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Abstract

Linear attention methods provide a strong alternative to softmax attention as they
allow for efficient recurrent decoding. Recent research has focused on enhancing
standard linear attention by incorporating gating while retaining its computational
benefits. Such Gated Linear Attention (GLA) architectures include highly competi-
tive models such as Mamba and RWKV. In this work, we examine the in-context
learning capabilities of the GLA model and make the following contributions. We
show that a multilayer GLA can implement a general class of Weighted Precondi-
tioned Gradient Descent (WPGD) algorithms with data-dependent weights. These
weights are induced by the gating and allows the model to control the contribution
of individual tokens to prediction. To further understand the mechanics of weight-
ing, we introduce a novel data model with multitask prompts and characterize the
optimization landscape of the problem of learning a WPGD algorithm. We identify
mild conditions under which there is a unique (global) minimum up to scaling
invariance, and the associated WPGD algorithm is unique as well. Finally, we
translate these findings to explore the optimization landscape of GLA and shed
light on how gating facilitates context-aware learning and when it is provably better
than vanilla linear attention.

1 Introduction

The Transformer architecture (Vaswani, 2017) has become the de facto standard for language
modeling tasks. The key component of the Transformer is the self-attention mechanism, which
computes softmax-based similarities between all token pairs. Despite its success, the self-attention
mechanism has quadratic complexity with respect to sequence length, making it computationally
expensive for long sequences. To address this issue, a growing body of work has proposed near-linear
time approaches to sequence modeling. The initial approaches included linear attention and state-
space models, both achieving O(1) inference complexity per generated token, thanks to their recurrent
form. While these initial architectures typically do not match softmax-attention in performance, recent
recurrent models such as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), mLSTM (Beck et al., 2024),
GLA Transformer (Yang et al., 2023), and RWKV-6 (Peng et al., 2024) achieve highly competitive
results with the softmax Transformer. Notably, as highlighted in Yang et al. (2023), these architectures
can be viewed as variants of gated linear attention (GLA), which incorporates a gating mechanism
within the recurrence of linear attention.

Given a sequence of tokens (zi)n
i=1 ⊂ R

d and associated query, key, and value embeddings
(qi, ki, vi)n

i=1 ⊂ R
d, with d being the embedding dimension, the GLA recurrence is given by

Si = Gi ⊙ Si−1 + vi k⊤i , and oi = Siqi. (1)

Here, Si ∈ R
d×d represents the 2D state variable, oi ∈ R

d represents the i’th output token, and the
gating variable Gi := g(zi) ∈ Rd×d is applied to the state through the Hadamard product ⊙. When the
gating is removed, the model reduces to causal linear attention (Katharopoulos et al., 2020).

The central objective of this work is to enhance the mathematical understanding of the GLA mecha-
nism. In-context learning (ICL), one of the most remarkable features of modern sequence models,
provides a powerful framework to achieve this aim. ICL refers to the ability of a sequence model
to implicitly infer functional relationships from the demonstrations provided in its context window
(Brown, 2020; Min et al., 2022). It is inherently related to the model’s ability to emulate learning
algorithms. Notably, ICL has been a major topic of empirical and theoretical interest in recent years.
More specifically, a series of works have examined the approximation and optimization characteris-
tics of linear attention, and have provably connected linear attention to the preconditioned gradient
descent algorithm (Von Oswald et al., 2023; Ahn et al., 2024; Zhang et al., 2024). Given that the
GLA recurrence in (1) has a richer design space, this leads us to ask:

Q: What are the ICL capabilities of the GLA mechanism? What learning algorithm
does it emulate when presented with an ICL task?

1
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Contributions: The GLA recurrence in (1) enables the sequence model to weight past information
in a data-dependent manner through the gating mechanism (Gi)n

i=1. Building on this observation, we
demonstrate that GLA models can implement a data-dependent Weighted Preconditioned Gradient
Descent (WPGD) algorithm. Specifically, a one-step version of this algorithm with scalar gating,
where all entries of Gi are identical, is described by the prediction:

ŷ = x⊤PX⊤(y ⊙ ω). (2)

Here, X ∈ Rn×d is the input feature matrix; y ∈ Rn is the associated label vector; x ∈ Rd represents the
test/query input to predict; P ∈ Rd×d is the preconditioning matrix; and ω ∈ Rn weights the individual
samples. When ω is fixed, we drop “data-dependent” and simply refer to this algorithm as the WPGD
algorithm. However, for GLA, ω := ω(X, y) depends on the data through recursive multiplication of
the gating variables. Building on this formalism, we make the following specific contributions:

⋄ ICL capabilities of GLA (§3): Through constructive arguments, we demonstrate that
a multilayer GLA model can implement data-dependent WPGD iterations, with weights
induced by the gating function. This construction sheds light on the role of causal masking
and the expressivity distinctions between scalar- and vector-valued gating functions.

⋄ Landscape of 1-step WPGD (§4): The GLA⇔WPGD connection motivates us to ask:
How does WPGD weigh demonstrations in terms of their relevance to the query? To address
this, we study the fundamental problem of learning an optimal WPGD algorithm: Given a
tuple (X, y, x, y) ∼ D, with y being the label associated with the query, we investigate the
population risk minimization:

L⋆WPGD := min
P,ω
LWPGD(P,ω) where LWPGD(P,ω) = ED

[(
y − x⊤PX(ω ⊙ y)

)2
]
. (3)

As our primary mathematical contribution, we characterize the loss landscape under a
general multitask data setting, where the tasks associated with the demonstrations (X, y)
have varying degrees of correlation to the target task (x, y). We carefully analyze this loss
landscape and show that, under mild conditions, there is a unique (global) minimum (P,ω)
up to scaling invariance, and the associated WPGD algorithm is also unique.

⋄ Loss landscape of 1-layer GLA (§5): The landscape is highly intricate due to the recursively
multiplied gating variables. We show that learning the optimal GLA layer can be connected
to solving (3) with a constraint ω ∈ C, where the restriction C is induced by the choice
of gating function and input space. Solidifying this connection, we introduce a multitask
prompt model under which we characterize the loss landscape of GLA and the influence of
task correlations. Our analysis and experiments reveal insightful distinctions between linear
attention, GLA with scalar gating, and GLA with vector-valued gating.

1.1 Related work

We discuss prior literature under two topics.

Efficient sequence models. Recent sequence model proposals – such as RetNet (Sun et al., 2023),
Mamba (Gu & Dao, 2023), xLSTM (Beck et al., 2024), GLA Transformer (Yang et al., 2023), RWKV-
6 (Peng et al., 2024) – admit efficient recurrent forms while being increasingly competitive with
the transformer architecture with softmax-attention. However, we have a rather limited theoretical
understanding of these architectures, especially, when it comes to their optimization landscape and
ICL capabilities. Park et al. (2024); Grazzi et al. (2024) demonstrate that Mamba is effective in
competitive with a transformer of similar size in various ICL tasks whereas Arora et al. (2024);
Jelassi et al. (2024) establish theoretical and empirical shortcomings of recurrent models for solving
recall tasks. It is worth mentioning that, GLA models also connect to state-space models and linear
RNNs (De et al., 2024; Orvieto et al., 2023; Gu et al., 2021; Fu et al., 2022), as they could be
viewed as time-varying SSMs (Dao & Gu, 2024; Sieber et al., 2024). Finally, GLA models are also
closely related to implicit self-attention frameworks. For example, the work by Zimerman et al.
(2024) on unified implicit attention highlights how models such as Mamba (Gu & Dao, 2023) and
RWKV (Peng et al., 2023) can be viewed under a shared attention mechanism. Additionally, Zong
et al. (2024) leverage gated cross-attention for robust multimodal fusion, demonstrating another
practical application of gated mechanisms. Both approaches align with GLA’s data-dependent gating,
suggesting its potential for explainability and stable fusion tasks.

Theory of in-context learning. The theoretical aspects of ICL has been studied by a growing body
of works during the past few years (Xie et al.; von Oswald et al., 2023; Gatmiry et al.; Li et al., 2023;
Collins et al., 2024; Wu et al., 2023; Fu et al.; Lin & Lee, 2024; Akyürek et al., 2023; Zhang et al.,
2023). A subset of these follow the setting of Garg et al. (2022) which investigates the ICL ability of
transformers by focusing on prompts where each example is labeled by a task function from a specific
function class, such as linear models. Akyürek et al. (2023) focuses on linear regression and provide a
transformer construction that can perform a single step of GD based on in-context examples. Similarly,
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Von Oswald et al. (2023) provide a construction of weights in linear attention-only transformers that
can replicate GD steps for a linear regression task on in-context examples. Notably, they observe
similarities between their constructed networks and those resulting from training on ICL prompts for
linear regression tasks. Building on these, Zhang et al. (2024); Mahankali et al. (2023); Ahn et al.
(2024) focus on the loss landscape of ICL for linear attention models. For a single-layer model trained
on in-context prompts for random linear regression tasks, Mahankali et al. (2023); Ahn et al. (2024)
show that the resulting model performs a single preconditioned GD step on in-context examples in a
test prompt, aligning with the findings of Von Oswald et al. (2023). More recent work (Ding et al.,
2023) analyzes the challenges of causal masking in causal language models (causalLM), showing
that their suboptimal convergence dynamics closely resemble those of online gradient descent with
non-decaying step sizes. Additionally, Li et al. (2024) analyzes the landscape of the H3 architecture,
an SSM, under the same dataset model. They show that H3 can implement WPGD thanks to its
convolutional/SSM filter. However, their WPGD theory is restricted to the trivial setting of equal
weights, relying on the standard prompt model with IID examples and shared tasks. In contrast, we
propose novel multitask datasets and prompt models where nontrivial weighting is provably optimal.
This allows us to characterize the loss landscape of WPGD and explore advanced GLA models,
linking them to data-dependent WPGD algorithms.

2 Problem setup

Notations. Rd is the d-dimensional real space, with Rd
+ and Rd

++ as its positive and strictly positive
orthants. [n] denotes {1, · · · , n}. Bold letters, e.g., a and A, represent vectors and matrices. The
identity matrix of size n is In. 1 and 0 denote the all-one and all-zero vectors or matrices of proper
size. N(µ,Σ) is the Gaussian distribution with mean µ and covariance Σ. The symbol ⊙ denotes the
Hadamard product and ⊘ denotes Hadamard division. Given ai+1, · · · , a j ∈ R

d, we use ai: j to denote
ai+1 ⊙ · · · ⊙ a j for i < j, and ai:i = 1d is the d-dimensional all ones vector.

The objective of this work is to develop a theoretical understanding of GLA through ICL. The
optimization landscape of standard linear attention has been a topic of significant interest in the ICL
literature (Ahn et al., 2024; Li et al., 2024). Following these works, we consider the input prompt

Z = [z1 · · · zn zn+1]⊤ =
[x1 · · · xn xn+1
y1 · · · yn 0

]⊤
∈ R(n+1)×(d+1), (4)

where tokens encode the input-label pairs (xi, yi)n
i=1 ⊂ R

d × R. We aim to enable ICL by training
a sequence model F ∈ R(n+1)×(d+1) → R that predicts the label y := yn+1 associated with the query
x := xn+1. This model will utilize the demonstrations (xi, yi)n

i=1 to infer the mapping between x and y.
Assuming that the data is distributed as (y, Z) ∼ D, the ICL objective is defined as

L(F) = ED
[
(y − F(Z))2

]
. (5)

Linear attention and shared-task distribution. Central to our paper is the choice of the
function class F. When F is a linear attention model, the prediction F(Z) takes the form
ŷ = z⊤n+1WqW⊤

k Z⊤ZWvh where Wk,Wq,Wv ∈ R
(d+1)×(d+1) are attention parameters, and h ∈ Rd+1

is the linear prediction head. We assume that the in-context input-label pairs follow a shared-task
distribution, where β ∼ N(0,Σβ), xi are i.i.d. with xi ∼ N(0,Σx), and yi ∼ N(β⊤xi, σ

2), where σ ≥ 0
represents the noise level. Under this shared-task distribution, it is shown (Von Oswald et al., 2023;
Ahn et al., 2024; Zhang et al., 2024) that the optimal one-layer linear attention predictor β̂ coincides
with the one-step optimal preconditioned gradient descent. In particular, we have β̂ = P⋆X⊤y, where

P⋆ = argmin
P∈Rd×d

ED

[(
y − x⊤PX⊤y

)2
]

with X :=
[x1 · · · xn

]⊤ and y :=
[
y1, · · · , yn

]⊤ . (6)

Linear attention and gating. Given the input prompt Z, let Q = ZWq, K = ZWk and V = ZWv
be the corresponding query, key, and value embedding matrices, respectively. The output of causal
linear attention at time i can be computed in a recurrent form as Si = Si−1 + vi k⊤i and oi = Siqi where
qi, ki, vi ∈ R

d+1 are the query, key, value embeddings of zi and S0 = 0. This recurrent form implies
that linear attention has O(d2) cost, that is independent of N, to generate per-token. As presented in
(1), GLA follows the same structure as linear attention but with a gating mechanism, which equips
the model with the option to pass or supress the history. As discussed in Yang et al. (2023), the
different choices of the gating function correspond to different popular recurrent architectures such as
Mamba (Gu & Dao, 2023), Mamba2 (Dao & Gu, 2024), RWKV (Peng et al., 2024), etc.

We will show that GLA can weigh the context window through gating, thus, its capabilities are linked
to the WPGD algorithm described in (7). This will in turn facilitate GLA to effectively learn multitask
prompt distributions described by yi ∼ N(β⊤i xi, σ

2) with βi’s not necessarily identical.
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3 What gradient methods can GLA emulate?

In this section, we investigate the ICL capabilities of gated linear attention (GLA) and show that
under suitable instantiations of model weights, GLA can implement data-dependent WPGD.

3.1 GLA as a data-dependentWPGD predictor

Data-Dependent WPGD. Given X and y as defined in (6), consider the weighted least squares
objective L(β) =

∑n
i=1Ωi · (yi − β

⊤xi)2 with weights Ω ∈ Rn. To optimize this, we use gradient
descent (GD) starting from zero initialization, β0 = 0 with a step size of η = 1/2. One step of
standard GD is given by

β1 = β0 − η∇L(β0) =
n∑

i=1

Ωi · xiyi = X⊤(Ω ⊙ y).

Given a test/query feature x, the corresponding prediction is ŷ = x⊤β̂ where β̂ = β1. Additionally,
if we were using preconditioned GD with a preconditioning/projection matrix P ∈ Rd×d, one step
iteration would take the form

ŷ = x⊤β̂, where β̂ = Pβ1 = PX⊤(Ω ⊙ y).
Above is the basic scalar-weighted WPGD predictor which weights individual datapoints. It turns out,
vector-valued gating can facilitate a more general estimator which weights individual coordinates.
To this aim, we introduce an extension as follows: Let P1, P2 ∈ R

d×d denote the preconditioning
matrices, and let Ω ∈ Rn×d denote the vector-valued weighting matrix. Note that Ω is now a matrix
rather than vector to facilitate coordinate-wise weighting and will remain consistent throughout the
paper. We can similarly define

βgd
1 (P1, P2,Ω) := P2(XP1 ⊙Ω)⊤y (7a)

as one-step of (generalized) WPGD. Its corresponding prediction on a test query x is:

ŷ = x⊤β̂, where β̂ = βgd
1 (P1, P2,Ω). (7b)

We note that by removing the preconditioning matrices P1, P2, and the weighting matrix Ω in (7a),
it reduces to standard GD. We also note that Li et al. (2024) demonstrates that H3-like models
implement one-step WPGD, where the weighting is example-wise, i.e., setting Ω = ω1⊤d , and they
focus on the shared-task distribution where βi ≡ β. In contrast, our work considers a more general
data setting where tasks within an in-context prompt are not necessarily identical.

We first introduce the following model constructions under which we establish the equivalence
between GLA (c.f. (1)) and WPGD (c.f. (7)) with the weighting matrix induced by the input data
and the gating function. Inspired by previous works (Von Oswald et al., 2023; Ahn et al., 2024), we
consider the following restricted attention matrices:

Wk =

[P⊤k 0
0 0

]
, Wq =

[P⊤q 0
0 0

]
and Wv =

[0d×d 0
0 1

]
, (8)

where Pk, Pq ∈ R
d×d. Here note that we set the (d+1, d+1)’th entry of Wv to be one for simplification.

More generally, it can be any nonzero number, e.g., v ∈ R. Then parameterizing Wq with Pq/v returns
the same output as from (8).
Theorem 1. Recall the GLA from (1) and input sequence Z from (4), and suppose that at time i,
gating function has the form of g(zi) = Gi ∈ R

(d+1)×(d+1). Considering model construction in (8) and
prediction head h = 1, the single-layer GLA prediction returns

fGLA(Z) := o⊤n+1h = β̂⊤x where β̂ = βgd
1 (Pk, Pq,Ω).

Here, βgd
1 (·) is a one-step WPGD feature predictor defined in (7a), Pk, Pq correspond to attention

weights following (8), and Ω = [g1:n+1 g2:n+1 · · · gn:n+1]⊤ ∈ Rn×d where gi:n+1, i ∈ [n] is given by

gi:n+1 := (gi+1 ⊙ gi+2 · · · gn+1) ∈ Rd and Gi =

[
∗ ∗
g⊤i ∗

]
(9)

Here and throughout, we use ∗ to fill the entries of the matrices that do not affect the final output, and
based on the model construction given in (8), these entries can be assigned any value.

Observe that, crucially, since gi (or Gi) is associated with zi, zi influences the weighting of all history
z j<i. We defer the proof of Theorem 1 to the Appendix B.1. It is noticeable that only d of the total
(d + 1)2 entries in each gating matrix Gi are useful due to the model construction presented in (8).
However, if we relax the weight restriction, e.g., Wv = [0(d+1)×d 1d+1], then the weighting matrix Ω in
Theorem 1 is associated with all rows of the Gi matrices. We defer the discussion to Appendix B.1.

4
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3.2 Capabilities of multi-layer GLA

Ahn et al. (2024) demonstrated that, with appropriate construction, an L-layer linear attention model
performs L-step preconditioned gradient descent on the dataset (xi, yi)n

i=1 provided within the prompt.
In this work, we study multi-layer GLA and analyze the associated algorithm class it can emulate.
It is worth mentioning that Ahn et al. (2024) does not consider causal masking which is integral to
multilayer GLA due to its recurrent nature described in (1). Our analysis will capture the impact of
gating and causal mask through n separate gradient descent trajectories that are coupled.

Consider an L-layer GLA model. For ℓ ∈ [L], let Zℓ and Oℓ denote the input and output of the ℓ’th
layer. In practice, residual connections are commonly applied. Hence, we define the updated output
of the ℓ’th layer (after applying the residual connection) as Õℓ := Zℓ + Oℓ. Note that Õℓ also serves
as the input to the (ℓ + 1)’th layer, i.e., Zℓ+1 = Õℓ. In the following, we focus on (d + 1)’th entries of
each token’s output at each layer, denoted by õi,ℓ := (Õℓ)i,d+1 for i ∈ [n + 1], ℓ ∈ [L].
Theorem 2. Consider an L-layer GLA with residual connections, where Wk and Wq in the ℓ’th layer
are parameterized by Pk,ℓ, Pq,ℓ ∈ R

d×d, following (8), for ℓ ∈ [L]. Let the gating be a function of the
features, e.g., Gi = g(xi), and let Ω be defined as in Theorem 1. Additionally, denote the masking as

Mi =

[Ii 0
0 0

]
∈ Rn×n, and let β̂0,βi,0 = 0 for i ∈ [n].

Then the (d + 1)’th entry of the i’th token at the ℓ’th layer outputs:

• For i ≤ n, õi,ℓ = yi − x⊤i βi,ℓ where βi,ℓ = βi,ℓ−1 + Pq,ℓ
(
∇i,ℓ ⊘ gi:n+1

)
,

• õn+1,ℓ = −x⊤β̂ℓ where β̂ℓ = (1 + αℓ)β̂ℓ−1 + Pq,ℓ
(
∇n,ℓ ⊘ gn+1

)
and αℓ = x⊤Pq,ℓP⊤k,ℓx.

Here, letting Bℓ = [β1,ℓ · · · βn,ℓ]⊤, X̄ℓ = XPk,ℓ ⊙Ω, and ŷℓ = (X ⊙ Bℓ−1)1, we define

∇i,ℓ = X̄⊤ℓ Mi (ŷℓ − y) .

We defer the proof of Theorem 2 to the Appendix B.2. Theorem 2 states that an L-layer GLA
implements L steps of WPGD but with gradient in a recurrent form. To recap, given data (X, y)
and prediction β̂, the gradient with respect to the squared loss takes the form X⊤(Xβ̂ − y), up to
some constant c. In comparison, Pq,ℓ

(
∇i,ℓ ⊘ gi:n+1

)
similarly acts as a gradient but incorporates

layer-wise feature preconditioners (Pq,ℓ, Pk,ℓ), data weighting (Ω), and causality (gi:n+1,Mi). Here,
Mi represents causal masking, ensuring that at time i, only inputs from j ≤ i are used for prediction.
Notably, the recurrent structure of GLA allows the gating mechanism to apply context-dependent
weighting strategies. These results are consistent with Ding et al. (2023), which demonstrate that
causal masking limits convergence by introducing sequence biases, akin to online gradient descent
with non-decaying step sizes.

To simplify the theorem statement, we assume that the gating function depends only on the input
feature, e.g., Gi = g(xi), ensuring that the corresponding data-dependent weighting is uniform across
all layers. This assumption is included solely for clarity in the theorem statement, and the complete
result is provided in Appendix B.2. Note that our inclusion of the additional term αℓ captures the
influence of the last token’s output on the next layer’s prediction, which is not addressed by Ahn et al.
(2024). Based on the above multi-layer GLA result, we have the following corollary for multi-layer
linear attention network with causal mask in each layer.
Corollary 1. Consider an L-layer linear attention model with causal mask and residual connection
in each layer. Let ℓ’th layer be parameterized by Pq,ℓ, Pk,ℓ as in (8) and define Pℓ := Pq,ℓP⊤k,ℓ, ℓ ∈ [L].
Let β̂0,βi,0 = 0 for i ∈ [n]. Then, the (d + 1)’th entry of the i’th token of the ℓ’th layer outputs satisfies:

• For i ≤ n, õi,ℓ = yi − x⊤i βi,ℓ where βi,ℓ = βi,ℓ−1 + Pℓ∇i,ℓ,

• õn+1,ℓ = −x⊤β̂ℓ where β̂ℓ = (1 + αℓ)β̂ℓ−1 + Pℓ∇n,ℓ and αℓ = x⊤Pℓx.

Here, we define ∇i,ℓ = X⊤Mi (ŷℓ − y) with ŷℓ,Mi following the same definitions as in Theorem 2.

Our theoretical results in Theorem 2 focus on multi-layer GLA without Multi-Layer Perceptron
(MLP) layers to isolate and analyze the effects of the gating mechanism. However, MLP layers, a
key component of standard Transformers, facilitate further nonlinear feature transformations and
interactions, potentially enhancing GLA’s expressive power. Future work could explore the theoretical
foundations of integrating MLPs into GLA and analyze the optimization landscape of general gated
attention models, aligning them more closely with conventional Transformer architectures (Gu &
Dao, 2023; Dao & Gu, 2024; Peng et al., 2024).
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3.3 GLA with scalar gating

Theorem 1 establishes a connection between 1-layer GLA (c.f. (1)) and one-step WPGD (c.f. (7)),
where the weighting in WPGD corresponds to the gating g(zi) = Gi in GLA, as detailed in Theorem 1.
Now let us consider the widely used types of gating functions, such as Gi = αi1⊤d+1 (Yang et al., 2023;
Katsch, 2023; Qin et al., 2024; Peng et al., 2024) or Gi = γi1d+11⊤d+1 (Dao & Gu, 2024; Beck et al.,
2024; Peng et al., 2021; Sun et al., 2024) where αi ∈ R

d+1 and γi ∈ R. In both cases, the gating

matrices in (9) take the form of
[
∗ ∗

gi1⊤d ∗

]
, thus simplifying the predictor to a sample-weighted PGD,

as given by

fGLA(Z) = β̂⊤x, with β̂ = PX⊤(ω ⊙ y), (10)

where P = Pq P⊤k and ω = [g1:n+1 · · · gn:n+1]⊤ ∈ Rn. In the remainder, we will mostly focus on the
1-layer GLA with scalar gating as presented in (10).

4 Optimization landscape ofWPGD

In this section, we explore the problem of learning the optimal sample-weighted PGD algorithm
described in (10), a key step leading to our analysis of GLA. The problem is as follows. Recap from
(6) that we are given the tuple (x, y, X, y) ∼ D, where X ∈ Rn×d is the input matrix, y ∈ Rn is the
label vector, x ∈ Rd is the query, and y ∈ R is its associated label. The goal is to use X, y to predict y
given x via the 1-step WPGD prediction ŷ = x⊤β̂, with β̂ as in (10). The algorithm learning problem
is given by (3) which minimizes the WPGD risk ED[

(
y − x⊤PX(ω ⊙ y)

)2].

Prior research (Mahankali et al., 2023; Li et al., 2024; Ahn et al., 2024) has studied the problem of
learning PGD when input-label pairs follow an IID distribution. It is worth noting that while Li et al.
(2024) establishes a connection between H3-like models and (10) similar to ours, their work assumes
that the optimal ω consists of all ones and does not specifically explore the optimization landscape of
ω when in-context samples are non-IID. Departing from this, we introduce a realistic model where
each input-label pair is allowed to come from a distinct task.

Definition 1 (Correlated task model). Suppose βi ∈ R
d ∼ N(0, I) are jointly Gaussian for i ∈ [n + 1].

Define the pairwise correlations ri j = E[β⊤i β j]/d for i, j ∈ [n + 1], and the task and correlation
matrices

β := βn+1, B = [β1 . . . βn]⊤, R =
1
d
E[BB⊤], and r =

1
d
E[Bβ]. (11)

Additionally, for any i, j ∈ [n + 1], βi − ri jβ j is independent of β j.

Note that in (11), we have B ∈ Rn×d, R ∈ Rn×n, and r ∈ Rn, with normalization ensuring that the
entries of R and r lie in the range [−1, 1], corresponding to correlation coefficients.

Definition 2 (Multitask distribution). (βi)n+1
i=1 are drawn according to the correlated task model of

Definition 1, (xi)n+1
i=1 ∈ R

d are IID following xi ∼ N(0,Σ) and yi ∼ N(x⊤i βi, σ
2) for i ∈ [n + 1].

Definition 3. Let the eigen decompositions of Σ and R be denoted by Σ = Udiag(s)U⊤ and R =
Ediag(λ)E⊤, where s = [s1, . . . , sd]⊤ ∈ Rd

++ and λ = [λ1, . . . , λn]⊤ ∈ Rn
+. Let smin and smax denote

the smallest and largest eigenvalues of Σ, respectively. Further, let λmin and λmax denote the nonzero
smallest and largest eigenvalues of R. Define the effective spectral gap of Σ and R, respectively, as

∆Σ := smax − smin, and ∆R := λmax − λmin. (12)

Assumption A. For the correlation vector r from (11), we have r = Ea for some a = [a1, . . . , an]⊤ ∈
Rn with at least one nonzero ai.

Assumption A essentially ensures that r (representing the correlations between in-context tasks) can
be expressed as a linear transformation of a vector a of nonzero values. This guarantees that the
correlation structure is non-degenerate, meaning that all elements of r are influenced by meaningful
correlations. Assumption A avoids trivial cases where there are no correlations between tasks. By
requiring at least one nonzero element in a, the assumption ensures that the tasks are interrelated.

The following theorem characterizes the stationary points (P,ω) of the WPGD objective in (3).
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Theorem 3. Consider independent linear data as described in Definition 2. Suppose Assumption A
on the correlation vector r holds. Let the functions h : R+ → R+ and g : R+ → R+ be defined as

h(γ̄) :=
n∑

i=1

λia2
i

(1 + λiγ̄)2

 n∑
i=1

a2
i

(1 + λiγ̄)2

−1

, (13a)

g(γ) :=

1 + M
d∑

i=1

s2
i

(M + si(γ + 1))2

 d∑
i=1

s3
i

(M + si(γ + 1))2


−1
−1

, (13b)

where {si}
d
i=1 and {λi}

n
i=1 are the eigenvalues of Σ and R, respectively; {ai}

n
i=1 are as given in Assump-

tion A; and M = σ2 +
∑d

i=1 si.

The risk function L(P,ω) in (3) has a stationary point (P⋆,ω⋆), up to rescaling, defined as

P⋆ = Σ−
1
2

(
γ⋆ + 1

σ2 + tr (Σ)
· Σ + I

)−1

Σ−
1
2 , and ω⋆ =

(
g(γ⋆) · R + I

)−1
r, (14)

where γ⋆ is a fixed point of composite function h(g(γ)).

Theorem 3 characterizes the stationary points (P⋆,ω⋆), which exist up to re-scaling. This result
presents the first landscape analysis of GLA for the joint learning of (P,ω), while also exploring the
stationary points (P⋆,ω⋆). In the following, we provide mild conditions on effective spectral gaps of
R and Σ under which a unique (global) minimum (P⋆,ω⋆) exists.
Theorem 4 (Uniqueness of the WPGD Predictor). Consider independent linear data as given in
Definition 2. Suppose Assumption A on the correlation vector r holds, and

∆Σ · ∆R < M + smin, (15)

where ∆Σ and ∆R denote the effective spectral gaps of Σ and R, respectively, as given in (12); smin is
the smallest eigenvalue of Σ; and M = σ2 +

∑d
i=1 si.

T1 The composite function h(g(γ)) is a contraction mapping and admits a unique fixed point γ = γ⋆.

T2 The function L(P,ω) has a unique (global) minima (P⋆,ω⋆), up to re-scaling, given by (14).

Proof Sketch. Let γ := ω
⊤Rω
∥ω∥2

. Note that γ ≥ 0 since R is positive semi-definite. From the first-order
optimality condition, the solution to (3) takes the following form:

P(γ) = C(r,ω,Σ) · Σ−
1
2

(
γ + 1

σ2 + tr (Σ)
· Σ + I

)−1

Σ−
1
2 , (16a)

ω(γ) = c(r,ω,Σ) ·
(
g(γ) · R + I

)−1
r, (16b)

for some constants C(r,ω,Σ) and c(r,ω,Σ).

Substituting the expression for ω(γ) into γ = ω⊤Rω
∥ω∥2

, and applying Assumption A, we obtain the
equation γ = h(g(γ)). We then show that whenever ∆Σ · ∆R < M + smin, the mapping h(g(γ)) is a
contraction (see Lemma 1). By the Banach Fixed-Point Theorem, this guarantees the existence of
a unique fixed point γ = γ⋆, where γ⋆ = h(g(γ⋆)). Finally, substituting γ⋆ into (16) implies that
(P⋆,ω⋆), as given in (14), is a unique (global) minima of (3), up to re-scaling. See Appendix C.2 for
the complete proof of Theorem 4. □

Theorem 4 establishes mild conditions under which a unique (global) minimum (P⋆,ω⋆) exists, up
to scaling invariance, and guarantees the uniqueness of the associated WPGD algorithm. It provides
the first global landscape analysis for GLA and generalizes prior work (Li et al., 2024; Ahn et al.,
2024) on the global landscape by extending the optimization properties of linear attention to the more
complex nonconvex GLA with joint (P,ω) optimization.

Remark 1 An interesting observation about the optimal gating parameter ω⋆ is its connection to the
correlation matrix R, which captures the task correlations in a multitask learning setting. Specifically,
the optimal gating given in (14) highlights how ω⋆ depends directly on both the task correlation
matrix R and the vector r, which encodes the correlations between the tasks and the target task.
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Remark 2 Condition (15) provides a sufficient condition for the uniqueness of a fixed point. This
implies that whenever ∆Σ ·∆R < M+ smin, the mapping h(g(γ)) is a contraction, ensuring the existence
of a unique fixed point. However, there may be cases where the mapping h(g(γ)) does not satisfy
Condition (15), yet a unique fixed point (and a unique global minimum) still exists. This is because
the Banach Fixed-Point Theorem does not provide a necessary condition.

Corollary 2. Suppose Σ = I. Then, ∆Σ = 0, satisfying Condition (15), and we have g(γ⋆) = 1
d+σ2+1 ,

which yields

P⋆ = I, and ω⋆ =
(
R + (d + σ2 + 1)I

)−1
r. (17)

Thus, the optimal risk L⋆WPGD defined in (3) is given by

L⋆WPGD = d + σ2 − d · r⊤
(
R + (d + σ2 + 1)I

)−1
r. (18)

5 Optimization landscape of GLA

In Section 3, we demonstrated that GLA implements a data-dependent WPGD algorithm. Building
on this, in Section 4, we analyze the optimization landscape for minimizing the 1-step WPGD risk
(c.f. (3)) and show that a unique solution achieves the global minimum of the WPGD algorithm.
However, in GLA, the search space for ω is restricted and data-dependent, meaning that L⋆WPGD in
(3) represents the best possible risk a GLA model can achieve. In this section, we analyze the loss
landscape for training a 1-layer GLA model and explore the scenarios under which GLA can reach
the optimal WPGD risk.

5.1 Multi-task prompt model

We consider the following multi-task prompts setting with K correlated tasks (βk)K
k=1, and 1 query

task β. For each correlated task, draw a length nk prompt with IID input-label pairs {(x(k)
i , y

(k)
i )nk

i=1}
K
k=1

to obtain sequences (Zk)K
k=1 and the query example is given by z := (x, y ∼ N(x⊤β, σ2)). Let

n :=
∑K

k=1 nk. These sequences (Zk)K
k=1 as well as query token z are concatenated to form a single

prompt Z. Recap the GLA prediction from (1) and let fGLA(Z) be the GLA prediction as defined in
Theorem 1. Additionally, consider the model construction as presented in (8) with Pq, Pk ∈ R

d×d

being the trainable parameters. Then the GLA optimization problem is described as follows:

L⋆GLA := min
Pk,q,g

LGLA(Pk, Pq, g) where LGLA(Pk, Pq, g) = ED
[
(y − fGLA(Z))2

]
. (19)

Here, g ∈ G represents the gating function.

Note that 1) the task vectors (βk)K
k=1 are not explicitly shown in the prompt, 2) examples (x(k)

i , y
(k)
i )

are randomly drawn, and 3) the gating function is applied to the tokens/input samples (Zk)K
k=1. Given

the above three evidences, the implicit weighting induced by the GLA model varies across different
prompts, and it prevents the GLA from learning the optimal weighting.

To address this, we introduce delimiters to mark the boundary of each task. Let (dk)K
k=1 be the

delimiters that determine stop of the tasks. Specifically, the final prompt is given by

Z =
[
Z⊤1 d1 · · · Z⊤K dK z

]⊤
. (20)

Additionally, to decouple the influence of gating and data, we envision that each token is zi = [xi, yi, ci]
where ci , 0 ∈ Rp is the contextual features with p being its dimension and (xi, yi) are the data
features.

• For task prompts Zk: Contextual features are set to a fixed vector d̄0 , 0.

• For delimiters dk: Data features are set to zero (e.g., xi = 0 and yi = 0) so that dk = [0d+1 d̄k]
where d̄k denotes the context vector.

Note that explicit delimiters have been utilized to address real-world problems (Wang et al., 2024;
Asai et al., 2022; Dun et al., 2023) due to their ability to improve efficiency and enhance generalization,
particularly in task-mixture or multi-document scenarios. To further verify our claim and motivate the
introduction of (dk)K

k=1, in Figure 1, we present the results of GLA training with and without delimiters,
shown by the red and green curves, respectively. The black dashed curves represent the optimal

8
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(a) (r1, r2) = (0, 1)
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(b) (r1, r2) = (0.2, 0.8)
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(c) (r1, r2) = (0.5, 0.5)
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(d) (r1, r2) = (0.8, 0.2)

Figure 1: We consider four different types of model training: LinAtt (blue solid): Standard linear attention
training. GLA (red solid): GLA training using prompts with delimiters (see (20)) and scalar gating. GLA-wo
(green solid): GLA training using prompts without delimiters and with scalar gating. GLA-vector (cyan solid):
GLA training using prompts with delimiters and vector gating. The blue and black dashed curves represent the
optimal linear attention and WPGD risks from (25) and (18), respectively, as the number of in-context examples
n increases. Implementation details are provided in Appendix A.

WPGD loss L⋆WPGD under different scenarios, and training GLA without delimiters (the green solid
curve) performs strictly worse. In contrast, training with delimiters can achieve optimal performance
under certain scenarios (see Figures 1a, 1b, and 1c). Theorem 5 in the next section provides a
theoretical explanation for these observations, as well as the misalignment seen in Figure 1d. Further
discussion and experimental details are provided in Section 5.2 and Appendix A.

5.2 Loss landscape of 1-layer GLA

Given the input tokens with extended dimension, to ensure that GLA still implements WPGD as in
Theorem 1, we propose the following model construction.

W̃k =

[Wk 0
0 0

]
, W̃q =

[Wq 0
0 0

]
and W̃v =

[Wv 0
0 0

]
. (21)

Here, W̃k,q,v ∈ R
(d+p+1)×(d+p+1) and Wk,q,v ∈ R

(d+1)×(d+1) are constructed via (8). The main idea is to
set the last p rows and columns of attention matrices to zeros, ensuring that the delimiters do not
affect the final prediction.

Assumption B. Delimiters d̄0, · · · , d̄K are linearly independent, and activation function ϕ(z) : R→
[0, 1] is continuous, satisfying ϕ(−∞) = 0 and ϕ(+∞) = 1.
Assumption C. The correlation between context tasks (βk)K

k=1 and query task β satisfies E[β⊤i β j] = 0
and E[β⊤i β] ≤ E[β⊤j β] for 1 ≤ i ≤ j ≤ K.

Given context examples {(Xk, yk) := (x(k)
i , y

(k)
i )nk

i=1}
K
k=1, define the concatenated data (X, y) as follows:

X =
[
X⊤1 · · · X⊤K

]⊤
∈ Rn×d and y =

[
y⊤1 · · · y⊤K

]⊤
∈ Rn. (22)

Based on the assumptions above, we are able to establish the equivalence between optimizing 1-layer
GLA and optimizing 1-step WPGD predictor under scalar gating.
Theorem 5 (Scalar Gating). Recap the loss function LWPGD(P,ω) from (3) with dataset (X, y) defined
in (22). Suppose Assumption B holds and consider GLA with scalar gating g(z) = ϕ(w⊤g z)11⊤ where
wg is the trainable parameter. Consider input prompt Z defined in (20) and model constructions
described in (21). Then the optimal risk L⋆GLA defined in (19) obeys

L⋆GLA = L
⋆,W
WPGD where L

⋆,W
WPGD := min

P∈Rd×d ,ω∈W
LWPGD(P,ω). (23)

Here,W :=
{[
ω11⊤n1

· · · ωK1⊤nK

]⊤
∈ Rn

∣∣∣∣ 0 ≤ ωi ≤ ω j ≤ 1, ∀1 ≤ i ≤ j ≤ K
}
. Additionally, suppose

Assumption C holds and ni = n j, for any i, j ∈ [K]. Let L⋆WPGD be the optimal WPGD risk (c.f. (3)).
Then L⋆GLA satisfies

L⋆GLA = L
⋆
WPGD. (24)

Assumption B ensures that anyω inW can be achieved by an appropriate choice of gating parameters.
Furthermore, Assumption C guarantees that the optimal choice of ω under the WPGD objective lies
within the search spaceW. The proof is provided in Appendix D.1.

In Figure 1, we conduct model training to validate our findings. Consider the setting where K = 2
and let (r1, r2) =

(
E[β⊤1 β]/d,E[β⊤2 β]/d

)
. In Figures 1a, 1b, and 1c, Assumption C holds, and the

9
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GLA results (shown in solid red) align with the optimal WPGD risk (represented by the dashed black
curves), validating (24). However, in Figure 1d, since r1 > r2, Assumption C does not hold, and as a
result, the optimal GLA loss L⋆GLA obtained from (23) is lower than the optimal WPGD loss L⋆WPGD.
Further experimental details are deferred to Appendix A.

Loss landscape of vector gating. Till now, much of our discussion has focused on the scalar gating
setting. It is important to highlight that, even in the scalar-weighting context, analyzing the WPGD
problem remains non-trivial due to the joint optimization over (P,ω). However, as demonstrated in
Theorem 5, scalar gating can only express weightings within the setW. If Assumption C does not
hold, L⋆GLA cannot achieve the optimal WPGD loss (see the misalignment between red solid curve,
presenting L⋆GLA, and black dashed curve, presenting L⋆WPGD in Figure 1d). We argue that vector gating
overcomes this limitation by applying distinct weighting mechanisms across different dimensions,
facilitating stronger expressivity.
Theorem 6 (Vector Gating). Recall input prompt Z from (20) and model constructions from (21)
but with Wv = [0(d+1)×d u]. Suppose Assumption B holds and consider GLA with vector gating
g(z) = ϕ(Wg z)1⊤. Here, u and Wg are trainable parameters. Consider Problem (19), where we
employ a vector gating g(z) = ϕ(Wg z)1⊤. Let L⋆GLA-v denote its optimal risk, and L⋆WPGD be defined as
in (3). Then, the optimal risk obeys L⋆GLA-v = L

⋆
WPGD.

In Theorem 5, the equivalence between L⋆GLA and L⋆WPGD is established only when both Assumptions B
and C are satisfied. In contrast, Theorem 6 demonstrates that applying vector gating requires only
Assumption B to establish L⋆GLA-v = L

⋆
WPGD. Specifically, under the bounded activation model of

Assumption B, scalar gating is unable to express non-monotonic weighting schemes. For instance,
suppose there are two tasks: Even if Task 1 is more relevant to the query, Assumption B will assign a
higher weight to examples in Task 2 resulting in sub-optimal prediction. Theorem 6 shows that vector
gating can avoid such bottlenecks by potentially encoding tasks in distinct subspaces. To verify these
intuitions, in Figure 1d, we train a GLA model with vector gating and results are presented in cyan
curve, which outperform the scalar gating results (red solid) and align with the optimal WPGD loss
(black dashed).

Loss landscape of 1-layer linear attention. Inspired by the fact that linear attention implements
all ones gating, that is, Gi ≡ 1. Consider training a single-layer linear attention and let fATT(Z) :=
fGLA(Z,Gi ≡ 1) be its prediction. Let L⋆ATT be the corresponding optimal risk following (19).
Corollary 3. Consider a single-layer linear attention following model construction in (8) and
consider linear data as given in Definition 2. Let R, r be the corresponding correlation matrix and
vector as defined in Definition 1. Suppose Σ = I. Then the optimal risk obeys

L⋆ATT := min
P∈Rd×d

LWPGD(P,ω = 1) = d + σ2 −
d(1⊤r)2

n(d + σ2 + 1) + 1⊤R1
. (25)

Corollary 4 (Benefit of Gating). Consider the same setting as discussed in Corollary 3, and suppose
Assumption B holds. Then, we have that L⋆ATT ≥ L

⋆
GLA. Additionally, if Assumption C holds, we obtain

L⋆ATT − L
⋆
GLA = d · r⊤

(
R−1
+ −

11⊤

1⊤R+1

)
r ≥ 0, where R+ := R +

(
d + σ2 + 1

)
I.

The proof of this corollary is directly from (18), (24) and (25). In the Figure 1, blue solid curves
represent the linear attention results and blue dashed are the theory curves following (25). The two
curves are aligned in all the subfigures, which validate our Corollary 3. More implementation details
are deferred to Appendix A.

6 Discussion

To summarize, this work offers a fresh theoretical perspective on gated linear attention models
through in-context learning by showing that they can emulate data-dependent weighted preconditioned
gradient descent (WPGD) algorithms. Our work also reveals how gating is crucial for achieving ICL
with stronger data/context adaptivity by demonstrating clear separations between linear attention,
scalar-valued gating, and vector-valued gating. We study the optimization landscape of GLA through
a connection to the WPGD formulation (3). We have advocated that (3) is a problem of fundamental
mathematical interest in its own right, developed the first characterization of its optimization landscape,
and showed that it enjoys unique global minima and no other stationary point under mild conditions.

Limitations and Future Work. Our analysis is currently limited to characterizing the landscape of
scalar gating in GLA models. Extending this framework to vector-valued gating and exploring when
delimiters are necessary for learning, as well as investigating the GLA landscape where gates depend
on input features, are promising directions for future research.
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A Implementation Detail

Data generation. Consider ICL problem with input in the form of multi-task prompt as described in
Section 5.1. In the experiments, we set K = 2, dimensions d = 10 and p = 5, uniform context length
n1 = n2 = n̄, and vary n̄ from 0 to 50. Let (r1, r2) :=

(
E[β⊤1 β]/d,E[β⊤2 β]/d

)
denote the correlations

between in-context tasks β1,β2 and query task β. We generate task vectors as follows:

β1,β2 ∼ N(0, Id) and β ∼ N(r1β1 + r2β2, (1 − r2
1 − r2

2)Id).

Input features are randomly sampled x(k)
i ∼ N(0, Id) and y(k)

i = β
⊤x(k)

i (σ = 0), k ∈ {1, 2}. Addition-
ally, delimiters d̄0, · · · , d̄K are randomly sampled from N(0, Ip).

Implementation setting. We train 1-layer linear attention and GLA models for solving multi-
prompt ICL problem as described in Section 5.1. For GLA model, we consider sigmoid-type gating
function given by scalar gating: g(z) = ϕ(w⊤g z)11⊤, or vector gating: g(z) = ϕ(Wg z)1⊤ where
ϕ(z) = (1+ e−z)−1 is the activation function. Note that although the theoretical results are based on the
model constructions (c.f. (8) and (21)), we do not restrict the attention weights in our implementation.
We train each model for 10000 iterations with batch size 256 and Adam optimizer with learning
rate 10−3. Similar to the previous work (Li et al., 2024), since our study focuses on the optimization
landscape, ICL problems using linear attention/GLA models are non-convex, and experiments are
implemented via gradient descent, we repeat 10 model trainings from different model initialization
and data sampling (e.g., different choice of delimiters) and results are presented as the minimal test
risk among those 10 trails. Results presented have been normalized by d.

Experimental results. Based on the experimental setting, we can obtain the correlation matrix and
vector following Definition 1

R =
[1n1⊤n 0

0 1n1⊤n

]
and r =

[
r11⊤n r21⊤n

]⊤
.

Then dotted curves display our theoretical results derive using Σ = I and R, r above. Specifically,
in Figure 1, black dashed curves represent L⋆WPGD following (18) and blues dashed curves represent
L⋆GLA following (25). We consider scenarios where (r1, r2) ∈ {(0, 1), (0.2, 0.8), (0.5, 0.5), (0.8, 0.2)}
and results are presented in Figures (1a), (1b), (1c) and (1d), respectively.

• GLA-wo achieves the worst performance among all the methods. We claim that it is due to the
randomness of input tokens as discussed in Section 5.1. Thanks to the introduction of delimiters as
described in (20), data and gating is decoupled and a task-dependent weighting is learnt. Hence, GLA
is able to achieve comparable performance to the optimal one (L⋆WPGD, red dashed). Note that GLA-wo
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Figure 2: Multi-layer GLA experiments with (r1, r2) = (0, 1).

performs even worse than LinAtt. It comes from the fact the weighting induced by GLA-wo varies
over different input prompts and it can not implement all ones weight.

• The alignments between LinAtt (blue solid) and blue dashed curves validate our Corollary 3.
In Figures 1a, 1b and 1c, the alignments between GLA (red solid) and LWPGD (black dashed) verify
our Theorem 5, specifically, Equation 24. While in 1c and 1d, GLA achieves the same performance
as LinAtt. It is due to the fact that GLA can not weight the history higher than its present. Then
the equal-weighting, e.g., ω = 1, is the optimal weighting given such constraint. What’s more, the
alignment between GLA-vector (cyan curves) and red dashed in Figure 1d validates our vector
gating theorem in Theorem 6.

A.1 Multi-layer Experiments

In this section, we present additional experiments on multi-layer GLA models. We adopt the same
experimental setup as described in Figure 1a and Appendix A, with parameters set to (r1, r2) = (0, 1).
The results are displayed in Figure 2, where the blue, red, and green curves correspond to the
performance of one-, two-, and three-layer GLA models, respectively, with the y-axis presented in
log-scale. According to Theorem 2, an L-layer GLA performs L steps of WPGD, suggesting that
deeper models should yield improved predictive performance. The experimental findings in Figure 2
align with the theoretical predictions of Theorem 2.

B GLA⇔WPGD

B.1 Proof of Theroem 1

Recap the problem settings from Section 2 where in-context samples are given by

Z = [z1 · · · zn zn+1]⊤ =
[x1 · · · xn xn+1
y1 · · · yn 0

]⊤
and let the value, key and query embeddings at time i be

vi =Wv zi, ki =Wk zi, and qi =Wq zi.

Then we can rewrite the GLA output (c.f. (1)) as follows:

oi = Siqi and Si = Gi ⊙ Si−1 + vi k⊤i

=

i∑
j=1

G j:i ⊙ v j k⊤j

where we define
G j:i = G j+1 ⊙ G j+2 · · ·Gi, j < i, and Gi:i = 11⊤.

Consider the prediction based on the last token, then we obtain

on+1 = Sn+1qn+1 and Sn+1 =

n+1∑
j=1

G j:n+1 ⊙ v j k⊤j .
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Construction 1: Recall the model construction from (8) where

Wk =

[P⊤k 0
0⊤ 0

]
, Wq =

[
P⊤q 0
0⊤ 0

]
and Wv =

[0d×d 0
0⊤ 1

]
. (26)

Then, given each token zi = [x⊤i yi]⊤, i ∈ [n], single-layer GLA returns

vi =

[0
yi

]
, ki =

[
P⊤k xi

0

]
, and qi =

[P⊤q xi
0

]
,

and we obtain

vi k⊤i =
[ 0d×d 0
yix⊤i Pk 0

]
, i ≤ n, and vn+1 k⊤n+1 = 0(d+1)×(d+1).

Therefore, since only d entries in vi k⊤i matrix are nonzero, given ⊙ as the Hadamard product, only
the corresponding d entries in all Gi matrices are useful. Based on this observation, let

Gi =

[
∗ ∗
g⊤i ∗

]
and G j:i =

[
∗ ∗

g⊤j:i ∗
]

where g j:i = g j+1 ⊙ g j+2 · · · gi ∈ R
d for j < i and gi:i = 1d.

Combing all together, and letting X = [x1 x2 · · · xn]⊤ and y = [y1 y2 · · · yn]⊤, we obtain

on+1 = Sn+1qn+1 =

[
0d×d 0∑n

j=1 y jx⊤j Pk ⊙ g⊤j:n+1 0

] [P⊤q x
0

]
=

[ 0
x⊤Pq (XPk ⊙Ω)⊤ y

]
where

Ω =
[g1:n+1 g2:n+1 · · · gn:n+1

]
∈ Rn×d.

Then if taking the last entry of on+1 as final prediction, we get

ŷ := on+1,d+1 = x⊤β̂ where β̂ = Pq (XPk ⊙Ω)⊤ y.

It completes the proof of Theorem 1.

Construction 2: Based on the construction given in (26), only d elements of Gi matrices are useful.
One might ask about the effect of other entries of Gi. Therefore, in the following, we introduce
an other model construction showing that different row of Gi implements WPGD with different
weighting. Similarly, let Wk,Wq be the same as (26) but with Wv constructed by

Wv =
[0(d+1)×d u]

where u = [u1 u2 · · · ud+1]⊤ ∈ Rd+1.

Then the value embeddings have the form of vi = yiu, which gives

vi k⊤i = u
[
yix⊤i Pk 0] .

Next, let

Gi =


(g1

i )⊤ ∗

(g2
i )⊤ ∗
...

...
(gd+1

i )⊤ ∗

 and G j:i =


(g1

j:i)
⊤ ∗

(g2
j:i)
⊤ ∗

...
...

(gd+1
j:i )⊤ ∗


where gi′

i ∈ R
d corresponds to the i′-th row of Gi and gi′

j:i = gi′
j+1 ⊙ gi′

j+1 · · · g
i′
i . Then we get the

output

on+1 =


∑n

j=1 u1y jx⊤j Pk ⊙ (g1
j:n+1)⊤ 0∑n

j=1 u2y jx⊤j Pk ⊙ (g2
j:n+1)⊤ 0

...∑n
j=1 ud+1y jx⊤j Pk ⊙ (gd+1

j:n+1)⊤ 0


[P⊤q x

0

]
=


x⊤Pq (XPk ⊙Ω1)⊤ y
x⊤Pq (XPk ⊙Ω2)⊤ y

...
x⊤Pq (XPk ⊙Ωd+1)⊤ y


where

Ωi = ui

[
gi

1:n+1 gi
2:n+1 · · · gi

n:n+1

]
∈ Rn×d, i ≤ d + 1.

Therefore, consider (d + 1)-dimensional output on+1. Each entry implements a 1-step WPGD with
same preconditioners Pk, Pq and different weighting matrices Ω’s. The weighting matrix of i’th entry
is determined by the i’th row of all gating matrices. Note that if consider the last entry of on+1 as
prediction, it returns the same result as Construction 1 above, where only last rows of Gi’s are useful.
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Additionally, suppose that the final prediction ŷ is given after a linear head h, that is, ŷ = h⊤on+1, and
let h = [h1 h2 · · · hd+1]⊤ ∈ Rd+1. Then

ŷ = h⊤on+1 = x⊤Pq

(
XPk ⊙ Ω̄

)⊤
y (27)

where

Ω̄ =

d+1∑
i=1

hiΩi =

d+1∑
i=1

hiui

[
gi

1:n+1 gi
2:n+1 · · · gi

n:n+1

]
∈ Rn×d. (28)

Then, single-layer GLA still returns 1-step WPGD with updated weighting matrix.

B.2 Proof of Theorem 2

Theorem 7 (Extended version of Theorem 2). Consider an L-layer GLA with ℓ’th layer parameterized
by Pk,ℓ, Pq,ℓ ∈ R

d×d as in (8) and with corresponding gating vectors gℓi , i ∈ [n+ 1], ℓ ∈ [L]. Let ŷi,ℓ be
the (d + 1)’th entry of the i’th token of the ℓ’th layer input (or (ℓ − 1)’th layer output after residual).
Additionally, denote Ωℓ = [gℓ1:n+1 · · · gℓn:n+1]⊤ and X̄ℓ = XPk,ℓ ⊙Ωℓ. Let Bℓ = [β1,ℓ · · · βn,ℓ]⊤ where

βi,0 = 0 for i ∈ [n + 1] and Mi =

[Ii 0
0 0

]
∈ Rn×n. Then it satisfies that for

• i ≤ n, ŷi,ℓ = yi − x⊤i βi,ℓ−1 where βi,ℓ = βi,ℓ−1 + Pq,ℓ

(
∇i,ℓ ⊘ gℓi:n+1

)
• and ŷn+1,ℓ = x⊤βℓ−1 where βℓ = (1 + αℓ)βℓ−1 + Pq,ℓ

(
∇n,ℓ ⊘ gℓn+1

)
and αℓ = x⊤Pq,ℓP⊤k,ℓx.

Here, we define ∇i,ℓ = X̄⊤ℓ Mi ((X ⊙ Bℓ−1)1 − y).

Proof. Recapping the model construction from (8) and following the same analysis in Appendix B.1,
for i ≤ n, we obtain

Si =

[
0d×d 0∑i

j=1 y jx⊤j Pk ⊙ g⊤j:i 0

]
.

Additionally, recap that we have

Mi =

[Ii 0
0 0

]
and Ω =

[gi:n+1 · · · gn:n+1
]
.

Let ⊘ denote Hadamard division. Then
i∑

j=1

y j P⊤k x j ⊙ g j:i =

 i∑
j=1

y j P⊤k x j ⊙ g j:n+1

 ⊘ gi:n+1

= (XPk ⊙Ω)⊤Miy ⊘ gi:n+1,

Therefore,

oi = Siqi =

[ 0d×d 0(
(XPk ⊙Ω)⊤Miy ⊘ gi:n+1

)⊤ 0

] [P⊤q xi
0

]
=

[ 0
x⊤i Pq

(
X̄⊤Miy ⊘ gi:n+1

)] . (29)

where we define X̄ := XPk ⊙Ω. Similarly, we can get the last token output

on+1 =

[ 0
x⊤Pq

(
X̄⊤y ⊘ gn+1

)] . (30)

Next, we consider the multi-layer GLA model. To begin with, let us define the input and output of
ℓ’th layer as

Zℓ =
[
z1,ℓ · · · zn,ℓ zn+1,ℓ

]⊤
∈ R(n+1)×(d+1),

Oℓ =
[
o1,ℓ · · · on,ℓ on+1,ℓ

]⊤
∈ R(n+1)×(d+1),

where Z1 = Z. Then, given the residual connection of each layer, the input of (ℓ + 1)’th layer is given
by

Zℓ+1 = Zℓ + Oℓ. (31)
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Note that Zℓ+1 is also the output of ℓ’th layer after residual. Recall (29) which implies that the first d
dimension of the output oi for all tokens i ∈ [n + 1] is zero. Therefore, the first d dimension of zi,ℓ
keeps the same as xi and let us write the input of ℓ’th layer (also the output of (ℓ − 1)’th layer after
residual) as

Zℓ =
[ x1 · · · xn x
ŷ1,ℓ · · · ŷn,ℓ ŷn+1,ℓ

]⊤
, (32)

and ŷi,1 = yi for i ∈ [n] and ŷn+1,1 = 0. Suppose that the ℓ’th layer is parameterized by (Pq,ℓ, Pk,ℓ) and
let Zℓ be its input. Additionally, suppose the gating matrices for ℓ’th layer, i’th token is

Gℓi =
[
∗ ∗

(gℓi )
⊤ ∗

]
.

•We first study ŷi,ℓ for i ≤ n. Following (29), we obtain the output at time i

oi,ℓ =

[ 0
x⊤i Pq,ℓ

(
X̄⊤ℓ Mi ŷℓ ⊘ gℓi:n+1

)]
where X̄ℓ := XPk,ℓ ⊙Ωℓ and

ŷℓ =
[
ŷ1,ℓ · · · ŷn,ℓ

]⊤
∈ Rn,

Ωℓ =
[
gℓ1:n+1 gℓ2:n+1 · · · gℓn:n+1

]⊤
∈ Rn×d.

Following the residual connection as in (31), we have zi,ℓ+1 = zi,ℓ + oi,ℓ and hence

ŷi,ℓ+1 = ŷi,ℓ + x⊤i Pq,ℓ

(
X̄⊤ℓ Mi ŷℓ ⊘ gℓi:n+1

)
. (33)

Now consider the algorithm given in the theorem statement where ŷi,ℓ = yi − x⊤i βi,ℓ−1 and βi,ℓ =

βi,ℓ−1 + Pq,ℓ

(
X̄⊤ℓ Mi((X ⊙ Bℓ−1)1 − y) ⊘ gℓi:n+1

)
, which gives

ŷi,ℓ+1 = yi − x⊤i βi,ℓ

ŷi,ℓ = yi − x⊤i βi,ℓ−1. (34)

Then
ŷi,ℓ+1 − ŷi,ℓ = −x⊤i

(
βi,ℓ − βi,ℓ−1

)
= −x⊤i Pq,ℓ

(
X̄⊤ℓ Mi((X ⊙ Bℓ−1)1 − y) ⊘ gℓi:n+1

)
= x⊤i Pq,ℓ

(
X̄⊤ℓ Mi ŷℓ ⊘ gℓi:n+1

)
. (35)

The last equation uses (34), that

(X ⊙ Bℓ−1)1 = [x⊤1 β1,ℓ · · · x⊤n βn,ℓ]⊤ =⇒ (X ⊙ Bℓ−1)1 − y = −ŷℓ. (36)

The equality between (33) and (35) completes the proof for i ∈ [n].

• Next, we consider the last token output, that is i = n + 1. In the following, we remove the subscript
n + 1 from some notations for simplification.

Similarly, we get the (n + 1)’th output of ℓ’th layer

on+1,ℓ =

[ 0
x⊤Pq,ℓ

(
X̄⊤ℓ ŷℓ ⊘ gℓn+1

)] + [ 0
x⊤Pq,ℓP⊤k,ℓx · ŷn+1,ℓ

]
where the second term comes from the fact that ŷn+1,ℓ , 0 for ℓ , 0.

Let αℓ := x⊤Pq,ℓP⊤k,ℓx. Given Zℓ+1 = Zℓ + Oℓ, we obtain

ŷn+1,ℓ+1 = ŷn+1,ℓ + x⊤Pq,ℓ

(
X̄⊤ℓ ŷℓ ⊘ gℓn+1

)
+ αℓ · ŷn+1,ℓ

= (1 + αℓ)ŷn+1,ℓ + x⊤Pq,ℓ

(
X̄⊤ℓ ŷℓ ⊘ gℓn+1

)
. (37)

Now, consider the algorithm given in the theorem statement where ŷn+1,ℓ = −x⊤βn+1,ℓ−1 and βn+1,ℓ =

(1 + αℓ)βn+1,ℓ−1 + Pq,ℓ

(
X̄⊤ℓ ((X ⊙ Bℓ−1)1 − y) ⊘ gℓn+1

)
, which gives

ŷn+1,ℓ+1 = −x⊤βn+1,ℓ

ŷn+1,ℓ = −x⊤βn+1,ℓ−1.
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Then
ŷn+1,ℓ+1 − (1 + αℓ)ŷn+1,ℓ = −x⊤

(
βn+1,ℓ − (1 + αℓ)βn+1,ℓ−1

)
= −x⊤Pq,ℓ

(
X̄⊤ℓ ((X ⊙ Bℓ−1)1 − y) ⊘ gℓn+1

)
= x⊤Pq,ℓ

(
X̄⊤ℓ ŷℓ ⊘ gℓn+1

)
which is the same as (37) by using the fact from (36). □

C Optimization Landscape ofWPGD

C.1 Proof of Theorem 3

Proof. Recapping the objective from (3) and following Definition 2, we have

L(P,ω) = E
[(

y − x⊤PX(ω ⊙ y)
)2
]

= E
[
y2

]
− 2E

[
yx⊤PX(ω ⊙ y)

]
+ E

[(
x⊤PX(ω ⊙ y)

)2
]
.

Let y = x⊤β + ξ and yi = x⊤i βi + ξi, for i ∈ [n], where ξ, ξi ∼ N(0, σ2) are i.i.d. Then,

E[y2] = E[(x⊤β + ξ)2] = tr (Σ) + σ2,

and

E
[
yx⊤PX(ω ⊙ y)

]
= E

(β⊤x + ξ)x⊤P
n∑

i=1

ωixi(x⊤i βi + ξi)


= E

β⊤xx⊤P
n∑

i=1

ωixix⊤i βi


= tr

ΣPΣ
n∑

i=1

ωiE
[
βiβ
⊤
]

= tr
(
Σ2 P

)
ω⊤r.

Here, the last equality comes from the fact that since βi − ri jβ j is independent of β j for i, j ∈ [n + 1]
following Definition 1, we have E

[
βiβ
⊤
]
= ri,n+1Id and

∑n
i=1 ωiE

[
βiβ
⊤
]

returns ω⊤r · Id.

Hence,

E
[(

x⊤PX(ω ⊙ y)
)2
]
= E

x⊤P
 n∑

i=1

ωi(x⊤i βi + ξi)xi

  n∑
i=1

ωix⊤i (x⊤i βi + ξi)

 P⊤x


= tr

P⊤ΣPE
 n∑

i=1

ω2
i (x⊤i βi + ξi)2xix⊤i


+ tr

P⊤ΣPE

∑
i, j

ωiω j(x⊤i βi + ξi)xix⊤j (x⊤j β j + ξ j)


 ,

where

tr

P⊤ΣPE
 n∑

i=1

ω2
i (x⊤i βi + ξi)2xix⊤i

 = tr P⊤ΣPE
 n∑

i=1

ω2
i (x⊤i βiβ

⊤
i xi + σ

2)xix⊤i


= ∥ω∥2ℓ2 tr

(
P⊤ΣP

(
E

[
xx⊤xx⊤

]
+ σ2Σ

))
= ∥ω∥2ℓ2

(
tr

(
ΣP⊤ΣP

) (
tr (Σ) + σ2

)
+ tr

(
Σ2 P⊤ΣP

))
,

and

tr

P⊤ΣPE

∑
i, j

ωiω j(x⊤i βi + ξi)xix⊤j (x⊤j β j + ξ j)


 = tr

P⊤ΣPE

∑
i, j

ωiω jxix⊤i βiβ
⊤
j x jx⊤j




= tr
(
Σ2 P⊤ΣP

)
ω⊤Rω.
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Combining all together and letting M := tr (Σ) + σ2, we obtain

L(P,ω) = M − 2tr
(
Σ2 P

)
ω⊤r

+ M ∥ω∥2ℓ2 tr
(
ΣP⊤ΣP

)
+ (∥ω∥2ℓ2 + ω

⊤Rω)tr
(
Σ2 P⊤ΣP

)
. (38)

For simplicity, and without loss of generality, let

P̃ =
√
ΣP
√
Σ. (39)

Then, we obtain

L(P̃,ω) = M − 2tr
(
ΣP̃

)
ω⊤r

+ M ∥ω∥2ℓ2 tr
(
P̃⊤ P̃

)
+ (∥ω∥2ℓ2 + ω

⊤Rω)tr
(
ΣP̃⊤ P̃

)
.

(40)

Further, the gradients can be written as

∇P̃L(P̃,ω) = −2ω⊤rΣ + 2M ∥ω∥2ℓ2 P̃ + 2(∥ω∥2ℓ2 + ω
⊤Rω)ΣP̃, (41)

∇ωL(P̃,ω) = −2tr
(
ΣP̃

)
r + 2Mtr

(
P̃⊤ P̃

)
ω + 2tr

(
ΣP̃⊤ P̃

)
(In + R)ω. (42)

Using the first-order optimality condition, and setting ∇P̃L(P̃,ω) = 0 and ∇ωL(P̃,ω) = 0, we obtain

P̃ =
(
M ∥ω∥2ℓ2 I + (∥ω∥2ℓ2 + ω

⊤Rω)Σ
)−1
Σω⊤r

=
ω⊤r

M ∥ω∥2ℓ2

 ∥ω∥2ℓ2 + ω⊤Rω

M ∥ω∥2ℓ2
I + Σ−1

−1

=
ω⊤r

M ∥ω∥2ℓ2

(
γ + 1

M
· I + Σ−1

)−1

,

(43a)

where γ = ω⊤Rω/ ∥ω∥2ℓ2 .

Further,

ω =
((

Mtr
(
P̃⊤ P̃

)
+ tr

(
ΣP̃⊤ P̃

))
I + tr

(
ΣP̃⊤ P̃

)
R
)−1
tr

(
ΣP̃

)
r

=
tr

(
ΣP̃

)
Mtr

(
P̃⊤ P̃

)
+ tr

(
ΣP̃⊤ P̃

) I +
tr

(
ΣP̃⊤ P̃

)
Mtr

(
P̃⊤ P̃

)
+ tr

(
ΣP̃⊤ P̃

) R


−1

r.
(43b)

Let

Σγ :=
γ + 1

M
· I + Σ−1.

Then, we get

tr
(
ΣP̃⊤ P̃

)
Mtr

(
P̃⊤ P̃

)
+ tr

(
ΣP̃⊤ P̃

) = 1 + M
tr

(
P̃⊤ P̃

)
tr

(
ΣP̃⊤ P̃

) 
−1

=

1 + M
tr

(
Σ−2
γ

)
tr

(
ΣΣ−2
γ

) 
−1

=

1 + M
d∑

i=1

s2
i

(M + (γ + 1)si)2

 d∑
i=1

s3
i

(M + (γ + 1)si)2


−1
−1

=: g(γ).

Here, the last equality follows from eigen decomposition Σ = Udiag(s)U⊤ with s = [s1, . . . , sd]⊤ ∈
Rd
++.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Now, plugging P̃ defined in (43a) within ω given in (43b), we obtain

ω =
tr

(
ΣP̃

)
Mtr

(
P̃⊤ P̃

)
+ tr

(
ΣP̃⊤ P̃

) · (g(γ) · R + I)−1 r. (44)

Using the above formulae for ω, we rewrite γ = ω⊤Rω/ ∥ω∥2ℓ2 as

γ =
r⊤(g(γ)R + I)−1R(g(γ)R + I)−1r

r⊤(g(γ)R + I)−2r

=

n∑
i=1

λia2
i

(1 + g(γ)λi)2

 n∑
i=1

a2
i

(1 + g(γ)λi)2

−1

=: h (g (γ)) ,

(45)

where the second equality follows from Assumption A and the fact that R = Ediag(λ)E⊤ denotes the
eigen decomposition of R, with λ = [λ1, . . . , λn]⊤ ∈ Rn

+.

Now, let γ⋆ denote a fixed point of composite function h(g(γ)). From (43a) and (44), we obtain

P̃ = C(r,ω,Σ) ·
(
γ⋆ + 1

M
· I + Σ−1

)−1

, and

ω = c(r,ω,Σ) ·
(
g(γ⋆) · R + I

)−1
r.

(46)

for some C(r,ω,Σ) = ω⊤ r
M∥ω∥2ℓ2

and c(r,ω,Σ) = tr(ΣP̃)
Mtr(P̃⊤ P̃)+tr(ΣP̃⊤ P̃) .

Now, using the our definition P̃ =
√
ΣP
√
Σ, we obtain

P(γ) = C(r,ω,Σ) · Σ−
1
2

(
γ⋆ + 1

σ2 + tr (Σ)
· Σ + I

)−1

Σ−
1
2 , and

ω(γ) = c(r,ω,Σ) ·
(
g(γ⋆) · R + I

)−1
r.

This completes the proof. □

C.2 Proof of Theorem 4

We first provide the following Lemma.
Lemma 1. Let the functions h : R+ → R+ and g : R+ → R+ be defined as

h(γ̄) =
n∑

i=1

λia2
i

(1 + γ̄λi)2

 n∑
i=1

a2
i

(1 + γ̄λi)2

−1

, (47)

g(γ) =

1 + M
d∑

i=1

s2
i

(M + (γ + 1)si)2

 d∑
i=1

s3
i

(M + (γ + 1)si)2


−1
−1

, (48)

where M = σ2 +
∑d

i=1 si.

Suppose ∆Σ · ∆R < M + smin, where ∆Σ and ∆R denote the effective spectral gaps of Σ and R,
respectively, as given in (12); and smin is the smallest eigenvalue of Σ. We have that∣∣∣∣∣∂g∂γ · ∂h∂g

∣∣∣∣∣ ≤ ∆2
Σ
· ∆2

R

(M + smin)2 < 1.

Proof. Let

B(γ) =
d∑

i=1

s3
i

(M + (γ + 1)si)2 , C(γ) =
d∑

i=1

s2
i

(M + (γ + 1)si)2 , A(γ) = 1 + M
C(γ)
B(γ)
.
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The derivatives of B(γ) and C(γ) are

B′(γ) = −2
d∑

i=1

s4
i

(M + (γ + 1)si)3 , C′(γ) = −2
d∑

i=1

s3
i

(M + (γ + 1)si)3 .

The gradient of g(γ) is

∂g
∂γ
= −M

(
1

A(γ)B(γ)

)2 (
C′(γ)B(γ) −C(γ)B′(γ)

)
. (49)

It can be seen that(
1

A(γ)

)2

≤ M−2

 d∑
i=1

s3
i

(M + (γ + 1)si)2


2  d∑

i=1

s2
i

(M + (γ + 1)si)2


−2

,

which implies that (
1

A(γ)B(γ)

)2

≤ M−2

 d∑
i=1

s2
i

(M + (γ + 1)si)2


−2

. (50a)

Further, we have

C′(γ)B(γ) −C(γ)B′(γ) = −2
d∑

i=1

s3
i

(M + (γ + 1)si)3

d∑
i=1

s3
i

(M + (γ + 1)si)2

+ 2
d∑

i=1

s2
i

(M + (γ + 1)si)2

d∑
i=1

s4
i

(M + (γ + 1)si)3

=

d∑
i=1

d∑
j=1

Ti j

(M + (γ + 1)si)3(M + (γ + 1)s j)3

= M ·
d∑

i=1

d∑
j=1

s2
i s2

j (si − si)2

(M + (γ + 1)si)3(M + (γ + 1)s j)3 ,

(50b)

where

Ti j = s2
i (M + (γ + 1)si)s4

j + s4
i s2

j (M + (γ + 1)s j)

− s3
i s3

j (M + (γ + 1)s j) − s3
i (M + (γ + 1)si)s3

j

= s2
i s2

j

(
M · (s2

j + s2
i − 2sis j) + (γ + 1)(sis2

j + s2
i s j − sis2

j − s2
i s j)

)
.

(50c)

Thus, substituting (50a) and (50b) into (49), we obtain∣∣∣∣∣∂g∂γ
∣∣∣∣∣ ≤ M · M−1

 d∑
i=1

s2
i

(M + (γ + 1)si)2


−2 d∑

i, j=1

s2
i s2

j (si − s j)2

(M + (γ + 1)si)3(M + (γ + 1)s j)3 . (51)

Next, we derive ∂h
∂γ̄

. Let

D(γ̄) =
n∑

i=1

λia2
i

(1 + γ̄λi)2 , E(γ̄) =
n∑

i=1

a2
i

(1 + γ̄λi)2 .

We have

D′(γ̄) = −2
n∑

i=1

λ2
i a2

i

(1 + γ̄λi)3 , E′(γ̄) = −2
n∑

i=1

λia2
i

(1 + γ̄λi)3 .

The derivative of h with respect to γ̄ is given by

∂h
∂γ̄
= −

(
1

E(γ̄)

)2 (
E(γ̄)D′(γ̄) − D(γ̄)E′(γ̄)

)
. (52)
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Substituting into (52), we get (
1

E(γ̄)

)2

=

 n∑
i=1

a2
i

(1 + γ̄λi)2

−2

, (53a)

and

E(γ̄)D′(γ̄) − D(γ̄)E′(γ̄) = 2
n∑

i=1

λ2
i a2

i

(1 + γ̄λi)3

n∑
i=1

a2
i

(1 + γ̄λi)2

− 2
n∑

i=1

λia2
i

(1 + γ̄λi)2

n∑
i=1

a2
i λi

(1 + γ̄λi)3

=

n∑
i=1

n∑
j=1

T̄i j

(1 + γ̄λi)3(1 + γ̄λ j)3

=

n∑
i=1

n∑
j=1

a2
i a2

j

(
λ2

i + λ
2
j − 2λiλ j

)
(1 + γ̄λi)3(1 + γ̄λ j)3 .

(53b)

Here,

T̄i j = λ
2
i a2

i a2
j (1 + γ̄λ j) + a2

i (1 + γ̄λi)λ2
ja

2
j

− λia2
i (1 + γ̄λi)a2

jλ j − a2
i λiλ ja2

j (1 + γ̄λ j)

= a2
i a2

j

(
λ2

i (1 + γ̄λ j) + (1 + γ̄λi)λ2
j − λi(1 + γ̄λi)λ j − λiλ j(1 + γ̄λ j)

)
.

(53c)

Hence, substituting (53a) and (53b) into (52) gives

∂h
∂γ̄
= −

 n∑
i=1

a2
i

(1 + γ̄λi)2

−2 n∑
i, j=1

a2
i a2

j (λi − λ j)2

(1 + γ̄λi)3(1 + γ̄λ j)3 . (54)

Now, for the combined derivative, we have∣∣∣∣∣∂g∂γ · ∂h∂γ̄
∣∣∣∣∣ ≤

 d∑
i=1

s2
i

(M + (γ + 1)si)2


−2 d∑

i, j=1

s2
i s2

j (si − s j)2

(M + (γ + 1)si)3
(
M + (γ + 1)s j

)3

·

 n∑
i=1

a2
i

(1 + γ̄λi)2

−2 n∑
i, j=1

a2
i a2

j (λi − λ j)2

(1 + γ̄λi)3(1 + γ̄λ j)3 .

Note that M + (γ + 1)si and 1 + γ̄λ j are nonnegative for all i, j. Hence,∣∣∣∣∣∂g∂γ · ∂h∂γ̄
∣∣∣∣∣ ≤

 d∑
i=1

s2
i (M + (γ + 1)si)

(M + (γ + 1)si)3


−2

·

d∑
i, j=1

s2
i s2

j · ∆1 ·
(
M + (γ + 1)s j

)
(M + (γ + 1)si)

(M + (γ + 1)si)3
(
M + (γ + 1)s j

)3

·

 n∑
i=1

a2
i (1 + γ̄λi)

(1 + γ̄λi)3

−2

·
∑
i, j∈S

a2
i a2

j · ∆2 · (1 + γ̄λi)
(
1 + γ̄λ j

)
(1 + γ̄λi)3

(
1 + γ̄λ j

)3 ,

where

∆1 := max
i, j

(si − s j)2(
M + (γ + 1)s j

)
(M + (γ + 1)si)

, ∆2 := max
i, j∈S

(λi − λ j)2

(1 + γ̄λi)(1 + γ̄λ j)
. (55)
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Here, S = {i ∈ [n]|λi , 0} ⊂ [n].

Finally, setting γ̄ = g(γ), we obtain

|h′(g(γ)) · g′(γ)| =
∣∣∣∣∣∂g∂γ · ∂h∂g

∣∣∣∣∣ ≤ ∆1 · ∆2 ≤
∆2
Σ
· ∆2

R

(M + smin)2 < 1.

where ∆Σ and ∆R are the spectral gaps of Σ and R; and smin is the smallest eigenvalue of Σ; and
M = σ2 +

∑d
i=1 si. □

Proof of Theorem 4. Lemma 1 shows that |∂h(g(γ))/∂γ| < 1, and as a result, the mapping h(g(γ))
on R+ is a contraction mapping. Therefore, by the Banach fixed-point theorem, this guarantees the
existence of a unique root, denoted as γ = γ⋆. This completes the proof of T1. In the following, we
provide the proof of T2. Substituting the unique γ⋆ into (16) and using the fact that P̃ =

√
ΣP
√
Σ,

we obtain (P⋆,ω⋆), as given in (14), as a global minima of (3).

Next, we claim that (P⋆,ω⋆) is the unique global minimizer of L(P,ω) up to rescaling, i.e., any
other minimizer (P̂, ω̂) must be related to (P⋆,ω⋆) by scaling factors α and β, such that P̂ = αP⋆
and ω̂ = βω⋆, for some α, β > 0.

The loss function is given by

L(P,ω) = M − 2tr
(
Σ2 P

)
ω⊤r + M∥ω∥2tr

(
ΣP⊤ΣP

)
+ (∥ω∥2 + ω⊤Rω)tr

(
Σ2 P⊤ΣP

)
Now, consider the effect of rescaling the variables P and ω by introducing scalars α and β, i.e., we
substitute αP and βω into the loss function

L(αP, βω) = M − 2αβtr(Σ2 P)ω⊤r + Mα2β2∥ω∥2tr(ΣP⊤ΣP) + α2β2(∥ω∥2 + ω⊤Rω)tr(Σ2 P⊤ΣP).
Define

A := tr(Σ2 P)ω⊤r, B := tr(ΣP⊤ΣP), C := ∥ω∥2, D := ω⊤Rω, E := tr(Σ2 P⊤ΣP).
Thus, the rescaled loss function becomes

L(αP, βω) = M − 2αβA + Mα2β2BC + α2β2(C + D)E.

For (P⋆,ω⋆) to be a minimizer, the partial derivatives of the loss function with respect to P and ω
must vanish at (P⋆,ω⋆). However, we consider the effect of the rescaling in terms of α and β. To
find the stationary points of L(αP, βω), we differentiate with respect to α and β:

∂L

∂α
= −2βA + 2Mαβ2BC + 2αβ2(C + D)E,

∂L

∂β
= −2αA + 2Mα2βBC + 2α2β(C + D)E.

Setting these to zero, we obtain the system
αβ(MBC + (C + D)E) = A. (56)

This condition must hold for any minimizer. Now, suppose there exists another minimizer (P̂, ω̂) that
also minimizes the loss function. By the first-order optimality conditions, αβ must remain constant.
This implies that any other minimizer (P̂, ω̂) must be proportional to the original minimizer (P⋆,ω⋆),
meaning

P̂ = αP⋆ and ω̂ = βω⋆

for some scalars α, β > 0 satisfying (56).

Thus, any global minimizer (P̂, ω̂) is a scaled version of (P⋆,ω⋆), and no other distinct minimizer
exists. This proves uniqueness up to rescaling. □

C.3 Proof of Corollary 2

Proof. Since by assumption Σ = I, it follows from (13b) that

g(γ⋆) =

1 + (d + σ2)
d∑

i=1

1
(d + σ2 + γ⋆ + 1)2

 d∑
i=1

1
(d + σ2 + γ⋆ + 1)2


−1
−1

=
1

d + σ2 + 1
.
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Substituting this into (14) gives

P⋆ = I, and ω⋆ =
(
R + (d + σ2 + 1)I

)−1
r.

Now, recall that the objective function is given by

L(ω) = M − 2tr(Σ2 P)ω⊤r + M ∥ω∥ℓ2 tr(ΣP⊤ΣP) + (∥ω∥2 + ω⊤Rω)tr(Σ2 P⊤ΣP),

and, by assumption, M = σ2 + d.

Substituting P⋆ = I and ω⋆ =
(
R + (d + σ2 + 1)I

)−1
r into the objective (38), and using Σ = I, we

get:
L(ω⋆) = (σ2 + d) − 2 · d · r⊤ω⋆ + (σ2 + d) ·

∥∥∥ω⋆∥∥∥2
ℓ2

d + d
(
∥ω⋆∥2 + ω⊤Rω⋆

)
.

The expression simplifies as

L(ω⋆) = (σ2 + d) − 2d · r⊤
(
R + (d + σ2 + 1)I

)−1
r + (σ2 + d)d

∥∥∥ω⋆∥∥∥2
ℓ2
+ d

(
∥ω⋆∥2 + ω⋆⊤Rω⋆

)
.

Next, we compute ∥ω⋆∥2 and ω⊤Rω⋆. By definition, we have

∥ω⋆∥2 = r⊤
(
R + (d + σ2 + 1)I

)−2
r,

and
ω⋆⊤Rω⋆ = r⊤

(
R + (d + σ2 + 1)I

)−1
R

(
R + (d + σ2 + 1)I

)−1
r.

Thus,

(d + σ2 + 1)∥ω⋆∥2 + ω⋆⊤Rω⋆ = r⊤
(
R + (d + σ2 + 1)I

)−1 (
(d + σ2 + 1)I + R

) (
R + (d + σ2 + 1)I

)−1
r

= r⊤
(
R + (d + σ2 + 1)I

)−1
r.

Substituting this result back into the objective function gives

L(ω⋆) = (σ2 + d) − d · r⊤
(
R + (d + σ2 + 1)I

)−1
r.

□

D Loss Landscape of 1-layer GLA

D.1 Proof of Theorem 5

Proof. We first prove that under Assumption B, L⋆GLA = minP∈Rd×d ,ω∈W LWPGD(P,ω) whereW is the
search space of weighting vector ω ∈ Rn defined as

W :=
{[
ω11⊤n1

· · · ωK1⊤nK

]⊤
∈ Rn

∣∣∣∣ 0 ≤ ωi ≤ ω j ≤ 1, ∀1 ≤ i ≤ j ≤ K
}
.

Define a set W̄ :=
{
[ω1 · · · ωn]⊤ ∈ Rn

∣∣∣∣ 0 ≤ ωi ≤ ω j ≤ 1, ∀1 ≤ i ≤ j ≤ n
}

and we haveW ∈ W̄.

Given scalar gating Gi =

[
∗ ∗

gi1⊤ ∗

]
, following (10), the weighting vector returns

ω := [g1:n+1 · · · gn:n+1]⊤.

Since GLA with scalar gating valued in [0, 1] following Assumption B, that is, gi ∈ [0, 1]. Therefore,
we have gi:n+1 ≤ g j:n+1 for 1 ≤ i ≤ j ≤ n. Therefore, any weighting vector implemented by GLA
gating should be inside W̄.

Next, we will show that

ω⋆ ∈ W where ω⋆ = arg min
P,ω∈W̄

LWPGD(P,ω).

Define the weighting vector ω = [ω⊤1 · · · ω
⊤
K]⊤ ∈ Rn where we have ωk = [ω(k)

1 · · · ω
(k)
nk ]⊤ ∈ Rnk . For

any ω <W, there exist (i, j, k), i = j − 1 such that ω(k)
i < ω

(k)
j . Given gradient in (42), we have that
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∇ω(k)
i
L = c1 · ω

(k)
i + c2 and ∇ω(k)

j
L = c1 · ω

(k)
j + c2 with for some c1, c2 with c1 > 0. ∇ω(k)

i
L < ∇ω(k)

j
L.

Therefore either increasing ω(k)
j (if ∇ω(k)

i
L < 0) or decreasing ω(k)

j (if ∇ω(k)
j
L > 0) will reduce the loss.

This results in showing that ω⋆ ∈ W.

Finally, we will show that any ω ∈ W can be obtained via the GLA gating. Let ω =
[ω11⊤n1

· · · ωK1⊤nK
]⊤ be any vector in W and assume that ωK = α < 1 without loss of general-

ity. Then such sample weighting can be achieved via the gating[
1⊤n1

ω1
ω1:K

· · · 1⊤nk

ωk
ωk:K

· · · 1⊤nK

ωK
ωK:K

]⊤
.

Let ω′k := ωk
ωk:K

and let wg be in the form of

wg =

[0d+1
w̃g

]
∈ Rd+p+1.

Then it remains to show that there exists w̃g satisfying:

ϕ(w̃⊤g d̄k)
{
= 1, k = 0
= ω′k, k ∈ [K]

Assumption B implies the feasible of the problem, which completes the proof of (23).

Recap the optimal weighting from (14) which takes the form of

ω⋆ =
(
g(γ⋆) · R + I

)−1
r.

Since Assumption C holds and n1 = n2 = · · · = nK := n̄, ω⋆ takes the form of ω⋆ = cr for some
positive constant c. Therefore, the optimal weighting (up to a scalar) is inside the setW. Combining
it with (23) completes the proof.

□

D.2 Proof of Theorem 6

Proof. Following the similar proof of Theorem 5, and letting W̃ :=
{[
ω11⊤n1

· · · ωK1⊤nK

]⊤
∈ Rn

}
, we

obtain
min

P,ω∈W̃
LWPGD(P,ω) = min

P,ω
LWPGD(P,ω).

Therefore, it remains to show that any ω ∈ W̃ can be implemented via some gating function. Let
ω = [ω11⊤n1

· · · ωK1⊤nK
] be arbitrary weighting in W̃. Theorem 5 has shown that if ω1 ≤ ω2 ≤ · · · ≤

ωK , GLA with scalar function can implement such increasing weighting.

Now, inspired from Appendix B that all dimensions in the output implement individual WPGD. We
can decouple the weighting into K separate weighting:

ω1 = ω1[1⊤n1
· · · 1⊤nK

]

ω2 = (ω2 − ω1)[0⊤n1
1⊤n2
· · · 1⊤nK

]

ω3 = (ω3 − ω2)[0⊤n1
0⊤n2

1⊤n3
· · · 1⊤nK

]
· · ·

ωK = (ω3 − ω2)[0⊤n1
0⊤n2

0⊤n3
· · · 0⊤nK−1

1⊤nK
]

and we have ω =
∑K

k=1ωk. Recap from Appendix B and consider the construction Wv = [0(d+1)×d u].
Assumption B implies that K ≤ p < d + p + 1.

From (27) and (28), let i’th dimension implements the weighting ωi for i ∈ [K]. Specifically, let
gi implement weighting [0⊤n1

· · · 0⊤ni−1
1⊤ni
· · · 1⊤nk

] (which is feasible due to Theorem 5) and set
ui = ωi − ω j with ω0 = 0. Then the composed weighting following (28) returns ω, which completes
the proof. □
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D.3 Proof of Corollary 3

Proof. Recap from (43a) that given Σ = I and ω = 1,

P⋆ =
(
(d + σ2)nI + (n + 1⊤R1)I

)−1
1⊤r

=
1⊤r

n(d + σ2 + 1) + 1⊤R1
I := cI.

Then taking it back to the loss function (c.f. (38)) obtains

L(P⋆,ω = 1) = d + σ2 − 2cd1⊤r + (d + σ2)c2nd + (n + 1⊤R1)c2d

= d + σ2 − cd1⊤r.

It completes the proof. □
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