
Long-Horizon Planning for Multi-Agent Robots in Partially Observable
Environments

Siddharth Nayak 1 Adelmo Morrison 1 Marina Ten Have 1 Vittal Thirumalai 1 Jackson Zhang 1 Darren Chen 1

Aditya Kapoor 2 Eric Robinson 3 Karthik Gopalakrishnan 4 James Harrison 5 Anuj Mahajan† 6

Brian Ichter‡ 5 Hamsa Balakrishnan 1

Abstract
Language Models (LMs) excel in understanding
natural language which makes them a powerful
tool for parsing human instructions into task plans
for autonomous agents. Unlike traditional plan-
ning methods that rely on domain knowledge
and handcrafted rules, LMs generalize from di-
verse data and adapt to various tasks with min-
imal tuning, acting as a compressed knowledge
base. However, LMs in their standard form face
challenges with long-horizon tasks, particularly
in partially observable multi-agent settings. We
propose an LM-based Long-Horizon Planner for
Multi-Agent Robotics (LLaMAR), a cognitive ar-
chitecture that employs a plan-act-correct-verify
framework. It achieves state-of-the-art results in
partially observable long-horizon planning tasks
without relying on privileged information from or-
acles. Experiments show that LLaMAR achieves
a 30% higher success rate compared to other
state-of-the-art LM-based multi-agent planners
in household tasks of varying complexity in the
AI2-THOR environment.

1. Introduction
Developing embodied agents that assist humans poses a
significant challenge, especially when multiple embodied
agents are involved and communication happens using natu-
ral language. Recent works (Ichter et al., 2023; Huang et al.,
2023b;c; Singh et al., 2023; Liang et al., 2022; Lin et al.,
2023; Shah et al., 2022; Huang et al., 2023a; 2022) have
shown that LMs can effectively use natural language in-
structions to generate task plans for robots. However, most

1Massachusetts Institute of Technology, Cambridge, USA
2TCS, India 3USAF-MIT AI Accelerator 4Stanford, USA 5Google,
San Fransisco, USA 6Apple, Cupertino, USA. Correspondence
to: Siddharth Nayak <sidnayak@mit.edu>. †Work done outside
Apple. ‡Now at Physical Intelligence.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

studies focus on single-agent long-horizon task planning.
To address this research gap, we propose a centralized LM-
based cognitive framework in which decisions are made
simultaneously for all agents based on their local obser-
vations. This framework is inspired from the centralized
multi-agent system framework (CMAS) proposed in (Chen
et al., 2023). Leveraging the ability of pre-trained LMs
to generalize across diverse tasks, we aim to use them for
long-horizon embodied multi-agent task planning.

Integrating an LM-based plan-act-correct-verify framework
enables a robust and adaptive approach to multi-agent task
planning in dynamic, partially observable environments that
allows agents to: (1) plan subtasks required to complete
the langugae instructed task, (2) select high-level actions
for each agent to complete the proposed subtasks, (3) iden-
tify and correct high-level actions that fail in execution,
and (4) verify subtask completion based on successfully
executed high-level actions. Unlike existing methods, our
approach uses real-time execution feedback, observations,
and agent histories to iteratively refine action planning and
execution. This allows agents to adjust strategies based
on action execution insights, effectively handling failures
without needing perfect environmental knowledge or oracle
feedback. The correction and verification process in our cog-
nitive architecture (Arora & Kambhampati, 2023; Sengar
et al., 2022) is grounded in the environment’s reality, which
sets it apart from LM self-verification methods that reason
on their perception of the environment reality (Valmeekam
et al., 2023a). This framework enhances agents’ ability to
complete complex, long-horizon multi-agent tasks, yielding
substantial improvement over state-of-the-art methods.

Similar to our approach, recent works (Kannan et al., 2023;
Wang et al., 2024; Singh et al., 2024; Zhang et al., 2024; Yu
et al., 2023; Mandi et al., 2023; Chen et al., 2023) utilize
LMs for multi-agent planning, often adopting a hierarchical
decision-making structure. The LMs are used for high-level
planning to determine subtasks, sometimes in conjunction
with planning domain definition language (PDDL) that to-
gether with the LM planner, functions as a feasibility solver.
Specific actions are executed using low-level policies pre-
trained through reinforcement learning, behavior cloning, or

1

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

heuristic approaches. While these methods effectively use
LMs as high-level planners, they assume perfect low-level
primitive action policies and utilize privileged environmen-
tal information. By contrast, LLaMAR does not assume
perfect knowledge of the environment, does not rely on
oracle feedback, and does not assume perfect execution
of low-level primitive policies bestowing itself as a good
candidate for a real-world planner for robots.

The main contributions of this paper are:

LLaMAR: An LM-based iterative planning framework for
long-horizon, multi-objective tasks in partially observable
environments, with the following key features:

• It operates without prior knowledge of the environment,
allowing agents to explore and make decisions based on
new observations.

• It is capable of self-evaluation of outcomes without re-
lying on oracles for feedback, enabling independent
identification and correction of action failures.

2. Background
Problem Setting: We consider a multi-robot setting
that perform a series of everyday tasks in a home-like
environment that typically require long-horizon planning
(100 low-level actions) to achieve the goal. Our ob-
jective is to compute plans for a robot team to execute
high-level language instructions, I. We formalize these
tasks as partially observable Markov decision processes
(POMDP) (Puterman, 1994; Kaelbling et al., 1998), de-
noted as ⟨N, I, {Oi}, {Ai},G, T ⟩. N is the number of
agents and I is the high-level language instruction set.
Here, o ∈ O denotes the observation set for all agents.
Particularly, oi ∈ Oi is the observation set of agent i,
that captures incomplete environment state information.
a ∈ A = A1 × A2 · · · AN represents the joint action
space which comprises of different categories of high-
level actions A = ANAV ∪ AINT ∪ AEXP . ANAV ,
AINT and AEXP are the joint navigation actions (eg:
NavigateTo(location), joint interaction actions (eg:
PickUp(object)) and joint exploration actions (refer
C.2) respectively. Each high-level action is associated with
a pre-trained low-level primitive policy. All agents exe-
cute actions synchronously at every high-level decision step.
G = {g1, · · · , gk} defines the subtasks that the agents need
to accomplish to achieve the language instruction task. T is
the length of the planning horizon.

Environment: We use AI2Thor (Kolve et al., 2017) to sim-
ulate real-world tasks due to its versatile interactions and
photorealistic rendering. Our method, free from parametric
training, can also be applied in environments like Virtual-
Home (Puig et al., 2018), Habitat (Puig et al., 2023), and
ThreeDWorld (Gan et al., 2021), possibly extending beyond

household domains (Baghel et al., 2021). We address a
rearrangement task (Batra et al., 2020) with N collaborat-
ing agents that explore to gather task-relevant information.
Unlike previous approaches (Zhang et al., 2024; Kannan
et al., 2023; Wang et al., 2024), we do not rely on an oracle
or preset condition checks for subtask validation. Appendix
C has more details on observation and action spaces.

3. Approach
We describe our approach in this section. Figure 1 illustrates
LLaMAR’s architecture comprising four modules: Planner,
Actor, Corrector, and Verifier, each an LM with a distinct
role. Prior work (Prasad et al., 2023) shows that splitting
roles across different LMs improves performance in sequen-
tial decision-making. Our initial experiments confirm that
LMs tasked with reasoning about multiple inputs and pro-
viding long outputs perform poorly. We iterate through
these four modules at every high-level decision step. The
pseudocode for our approach is in Appendix 2. We define
some key notation below:

• MemoryM: A textual description of the joint memory
of all agents, summarizing past observations, high-level
actions, plausible reasons for action failures, and specific
subtasks that each agent is attempting to solve.

• Open Subtasks GO ⊂ G: Feasible subtasks proposed
by the Planner LM to achieve the environment task that
are yet to be accomplished by the agents.

• Completed Subtasks GS ⊂ G: Subtasks completed by
the agents.

• Corrective Actions ac: Corrective actions for each
agent based on failure information from the previous
step.

At the start of each episode, MemoryM, Open Subtasks
GO, Completed Subtasks GS , Actions a, Corrective Actions
ac, and Failure Information F are initialized as empty sets.

Consider an example of a kitchen with groceries, a fridge,
and a counter. Two agents are tasked with ”Fetch the gro-
ceries and place them in the fridge”. This example will
help illustrate the utility of each module. All LMs receive
a language task instruction I, joint observations from all
agents, and information about open and completed subtasks
and memory unless stated otherwise. We next discuss the
various components in our architecture in detail:

Planner Module The Planner LM module suggests feasi-
ble subtasks to ensure the completion of the environment
task. The Planner suggests subtasks related to objects seen
in the current observation or memory of all the agents. For
the example considered, it decomposes the task into sub-
tasks like ”transport the tomato to the fridge” and ”transport
the lettuce to the fridge”, which are added to GO.

Actor Module The Actor LM predicts high-level actions to
execute in the environment to progress the open subtasks and

2

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Figure 1. An overview of LLaMAR’s modular cognitive architecture. LLaMAR leverages LMs within four key modules: Planner, Actor,
Corrector, and Verifier, each with specific roles. The Planner breaks down the high-level language instruction into feasible subtasks to
achieve the environment goal. The Actor determines the high-level actions each agent should perform. These actions trigger low-level
policies that generate and execute a sequence of primitive actions in sync across all agents. Based on execution feedback, the Corrector
suggests corrections for high-level actions and the Verifier Module validates completion of subtasks.

update the memory. It additionally uses corrective actions
suggested by the Corrector module in the previous time
step. For instance, the Actor might suggest actions such as
a = [Pickup(Tomato),NavigateTo(Lettuce)],
updating memory with ”A tomato is on the counter-top,
Alice is picking up the tomato, and Bob is navigating to the
lettuce”.

Corrector Module The Corrector LM corrects high-
level actions suggested by the Actor LM after failures
in the previous step with reasons for failures and cho-
sen corrections. execution1 For example, it might suggest
”Picking up the tomato failed because it is far away. Al-
ice first needs to navigate closer to the tomato.”; ac =
[NavigateTo(Tomato), None].

Verifier Module After executing high-level actions, the
Verifier LM assesses whether these actions have completed
any subtasks in the open subtask set. Successful subtasks are
moved to the completed subtask set. Without it, the frame-
work would need to rely on an oracle for subtask completion
feedback. The Verifier LM additionally utilizes successful
high-level actions execution information to predict subtask
completion. For example, after transporting the lettuce to
the fridge, the Verifier updates the completed subtasks with
”transport lettuce to the fridge”.

The natural language LM outputs are translated to exe-
cutable actions by using the cosine-similarity method from
(Huang et al., 2022). More details in Appendix C.3.

1We use the simulator just to verify the successful execution of
the high-level action.

4. Experiments
We evaluate the performance of LLaMAR and benchmark
other baseline methods on a set of planning tasks in AI2-
THOR. The tasks vary in the ambiguity in the natural lan-
guage instruction given as input to the agents. More details
can be found in the Appendix ??.

Metrics We use the Success Rate (SR), the fraction of
episodes where all subtasks are completed, Transport Rate
(TR), the fraction of the subtasks, Coverage (C), the fraction
of successful interactions with target objects and the Aver-
age Steps (L) taken to finish the task. For all the metrics,
we report the means along with the 95% confidence interval
across all the tasks. Since SR is a binomial metric, we re-
port the Clopper-Pearson Interval as the confidence interval.
More details about the metrics can be found in Appendix D

Baselines For a fair comparison with our method, we make
modifications to the baselines to make them compatible to
the partially observable settings with limited reliance on
the simulator. We compare different prompting methods
in the reactive planning paradigm, specifically Act, ReAct
(Yao et al., 2023) and Chain-of-Thought (CoT) (Wei et al.,
2022). Along with this we also compare LLaMAR with
SmartLLM (Kannan et al., 2023) and CoELA (Zhang et al.,
2024). More details about implementations of baselines
can be found in Appendix H. It should be noted that Act,
Chain-of-Thought, ReAct, and SmartLLM are all CMAS
frameworks whereas CoELA follows the DMAS framework
(refer (Chen et al., 2023)).

3

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Modules Success
Rate

Transport
Rate Coverage Balance Steps

Actor 0.33 0.67 0.91 0.59 24.92
(0.19, 0.49) (0.59, 0.76) (0.86,0.95) (0.52,0.66) (22.12,27.73)

Planner+ 0.45 0.78 0.92 69 24.87
Actor+ (0.29, 0.57) (0.67, 0.84) (0.84, 0.95) (0.61, 0.75) (20.48, 27.95)
Verifier
Planner+ 0.67 0.91 0.97 0.84 22.81
Actor+ (0.51, 0.80) (0.83, 0.96) (0.94, 0.99) (0.79, 0.89) (19.95, 25.76)
Corrector
LLaMAR 0.66 0.91 0.97 0.82 21.87

(0.50, 0.76) (0.81, 0.96) (0.93,0.99) (0.75,0.87) (18.76, 26.43)

Table 1. Ablating different modules LLaMAR with GPT-4V as the
underlying VLM, 2-agents scenarios.

5. Results and Discussion

Algorithm Success
Rate

Transport
Rate Coverage Balance Steps

Act 0.33 0.67 0.91 0.59 24.92
(0.19, 0.49) (0.59, 0.76) (0.86, 0.95) (0.52, 0.66) (22.12, 27.73)

ReAct 0.34 0.72 0.92 0.67 24.08
(0.20, 0.49) (0.63, 0.80) (0.86, 0.97) (0.61, 0.73) (21.27, 26.89)

CoT 0.14 0.59 0.87 0.62 28.4
(0.06, 0.28) (0.51, 0.67) (0.81, 0.92) (0.56, 0.69) (26.91, 29.97)

SmartLLM 0.11 0.23 0.91 0.45 29.87
(0.05, 0.23) (0.13, 0.31) (0.80, 0.96) (0.37, 0.52) (26.20, 30.00)

CoELA 0.25 0.46 0.76 0.73 28.93
(0.10, 0.36) (0.35, 0.56) (0.67, 0.85) (0.67, 0.80) (27.77, 30.00)

LLaMAR
(vision) 0.51 0.85 0.95 0.83 25.80

(0.36, 0.66) (0.80, 0.91) (0.91, 0.98) (0.78, 0.86) (23.72, 27.88)
LLaMAR

(exp) 0.62 0.87 0.95 0.82 23.44

(0.46, 0.76) (0.80, 0.93) (0.91, 0.98) (0.77, 0.87) (20.88, 26.00)
LLaMAR

(exp) 0.66 0.91 0.97 0.82 21.87

(0.50, 0.78) (0.81, 0.96) (0.93, 0.99) (0.75, 0.87) (18.76, 24.23)

Table 2. Comparison of evaluation metrics against baselines aver-
aged across all tasks.

Baseline Comparisons: Table 2 compares our method,
LLaMAR, with other baselines in a 2-agent scenario using
GPT-4 as the underlying LM. Act and ReAct show similar
performance, with Act struggles due to its lack of strategic
planning and correction. ReAct performs slightly better by
dynamically adjusting actions based on reasoning on im-
mediate feedback. CoT’s performance declines with longer
planning horizons due to its inability to maintain coher-
ence over extended planning sequences, consistent with
findings in (Stechly et al., 2024), showing its effectiveness
only with highly specific prompts. SmartLLM, operating in
a plan-and-execute paradigm, generates impractical plans
with issues like infinite loops and inability to handle low-
level action failures, leading to lower success rates and
poor transport metrics. It also tends to hallucinate objects.
CoELA, using a decentralized multi-agent system (DMAS),
performs poorly due to large input prompts and struggles to
select the correct action from numerous choices. Its decen-
tralized decision-making is less efficient than the centralized
multi-agent system (CMAS) used by LLaMAR. Previous re-
search (Chen et al., 2023) confirms CMAS frameworks are

more effective than DMAS frameworks. LLaMAR when
used solely with text inputs, exhibits a worse performance
than with visual inputs. This is attributed to the agents’
inability to reason about visual observations, which is par-
ticularly detrimental for the Corrector module. Overall, our
method, LLaMAR, benefits from its modular cognitive ar-
chitecture, which integrates planning, acting, correcting, and
verifying through distinct LLM roles, resulting in superior
performance across various evaluation metrics. By avoiding
reliance on privileged information and incorporating a ro-
bust exploration strategy allowing it to scout for objects not
initially visible, LLaMAR ensures higher success rates and
balanced task execution among agents.

Roles of different modules in LLaMAR: We conduct abla-
tion studies to assess each module’s effectiveness by compar-
ing the framework’s performance metrics with each module
removed individually. The results are summarized in Ta-
ble 1. Using only the Actor module corresponds to the
”Act” baseline, which demonstrates its fundamental capa-
bilities in isolation but shows limited effectiveness without
planning and correction due to relatively lower SR and TR,
and ensuring more effective task completion and even work
distribution, as indicated by the increase in balance (B).
Adding the Planner and Verifier module improves perfor-
mance, benefiting from better task planning and validation,
increasing the overall SR and TR. However, in scenarios
where the suggested action fails, the actor suggests the same
action in the next decision step since it is not able to rea-
son on why the action failed until the end of the planning
horizon. Incorporating the Corrector module with access to
privileged information from an environment oracle signifi-
cantly boosts performance, enhancing the SR, TR, and C,
and reducing L by approximately two time steps on aver-
age, consistent with the findings in (Arora & Kambhampati,
2023). This highlights the Corrector module’s importance
in adjusting actions based on feedback, resulting in higher
task success and more efficient task completion, albeit with
reliance on oracle knowledge. Finally, the complete LLa-
MAR system, without privileged information, achieves SR,
TR, and C values close to those of the oracle setup, with
better L. This demonstrates the system’s robustness and
effectiveness in a realistic setting. The Corrector module
plays a crucial role in enabling agents to learn from past
failures and avoid repeating actions, preventing task failures
due to timeout. Despite lacking oracle knowledge, LLa-
MAR performs nearly as well as the oracle-enhanced setup.
These results highlight the importance of each module in our
cognitive architecture. Removing any module diminishes
effectiveness, highlighting their essential roles in achieving
state-of-the-art results.

4

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

6. Conclusion
We address long-horizon planning in dynamic, partially
observable multi-agent environments with LLaMAR, an
LM-based planner using four specialized modules: Planner,
Actor, Corrector, and Verifier. This framework iteratively re-
fines action planning, adapts to failures, and verifies subtask
completion using real-time observations and action feed-
back, without privileged information. We also introduce
a heuristic-based exploration strategy to guide agents to
semantically relevant regions. Empirical results show LLa-
MAR outperforms existing LM-based approaches, achiev-
ing a 30% higher success rate on AI2Thor’s planning tasks.

Acknowledgements
We would like to thank Keerthana Gopalakrishnan, Sydney
Dolan, Jasmine Aloor, and Victor Qin for helpful discus-
sions and feedback. OpenAI credits for GPT-4 access was
provided through OpenAI’s Researcher Access Program.
The research was sponsored by the United States Air Force
Research Laboratory and the Department of the Air Force
Artificial Intelligence Accelerator and was accomplished
under Cooperative Agreement Number FA8750-19-2-1000.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the Department of the Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation herein.

References
Arora, D. and Kambhampati, S. Learning and Leveraging

Verifiers to Improve Planning Capabilities of Pre-trained
Language Models. arXiv preprint arXiv:2305.17077,
2023.

Baghel, R., Kapoor, A., Bachiller, P., Jorvekar, R. R.,
Rodriguez-Criado, D., and Manso, L. J. A toolkit to gen-
erate social navigation datasets. In Advances in Physical
Agents II: Proceedings of the 21st International Work-
shop of Physical Agents (WAF 2020), November 19-20,
2020, Alcalá de Henares, Madrid, Spain, pp. 180–193.
Springer, 2021.

Barto, A. G. and Mahadevan, S. Recent Advances in Hi-
erarchical Reinforcement Learning. Discrete Event Dy-
namic Systems, 13:41–77, 2003. URL https://api.
semanticscholar.org/CorpusID:386824.

Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng,
J., Koltun, V., Levine, S., Malik, J., Mordatch, I., Mot-
taghi, R., Savva, M., and Su, H. Rearrangement: A Chal-

lenge for Embodied AI. CoRR, abs/2011.01975, 2020.
URL https://arxiv.org/abs/2011.01975.

Brodeur, S., Perez, E., Anand, A., Golemo, F., Celotti, L.,
Strub, F., Rouat, J., Larochelle, H., and Courville, A. C.
HoME: a Household Multimodal Environment. CoRR,
abs/1711.11017, 2017. URL http://arxiv.org/
abs/1711.11017.

Chen, Y., Arkin, J., Zhang, Y., Roy, N., and Fan, C. Scalable
Multi-Robot Collaboration with Large Language Models:
Centralized or Decentralized Systems? arXiv preprint
arXiv:2309.15943, 2023.

Gan, C., Zhou, S., Schwartz, J., Alter, S., Bhandwaldar,
A., Gutfreund, D., Yamins, D. L. K., DiCarlo, J. J., Mc-
Dermott, J., Torralba, A., and Tenenbaum, J. B. The
ThreeDWorld Transport Challenge: A Visually Guided
Task-and-Motion Planning Benchmark for Physically Re-
alistic Embodied AI, 2021.

Gramopadhye, M. and Szafir, D. Generating Executable Ac-
tion Plans with Environmentally-Aware Language Mod-
els, 2023.

Hong, W., Wang, W., Lv, Q., Xu, J., Yu, W., Ji, J., Wang, Y.,
Wang, Z., Zhang, Y., Li, J., Xu, B., Dong, Y., Ding, M.,
and Tang, J. CogAgent: A Visual Language Model for
GUI Agents, 2023a.

Hong, Y., Zhen, H., Chen, P., Zheng, S., Du, Y., Chen, Z.,
and Gan, C. 3D-LLM: Injecting the 3D World into Large
Language Models, 2023b.

Huang, C., Mees, O., Zeng, A., and Burgard, W. Visual
Language Maps for Robot Navigation. In Proceedings
of the IEEE International Conference on Robotics and
Automation (ICRA), London, UK, 2023a.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage Models as Zero-Shot Planners: Extracting Action-
able Knowledge for Embodied Agents. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 9118–9147. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/huang22a.html.

Huang, W., Xia, F., Shah, D., Driess, D., Zeng, A., Lu,
Y., Florence, P., Mordatch, I., Levine, S., Hausman,
K., and Ichter, B. Grounded Decoding: Guiding
Text Generation with Grounded Models for Embod-
ied Agents. In Oh, A., Naumann, T., Globerson,
A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems,
volume 36, pp. 59636–59661. Curran Associates, Inc.,

5

https://api.semanticscholar.org/CorpusID:386824
https://api.semanticscholar.org/CorpusID:386824
https://arxiv.org/abs/2011.01975
http://arxiv.org/abs/1711.11017
http://arxiv.org/abs/1711.11017
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

2023b. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/
bb3cfcb0284642a973dd631ec9184f2f-Paper-Conference.
pdf.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Flo-
rence, P., Zeng, A., Tompson, J., Mordatch, I., Cheb-
otar, Y., Sermanet, P., Jackson, T., Brown, N., Luu,
L., Levine, S., Hausman, K., and Ichter, B. Inner
Monologue: Embodied Reasoning through Planning
with Language Models. In Liu, K., Kulic, D., and Ich-
nowski, J. (eds.), Proceedings of The 6th Conference
on Robot Learning, volume 205 of Proceedings of Ma-
chine Learning Research, pp. 1769–1782. PMLR, 14–
18 Dec 2023c. URL https://proceedings.mlr.
press/v205/huang23c.html.

Ichter, B., Brohan, A., Chebotar, Y., Finn, C., Hausman, K.,
Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang, E., Julian,
R., Kalashnikov, D., Levine, S., Lu, Y., Parada, C., Rao,
K., Sermanet, P., Toshev, A. T., Vanhoucke, V., Xia, F.,
Xiao, T., Xu, P., Yan, M., Brown, N., Ahn, M., Cortes,
O., Sievers, N., Tan, C., Xu, S., Reyes, D., Rettinghouse,
J., Quiambao, J., Pastor, P., Luu, L., Lee, K.-H., Kuang,
Y., Jesmonth, S., Joshi, N. J., Jeffrey, K., Ruano, R. J.,
Hsu, J., Gopalakrishnan, K., David, B., Zeng, A., and
Fu, C. K. Do As I Can, Not As I Say: Grounding Lan-
guage in Robotic Affordances. In Liu, K., Kulic, D.,
and Ichnowski, J. (eds.), Proceedings of The 6th Confer-
ence on Robot Learning, volume 205 of Proceedings of
Machine Learning Research, pp. 287–318. PMLR, 14–
18 Dec 2023. URL https://proceedings.mlr.
press/v205/ichter23a.html.

Jain, U., Weihs, L., Kolve, E., Rastegari, M., Lazebnik, S.,
Farhadi, A., Schwing, A. G., and Kembhavi, A. Two
Body Problem: Collaborative Visual Task Completion.
CoRR, abs/1904.05879, 2019. URL http://arxiv.
org/abs/1904.05879.

Jain, U., Weihs, L., Kolve, E., Farhadi, A., Lazebnik, S.,
Kembhavi, A., and Schwing, A. A cordial sync: Going
beyond marginal policies for multi-agent embodied tasks.
In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part V 16, pp. 471–490. Springer, 2020.

Kaelbling, L. P., Littman, M. L., and Cassandra,
A. R. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence,
101(1):99–134, 1998. ISSN 0004-3702. doi:
https://doi.org/10.1016/S0004-3702(98)00023-X.
URL https://www.sciencedirect.com/
science/article/pii/S000437029800023X.

Kambhampati, S. Can large language models reason and
plan? Annals of the New York Academy of Sciences, 1534
(1):15–18, 2024.

Kannan, S. S., Venkatesh, V. L., and Min, B.-C.
SMART-LLM: Smart Multi-Agent Robot Task Plan-
ning using Large Language Models. arXiv preprint
arXiv:2309.10062, 2023.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi,
A. AI2-THOR: An Interactive 3D Environment for Visual
AI. arXiv, 2017.

Laurençon, H., Saulnier, L., Tronchon, L., Bekman, S.,
Singh, A., Lozhkov, A., Wang, T., Karamcheti, S., Rush,
A. M., Kiela, D., Cord, M., and Sanh, V. OBELICS: An
Open Web-Scale Filtered Dataset of Interleaved Image-
Text Documents, 2023.

Laurençon, H., Tronchon, L., Cord, M., and Sanh, V. What
matters when building vision-language models?, 2024.

Li, C., Zhang, R., Wong, J., Gokmen, C., Srivastava, S.,
Martı́n-Martı́n, R., Wang, C., Levine, G., Lingelbach,
M., Sun, J., Anvari, M., Hwang, M., Sharma, M., Ay-
din, A., Bansal, D., Hunter, S., Kim, K.-Y., Lou, A.,
Matthews, C. R., Villa-Renteria, I., Tang, J. H., Tang, C.,
Xia, F., Savarese, S., Gweon, H., Liu, K., Wu, J., and
Fei-Fei, L. BEHAVIOR-1K: A Benchmark for Embodied
AI with 1,000 Everyday Activities and Realistic Simula-
tion. In Liu, K., Kulic, D., and Ichnowski, J. (eds.), Pro-
ceedings of The 6th Conference on Robot Learning, vol-
ume 205 of Proceedings of Machine Learning Research,
pp. 80–93. PMLR, 14–18 Dec 2023. URL https://
proceedings.mlr.press/v205/li23a.html.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as Policies: Language
Model Programs for Embodied Control. In arXiv preprint
arXiv:2209.07753, 2022.

Lin, K., Agia, C., Migimatsu, T., Pavone, M., and Bohg,
J. Text2Motion: from natural language instructions to
feasible plans. Autonomous Robots, 47(8):1345–1365,
November 2023. ISSN 1573-7527. doi: 10.1007/
s10514-023-10131-7. URL http://dx.doi.org/
10.1007/s10514-023-10131-7.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved Baselines
with Visual Instruction Tuning, 2023a.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual Instruction
Tuning. In NeurIPS, 2023b.

Mandi, Z., Jain, S., and Song, S. RoCo: Dialectic multi-
robot collaboration with large language models. arXiv
preprint arXiv:2307.04738, 2023.

6

https://proceedings.neurips.cc/paper_files/paper/2023/file/bb3cfcb0284642a973dd631ec9184f2f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bb3cfcb0284642a973dd631ec9184f2f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bb3cfcb0284642a973dd631ec9184f2f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/bb3cfcb0284642a973dd631ec9184f2f-Paper-Conference.pdf
https://proceedings.mlr.press/v205/huang23c.html
https://proceedings.mlr.press/v205/huang23c.html
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
http://arxiv.org/abs/1904.05879
http://arxiv.org/abs/1904.05879
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://www.sciencedirect.com/science/article/pii/S000437029800023X
https://proceedings.mlr.press/v205/li23a.html
https://proceedings.mlr.press/v205/li23a.html
http://dx.doi.org/10.1007/s10514-023-10131-7
http://dx.doi.org/10.1007/s10514-023-10131-7

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Meyer, J., Praeuner, R., and Vanderbeek, L. Hierarchi-
cal Multi-Agent Reinforcement Learning. https:
//cse.unl.edu/˜lksoh/Classes/CSCE475_
875_Fall11/seminars/Seminar_JRL.pdf,
2020.

Misra, D. K., Bennett, A., Blukis, V., Niklasson, E.,
Shatkhin, M., and Artzi, Y. Mapping Instructions to
Actions in 3D Environments with Visual Goal Prediction.
CoRR, abs/1809.00786, 2018. URL http://arxiv.
org/abs/1809.00786.

Nachum, O., Gu, S. S., Lee, H., and Levine, S.
Data-Efficient Hierarchical Reinforcement Learn-
ing. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
e6384711491713d29bc63fc5eeb5ba4f-Paper.
pdf.

OpenAI, :, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J.,
Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Bal-
aji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M.,
Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G.,
Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman,
A.-L., Brockman, G., Brooks, T., Brundage, M., Button,
K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson,
C., Carmichael, R., Chan, B., Chang, C., Chantzis, F.,
Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess,
B., Cho, C., Chu, C., Chung, H. W., Cummings, D., Cur-
rier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N.,
Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning,
S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus,
L., Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse,
C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B.,
Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S.,
Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S.,
Jonn, B., Jun, H., Kaftan, T., Łukasz Kaiser, Kamali, A.,
Kanitscheider, I., Keskar, N. S., Khan, T., Kilpatrick, L.,
Kim, J. W., Kim, C., Kim, Y., Kirchner, H., Kiros, J.,
Knight, M., Kokotajlo, D., Łukasz Kondraciuk, Kondrich,
A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V.,
Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D.,
Li, C. M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T.,
Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning,
S., Markov, T., Markovski, Y., Martin, B., Mayer, K.,
Mayne, A., McGrew, B., McKinney, S. M., McLeavey, C.,

McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick,
J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V.,
Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O.,
Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan,
A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki,
J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo,
G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Michael, Pokorny, Pokrass, M.,
Pong, V., Powell, T., Power, A., Power, B., Proehl, E.,
Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C.,
Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez,
H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S.,
Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Sel-
sam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker,
S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin,
J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Stau-
dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N., Thompson, M., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei, J.,
Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W.,
Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng, T.,
Zhuang, J., Zhuk, W., and Zoph, B. GPT-4 Technical
Report, 2023.

Padmakumar, A., Thomason, J., Shrivastava, A., Lange, P.,
Narayan-Chen, A., Gella, S., Piramuthu, R., Tur, G., and
Hakkani-Tur, D. TEACh: Task-driven Embodied Agents
that Chat, 2021.

Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. Hi-
erarchical Reinforcement Learning: A Comprehensive
Survey. ACM Comput. Surv., 54(5), jun 2021. ISSN
0360-0300. doi: 10.1145/3453160. URL https:
//doi.org/10.1145/3453160.

Prasad, A., Koller, A., Hartmann, M., Clark, P., Sabharwal,
A., Bansal, M., and Khot, T. ADaPT: As-Needed Decom-
position and Planning with Language Models, 2023.

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S.,
and Torralba, A. VirtualHome: Simulating Household
Activities via Programs, 2018.

Puig, X., Undersander, E., Szot, A., Cote, M. D., Part-
sey, R., Yang, J., Desai, R., Clegg, A. W., Hlavac, M.,
Min, T., Gervet, T., Vondruš, V., Berges, V.-P., Turner,
J., Maksymets, O., Kira, Z., Kalakrishnan, M., Malik, J.,
Chaplot, D. S., Jain, U., Batra, D., Rai, A., and Mottaghi,
R. Habitat 3.0: A Co-Habitat for Humans, Avatars and
Robots, 2023.

7

https://cse.unl.edu/~lksoh/Classes/CSCE475_875_Fall11/seminars/Seminar_JRL.pdf
https://cse.unl.edu/~lksoh/Classes/CSCE475_875_Fall11/seminars/Seminar_JRL.pdf
https://cse.unl.edu/~lksoh/Classes/CSCE475_875_Fall11/seminars/Seminar_JRL.pdf
http://arxiv.org/abs/1809.00786
http://arxiv.org/abs/1809.00786
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e6384711491713d29bc63fc5eeb5ba4f-Paper.pdf
https://doi.org/10.1145/3453160
https://doi.org/10.1145/3453160

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Puterman, M. L. Markov Decision Processes.
Wiley, 1994. ISBN 978-0471727828. URL
http://books.google.com/books/about/
Markov_decision_processes.html?id=
Y-gmAQAAIAAJ.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., Krueger, G., and Sutskever, I. Learning Trans-
ferable Visual Models From Natural Language Super-
vision. CoRR, abs/2103.00020, 2021. URL https:
//arxiv.org/abs/2103.00020.

Raman, S. S., Cohen, V., Rosen, E., Idrees, I., Paulius,
D., and Tellex, S. Planning with Large Language
Models via Corrective Re-prompting. January 2022.
URL http://www.cs.utexas.edu/users/
ai-labpub-view.php?PubID=127989.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks, 2019.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans,
E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J.,
Parikh, D., and Batra, D. Habitat: A Platform for Em-
bodied AI Research. CoRR, abs/1904.01201, 2019. URL
http://arxiv.org/abs/1904.01201.

Sengar, V., Kapoor, A., George, N., Vatsal, V., Gubbi, J., Pal,
A., et al. Challenges in applying robotics to retail store
management. arXiv preprint arXiv:2208.09020, 2022.

Shah, D., Osinski, B., Ichter, B., and Levine, S. LM-
Nav: Robotic Navigation with Large Pre-Trained Mod-
els of Language, Vision, and Action. In 6th Annual
Conference on Robot Learning, 2022. URL https:
//openreview.net/forum?id=UW5A3SweAH.

Sharma, P., Torralba, A., and Andreas, J. Skill In-
duction and Planning with Latent Language. CoRR,
abs/2110.01517, 2021. URL https://arxiv.org/
abs/2110.01517.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W.,
Mottaghi, R., Zettlemoyer, L., and Fox, D. ALFRED:
A Benchmark for Interpreting Grounded Instructions for
Everyday Tasks. CoRR, abs/1912.01734, 2019. URL
http://arxiv.org/abs/1912.01734.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
Prompt: Generating Situated Robot Task Plans using
Large Language Models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp.
11523–11530, 2023. doi: 10.1109/ICRA48891.2023.
10161317.

Singh, I., Traum, D., and Thomason, J. TwoStep: Multi-
agent Task Planning using Classical Planners and Large
Language Models. arXiv preprint arXiv:2403.17246,
2024.

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao,
W.-L., and Su, Y. LLM-Planner: Few-Shot Grounded
Planning for Embodied Agents with Large Language
Models, 2023.

Stechly, K., Valmeekam, K., and Kambhampati, S. Chain of
Thoughtlessness: An Analysis of CoT in Planning. arXiv
preprint arXiv:2405.04776, 2024.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling
representation learning from reinforcement learning. In
International Conference on Machine Learning, pp. 9870–
9879. PMLR, 2021.

Sumers, T. R., Yao, S., Narasimhan, K., and Griffiths, T. L.
Cognitive Architectures for Language Agents, 2023.

Tang, H., Hao, J., Lv, T., Chen, Y., Zhang, Z., Jia, H.,
Ren, C., Zheng, Y., Meng, Z., Fan, C., and Wang, L.
Hierarchical Deep Multiagent Reinforcement Learning
with Temporal Abstraction, 2019.

Valmeekam, K., Marquez, M., and Kambhampati, S.
Can Large Language Models Really Improve by
Self-critiquing Their Own Plans? arXiv preprint
arXiv:2310.08118, 2023a.

Valmeekam, K., Marquez, M., Sreedharan, S., and Kamb-
hampati, S. On the planning abilities of large language
models-a critical investigation. Advances in Neural Infor-
mation Processing Systems, 36:75993–76005, 2023b.

Wang, J., He, G., and Kantaros, Y. Safe Task Planning for
Language-Instructed Multi-Robot Systems using Confor-
mal Prediction. arXiv preprint arXiv:2402.15368, 2024.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., Zhao, W. X., Wei,
Z., and Wen, J.-R. A Survey on Large Language Model
based Autonomous Agents, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E. H.,
Le, Q., and Zhou, D. Chain of Thought Prompting
Elicits Reasoning in Large Language Models. CoRR,
abs/2201.11903, 2022. URL https://arxiv.org/
abs/2201.11903.

Wohlke, J., Schmitt, F., and van Hoof, H. Hierarchies of
Planning and Reinforcement Learning for Robot Naviga-
tion. In 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, May 2021. doi: 10.1109/
icra48506.2021.9561151. URL http://dx.doi.
org/10.1109/ICRA48506.2021.9561151.

8

http://books.google.com/books/about/Markov_decision_processes.html?id=Y-gmAQAAIAAJ
http://books.google.com/books/about/Markov_decision_processes.html?id=Y-gmAQAAIAAJ
http://books.google.com/books/about/Markov_decision_processes.html?id=Y-gmAQAAIAAJ
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127989
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127989
http://arxiv.org/abs/1904.01201
https://openreview.net/forum?id=UW5A3SweAH
https://openreview.net/forum?id=UW5A3SweAH
https://arxiv.org/abs/2110.01517
https://arxiv.org/abs/2110.01517
http://arxiv.org/abs/1912.01734
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
http://dx.doi.org/10.1109/ICRA48506.2021.9561151
http://dx.doi.org/10.1109/ICRA48506.2021.9561151

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., Zheng, R., Fan,
X., Wang, X., Xiong, L., Zhou, Y., Wang, W., Jiang, C.,
Zou, Y., Liu, X., Yin, Z., Dou, S., Weng, R., Cheng, W.,
Zhang, Q., Qin, W., Zheng, Y., Qiu, X., Huang, X., and
Gui, T. The Rise and Potential of Large Language Model
Based Agents: A Survey, 2023.

Xia, F., Zamir, A. R., He, Z., Sax, A., Malik, J., and
Savarese, S. Gibson Env: Real-World Perception for
Embodied Agents. CoRR, abs/1808.10654, 2018. URL
http://arxiv.org/abs/1808.10654.

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F.,
Liu, M., Jiang, H., Yuan, Y., Wang, H., Yi, L., Chang,
A. X., Guibas, L. J., and Su, H. SAPIEN: A Sim-
ulAted Part-based Interactive ENvironment. CoRR,
abs/2003.08515, 2020. URL https://arxiv.org/
abs/2003.08515.

Yang, J., Borovikov, I., and Zha, H. Hierarchical Coop-
erative Multi-Agent Reinforcement Learning with Skill
Discovery. CoRR, abs/1912.03558, 2019. URL http:
//arxiv.org/abs/1912.03558.

Yang, R., Xu, H., Wu, Y., and Wang, X. Multi-task rein-
forcement learning with soft modularization. Advances in
Neural Information Processing Systems, 33:4767–4777,
2020.

Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., and
Schuurmans, D. Foundation models for decision making:
Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. ReAct: Synergizing Reasoning and
Acting in Language Models, 2023.

Yu, B., Kasaei, H., and Cao, M. Co-NavGPT: Multi-
Robot Cooperative Visual Semantic Navigation us-
ing Large Language Models. ArXiv, abs/2310.07937,
2023. URL https://api.semanticscholar.
org/CorpusID:263909555.

Zhang, H., Du, W., Shan, J., Zhou, Q., Du, Y., Tenenbaum,
J. B., Shu, T., and Gan, C. Building Cooperative Em-
bodied Agents Modularly with Large Language Models.
ICLR, 2024.

Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta,
A., Mottaghi, R., and Farhadi, A. Visual semantic plan-
ning using deep successor representations. In Proceed-
ings of the IEEE international conference on computer
vision, pp. 483–492, 2017.

9

http://arxiv.org/abs/1808.10654
https://arxiv.org/abs/2003.08515
https://arxiv.org/abs/2003.08515
http://arxiv.org/abs/1912.03558
http://arxiv.org/abs/1912.03558
https://api.semanticscholar.org/CorpusID:263909555
https://api.semanticscholar.org/CorpusID:263909555

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

A. Related Work
Reinforcement Learning (RL) for Long-Horizon Planning: While RL algorithms have shown promise in many applica-
tions, they still struggle with long-horizon tasks. Hierarchical reinforcement learning (HRL) has been used to address these
challenges in both single-agent (Barto & Mahadevan, 2003; Nachum et al., 2018; Pateria et al., 2021; Wohlke et al., 2021)
and multi-agent settings (Tang et al., 2019; Yang et al., 2019; Meyer et al., 2020). However, these approaches are typically
applied to single-task, stationary environments, such as games, where agents solve for one goal in a fixed environment.
Consequently, these methods do not generalize well across multiple environments or tasks. Multi-task RL has been explored
as a potential solution, requiring sophisticated task planning to handle diverse objectives (Stooke et al., 2021; Yang et al.,
2020). This often involves decomposing tasks into manageable subtasks, a process well-suited for hierarchical frameworks.
However, subtasks are known apriori in multi-task RL formulations. Real-world long-horizon RL necessitates robust task
planning, and LMs have emerged as a promising approach for this purpose.

LMs for Embodied Single-Agent Planning: Recent studies have demonstrated the effectiveness of LMs in generating and
executing plans in embodied single-agent environments (Yang et al., 2023; Wang et al., 2023; Xi et al., 2023; Sumers et al.,
2023; Sharma et al., 2021; Raman et al., 2022; Gramopadhye & Szafir, 2023) and creating plans in single-agent embodied
robotic environments (Kolve et al., 2017; Savva et al., 2019; Xia et al., 2018; Li et al., 2023; Padmakumar et al., 2021;
Shridhar et al., 2019; Misra et al., 2018; Zhu et al., 2017; Brodeur et al., 2017; Xiang et al., 2020; Jain et al., 2019; 2020).
Works like SayCan (Ichter et al., 2023) and Grounded Decoding (Huang et al., 2023b) use a combination of value functions
and LLM predictions for long-horizon tasks. ProgPrompt (Singh et al., 2023) and Zero-Shot Language Planner (Huang
et al., 2022) generate static plans executed in the environment, which may fail in partially observable and dynamic settings.
To mitigate this, LLM-planner (Song et al., 2023) updates plans based on new observations, similar to our approach.

LMs for Multi-Agent Planning: Recent studies have demonstrated the effectiveness of LMs in generating and executing
plans in embodied multi-agent environments. CoNavGPT (Yu et al., 2023) creates global plans for two robots in an embodied
environment. RoCo (Mandi et al., 2023) and CoELA (Zhang et al., 2024) assign separate LMs to each agent for decentralized
action prediction, allowing natural language communication between agents. However, RoCo and CoNavGPT require
detailed environment information for planning, and CoELA’s action space is filtered by an oracle. Relying on privileged
information from an oracle is impractical in real-world applications. By contrast, our work focuses on free-form action
generation and handles tasks with more ambiguous descriptions. Prior work (Chen et al., 2023) compare centralized (CMAS)
and decentralized (DMAS) planning frameworks, showing that centralized planners perform better, though their experiments
are in simple, known environments with limited number of agents. Two-Step (Singh et al., 2024) decomposes goals for
main and helper agents, using PDDL planners for high-level actions. SmartLLM (Kannan et al., 2023) uses multiple LLM
modules for subtask decomposition, multi-robot group formation and task allocation but assumes robots have complete
knowledge of the environment, making plans prone to errors in unknown settings. Wang et al. (Wang et al., 2024) use LLMs
with conformal prediction for safe multi-agent planning, but the action choices are limited to a small set of objects. Table 3
presents a comparison of the characteristics of different LM-based approaches to multi-agent planning with our work.

LMs can interpret high-level instructions and break them down into feasible subtasks, making them ideal for long-horizon,
multi-task scenarios. Our work leverages LMs to enable long-horizon planning across a variety of tasks and environments,
building on these advances to address the limitations of traditional RL and HRL methods. By integrating LMs into our
planning framework, we enhance the ability to generalize across diverse tasks and scenarios, making significant strides
toward practical, real-world applications of RL in dynamic, multi-agent settings.

Method
Dynamic Local Failure Self
Planning Information Correction Verification

Two-Step (Singh et al., 2024) ✗ ✗ ✗ ✗
Smart LLM (Kannan et al., 2023) ✗ ✗ ✗ ✗

Conformal Prediction LLM (Wang et al., 2024) ✓ ✗ ✗ ✗
CoELA (Zhang et al., 2024) ✓ ✓ ✗ ✗

LLaMAR (this paper) ✓ ✓ ✓ ✓

Table 3. The proposed model, LLaMAR: 1) performs dynamic planning, avoiding the open-loop plan-and-execute paradigm; 2) operates
without privileged simulator information (e.g., access to all objects in the environment); 3) re-plans when low-level actions fail, not
assuming perfect execution; and 4) self-verifies subtask completion without relying on the simulator.

1re-planning is generally not required since the PDDL planner checks for all pre-conditions for the actions

10

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

B. Terminology
We differentiate between the terms subtasks and high-level actions in this section. In essence, multiple high-level actions
are needed to be carried out in a sequence to complete a subtask. Multiple subtasks need to be accomplished in order to
complete the high-level language instruction.

• Subtasks: A task is split up into multiple subtasks. For example, if a task is “Fetch all the groceries and put them in the
fridge”, then the initial subtasks could include: “Locate the groceries”, “transport the groceries”, “Locate the fridge”.
These subtasks could get updated with new observations. For example, while locating the groceries, the agents come
across a tomato and a lettuce. Then the subtasks “transport the tomato to the fridge” and “transport the lettuce to the
fridge” gets updated in the subtasks list. This basically splits up the high-level instruction I into multiple subtasks

• High-level actions: These are the set of actions required to complete the subtasks. For example, to complete the
“transport the lettuce in the fridge”, we would require: the following set of actions:

– Navigate to lettuce
– Pickup lettuce
– Navigate to the fridge
– Open fridge
– Put lettuce in the fridge
– Close fridge

Note that different agents have to complete different high-level actions that progress the subtasks efficiently whilst
avoiding conflicts.

• Conflicts can arise in the following ways:
– Same high-level actions: Agents performing the same action at the same time. For example, ”Open the fridge”.
– Blocking: Agent 1 is blocking Agent 2 and not allowing it to complete its high-level action For example, Agent 1

is attempting to execute “PlaceObject(Tomato)” in front of the fridge to place the tomato in its hand in the fridge
and Agent 2 is attempting to execute “OpenFreezer()” needs to interact with the fridge. Would require some form
of conflict resolution in the state cell domain. Agent 1 should move away to allow fridge access to Agent 2. In
LLaMAR, the Corrector module helps in figuring out these conflicts and suggest different corrective high-level
actions.

C. Environment
The environment is based on the AI2Thor simulator with a multi-agent setup. All the experiments were performed in the
single-room floor plans. When more than 3 agents are added to some of the floor plans (especially the kitchen floor plans),
the environment gets crowded and does not allow for a lot of free space to navigate to different objects (the number of
reachable paths reduces).

(a) Kitchen (b) Bedroom (c) LivingRoom (d) Bathroom

Figure 2. Photorealistic rendering of household scenarios in the AI2Thor simulator enables the usage of multiple autonomous robots to
carry out daily tasks.

C.1. Observation Space

The observations for each robot include an image of size resolution 1000 × 1000 × 3. The textual observation for each
agent in the prompt is the list of objects visible in this image and the agents’ current location and rotation. The field of view
is 90 degrees. The agents can interact with the objects only if it is within its visibility range of 1.5m.

11

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

C.2. Action Space

The actions space A consists of navigation actions ANAV , interaction actions AINT , exploration action AEXP .

Navigation actions ANAV consists of the following actions:

• Move(<direction>): Moves the robot by 0.25m towards the specified direction where <direction> can be
one of (Ahead, Back, Right, Left)

• Rotate(<direction>): Rotates the robot by 90 degrees towards the specified direction where, <direction>
can be one of (Right, Left)

• LookUp(<angle>) rotates the pitch of the robot camera upwards by the specified angle.
• LookDown<angle> rotates the pitch of the robot camera downwards by the specified angle.
• NavigateTo(<object id>) makes the robot navigate to the specified object. The path is found using the
A∗−shortest path algorithm. Note that the robot is only able to find a path to the specified object in the environment
only if it has encountered that object previously during the episode. Otherwise, the NavigateTo(.) action will be
unsuccessful and the agent will have to explore.

Interaction actions AINT consists of the following actions:

• Pickup(<object id>): Picks up the object
• Put(<receptacle id>): Puts the object in the robots hand on the receptacle
• Open(<object id>): Opens the object
• Close(<object id>): Closes the open object
• Slice(<object id>): Slices the object
• Clean(<object id>): Cleans the object
• ToggleOn(<object id>): Toggles the object on
• ToggleOff(<object id>): Toggles the object off

Explore action : In unexplored environments, agents need to search for task-relevant objects. If agents cannot find
the required objects, the language model can choose an ‘exploration’ action aexp ∈ AEXP . We use a semantically-
guided heuristic to determine the choice of region to be explored. The agent rotates to four cardinal directions d ∈
North, South,East,West, capturing image observations on,d. These images are processed through a pre-trained CLIP
image encoder (Radford et al., 2021) to obtain embeddings Id. The list of open subtasks GO is processed through the
corresponding CLIP text encoder to get text embeddings gO,i. The exploration score Ed in direction d is defined as
Ed =

∑|GO|
i=1

gO,i·Id
∥gO,i∥∥Id∥ . The direction with the highest score d∗ = argmaxd Ed is chosen. Summing the scores helps

select the best direction to explore in expectation. The agent rotates towards d∗ and moves J = 2 steps, repeating this
process K = 3 times in one explore action. This approach ensures that images relevant to identifying potential subtasks are
prioritized. For example, if GO includes ”locate a computer”, it is more likely to find a computer on a table than on a sofa,
resulting in a higher cosine similarity score between the subtask CLIP text embedding and table CLIP image embedding. The
explore action is carried out by the heuristic mentioned in Algorithm 1. We use the clip-vit-large-patch14-336
model for the CLIP weights which we download from https://huggingface.co/openai/clip-vit-large-patch14-336.

Figure 3. Choice of direction for the exploration heuristic: The agent (Alice) rotates towards 4 cardinal directions to get observations. The
cosine similarity between the CLIP embeddings Id for these 4 images are calculated with the CLIP embeddings for each subtask in the
open subtasks set GO to get the exploration score Ed for each direction. The direction with the highest Ed is chosen to explore and the
agent moves J = 2 steps in that direction.

12

https://huggingface.co/openai/clip-vit-large-patch14-336

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Algorithm 1 Exploration Heuristic
Input: Agent ID n, Environment env, number of exploration steps K, number of move steps J

0: gO = CLIPtext(GO)
0: while k < K do
0: Exploration Score E ∈ R4 ← 0
0: for d ∈ {North, South,East,West} do
0: on,d = env.step(Rotate(Right,n))
0: Id = CLIPimg(on,d)

0: Ed = Id·gO
∥Id∥∥gO∥

0: end for
0: d∗ = argmaxd E
0: while j < J do
0: oi = env.step(Move(d∗, n))
0: j ← j + 1
0: end while
0: k ← k + 1
0: end while=0

C.3. Admissible Action parsing with Semantic Translation

When LMs generate action plans, natural language outputs often fail to translate to executable high-level actions. This
happens when the output does not match the predefined format or refers to unrecognized contextually similar objects. We
use a cosine similarity method from (Huang et al., 2022), fine-tuning a pre-trained sentence-BERT (Reimers & Gurevych,
2019) to transform the free-form text into admissible high-level actions. Hyperparameters and additional details of the
sentence transformer fine-tuning are provided in Table 4.

We finetuned a pre-trained BERT model to function as a semantic mapper between free-form natural language output and the
robot’s admissible actions in the environment. The pre-trained weights were obtained from https://huggingface.co/sentence-
transformers/all-MiniLM-L6-v2. The model was trained on a dataset consisting of 2800 free-form input, valid action output
pairs. It ran on one (1) Apple M1 core for a wall clock time of 5 minutes. Table 4 shows the hyper-parameters used for the
pre-training of the BERT model.

Epochs 10
Max gradient norm 1

Learning rate 2× 10−5

Batch size 64
Encoding dimension 384

Optimizer AdamW
Scheduler Warm-up linear

Warm-up steps 45
Weight decay 0.01

Loss scale 20
Loss type Multiple negatives ranking loss

Similarity function Cosine similarity

Table 4. Hyper-parameters for the model fine-tuning including the loss.

D. Metrics
We evaluate the algorithms using the following metrics to compare their performances on the tasks:

• Success Rate (SR): The fraction of episodes in which all subtasks are completed. Success equals 1 if all subtasks are
successfully executed in an episode, otherwise it is 0.

• Transport Rate (TR): The fraction of subtasks completed within an episode, which provides a finer granularity of task

13

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Underlying Success Transport Coverage Balance Steps
LM Rate Rate

GPT-4 0.51 0.85 0.95 0.83 25.80
(0.36, 0.66) (0.80, 0.91) (0.91, 0.98) (0.78, 0.86) (23.72, 27.88)

LLaVA 0.54 0.84 0.91 0.75 26.21
(0.41, 0.65) (0.71, 0.90) (0.87, 0.98) (0.64, 0.83) (21.56, 28.97)

IDEFICS-2 0.57 0.86 0.94 0.78 25.27
(0.43, 0.67) (0.74, 0.91) (0.89, 0.98) (0.65,0.84) (20.14, 28.37)

CogVLM 0.61 0.89 0.95 0.80 23.21
(0.47, 0.68) (0.73, 0.95) (0.89, 0.99) (0.73, 0.86) (20.57, 26.82)

GPT-4V 0.66 0.91 0.97 0.82 21.87
(0.50, 0.76) (0.81, 0.96) (0.93,0.99) (0.75, 0.87) (18.76, 26.43)

Table 5. Metrics by varying the underlying LLM/VLM in LLaMAR for the 2-agent scenario.

completion.
• Coverage (C): The fraction of successful interactions with target objects. It is useful to verify if the LMs can infer the

objects to interact with, in scenarios where the tasks have objects that are specified implicitly.
• Average steps (L): The number of high-level actions taken by the team to complete the task, capped at T = 30 in our

experiments. If the task is not completed within T steps, the episode is deemed a failure.
• Balance (B): The ratio between the minimum and maximum number of successful high-level actions executed by any

agent that contributed towards making progress in a subtask necessary for the completion of the language instruction
task. We only check for a subset of high-level actions that must be executed for accomplishing critical subtasks that leads
to the successful completion of the language instruction task.If each agent i out of n agents completes si successful tasks,
the balance is defined as: B := min {s1,··· ,sn}

max{s1,··· ,sn}+ϵ . This measures how evenly the work is distributed among agents. A
balance of zero indicates at least one agent performed no successful high-level actions, while a balance of one indicates
all agents performed the same number of successful high-level actions. Here ϵ = 1e − 4 is a small number to avoid
division by zero.

E. Multi-agent Planning Tasks
We evaluate the performance of LLaMAR and benchmark other baseline methods on a set of tasks in AI2-THOR. These
planning tasks are of varying difficulty levels determined by an increase in ambiguity in the language instructions. We
include automatic checker modules to verify subtask completion and evaluate plan quality. Our planning problem set
comprises of 45 tasks, each defined for five distinct floor plans, ensuring comprehensive testing and evaluation.

• Explicit item type, quantity, and target location: Agents are explicitly instructed to transport specific items to specific
target locations. For example, put bread, lettuce, and a tomato in the fridge clearly defines the
objects (tomato, lettuce, bread) and the target (fridge).

• Explicit item type and target location but implicit item quantity: The object type is explicitly described, but
its quantity is not disclosed. For example, Put all the apples in the fridge. Agents must explore the
environment to locate all specified items and also predict when to stop.

• Explicit target location but implicit item types and quantity: The target location is explicitly defined but the item
types and their quantities are concealed. For example, Put all groceries in the fridge.

• Implicit target location, item type and quantity: Item types and their quantities along with the target location are
implicitly defined. For example, Clear the floor by placing the items at their appropriate
positions. The agent is expected to place items like pens, books, and laptops on the study table, and litter in the
trash can..

F. Additional Experiments
F.1. Varying underlying LM

To understand the impact of the underlying LM’s quality on decision-making, we experiment with different LMs. Specifically,
we utilize both the language-only and vision-language models of GPT-4 (OpenAI et al., 2023), IDEFICS-2 (Laurençon et al.,
2023; 2024), LLaVA (Liu et al., 2023b;a), and CoGVLM (Hong et al., 2023a). Among these, GPT-4, when used solely with

14

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

agents Success Transport Coverage Balance Steps
Rate Rate

2 0.62 0.87 0.95 0.82 23.44
(0.46, 0.76) (0.80, 0.93) (0.91, 0.98) (0.77,0.87) (20.88, 26.00)

3 0.70 0.91 0.98 0.66 21.30
(0.55, 0.82) (0.85, 0.95) (0.95, 0.99) (0.61, 0.71) (18.60, 23.99)

4 0.68 0.90 0.99 0.62 22.83
(0.52, 0.79) (0.84, 0.94) (0.95, 0.99) (0.57, 0.68) (19.63, 25.69)

5 0.62 0.90 0.99 0.54 22.91
(0.46, 0.75) (0.85, 0.94) (0.97,1.00) (0.48, 0.59) (20.26, 25.57)

Table 6. LLaMAR with more agents

Figure 4. A few examples of the Corrector module mitigate failures in predicted actions by the Actor module. (a) the Corrector suggests
getting closer to the agent before attempting to pick it up, (b) the Corrector recommends opening the fridge because the previous action
of placing the plate failed, (c) the Corrector advises rotating right so that it can access the table to place the tissue box on it when the
low-level navigation policy failed to find a path to the table

text inputs, exhibits the poorest performance. This is attributed to the agents’ inability to reason about visual observations,
which is particularly detrimental for the Corrector module. Substituting GPT-4V with other vision-language models results
in a decline in performance (refer Table 5) and hence we use GPT-4V as the underlying VLM for the experiments while
comparing to the baselines.

F.2. Increasing the number of agents

Increasing the number of agents in the environment shows clear trends in our method’s performance metrics (refer Table 6).
With 2 agents, we establish a solid baseline for success rate (SR) and transport rate (TR). Adding a third agent improves
both SR and TR, indicating enhanced task completion and transportation efficiency. Coverage (C) also increases, suggesting
better exploration and interaction with objects. However, balance (B), which measures the even distribution of tasks among
agents, decreases with more agents. This drop highlights the challenge of ensuring equal contributions from all agents in a
larger multi-agent system. While SR remains high, the balance metric drops significantly from 2 to 5 agents, indicating some
agents do more work than others. The number of steps (L) taken to complete tasks generally decreases with more agents,
showing improved efficiency but is less pronounced from 4 to 5 agents, suggesting diminishing returns on efficiency with
each additional agent. In summary, adding more agents improves task performance and efficiency but introduces challenges
in maintaining balanced contributions. Addressing this imbalance is crucial for refining multi-agent planning algorithms.

F.3. Correcting Failures

: In numerous instances, the actions proposed by the Actor module, such as pick up <object>, are unsuccessful due
to the agent’s insufficient proximity to the target object. In such situations, the Corrector module uses visual feedback to
learn from these failures and recommends appropriate corrective actions, such as navigate to <object> to facilitate
closer proximity. Figure 4 shows examples where the Corrector module interprets low-level action failures and suggests
remedies, highlighting its importance.

15

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

G. Pseudocode for LLaMAR

Algorithm 2 LLaMAR
Input: N agents, Task instruction I, Environment env
Initialize: MemoryM← ∅; Open Subtasks GO ← ∅;
Completed Subtasks GC ← ∅; Actions a← ∅;
Corrective Actions ac ← ∅
Actions Executed d← ∅

0: o = (o1, · · · , oN) = env.reset()
0: while t < T do
0: GO ← Planner(I, o,GO,GC ,M)
0: a,M← Actor(I, o, ac,GO,GC ,M)
0: o = (o1, · · · , oN), d = (d1, · · · , dN) = env.step(a)
0: ac ← Corrector(I, o, a, d,GO,GC ,M)
0: GC ← Verifier(I, o, a, d,GO,GC ,M)
0: if GO = ∅ then
0: break
0: end if
0: t← t+ 1
0: end while=0

H. Baselines
While there are a lot of impressive LLM-based multi-agent planners as mentioned in Table 3, they vary in the assumptions
about access to information about the environment. We were not able to find the official codebase for the Safe Multi-Agent
Planning with Conformal Prediction (Wang et al., 2024) and TwoStep (Singh et al., 2024).

• Act: We query the LLM with the task and the observations to suggest a high-level action.
• Chain-of-Thought (Wei et al., 2022): We modify the Act prompt with a chain-of-thought style addendum to let the LM

reason about the possible implications while selecting a high-level action.
• ReAct (Yao et al., 2023): We use a ReAct-style prompting to let the LMs reason after suggesting high-level actions and

possibly suggest ways to correct for any failures.
• SmartLLM (Kannan et al., 2023): We modify the official codebase to only include information from the local

observations of the agents instead of assuming full observability.
• CoELA (Zhang et al., 2024): We modify the list of available high-level actions to include all possible valid combinations

of actions with interactable objects in the agent’s local observation. As the scene becomes more cluttered, this list and
the prompt becomes combinatorially longer. In the original implementation, the list of available actions is filtered based
on the feasibility of the actions as suggested by a conditional checker.

We describe the prompts used for our model as well as every baseline. Note that we show the prompt for the 2-agent case,
but it is easily modified to generalize to the n-agent case. The italics and bolding added for emphasis.

H.1. LLaMAR

We describe the prompts used for each of the modules used in LLaMAR:

16

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Prompt for Planner Module in LLaMAR

You are an excellent planner who is tasked with helping 2 embodied robots named Alice and Bob carry out a task. Both robots
have a partially observable view of the environment. Hence they have to explore around in the environment to do the task.

You will get a description of the task robots are supposed to do. You will get an image of the environment from Alice’s
perspective and Bob’s perspective as the observation input. To help you with detecting objects in the image, you will also get a
list objects each agent is able to see in the environment. Here the objects are named as “<object name> <object id>”.
So, along with the image inputs you will get the following information:

INPUT FORMAT
{Task: description of the task the robots are supposed to do,
Alice’s observation: list of objects the Alice is observing,
Bob’s observation: list of objects the Bob is observing,
Robots’ open subtasks: list of subtasks the robots are supposed to carry out to finish the task. If no plan has been already
created, this will be None.
Robots’ completed subtasks: list of subtasks the robots have already completed. If no subtasks have been completed, this will
be None.
Robots’ combined memory: description of robots’ combined memory}

Reason over the robots’ task, image inputs, observations, open subtasks, completed subtasks and memory, and then
output the following:
* Reason: The reason for why new subtasks need to be added.
* Subtasks: A list of open subtasks the robots are supposed to take to complete the task. Remember, as you get new information
about the environment, you can modify this list. You can keep the same plan if you think it is still valid. Do not include the
subtasks that have already been completed.
The ”Plan” should be in a list format where the subtask are listed sequentially.
For example:
[“locate the apple”, “transport the apple to the fridge”, “transport the book to the table”]
[“locate the cup”, “go to cup”, “clean cup”]
When possible do not perform additional steps when one is sufficient (e.g. CleanObject is sufficient to clean an object, no other
actions need to be done) Your output should be in the form of a python dictionary as shown below.

Example output:
{“reason”: ”Since the subtask list is empty, the robots need to transport the apple to the fridge and transport the book to the
table.”,
“plan”: [“transport the apple to the fridge”, “transport the book to the table”]}

Ensure that the subtasks are not generic statements like ”do the task”. They should be specific to the task at hand.
Do not assign subtasks to any particular robot. Try not to modify the subtasks that already exist in the open subtasks list. Rather
add new subtasks to the list.

* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED
Let’s work this out in a step by step way to be sure we have the right answer.

17

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Prompt for Verifier Module in LLaMAR

You are an excellent task verifier who is tasked with helping 2 embodied robots named Alice and Bob carry out a task. Both
robots have a partially observable view of the environment. Hence they have to explore around in the environment to do the task.

You will get a description of the task robots are supposed to do. You will get an image of the environment from Alice’s
perspective and Bob’s perspective as the observation input. To help you with detecting objects in the image, you will also get a
list objects each agent is able to see in the environment. Here the objects are named as “<object name> <object id>”.
So, along with the image inputs you will get the following information:

INPUT FORMAT
{Task: description of the task the robots are supposed to do,
Alice’s observation: list of objects the Alice is observing,
Alice’s state: description of Alice’s state,
Alice’s previous action: the action Alice took in the previous step and if it was successful,
Bob’s observation: list of objects the Bob is observing,
Bob’s state: description of Bob’s state, Bob’s previous action: the action Bob took in the previous step,
Robots’ open subtasks: list of open subtasks the robots in the previous step. If no plan has been already created, this will be
None.
Robots’ completed subtasks: list of subtasks the robots have already completed. If no subtasks have been completed, this will
be None.
Robots’ combined memory: description of robots’ combined memory}

Reason over the robots’ task, image inputs, observations, previous actions, open subtasks, completed subtasks and memory, and
then output the following:
* Reason: The reason for why you think a particular subtask should be moved from the open subtasks list to the completed
subtasks list.
* Completed Subtasks: The list of subtasks that have been completed by the robots. Note that you can add subtasks to this list
only if they have been successfully completed and were in the open subtask list. If no subtasks have been completed at the
current step, return an empty list.
The “Completed Subtasks” should be in a list format where the completed subtasks are listed.
For example: [“locate the apple”, “transport the apple to the fridge”, “transport the book to the table”]

Your output should be in the form of a python dictionary as shown below.

Example output:
{
”reason”: ”Alice placed the apple in the fridge in the previous step and was successful and Bob picked up the the book from the
table. Hence Alice has completed the subtask of transporting the apple to the fridge, Bob has picked up the book, but Bob has
still not completed the subtask of transporting the book to the table”,
”completed subtasks”: [”picked up book from the table”, ”transport the apple to the fridge”]
}

* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED
When you output the completed subtasks, make sure to not forget to include the previous ones in addition to the new ones.
Let’s work this out in a step by step way to be sure we have the right answer.

18

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Prompt for the Actor Module in LLaMAR

You are an excellent planner and robot controller who is tasked with helping 2 embodied robots named Alice, and Bob
carry out a task. All 2 robots have a partially observable view of the environment. Hence they have to explore around in the
environment to do the task.

They can perform the following actions:
[“navigate to object <object id>”, “rotate in <rotation> direction”, “pick up object <object id>”, “put object on
<receptacle id>”, “open object <object id>”, “close object <object id>”, “slice object <object id>”, “toggle object
<object id> on”, “toggle object <object id> off”, “clean object <object id>”, “look up by angle <angle>”, “look down by
angle <angle>”, “move in <translation> direction”, “stay idle”, “Done”]

Here “Done” is used when all the robots have completed the main task. Only use it when you think all the subtasks
are complete.

“stay idle” is used when you want the robot to stay idle for a one-time step. This could be used to wait for the other robot to
complete its subtask. Use it only when you think it is necessary.
Here <rotation> can be one of [“Right”, “Left”].
Here <angle> is the angle in degrees and can only be one of [30, 60, 90, 120, 150, 180].
Here <translation> can be one of [“Ahead”, “Back”, “Left”, “Right”].

So, along with the image inputs you will get the following information:

INPUT FORMAT
{Task: description of the task the robots are supposed to do,
Alice’s observation: list of objects the Alice is observing,
Alice’s state: description of Alice’s state,
Alice’s previous action: description of what Alice did in the previous time step and whether it was successful,
Alice’s previous failures: if Alice’s few previous actions failed,
description of what failed,, Bob’s observation: list of objects the Bob is observing,
Bob’s state: description of Bob’s state,
Bob’s previous action: description of what Bob did in the previous time step and whether it was successful,
Bob’s previous failures: if Bob’s few previous actions failed, description of what failed,
Robots’ open subtasks: list of subtasks supposed to carry out to finish the task. If no plan has been already created, this will be
None.
Robots’ completed subtasks: list of subtasks the robots have already completed. If no subtasks have been completed, this will
be None.
Robots’ subtask: description of the subtasks the robots were trying to complete in the previous step,
Robots’ combined memory: description of robot’s combined memory}

OUTPUT FORMAT
First of all you are supposed to reason over the image inputs, the robots’ observations, previous actions, previous failures,
previous memory, subtasks and the available actions the robots can perform, and think step by step and then output the following
things:

* Failure reason: If any robot’s previous action failed, use the previous history, your current knowledge of the room (i.e. what
things are where), and your understanding of causality to think and rationalize about why the previous action failed. Output the
reason for failure and how to fix this in the next timestep. If the previous action was successful, output ”None”.
Common failure reasons to lookout for include: one agent blocking another so must move out of the way, agent can’t see an
object or its destination and must explore (such as move, rotate, or look in a different direction) to find it, agent doing extraneous
actions (such as drying objects when cleaning), etc. If the previous action was successful, output ”None”.

* Memory: Whatever important information about the scene you think you should remember for the future as a
memory. Remember that this memory will be used in future steps to carry out the task. So, you should not include information
that is not relevant to the task. You can also include information that is already present in its memory if you think it might be
useful in the future.

19

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

(CONTINUED) Prompt for the Actor Module in LLaMAR

* Reason: The reasoning for what each robot is supposed to do next

* Subtask: The subtask each robot should currently try to solve, choose this from the list of open subtasks.

* Action: The actions the robots are supposed to take just in the next step such that they make progress towards
completing the task. Make sure that these suggested actions make these robots more efficient in completing the task as compared
to only one agent solving the task.
Your output should just be in the form of a python dictionary as shown below.

Examples of output:
Example 1:
{ ”failure reason”: ”Bob failed to put the mug in the cabinet earlier because Alice was blocking it when she was putting the
knife. To fix this, Alice should close the cabinet and move away , Charlie should move away to a different open area than Alice to
avoid congestion, and Bob should wait until the next timestep until Alice can move aside.”,
”memory”: ”Alice finished putting the knife in the cabinet when Alice was at co-ordinates (1, .5) and was facing north. Bob
wanted to put the mug in the cabinet when Bob was at co-ordinates (1, 0.25) and was facing north.”,
”reason”: ”Alice can close the cabinet door and then later back out in order help Bob with completing the task. Bob can be idle
until the next timestep when Alice moves aside, by then Bob can navigate to the cabinet.”,
”subtask”: ”Alice is currently closing the cabinet door, Bob is currently waiting to get to navigate to the cabinet”,
”Alice’s action” : ”close the Cabinet 1”,
”Bob’s action” : ”stay idle”
}

Example 2: {
”failure reason”: ”Bob failed to clean the cup earlier because Bob had not navigated to it, Bob assumed the cup to be in the sink
which was erroneous. To fix this, Bob should navigate to the cup and in the next step clean cup.”,
”memory”: ”Alice finished navigating to the dish when Alice was at co-ordinates (-.5, .5) and was facing east. Bob was not able
to clean the cup in the cabinet when Bob was at co-ordinates (1, .25) and was facing north.”,
”reason”: ”Alice can now clean the dish since Alice has navigated to it. Bob should navigate to the cup in order to be close
enough to clean the cup.”,
”subtask”: ”Alice is currently trying to clean the dish, Bob is currently trying to navigate to the cup”,
”Alice’s action” : ”clean the dish object”,
”Bob’s action” : ”navigate to the cup” }
Note that the output should just be a dictionary similar to the example outputs.

Important Notes
* The robots can hold only one object at a time.
For example: If Alice is holding an apple, she cannot pick up another object until she puts the apple down.
* Even if the robot can see objects, it might not be able to interact with them if they are too far away. Hence you will need to
make the robot navigate closer to the objects they want to interact with.
For example: An action like “pick up <object id>” is feasible only if robot can see the object and is close enough to it. So you
will have to navigate closer to it before you can pick it up.
* In some scenarios, the agents might not see the objects that they want to interact with. In such cases, you will have to make the
robot explore the environment to find the object. In such scenarios you can use actions to rotate in place or look up / down or
navigate to explore the environment.
* If you open an object, please ensure that you close it before you navigate to a different place.
* Opening object like drawers, cabinets, fridge can block the path of the robot. So open objects only when you think it is necessary.

* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED

H.2. Act

We describe the prompt used for the Act baseline:

20

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Prompt for the Act Baseline

You are an excellent planner and robot controller who is tasked with helping 2 embodied robots named Alice and Bob
carry out a task. Both robots have a partially observable view of the environment. Hence they have to explore around in the
environment to do the task.

They can perform the following actions:
[“navigate to object <object id>”, “rotate in <rotation> direction”, “pick up object <object id>”, “put object on
<receptacle id>”, “open object <object id>”, “close object <object id>”, “slice object <object id>”, “toggle object
<object id> on”, “toggle object <object id> off”, “clean object <object id>”, “look up by angle <angle>”, “look down by
angle <angle>”, “move in <translation> direction”, “stay idle”, “Done”]

Here “Done” is used when all the robots have completed the main task. Only use it when you think all the subtasks
are complete.

“stay idle” is used when you want the robot to stay idle for a one-time step. This could be used to wait for the other robot to
complete its subtask. Use it only when you think it is necessary.
Here <rotation> can be one of [“Right”, “Left”].
Here <angle> is the angle in degrees and can only be one of [30, 60, 90, 120, 150, 180].
Here <translation> can be one of [“Ahead”, “Back”, “Left”, “Right”].

You need to suggest the action that each robot should take at the current time step.

Important Notes
* The robots can hold only one object at a time.
For example: If Alice is holding an apple, she cannot pick up another object until she puts the apple down.
* Even if the robot can see objects, it might not be able to interact with them if they are too far away. Hence you will need to
make the robot navigate closer to the objects they want to interact with.
For example: An action like “pick up <object id>” is feasible only if robot can see the object and is close enough to it. So you
will have to navigate closer to it before you can pick it up.
* In some scenarios, the agents might not see the objects that they want to interact with. In such cases, you will have to make the
robot explore the environment to find the object. In such scenarios you can use actions to rotate in place or look up / down or
navigate to explore the environment.
* If you open an object, please ensure that you close it before you navigate to a different place.
* Opening object like drawers, cabinets, fridge can block the path of the robot. So open objects only when you think it is necessary.

INPUT FORMAT
* You will get a description of the task robots are supposed to do.
* You will get an image of the environment at the current time step from Alice’s perspective and Bob’s perspective as the
observation input. Here the objects are named as “<object name> <object id>”.
* You will get a trace of the steps taken by the robots and the actions they took at each time step and whether it was successful or not.

OUTPUT FORMAT
In your output, do not have any extra text or content outside of the python dictionary as below. Do NOT put any text, spaces, or
enter keys (i.e. “/n”) outside of it.

Your output should ONLY be in the form of a python dictionary, without any reasoning or extra text, as shown be-
low:
{“Alice”: “action to be taken by Alice”,
“Bob”: ”action to be taken by Bob}

For example: If you think Alice should pick up an apple and Bob should navigate to the fridge, you will have to
give the output as:
{“Alice”: “pick up apple”,
“Bob”: “navigate to fridge”}
* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED

H.3. ReAct

We describe the prompt used for the ReAct baseline:

21

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Prompt for ReAct Baseline

You are an excellent planner who is tasked with helping 2 embodied robots named Alice and Bob carry out a task. Both robots
have a partially observable view of the environment. Hence they have to explore around in the environment to do the task.

They can perform the following actions: [”navigate to object <object id>”, ”rotate in <rotation> direction”, ”pick
up object <object id>”, ”put object on <receptacle id>”, ”open object <object id>”, ”close object <object id>”, ”slice
object <object id>”, “toggle object <object id> on”, “toggle object <object id> off”, ”clean object <object id>”, ”look up
by angle <angle>”, ”look down by angle <angle>”, “move in <translation> direction”, ”stay idle”, ”Done”]
Here ”Done” is used when all the robots have completed the main task. Only use it when you think all the subtasks are complete.
”stay idle” is used when you want the robot to stay idle for a one-time step. This could be used to wait for the other robot to
complete its subtask. Use it only when you think it is necessary.
Here <rotation> can be one of [”Right”, ”Left”].
Here <angle> is the angle in degrees and can only be one of [30, 60, 90, 120, 150, 180].
Here <translation> can be one of [“Ahead”, “Back”, “Left”, “Right”].

You need to suggest the action that each robot should take at the current time step.
Important Notes
* The robots can hold only one object at a time.
For example: If Alice is holding an apple, she cannot pick up another object until she puts the apple down.
* Even if the robot can see objects, it might not be able to interact with them if they are too far away. Hence you will need to
make the robot navigate closer to the objects they want to interact with.
For example: An action like ”pick up <object id>” is feasible only if robot can see the object and is close enough to it. So you
will have to navigate closer to it before you can pick it up.
* In some scenarios, the agents might not see the objects that they want to interact with. In such cases, you will have to make the
robot explore the environment to find the object. In such scenarios you can use actions to rotate in place or look up / down or
navigate to explore the environment.
* If you open an object, please ensure that you close it before you navigate to a different place.
* Opening object like drawers, cabinets, fridge can block the path of the robot. So open objects only when you think it is
necessary.
INPUT FORMAT
* You will get a description of the task robots are supposed to do.
* You will get an image of the environment at the current time step from Alice’s perspective and Bob’s perspective as the
observation input. Here the objects are named as ”<object name> <object id>”.
* You will get a trace of the steps taken by the robots and the actions they took at each time step and whether it was successful or not.

OUTPUT FORMAT
You are supposed to think and suggest the action each robot is supposed to take at the current time step. Before suggesting an
action you need to think, which requires that you reason over the inputs and logically reflect on the task, observation and course
of actions needed to complete the task.
Output Requirements: At each time step you must ONLY output a PYTHON DICTIONARY of the following two elements:
*First Element: Key = ”Think” | Value:(Type: String): A logical reflection of the best action to be taken given the inputs: task
at hand, observations, and trace.
*Second Element: Key = ”Action” | Value:(Type: Python Dictionary):
The value should be in the form of a python dictionary as shown below.
{”Alice”: ”action to be taken by Alice”, ”Bob”: ”action to be taken by Bob”}

For example: If you think Alice should pick up an apple and Bob should navigate to the fridge, you will have to
give the output as: {”Alice”: ”pick up apple”, ”Bob”: ”navigate to fridge”}
Here is an example output:
{”Think”: ”To solve the task, I need to find and put the apple. The apple is likely to be on the countertop or table. Then find the
fridge.”, ”Action”: {”Alice”: ”pick up apple”, ”Bob”: ”navigate to fridge”} }
* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED

H.4. Chain of Thought

We describe the prompt used for the Chain-of-Thought baseline:

22

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

Prompt for Chain of Thought Baseline

You are an excellent planner who is tasked with helping 2 embodied robots named Alice and Bob carry out a task. Both robots
have a partially observable view of the environment. Hence they have to explore around in the environment to do the task.

They can perform the following actions: [“navigate to object <object id>”, “rotate in <rotation> direction”, “pick
up object <object id>”, “put object on <receptacle id>”, “open object <object id>”, “close object <object id>”, “slice
object <object id>”, “toggle object <object id> on”, “toggle object <object id> off”, “clean object <object id>”, “look up
by angle <angle>”, “look down by angle <angle>”, “move in <translation> direction”, “stay idle”, “Done”] Here “Done”
is used when all the robots have completed the main task. Only use it when you think all the subtasks are complete. “stay idle” is
used when you want the robot to stay idle for a one-time step. This could be used to wait for the other robot to complete its
subtask. Use it only when you think it is necessary. Here <rotation> can be one of [“Right”, “Left”].
Here <angle> is the angle in degrees and can only be one of [30, 60, 90, 120, 150, 180].
Here <translation> can be one of [“Ahead”, “Back”, “Left”, “Right”].

You need to suggest the action that each robot should take at the current time step.

Important Notes
* The robots can hold only one object at a time. For example: If Alice is holding an apple, she cannot pick up another object until
she puts the apple down.
* Even if the robot can see objects, it might not be able to interact with them if they are too far away. Hence you will need to make
the robot navigate closer to the objects they want to interact with. For example: An action like “pick up <object id>” is feasible
only if robot can see the object and is close enough to it. So you will have to navigate closer to it before you can pick it up.
* In some scenarios, the agents might not see the objects that they want to interact with. In such cases, you will have to make the
robot explore the environment to find the object. In such scenarios you can use actions to rotate in place or look up / down or
navigate to explore the environment.
* If you open an object, please ensure that you close it before you navigate to a different place.
* Opening object like drawers, cabinets, fridge can block the path of the robot. So open objects only when you think it is necessary.

INPUT FORMAT
* You will get a description of the task robots are supposed to do.
* You will get an image of the environment at the current time step from Alice’s perspective and Bob’s perspective as the
observation input. Here the objects are named as ”<object name> <object id>”.
* You will get a trace of the steps taken by the robots and the actions they took at each time step and whether it was successful
or not.

OUTPUT FORMAT
You are supposed to FIRST reason through the situation logically and step by step, then suggest the action each robot is supposed
to take at the current time step.
In your output, do not have any extra text or content outside of the python dictionary as below.
Your output should ONLY be in the form of a python dictionary as shown below:
{”reason”: ”Reasoning for action plan....”, ”Alice”: ”action to be taken by Alice”, ”Bob”: ”action to be taken by Bob”}
Put all of your reasoning inside of the “reason” key of the dictionary. Do NOT put any text, spaces, or enter keys (i.e. “/n”)
outside of it.

For example: If you think Alice should pick up an apple and Bob should navigate to the fridge, you will have to give the output
as:
{”reason”: ”since the subtask list is empty, the robots need to transport the apple to the fridge”, ”Alice”: ”pick up apple”,
”Bob”: ”navigate to fridge”}

Let’s think step by step, but make sure to put all of your reasoning inside of the “reason” key of the dictionary!
* NOTE: DO NOT OUTPUT ANYTHING EXTRA OTHER THAN WHAT HAS BEEN SPECIFIED

H.5. SmartLLM

We adapt the prompt from the official codebase of SmartLLM (master branch; commit
#be42930050f7d4d8f2fad027aff14a699c3300aa) as given here: https://github.com/SMARTlab-
Purdue/SMART-LLM/blob/master/scripts/run llm.py with a slight modification. Instead of letting the agents access all
the objects in the environment through the simulator metadata, we just give the list of objects visible from the agents‘
point-of-view.

23

https://github.com/SMARTlab-Purdue/SMART-LLM/blob/master/scripts/run_llm.py
https://github.com/SMARTlab-Purdue/SMART-LLM/blob/master/scripts/run_llm.py

LLaMAR: LLM-based Long-Horizon Planning for Multi-Agent Robotics

H.6. CoELA

We adapt the prompt from the official codebase of CoELA (master branch: commit
#3d34de46dc77f9aaabe438cd2b92ea6c5c04973a) as given here: https://github.com/UMass-Foundation-
Model/Co-LLM-Agents/tree/master/tdw mat/LLM. We modify some aspects of the prompt as described: Instead of relying
on the simulator/pre-defined conditional logic for generating the list of available action options, we give a list of all possible
actions based on the observation. This includes the option to send the communication message, all navigation actions, and
all combinations of valid actions with the interactable objects in the current observation.

I. Open Source VLMs
We list the source of the weights we used for the open-source VLMs:

• Idefics 2 (Laurençon et al., 2023; 2024): We use the 8B base model fine-tuned on a mixture of
supervised and instruction datasets (text-only and multimodal datasets) from HuggingFace. The
weights were downloaded from https://huggingface.co/HuggingFaceM4/idefics2-8b with the commit
#2c031da2dc71f3ac989f9efa9b8ff476df3842c0. We chose Idefics because it is able to take multi-
ple images as input similar to GPT-4V and reason on them.

• LLaVA (Liu et al., 2023b): We use the 7B model t trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal
instruction-following data. The weights were downloaded from https://huggingface.co/llava-hf/llava-1.5-7b-hf with the
commit # 05ae2434cbb430be33edcba0c5203e7023f785b7.

• CogVLM (Hong et al., 2023a): We use the 18B model. The weights were
downloaded from https://huggingface.co/THUDM/cogagent-chat-hf with the commit #
d519da3b191401234f4bd86ce1c287c61bc276a3.

J. Limitations and Future Work
Higher number queries to the LM: Since each high-level decision step requires querying 4 different LM-based modules,
the cost and the compute times are higher than other baselines, especially compared to the plan-and-execute baselines like
SmartLLM. An interesting future direction to improve this would be to fine-tune smaller LMs with trajectories collected
in the simulator (eg: ALFRED (Shridhar et al., 2019)) as done in (Zhang et al., 2024). Another potential direction worth
exploring is using different sizes of LMs for each module based on their specific utility.

Limited spatial reasoning: Although we use both textual descriptions and visual features to guide the language model’s
actions, it still lacks the ability to reason about the spatial features of the environment. Spatial reasoning is crucial in
scenarios such as navigating around obstacles to reach an object, or determining the shortest path to collect multiple items
scattered across different locations. One way to address this limitation is to inject information about the 3D world into the
LM, as done in (Hong et al., 2023b), which is an interesting direction for future work.

Performance limited by the underlying VLM: Although LMs make correct reasoning most of the time, they still
occasionally make mistakes, including misunderstanding the environment rules specified in the prompt. For example, the
agent assumes that the cleaning task requires putting soap, drying, and putting it in the sink when all it needs is the action
“CleanObject”, and can’t figure out the appropriate level of abstraction. The performance of the algorithm is limited by the
instruction following and reasoning capability of the underlying LM (Kambhampati, 2024; Valmeekam et al., 2023b); this
calls for developing LMs that are fine-tuned to instruction-image pairs relevant to the environment (as done in (Zhang et al.,
2024)).

24

https://github.com/UMass-Foundation-Model/Co-LLM-Agents/tree/master/tdw_mat/LLM
https://github.com/UMass-Foundation-Model/Co-LLM-Agents/tree/master/tdw_mat/LLM
https://huggingface.co/HuggingFaceM4/idefics2-8b
https://huggingface.co/llava-hf/llava-1.5-7b-hf
https://huggingface.co/THUDM/cogagent-chat-hf

