?s ?l)))

)
)

It is evident that natural language descriptions possess inherent ambiguity, especially the layman setting. A direct one-to-one
correspondence with the ground truth schema might fail to account for this ambiguity and the various valid interpretations that
can arise from such descriptions. This recognition is the cornerstone of our research, as detailed in Section 1. Consequently, we
advise against relying on the ground truth schema for evaluating the quality of the generated action schema sets.

In the context of the “barman” example, we found that layman texts frequently omit predicates related to hand movements
while still preserving the essential semantics of the action schema. As a result, LLMs are also likely to produce action schemas
that omit the details about the hand interaction, thereby not strictly matching the ground truth schema. Importantly, even without
the inclusion of hand predicates, these generated schemas can still remain solvable and capable of generating plans that align
with user preferences. Therefore, relying solely on the ground truth schema for evaluating the quality of the generated action
schemas may not be an effective measure, as it does not fully consider the flexibility inherent in natural language descriptions.

Cost Analysis Conducting a comprehensive cost analysis for the proposed pipeline presents a significant challenge. When
analyzing the costs associated with our pipeline against those of an expert-in-the-loop approach, several critical factors must be
taken into account: (1) the consultant fees for expert involvement, and (2) the time spent for experts to identify and interactively
correct errors. Quantifying the cost of our pipeline is further complicated by its dependence on the number of action schema
combinations, the complexity of the planning tasks, and the specifications of the CPU used for the symbolic planner.

Moreover, we need to understand that the Tree-of-Thoughts (ToT) approach, which relies solely on LLM text generation
for planning, also becomes more computationally expensive as the tree’s depth and breadth expand. This complexity leads to
the fact that previous studies on hybrid planning pipelines, such as (Guan et al. 2023; Liu et al. 2023), have not provided a
comprehensive cost analysis either.

Given these considerations, we recognize the importance of conducting a detailed cost analysis in future work to provide a
more comprehensive cost comparison between our pipeline and other competing approaches.

