
Vector Quantization Prompting for
Continual Learning

Li Jiao1, Qiuxia Lai1∗, Yu Li2, Qiang Xu3

1 Communication University of China
2 Harbin Institute of Technology, Shenzhen
3 The Chinese University of Hong Kong

{jl0930,qxlai}@cuc.edu.cn;li.yu@hit.edu.cn;qxu@cse.cuhk.edu.hk

Abstract

Continual learning requires to overcome catastrophic forgetting when training a
single model on a sequence of tasks. Recent top-performing approaches are prompt-
based methods that utilize a set of learnable parameters (i.e., prompts) to encode
task knowledge, from which appropriate ones are selected to guide the fixed pre-
trained model in generating features tailored to a certain task. However, existing
methods rely on predicting prompt identities for prompt selection, where the
identity prediction process cannot be optimized with task loss. This limitation leads
to sub-optimal prompt selection and inadequate adaptation of pre-trained features
for a specific task. Previous efforts have tried to address this by directly generating
prompts from input queries instead of selecting from a set of candidates. However,
these prompts are continuous, which lack sufficient abstraction for task knowledge
representation, making them less effective for continual learning. To address
these challenges, we propose VQ-Prompt, a prompt-based continual learning
method that incorporates Vector Quantization (VQ) into end-to-end training of
a set of discrete prompts. In this way, VQ-Prompt can optimize the prompt
selection process with task loss and meanwhile achieve effective abstraction of
task knowledge for continual learning. Extensive experiments show that VQ-
Prompt outperforms state-of-the-art continual learning methods across a variety of
benchmarks under the challenging class-incremental setting. The code is available
at https://github.com/jiaolifengmi/VQ-Prompt.

1 Introduction

Humans have the remarkable capability to continually acquire and integrate knowledge of new
concepts or categories without forgetting old ones, whereas deep learning models struggle with
catastrophic forgetting [40] when tasked with learning a sequence of classes [42, 10, 39]. Continual
learning aims at addressing catastrophic forgetting in deep neural networks (DNNs) by striking a
balance between plasticity for learning new incoming data effectively and stability to retain prior
knowledge. Approaches in this field vary: some methods dynamically expand network architec-
tures [64, 29, 58] or reconfigure their internal structures [48, 17, 24] for new tasks. Others penalize
the update of crucial parameters from previous tasks [20, 27, 65, 1, 49] or alter parameter update rules
to prevent interference across tasks [34, 7, 47, 23]. Additionally, certain methods interleave stored
past data with current ones for training [18, 8, 44, 45, 4, 6, 36]. Despite recent advances, continual
learning remains an open challenge for DNNs.

Recently, prompt-based continual learning has emerged as a promising solution to mitigate catas-
trophic forgetting in sequential task learning. This approach enhances a pre-trained Vision Trans-

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jiaolifengmi/VQ-Prompt

Diffrentiable? Discrete Prompt? Diffrentiable? Discrete Prompt? Diffrentiable? Discrete Prompt?

(a) (b) (c)

Query

Prompt

Query Module

Input-dependent Prompt

Query Module
Vector Quantization

 Input-dependent Prompt

 Gradient Gradient

Select

 Gradient Estimation

Module Id
 Gradient

...

Prompt Pool
...

Prompt Pool
Prompt

Figure 1: Concept comparison. (a) Prior prompt-based continual learning methods predict prompt
identities for prompt selection, which cannot be optimized end-to-end with task loss. (b) Some
methods enable end-to-end training by directly generating prompts from the queries using learnable
parameters. However, these prompts are continuous, lacking the necessary abstraction to effectively
represent the task knowledge essential for generating features tailored to a certain task. (c) Our
method incorporates Vector Quantization (VQ) into the prompt generation pipeline to enable end-to-
end training of discrete prompts with task loss. See §1 for details.

former (ViT) [11] with a small set of learnable parameters, known as “prompts”. These prompts
encapsulate task-specific knowledge, shifting the learning focus from the entire model to the prompts
themselves, which guide the pre-trained model in generating task-relevant outputs. During inference,
the most suitable prompt containing necessary task knowledge is selected from the prompt pool based
on the input image to direct the behavior of the frozen pre-trained model.

Current prompt-based methods either involve a key-query matching mechanism to select prompts
based on the similarity between the image features and the key parameters paired with prompts [62,
61], or explicitly predict the prompt indices and perform the selection accordingly [60, 59]. However,
the non-differentiable nature of indexing impedes the prompt selection from being optimized end-to-
end with task loss. This limitation can lead to diminished performance, as inaccurate prompt selection
may fail to tailor the pre-trained features for the specific task. Efforts to address this issue include
implementing a differentiable prompt selection, such as generating prompts as a weighted sum from
the prompt pool [50], or deriving prompts from the intermediate features of the input image [51, 26].
However, the resulting prompts are continuous, which lack the necessary abstraction to effectively
represent the task knowledge essential for guiding the pre-trained model to generate features tailored
to a certain task. A concept comparison is shown in Fig. 1.

The assumption that discrete prompts better represent task knowledge than continuous prompts for
continual learning can be supported by both theoretical insights from cognitive science and empirical
evidence. Discrete prompts mimic the organizational structure of memory and knowledge in the
human brain, which is typically understood to consist of discrete units such as concepts and facts [19].
This clear separation of information helps prevent interference among different knowledge domains,
and enables models to provide distinct guidance for feature extraction specific to each task. Such
knowledge abstraction aligns with categorical perception in human cognition, where sensory inputs
are perceived as distinct categories (e.g., colors, phonemes) rather than continuous spectrum [41].
Furthermore, empirical comparisons in §5.2 demonstrate the effectiveness of discrete prompts when
optimized end-to-end with task loss (e.g., VQ-Prompt V.S. CODA-P or EvoPrompt). In summary,
discrete prompts hold significant promise for improving the continual learning capabilities of models,
bringing them more in line with human learning.

Optimizing prompts with task loss while preserving their discrete properties as representations of
concepts poses a non-trivial challenge. In this paper, we introduce Vector Quantization Prompting
(VQ-Prompt) for continual learning, which can optimize prompts using task loss while preserving
their discrete characteristics as concept representations. This method involves initially generating a
continuous prompt and then replacing it with its nearest match from a predefined prompt pool. To
address the non-differentiability inherent in prompt quantization, we apply gradient estimation to
propagate task loss to the continuous prompt, while additional vector quantization regularization
terms further refine the learning of the prompt pool. To further stabilize task knowledge learning,
we use representation statistics to mitigate the classification bias towards previous tasks, thereby
enhancing continual learning performance.

Our contributions are three-folds: (1) We propose VQ-Prompt, an end-to-end learnable discrete
prompting mechanism for continual learning, addressing a critical yet overlooked aspect in the current
literature. (2) We leverage gradient estimation to pass the task loss to prompt-related parameters
while regularizing the learning of the prompts with vector quantization terms, which facilitates the

2

end-to-end training of the discrete prompt pool. (3) We incorporate representation statistics during
training to further stabilize task knowledge learning and improve the overall continual learning
performance. Extensive experiments show that VQ-Prompt consistently outperforms state-of-the-art
continual learning methods on a variety of benchmarks.

2 Related work

Continual Learning refers to the process where multiple tasks are learned sequentially without
forgetting [42, 10, 39]. Generally, continual learning has three scenarios [54]. Task-incremental
learning (TIL) learns different classes for each task and assumes having task identities available
at test time. Domain-incremental learning (DIL) maintains the same set of classes for different
tasks while changing the data distributions across tasks, and task identities are not provided for
inference. For Class-incremental learning (CIL), each task involves new classes and all the learned
classes are to be classified without task identities available during inference. In this paper, we focus
on the more representative and challenging CIL scenario. Numerous efforts have been devoted to
alleviating catastrophic forgetting. Architecture-based methods address this by either dynamically
expanding network architectures [64, 29, 58] or modifying internal network structures [48, 17, 24]
for new tasks. Regularization-based methods focus on limiting updates to vital parameters from
earlier tasks [20, 27, 65, 1, 49], or modifying the rules for parameter updates to reduce task
interference [34, 7, 47, 23]. Rehearsal-based methods incorporate previous data with current data
during training to mitigate forgetting [18, 8, 44, 45, 4, 6, 36]. Despite recent advances, continual
learning remains a challenging and evolving field.

Prompt-based Continual Learning Methods. Recently, there has been a surge in methods leveraging
prompting techniques from natural language processing (NLP) [28, 30] for continual learning.
These methods instruct a frozen pre-trained transformer using learnable prompts that encode task
knowledge. During training, prompt selection is either through key-query similarity matching [62] or
indicated by task identity [61, 12, 60, 59]. In inference, the appropriate prompt is chosen through
similarity matching with key or feature centroids. However, both kinds of prompt selection are
non-differentiable, making it challenging to optimize them end-to-end with the task loss, particularly
when the gap between the pre-training task and unknown future tasks is large. To address this,
CODA-Prompt [50] adopts a soft prompt selection, i.e., generating prompts as a weighted sum
from the prompt pool. APG [51] and EvoPrompt [26] learn to derive prompts from intermediate
image features. Nevertheless, all three methods generate prompts that are continuous, which lack
the necessary abstraction to effectively represent the task knowledge essential for instructing the
pre-trained model to produce features tailored to a certain task. In this paper, we present a new
prompting framework for continual learning capable of optimizing prompts with task loss while
preserving their discrete properties as the representation of task knowledge.

Vector Quantization in Representation Learning. Vector Quantization (VQ) is a technique used in
signal processing and data compression to represent a set of vectors (data points) with a smaller set
of “coding vectors” (CVs). Unsupervised VQ algorithms such as Self-organizing Maps (SOMs) [22]
and Neural Gas (NG) networks [38] attempt to obtain a set of CVs that optimally represent the data.
Supervised VQ algorithms such as Learning Vector Quantization (LVQ) [21] focus on reducing the
misclassification rates by refining decision boundaries between classes. In generative modeling, VQ
has been used to learn structured discrete latent spaces in VQ-VAE [55] and VQ-GAN [13] to achieve
higher fidelity images. Recently studies have explored combining VQ with continual learning to
constrain the feature space, aiming to enhance class separation and retrain prior knowledge across
increments [52, 53, 9, 37]. In this paper, instead of utilizing VQ to confine the feature space, we
employ VQ to enable end-to-end learning a set of discrete prompts that effectively encode task
knowledge in a learning system that evolves over time.

3 Preliminary

Problem Formulation. In class-incremental learning (CIL), a model is required to sequentially learn
a series of tasks with disjoint class sets, and to accurately classify all seen classes during evaluation.
Formally, let Dt= {(xt

i, y
t
i)}

Nt
i=1 denote the training set of the t-th task, where xt

i ∈Xt is an input
image, yti ∈Yt is the target label, and Nt is the number of samples. The label spaces of all the tasks
are mutually exclusive, i.e., ∩T

t=1Yt = ∅, where T is the total number of tasks. Consider a deep

3

learning model M= ϕ ◦ f with a backbone f(·) and a classifier ϕ(·). During training on task t,
the model only has access to Dt, which raises a risk of forgetting old tasks. After learning task t,
the model is expected to perform well on all classes in Y1:t =∪t

k=1Yk, and further on Y1:T after
completing training on all T tasks.

Prompt-based Learning is an emerging approach in NLP [32] that involves incorporating extra
instructions into pre-trained models to guide their performance on specific tasks. Rather than relying
on extensive retraining or task-specific fine-tuning, this technique leverages prompts to shape the
behavior of pre-trained models, providing adaptable instructions that helps them handle a wide range
of downstream tasks more effectively. In vision-related continual learning, prompting is typically
employed with Vision Transformer (ViT) [11].

ViT consists of a sequence of multi-head self-attention (MSA) blocks [56]. For clarity, we take one
MSA block as an example to illustrate the prompting. We denote the input query, key, and value of
the MSA block as hQ,hK and hV , respectively. Here, h∗∈RL×D, L is the sequence length, and D
is the embedding dimension. The output of the MSA is computed as:

MSA(hQ,hK ,hV) = Concat(h1, . . . , hM)WO,

hm = Attention(hQW
Q
m ,hKWK

m ,hV W
V
m),

(1)

where WO,WQ
m ,WK

m and WV
m are projection matrices, m=1, · · · ,M is the head index, M is the

number of heads, and hQ=hK=hV =h for SA.

Previous prompt-based continual learning methods mainly implement Prompt Tuning (Pro-T) [28]
and Prefix Tuning (Pre-T) [30]. Pro-T prepends the same prompt p∈RLp×D to hQ, hK , and hV .
The prompting function of Pro-T is defined as:

fPro-T(p,h) = MSA([p;hQ], [p;hK], [p;hV]), (2)

where [·; ·] means concatenating along the sequence length dimension. The output dimension is
(Lp+L)×D. Pre-T splits p along the sequence length dimension into pK ,pV ∈RLp/2×D, which are
prepended to hK and hV , respectively:

fPre-T(p,h) = MSA(hQ, [pK ;hK], [pV ;hV]). (3)

The output dimension is the same as that of h. In continual learning, the pre-trained ViT backbone is
kept frozen as a general feature extractor, and the prompt parameters p are trained to capture task
knowledge. Proper prompts corresponding to the input samples are selected to guide the feature
extraction during inference. Following [61, 50, 59], we adopt Pre-T strategy in our method.

4 Method

As shown in Fig. 2, our VQ-Prompt approach begins by constructing a continuous prompt through a
soft selection from the prompt pool (§4.1). The continuous prompt is then quantized to an element in
the prompt pool, which is inserted into an MSA block of a frozen pre-trained transformer. This process
is made end-to-end trainable through gradient estimation and vector quantization regularization (§4.2),
such that the prompting parameters, namely the keys and the prompt pool could all be optimized using
the task loss. In this way, VQ-Prompt can yield a discrete prompt for each input while maintaining
end-to-end optimization. To better stabilize task knowledge learning, representation statistics of
previously learned classes are employed to mitigate the classification bias (§4.3).

4.1 Prompt Formation

Most previous prompting-based continual learning approaches construct their prompts by selecting
from the prompt pool based on key-query similarity [62, 61] or other task identity prediction mecha-
nisms [60, 59], making the prompt selection process non-differentiable. In our prompt formation, we
first generate a continuous prompt by aggregating all the elements in the prompt pool based on the
similarity scores between the query and the keys. Specifically, given a query q from the input image,
the similarity score is calculated as:

α = Softmax(Kq), (4)

4

Input
Image

Query
Function

Cosine
Similarity

Weighted
Sum

 Gradient Estimation

 NN Look-up

...

Prompt Keys K

...

Prompt Pool P

Pre-trained
Transformer

Classifier

...
 Insert Prom

pts

Statistics

Figure 2: VQ-Prompt framework. An input image is passed through a query function (e.g., a fixed
pre-trained ViT) to generate a query q, which is then used to compute similarity scores with prompt
keys K. These scores α serve as weights to aggregate elements from the prompt pool P to form a
continuous prompt p′. This prompt is subsequently quantized to an element within the prompt pool p,
and then fed into a specific MSA block of a frozen pre-trained transformer. To ensure differentiability,
the prompt quantization process employs gradient estimation and prompt pool regularization. The
representation statistics of features from learned classes are used to stabilize task knowledge learning.
More details are shown in §4.

where K∈RN×D is the prompt key matrix, q∈RD is the query, N is the number of keys, and D is
the embedding dimension. Then, the continuous prompt is obtained by:

p′ =
∑
i

αiPi, i = 1, · · · , N, (5)

where Pi∈RLp×D is the i-th element in the prompt pool, and Lp is the length of the prompt. Such a
prompt formation process is differentiable and can be viewed as a simplified version of CODA-P [50].
Here, we do not learn an extra attention parameter for weighting the query, nor do we increase the
number of elements in the prompt pool or the number of keys during sequential task learning.

4.2 Vector Quantization Prompting (VQ-Prompt)

Nearest-neighbour Look-up. The continuous prompt p′ obtained in Eq. (5) is conditioned on a
specific instance, i.e., it varies with the input images, making it insufficiently abstract to capture task
knowledge effectively. We further perform prompt quantization by performing the nearest neighbour
(NN) look-up in the prompt pool P using p′. The quantized prompt to be fed to the MSA block is
obtained by:

p = Pk, k = argmin
j

∥p′ − Pj∥2, p∈RLp×D. (6)

Such a prompt selection pipeline can be viewed as a specific non-linearity that maps the continuous
prompt to 1-of-N elements in the prompt pool.

Gradient Estimation. Because the argmin operation in Eq. (6) is non-differentiable, we use the
straight-through estimator [3] to approximate the gradient of p′ using the gradient of p. Despite its
simplicity, this estimator has demonstrated its effectiveness in our experiments. Specifically, in the
forward process, the quantized prompt p is passed to the MSA block in the pre-trained transformer.
During the backward computation, the gradient of p is transferred unaltered to p′, and the optimization
of prompt pool P and keys K guided by the similarity scores (c.f., Eq. (4)). This gradient estimation
is justified, as p and p′ share the same Lp×D-dimensional space, and the gradient of p provides
valuable information on how prompt parameter learning could instruct the transformer features to
minimize the cross-entropy (CE) loss during task learning. In this way, each prompt and key element
is adjusted according to its relevance to the current learning context, rather than undergoing wholesale
changes. This allows for more updates of task-relevant elements without disrupting less relevant ones,
thereby maintaining previously acquired knowledge while adapting to new tasks.

Vector Quantization (VQ) Regularization. Though the prompt pool P could receive gradients
from the task loss through straight-through gradient estimation of mapping from p to p′, to enhance
the learning of the prompt embedding space, we add an extra VQ objective. This VQ objective uses

5

the L2 error to move the selected element p of prompt pool towards the continuous prompt p′:

LVQ = ∥sg[p′]− p∥22. (7)

Here, sg[·] stands for the stop-gradient operation [55], which constrains its operand to be a non-
updated constant during training.

To ensure that the learning processes of the prompt keys K and the continuous prompt p′ align
closely with the characteristics of the element p from the prompt pool P , we further introduce a
commitment regularization term. This term is defined mathematically as follows:

LCommit = ∥p′ − sg[p]∥22. (8)

The incorporation of this commitment loss ensures that the prompt formation process described in
§4.1 is optimized to yield prompts to commit to the elements in the prompt pool P , thereby promoting
consistency and stability in the prompt learning process.

4.3 Stabilizing Task Knowledge Learning with Representation Statistics

Though prompts effectively capture task knowledge to guide the backbone f(·) in producing instructed
representations, the classifier ϕ(·) may develop a bias towards new classes in continual learning
scenarios [16, 2]. This bias can adversely affect the learning of the prompts for subsequent tasks.
To mitigate this issue and stabilize task knowledge learning, we employ a strategy similar to [59],
which leverages the representation statistics of previously learned classes to correct classifier bias and
stabilize prompt learning. Specifically, after completing task t, we calculate the mean µc and variance
σc for each class c ∈ Y1:t with the learned prompt parameters and the pre-trained backbone. By
modeling each class as a Gaussian distribution, we generate pseudo features through sampling from
these distributions. These pseudo features are then used to fine-tune the classifier, thereby mitigating
its bias towards recent classes. The balanced classifier could help stabilize task knowledge learning
in the prompts, alleviate catastrophic forgetting, and enhance overall continual learning performance.

4.4 Overall Optimization Objective

The overall loss function is defined in Eq. (9), which extends the task loss LCE with two terms, namely
a quantization objective LVQ weighted by λq , and a commitment term LCommit weighted by λc.

L = LCE + λqLVQ + λcLCommit. (9)

Here, LCE is the cross-entropy loss that supervises the learning of the image classification task, LVQ
is the VQ regularization defined in Eq. (7) that updates the prompt pool elements to move towards the
continuous prompt p′, and LCommit is the commitment term defined in Eq. (8) that forces the prompt
formation process to commit to the prompt pool elements. During training, the pre-trained backbone
f(·) is frozen, while the classifier ϕ(·) and prompting parameters K and P are optimized across all
the tasks. During task knowledge stabilization, only the classifier ϕ(·) is actively trained.

5 Experiment

5.1 Experimental Setups

Datasets. We consider three representative benchmarks for evaluating CIL. ImageNet-R [14] includes
200-class images that are either hard samples for ImageNet or newly collected data with different
styles, thus can serve as a challenging benchmark for continual learning with pre-trained models.
In the experiments, we divide it into 5, 10, and 20 disjoint tasks and report the corresponding
performance. Split CIFAR-100 randomly splits the original CIFAR-100 [25] into 10 disjoint tasks,
each containing 10 classes. Split CUB-200 is built on CUB-200-2011 [57], a fine-grained classification
dataset, by randomly splitting the 200 classes into 10 tasks, where each task contains 20 classes.

Baselines. We evaluate our approach against a comprehensive set of baselines to contextualize
its performance. Following [50], we include “Joint Training” as the upper-bound performance,
setting a benchmark for optimal results. To establish lower bounds, we employ two sequential
learning baselines, denoted as “FT” and “FT++”, with the latter refraining from updating the logits of
previously learned classes during the training of new tasks.

We also consider 5 prompt-based approaches: L2P [62], DualPrompt [61], HiDe-Prompt [59], CODA-
Prompt [50] and EvoPrompt [26], where the last two yield continuous prompts. For L2P, we include

6

Table 1: Comparison on ImageNet-R. Results on “5-task”, “10-task”, and “20-task” settings are
included. Backbones are pre-trained on ImageNet-1K. ↑ denotes larger values are better. See §5.2.

Method Pub.
5-task 10-task 20-task

FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑)
Joint-Train. 82.06 82.06 82.06
FT 18.74 ± 0.44 48.39 ± 0.58 10.12 ± 0.51 35.23 ± 0.92 4.75 ± 0.40 22.8 ± 0.37
FT++ 60.42 ± 0.87 71.59 ± 0.50 48.93 ± 1.15 66.79 ± 0.92 35.98 ± 1.38 59.68 ± 0.95
L2P++ [62] CVPR22 70.83 ± 0.58 78.34 ± 0.47 69.29 ± 0.73 78.30 ± 0.69 65.89 ± 1.30 77.15 ± 0.65
Deep L2P++ [62] CVPR22 73.93 ± 0.37 80.14 ± 0.54 71.66 ± 0.64 79.63 ± 0.90 68.42 ± 1.20 78.68 ± 1.03
DualPrompt [61] ECCV22 73.05 ± 0.50 79.47 ± 0.40 71.32 ± 0.62 78.94 ± 0.72 67.87 ± 1.39 77.42 ± 0.80
CODA-P [50] CVPR23 76.51 ± 0.38 82.04 ± 0.54 75.45 ± 0.56 81.59 ± 0.82 72.37 ± 1.19 79.88 ± 1.06
HiDe-Prompt* [59] NeurIPS23 76.29 ± 0.10 78.77 ± 0.11 76.74 ± 0.18 78.76 ± 0.11 76.46 ± 0.06 78.76 ± 0.11
EvoPrompt [26] AAAI24 77.16 ± 0.18 82.22 ± 0.54 76.83 ± 0.08 82.09 ± 0.68 74.41 ± 0.23 80.96 ± 1.42
VQ-Prompt — 79.23 ± 0.29 82.96 ± 0.50 78.71 ± 0.22 83.24 ± 0.68 78.10 ± 0.22 82.70 ± 1.16
* denotes results obtained by running the official code with ImageNet-1K pre-trained weights.

Table 2: Comparison on Split CIFAR-100.
Backbones are pre-trained on ImageNet-1K. See
§5.2 for details.

Method Pub.
10-task

FAA (↑) CAA (↑)
Joint-Train. 91.38
FT 29.21 ± 0.18 37.37 ± 0.89
FT++ 49.91 ± 0.42 74.76 ± 0.93
LwF [31] TPAMI17 64.83 ± 1.03 -
L2P++ [62] CVPR22 82.50 ± 1.10 88.96 ± 0.82
Deep L2P++ [62] CVPR22 84.30 ± 1.03 90.50 ± 0.69
DualPrompt [61] ECCV22 66.00 ± 0.57 77.92 ± 0.50
CODA-P [50] CVPR23 70.03 ± 0.47 74.26 ± 0.24
EvoPrompt [26] AAAI24 87.97 ± 0.30 92.26 ± 0.86
VQ-Prompt — 88.73 ± 0.27 92.84 ± 0.73

Table 3: Comparison on Split CUB-200. Back-
bones are pre-trained on ImageNet-21K. ∗ de-
notes backbone is not frozen. See §5.2.

Method Pub.
10-task

FAA (↑) CAA (↑)
Joint-Train. 88.00
FT 11.04 ± 0.78 31.96 ± 0.74
FT++ 37.81 ± 2.86 63.55 ± 1.62
LwF [31] TPAMI17 69.75 ± 1.37 80.45 ± 2.08
BiC [63] CVPR19 81.91 ± 2.59 89.92 ± 1.57
DualPrompt [61] ECCV22 66.00 ± 0.57 77.92 ± 0.50
CODA-P [50] CVPR23 70.03 ± 0.47 74.26 ± 0.24
∗SLCA [67] ICCV23 84.71 ± 0.40 90.94 ± 0.68
HiDe-Prompt [59] NeurIPS23 86.61 ± 0.18 87.01 ± 0.03
VQ-Prompt — 86.72 ± 0.94 90.33 ± 1.03

its two variations from [50]: “L2P++” and “Deep L2P++”. L2P++ uses Pre-T instead of Pro-T and
inserts the prompts to the first MSA block, which achieves better performance than the original
L2P [33]. Deep L2P++ extends L2P++ by incorporating prompts into the first five MSA blocks.

In addition to prompt-based methods, we include a classical regularization-based method LwF [31],
and a rehearsal-based method BiC [63], providing a more comprehensive overview for evaluation.

Evaluation Metrics. We present Final Average Accuracy (FAA) and Cumulative Average Accuracy
(CAA) for comparison. FAA refers to the last average accuracy after learning all the tasks, which is
equivalent to “Last-Acc” in [67]. CAA is the average of historical FAA values after learning each
task, which is equivalent to “Inc-Acc” in [67]. The formal definitions of the metrics are in §A.1.

Implementation Details. We follow prior works [62, 61, 50, 59, 67, 26] and use ViT-Base [11]
pre-trained with supervised learning on ImageNet-1K [46] or ImageNet-21K [43] as the backbone.
The number of keys and prompt elements N is 10. The prompt length Lp is 8. The embedding
dimension D=768 which is the same as the feature dimension of ViT-Base.

Our method is trained using an AdamW optimizer [35] with an initial learning rate of 0.0025 and a
cosine decay schedule. The batch size is 128 for Split CIFAR-100 and Split CUB-200, and 64 for
ImageNet-R. The number of epochs is set to be 20 for training on all three datasets. The classifier
bias mitigation process described in §4.3 requires ten epochs of training. Each experiment is run on a
single NVIDIA GeForce RTX 4090 GPU. More details are presented in §A.2.

5.2 Comparison Results

In this section, we present a comprehensive comparison with established baselines across various
datasets and pre-training regimes. The performances of different methods are reported in separate

7

Table 4: Results on 10-task ImageNet-R with different self-supervised pre-training paradigms.

Method Pub.
iBOT-1K [68] DINO-1K [5]

FAA (↑) CAA (↑) FAA (↑) CAA (↑)
DualPrompt [61] ECCV22 61.51 ± 1.05 67.11 ± 0.08 58.57 ± 0.45 64.89 ± 0.15
CODA-Prompt [50] CVPR23 66.56 ± 0.68 73.14 ± 0.57 63.15 ± 0.39 69.73 ± 0.25
HiDe-Prompt [59] NeurIPS23 71.33 ± 0.21 73.62 ± 0.13 68.11 ± 0.18 71.70 ± 0.01
VQ-Prompt — 71.68 ± 0.72 76.66 ± 0.40 68.42 ± 0.28 74.43 ± 0.58

tables due to the varying experimental settings such as the number of tasks and the pre-training
dataset, to ensure a fair and accurate comparison.

Results on ImageNet-R. Table 1 shows the results across five runs on ImageNet-R with 5-task,
10-task, and 20-task splits using the ViT-Base backbone pre-trained with supervised learning on
ImageNet-1K. Our VQ-Prompt consistently outperforms other methods across key metrics such as
FAA and CAA for all task splits, including the latest prompt-based method EvoPrompt.

Results on Split CIFAR-100. Table 2 presents the results across five runs on CIFAR-100 split into
10 tasks, with the ViT-Base backbone also pre-trained on ImageNet-1K with supervised learning. Our
VQ-Prompt achieves superior results compared to other methods using the same pre-training weights.

Results on Split CUB-200. Table 3 displays the results on Split CUB-200. Following [67], we use
the ViT-Base backbone pre-trained on ImageNet-21K for this dataset. VQ-Prompt achieves superior
or comparable performance compared with all other methods, including SLCA [67], which trains
the entire network without freezing the pre-trained feature extraction backbone. This highlights its
potential and efficacy in continual learning for fine-grained classification tasks.

Other Pre-training Regimes. Table 4 summarizes the experimental results across three runs on
the 10-task ImageNet-R dataset, utilizing different self-supervised pre-training paradigms, namely
iBOT-1K [68] and DINO-1K [5]. These results demonstrate that our method consistently outperforms
state-of-the-art prompt-based continual learning methods, underscoring its robustness and efficiency
in leveraging self-supervised pre-training for continual learning tasks. Specifically, VQ-Prompt shows
a greater advantage in CAA than FAA, indicating its superior ability to leverage past knowledge for
aiding current tasks, despite a slightly higher degree of forgetting relative to some baselines. This
trade-off between adaptation to new tasks and forgetting of previous ones is a common challenge in
continual learning. With self-supervised pre-training, our method tends to prioritize adaptability to
new tasks to ensure that the model remains relevant and effective in dynamic environments.

5.3 Ablation Study and Additional Analysis
In this section, we assess the effectiveness of different components illustrated in §4. The experiments
are performed on 10-task ImageNet-R with the ViT-Base backbone pre-trained on ImageNet-1K.

Effectiveness of VQ Design. Our VQ design (c.f., §4.2) enables end-to-end training of the discrete
prompt selection in continual learning. Here, we compare it with an alternative intuition design
choice, i.e., rewriting Eq. (4) as α = Softmax(Kq/τ), and reducing the temperature τ of the
softmax operation. A lower temperature leads to a “sharper” distribution of α, allowing the prompt
formation in Eq. (5) to more closely approximate discrete prompt selection during end-to-end training
with task loss. This baseline is denoted as “Soft-Prompt”. Fig. 3 (a) presents the FAA values of
Soft-Prompt with different τ values. Surprisingly, Soft-Prompt achieves its best performance of
77.15 at τ =1.0 instead of at lower values. While its performance is comparable to other prompt-
based methods, Soft-Prompt falls short of “VQ-Prompt-S”, which achieves an FAA value of 78.05
on 10-task ImageNet-R. Here, VQ-Prompt-S is a simplified version of VQ-Prompt that does not
use representation statistics. Our standard version VQ-Prompt further achieves an FAA value of
78.83. This observation underscores the effectiveness of our VQ design compared to the intuitive
low-temperature soft prompt selection.

The rationale behind this is that reducing the temperature makes the softmax operation more sensitive
to differences in logits. While this heightened sensitivity is acceptable when the model is confident in
its predictions, it can lead to more aggressive prompt choices at the beginning of the training when
the model is less fully trained. In contrast, our VQ-Prompt utilizes a standard softmax for prompt
formation, substitutes the resulting prompt with the nearest one in the prompt pool, and enables

8

Softmax Temperature

FA
A

FA
A

FAA

(a)

(b)

(c)
VQ-Prompt-S 78.05
VQ-Prompt 78.83

Figure 3: Ablation study. (a) VQ Design. We show the performance of an alternative of VQ
Design, “Soft-Prompt”, that generates the continuous prompt with low-temperature softmax operation
only without using VQ. Here, “VQ-Prompt-S” is a simplified version of VQ-Prompt without using
representation statistics. (b) Prompt Hyperparameters. The results of varying the size of the prompt
pool N and the length of a single prompt Lp are displayed. (c) Loss Weights. The results of different
combinations of λq and λc values are presented. See §5.3 for details.

Table 5: Effectiveness of classifier bias mitigation. Results for “5-task”, “10-task”, and “20-task”
settings on ImageNet-R are included. “C.B.M.” denotes “Classifier Bias Mitigation”. Backbones are
pre-trained on ImageNet-1K. ↑ denotes larger values are better. See §5.3 for details.

Method C.B.M.
5-task 10-task 20-task

FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑)
L2P++ [62] No 70.83 ± 0.58 78.34 ± 0.47 69.29 ± 0.73 78.30 ± 0.69 65.89 ± 1.30 77.15 ± 0.65
L2P++ V2 [62] Yes 74.11 ± 0.08 78.44 ± 0.63 72.93 ± 0.27 78.63 ± 0.80 70.99 ± 0.26 77.65 ± 0.79
EvoPrompt [26] No 77.16 ± 0.18 82.22 ± 0.54 76.83 ± 0.08 82.09 ± 0.68 74.41 ± 0.23 80.96 ± 1.42
VQ-Prompt-S No 78.52 ± 0.34 82.64 ± 0.68 78.00 ± 0.39 82.83 ± 0.69 76.19 ± 0.26 81.68 ± 1.02
VQ-Prompt Yes 79.23 ± 0.29 82.96 ± 0.50 78.71 ± 0.22 83.24 ± 0.68 78.10 ± 0.22 82.70 ± 1.16

end-to-end learning through gradient estimation and VQ regularization, which proves to be more
robust for task knowledge learning compared with Soft-Prompt.

Hyperparameters for Prompting. There are two key hyperparameters: i) the size of the prompt pool
N that represents the total capacity of the learnable prompts, and ii) the length of a single prompt Lp

which determines the capacity of a single prompt to encode certain aspects of task knowledge. The
total size of the prompts to be prepended to the input of one MSA block is given by N×Lp.

Fig. 3 (b) illustrates the impact of varying Lp and N on FAA performance. Across different
parameter configurations, our method consistently outperforms existing approaches, demonstrating
its robustness. Specifically, an excessively small Lp value consistently yields sub-optimal results, as
indicated by the lower FAA scores across different N values. Increasing N can partially compensate
for small Lp values, leading to improved performance. In contrast, increasing Lp generally enhances
performance up to a certain threshold, beyond which an overly large Lp may cause knowledge
overfitting, as reflected by the stable or slightly declining FAA scores for larger Lp values. We
selected Lp=8 and N=10 as our default configuration. This configuration achieves superior results
with fewer parameters compared to other prompt-based methods (c.f., § A.3).

Our competitive performance is primarily attributed to the use of VQ, which offers several key benefits
for prompt-based continual learning. First, VQ enables the encoding of task knowledge into discrete
prompts, which provide a more compact representation than continuous prompts. This discrete nature
helps in capturing essential task-specific features with the necessary level of abstraction. Second,
integrating VQ within the prompt-based framework facilitates end-to-end optimization with task loss,
ensuring that the selected prompts are highly relevant to the task at hand, thereby enhancing the task

9

knowledge learning of the prompts. This enables the use of shorter prompts while maintaining strong
performance, making our approach more parameter-efficient and effective.

Impact of λq and λc. To further enhance the learning of prompt-related parameters, we introduce
two regularization terms LVQ and LCommit to guide the learning (c.f., §4.2). We investigate the impact
of various loss weights, as shown in Eq. (9). The outcomes are detailed in Fig. 3 (c). As can be
observed, these two terms can contribute to good performance when assigned with a relatively broad
range of values. According to Fig. 3 (c), we set λq=0.4 and λc=0.1 in all of our experiments.

Effectiveness of Classifier Bias Mitigation. The classifier bias mitigation utilizes representation
statistics to stabilize task knowledge learning (c.f., §4.3), which can also be applied to other methods.
To evaluate its potential advantage, we integrated this component into L2P++. As shown in Table 5,
L2P++ with representation statistics (“L2P++ V2”) achieves improved performance over the original
L2P++ across all three ImageNet-R settings, but remains inferior to our method. Additionally, we
include the results of “VQ-Prompt-S”, a simplified version of VQ-Prompt that omits classifier bias
mitigation. Notably, VQ-Prompt-S still outperforms other methods such as EvoPrompt, demonstrating
the effectiveness of our approach. This indicates that the classifier bias mitigation process can
contribute to performance improvements, but is not the sole determinant of the final performance.

6 Discussion and Conclusion

This study focuses on one critical deficiency inherent in current prompt-based continual learning
methodologies, specifically the end-to-end optimization of the prompt selection process with task
loss while keeping its discrete nature as the representation of task knowledge. Our proposed Vector
Quantization Prompting (VQ-Prompt) framework mitigates the challenge by substituting continuous
prompts with their nearest counterparts from the prompt pool, thereby enhancing task accuracy
through a more aligned and abstract representation of conceptual task knowledge. To overcome the
non-differentiability inherent in this process, we employed gradient estimation along with vector
quantization regularization terms, which allows for optimizing prompt retrieval with task loss. Repre-
sentation statistics are utilized to further stabilize task knowledge learning. Extensive experiments in
class-incremental scenarios consistently demonstrate VQ-Prompt’s superiority over SOTA methods.

Limitations and Future Work. One limitation of VQ-Prompt is its dependence on pre-trained
models. While these models offer rich initial knowledge, enabling a more mature learning process
akin to that of an adult, they also inherit the limitations of the pre-trained data distribution and the
high computational costs associated with their use. This challenge is not unique to VQ-Prompt
but applies broadly to other continual learning methods that rely on pre-trained models. Another
limitation is the absence of constraints in calculating similarity scores and prompt keys, which can
result in suboptimal prompt utilization, i.e., some prompts are more frequently selected for samples
from different tasks while others are less frequently used. To alleviate this, one possible strategy is to
introduce constraints on prompt selection, such as limiting the reuse of prompts that have already
been heavily utilized by previous tasks to enhance the diversity and utility of the prompts. We leave a
more thorough exploration of such prompt selection constraints for future research.

Broader Impacts

This paper presents a prompt-based continual learning method to tackle the challenges of knowledge
preservation in sequential task learning. Our approach facilitates continual adaptation and learning,
thereby contributing to the advancement of intelligent, adaptive, and efficient technologies applicable
to various domains, including autonomous vehicles and personalized AI agents. While VQ-Prompt
advances class-incremental continual learning, its robustness could be compromised if poisonous
samples are introduced after a concept has been learned. One possible mitigation strategy is to
implement robust anomaly detection methods to identify and filter out suspicious input samples
before they are introduced into the training process.

Acknowledgments and Disclosure of Funding

This work is supported by the National Natural Science Foundation of China (No. 62176241) and the
Fundamental Research Funds for the Central Universities (No. CUC24QT06).

10

References
[1] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars. Memory aware synapses: Learning

what (not) to forget. In ECCV, pages 139–154, 2018.

[2] E. Belouadah and A. Popescu. Il2m: Class incremental learning with dual memory. In ICCV, pages
583–592, 2019.

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara. Dark experience for general continual
learning: a strong, simple baseline. NeurIPS, 33:15920–15930, 2020.

[5] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in
self-supervised vision transformers. In CVPR, pages 9650–9660, 2021.

[6] S. Cha, S. Cho, D. Hwang, S. Hong, M. Lee, and T. Moon. Rebalancing batch normalization for exemplar-
based class-incremental learning. In CVPR, pages 20127–20136, 2023.

[7] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with a-gem. In
ICLR, 2019.

[8] A. a. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ranzato. On
tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486, 2019, 2019.

[9] K. Chen and C.-G. Lee. Incremental few-shot learning via vector quantization in deep embedded space. In
ICLR, 2021.

[10] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars.
A continual learning survey: Defying forgetting in classification tasks. IEEE TPAMI, 44(7):3366–3385,
2021.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

[12] A. Douillard, A. Ramé, G. Couairon, and M. Cord. Dytox: Transformers for continual learning with
dynamic token expansion. In CVPR, pages 9285–9295, 2022.

[13] P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image synthesis. In CVPR,
pages 12873–12883, 2021.

[14] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli, M. Guo,
et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In ICCV,
pages 8340–8349, 2021.

[15] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples. In CVPR,
pages 15262–15271, 2021.

[16] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learning a unified classifier incrementally via rebalancing.
In CVPR, pages 831–839, 2019.

[17] C.-Y. Hung, C.-H. Tu, C.-E. Wu, C.-H. Chen, Y.-M. Chan, and C.-S. Chen. Compacting, picking and
growing for unforgetting continual learning. NeurIPS, 32, 2019.

[18] D. Isele and A. Cosgun. Selective experience replay for lifelong learning. In AAAI, volume 32, 2018.

[19] M. Kiefer and F. Pulvermüller. Conceptual representations in mind and brain: Theoretical developments,
current evidence and future directions. Cortex, 48(7):805–825, 2012.

[20] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. PNAS,
114(13):3521–3526, 2017.

[21] T. Kohonen. Improved versions of learning vector quantization. In IJCNN, pages 545–550, 1990.

[22] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

11

[23] Y. Kong, L. Liu, Z. Wang, and D. Tao. Balancing stability and plasticity through advanced null space in
continual learning. In ECCV, pages 219–236, 2022.

[24] T. Konishi, M. Kurokawa, C. Ono, Z. Ke, G. Kim, and B. Liu. Parameter-level soft-masking for continual
learning. In ICML, 2023.

[25] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[26] M. R. Kurniawan, X. Song, Z. Ma, Y. He, Y. Gong, Y. Qi, and X. Wei. Evolving parameterized prompt
memory for continual learning. In AAAI, volume 38, pages 13301–13309, 2024.

[27] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang. Overcoming catastrophic forgetting by incremental
moment matching. NeurIPS, 30, 2017.

[28] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt tuning. In
EMNLP, pages 3045–3059, 2021.

[29] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong. Learn to grow: A continual structure learning framework
for overcoming catastrophic forgetting. In ICML, pages 3925–3934, 2019.

[30] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. In ACL-IJCNLP,
pages 4582–4597, 2021.

[31] Z. Li and D. Hoiem. Learning without forgetting. IEEE TPAMI, 40(12):2935–2947, 2017.

[32] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing. ACM Computing Surveys, 55(9):1–35, 2023.

[33] Y. Liu and T. Tuytelaars. Residual tuning: Toward novel category discovery without labels. IEEE TNNLS,
2022.

[34] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. NeurIPS, 30, 2017.

[35] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR, 2018.

[36] Z. Luo, Y. Liu, B. Schiele, and Q. Sun. Class-incremental exemplar compression for class-incremental
learning. In CVPR, pages 11371–11380, 2023.

[37] T. Malepathirana, D. Senanayake, and S. Halgamuge. Napa-vq: Neighborhood-aware prototype augmenta-
tion with vector quantization for continual learning. In CVPR, pages 11674–11684, 2023.

[38] T. Martinetz, K. Schulten, et al. A “neural-gas” network learns topologies. ANN, pages 397–402, 1991.

[39] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Weijer. Class-incremental
learning: Survey and performance evaluation on image classification. IEEE TPAMI, 2022.

[40] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. 1989.

[41] G. L. Murphy and D. L. Medin. The role of theories in conceptual coherence. Psychological Review, 92
(3):289, 1985.

[42] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with neural
networks: A review. Neural Networks, 113:54–71, 2019.

[43] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor. Imagenet-21k pretraining for the masses. In
NeurIPS, 2021.

[44] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro. Learning to learn without
forgetting by maximizing transfer and minimizing interference. In ICLR, 2019.

[45] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience replay for continual learning.
NeurIPS, 32, 2019.

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV, 115(3):211–252, 2015.

[47] G. Saha, I. Garg, and K. Roy. Gradient projection memory for continual learning. In ICLR, 2021.

[48] J. Serra, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catastrophic forgetting with hard attention
to the task. In ICML, pages 4548–4557, 2018.

12

[49] Y. Shi, K. Zhou, J. Liang, Z. Jiang, J. Feng, P. H. Torr, S. Bai, and V. Y. Tan. Mimicking the oracle: an
initial phase decorrelation approach for class incremental learning. In CVPR, pages 16722–16731, 2022.

[50] J. S. Smith, L. Karlinsky, V. Gutta, P. Cascante-Bonilla, D. Kim, A. Arbelle, R. Panda, R. Feris, and Z. Kira.
Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning. In
CVPR, pages 11909–11919, 2023.

[51] Y.-M. Tang, Y.-X. Peng, and W.-S. Zheng. When prompt-based incremental learning does not meet strong
pretraining. In ICCV, pages 1706–1716, 2023.

[52] X. Tao, X. Chang, X. Hong, X. Wei, and Y. Gong. Topology-preserving class-incremental learning. In
ECCV, pages 254–270, 2020.

[53] X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong. Few-shot class-incremental learning. In CVPR,
pages 12183–12192, 2020.

[54] G. M. Van de Ven and A. S. Tolias. Three scenarios for continual learning. arXiv preprint arXiv:1904.07734,
2019.

[55] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. In NeurIPS, 2017.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. NeurIPS, 30, 2017.

[57] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset.
2011.

[58] F.-Y. Wang, D.-W. Zhou, L. Liu, H.-J. Ye, Y. Bian, D.-C. Zhan, and P. Zhao. Beef: Bi-compatible
class-incremental learning via energy-based expansion and fusion. In ICLR, 2023.

[59] L. Wang, J. Xie, X. Zhang, M. Huang, H. Su, and J. Zhu. Hierarchical decomposition of prompt-based
continual learning: Rethinking obscured sub-optimality. In NeurIPS, 2023.

[60] Y. Wang, Z. Huang, and X. Hong. S-prompts learning with pre-trained transformers: An occam’s razor for
domain incremental learning. NeurIPS, 2022.

[61] Z. Wang, Z. Zhang, S. Ebrahimi, R. Sun, H. Zhang, C.-Y. Lee, X. Ren, G. Su, V. Perot, J. Dy, et al.
Dualprompt: Complementary prompting for rehearsal-free continual learning. In ECCV, pages 631–648,
2022.

[62] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su, V. Perot, J. Dy, and T. Pfister. Learning to
prompt for continual learning. In CVPR, pages 139–149, 2022.

[63] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large scale incremental learning. In CVPR,
pages 374–382, 2019.

[64] J. Yoon, E. Yang, J. Lee, and S. J. Hwang. Lifelong learning with dynamically expandable networks. ICLR,
2018.

[65] G. Zeng, Y. Chen, B. Cui, and S. Yu. Continual learning of context-dependent processing in neural
networks. Nature Machine Intelligence, 1(8):364–372, 2019.

[66] X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic, J. Djolonga, A. S. Pinto,
M. Neumann, A. Dosovitskiy, et al. A large-scale study of representation learning with the visual task
adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

[67] G. Zhang, L. Wang, G. Kang, L. Chen, and Y. Wei. Slca: Slow learner with classifier alignment for
continual learning on a pre-trained model. In ICCV, 2023.

[68] J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. Yuille, and T. Kong. Image bert pre-training with online
tokenizer. In ICLR, 2022.

13

A Appendix / supplemental material

In this section, we provide detailed supplementary information. §A.1 outlines the evaluation metrics
used to assess performance, providing detailed descriptions and formulas for clarity. §A.3 elaborates
on the configurations of prompt-based methods compared in our experiments. §A.2 offers additional
implementation details, including model training procedures, detailed parameter settings, and method-
ology for obtaining results of other methods compared in the experiments. Finally, §A.4 provides
more results on two challenging datasets.

A.1 Evaluation Metrics

To assess the performance of continual learning, we record the average classification accuracy of all
seen classes at the end of each task training, and denote the average accuracy on the i-th task after
learning the j-th task as Aij . The formal definitions of FAA and CAA are introduced as follows.

i) Final Average Accuracy (FAA) refers to the last average accuracy after learning all the tasks:

FAA =
1

T

T∑
i=1

AiT , (10)

where AiT is the average accuracy of task i after learning task T , and T is the number of tasks. Larger
FAA indicates greater learning capacity and less forgetting. FAA is also denoted as “Last-Acc”.

ii) Cumulative Average Accuracy (CAA) is the average of historical FAA values after learning each
task, which is calculated as:

CAA =
1

T

T∑
j=1

1

j

j∑
i=1

Aij . (11)

CAA reflects the overall performance after learning each incremental task, which can also be denoted
as “Inc-Acc”.

A.2 More Implementation Details

We use AdamW [35] with β1=0.9 and β2=0.999. Our batch size is 64 for ImageNet-R, and 128
for Split CIFAR-100 and Split CUB-200. We resize the input images to 224×224 and perform data
transform following [50], including random horizontal flip and normalization.

Following DualPrompt [61] and CODA-Prompt [50], we use 20% of the training data as validation
data, and perform hyperparameters tuning on it. After hyperparameter searching, we use a learning
rate of 0.0025 for our method. For all other prompt-based methods, we use the hyperparameters
following [50]

We search the values of prompt length LP from 4 to 24 with a step of 4. We search the number
of prompt elements N in {10, 30, 50, 100}. We found that a prompt length of 8 and 10 prompt
elements already work fine. We insert prompts at the same locations as all other implemented
prompt-based methods in this paper, namely, the first 5 MSA blocks. A detailed comparison of the
prompt configurations can be found in §A.3.

Finally, we run FT, FT++, L2P++, Deep L2P++, DualPrompt, and CODA-Prompt by using the official
implementation provided by CODA-Prompt [50]. We set the predicted logits for past task classes to
be 0 to prevent gradients from flowing to the linear heads of these classes. This is recommended by
CODA-Prompt to improve the performance of these methods during code reproduction, as it could
alleviate the bias towards new classes in CIL for rehearsal-free methods. For HiDe-Prompt [59] and
EvoPrompt [26], we reproduce the results using their respective official implementations.

A.3 Configurations of Prompt-based Methods

Table 6 presents the configurations of all the prompt-based continual learning methods compared
in our experiment. Here, “Pro-T” denotes Prompt Tuning [28], and “Pre-T” denotes Prefix Tuning
strategy [30], “Locations” indicates the MSA blocks to insert the prompts, N is the number of
prompts/components in the prompt pool, and Lp is the length of a single prompt/component. L2P++

14

Table 6: Prompt configurations for prompt-based approaches in our experiments. See §A.3.

Approaches Strategy Locations Datasets Hyperparameters
L2P++ [62] Pre-T [0] All N=30, Lp=20

Deep L2P++ [62] Pre-T [0 1 2 3 4] All N=30, Lp=20

Dual-Prompt [61]
Pre-T [0 1] All G: N=1, Lp=6

Pre-T [2 3 4] All E: N=10, Lp=20

CODA-P [50] Pre-T [0 1 2 3 4] All N=100, Lp=8

HiDe-Prompt [59] Pre-T [0 1 2 3 4]
ImageNet-R N=10, Lp=40

Split CIFAR-100 N=10, Lp=10

Split CUB-200 N=10, Lp=40

EvoPrompt [26] Pro-T [0 1 2 3 4 5 6 7 8 9 10 11] All Input-cond., Lp=5

VQ-Prompt (Ours) Pre-T [0 1 2 3 4] All N=10, Lp=8

and Deep L2P++ are two variants of L2P for fair comparison. Specifically, L2P++ uses Pre-T instead
of Pro-T prompting, and inserts the prompts to the first MSA block. Deep L2P++ is an extension of
L2P++ with prompts incorporated into the same 5 MSA blocks as DualPrompt. For DualPrompt, “G”
denotes the general prompt shared by all the tasks, and “E” denotes the expert prompt pool where
only one of the elements is selected for a certain query. As can be observed, our method requires
fewer prompting parameters while consistently achieving superior or comparable performance across
the benchmarks in continual learning.

A.4 More Experiment Results

This section presents results on two challenging datasets, namely ImageNet-A [15] and VTAB [66],
for evaluating continual learning methods based on pre-trained models. ImageNet-A contains
adversarial images that fool current ImageNet pre-trained classifiers, while VTAB includes 19
datasets with diverse classes that do not overlap with ImageNet-1K. For ImageNet-A, we split the
200 classes into 20 tasks. For VTAB, we sample five 10-class datasets from it to construct the
cross-domain CIL setting. We used a batch size of 64 for ImageNet-A and 8 for VTAB., with other
training hyperparameters consistent with those used on other datasets. As shown in Table 7, our
VQ-Prompt outperforms other SOTA methods such as HiDe-Prompt when evaluated using FAA.

Table 7: Results evaluated using the FAA metric on the ImageNet-A and VTAB datasets. Backbones
are pre-trained on ImageNet-1K. Larger values are better.

Method ImageNet-A [15] VTAB [66]
HiDe-Prompt [59] 51.67 86.38
VQ-Prompt 52.96 90.46

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

16

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Method details are included in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

Answer: [Yes]
Justification: The code is available at https://github.com/jiaolifengmi/
VQ-Prompt.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental settings are included in Section 5. Full details are in the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports the mean and standard deviations in tables with proper
explanations and references.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

https://github.com/jiaolifengmi/VQ-Prompt
https://github.com/jiaolifengmi/VQ-Prompt
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper indicates the type of GPU and an estimation of the total compute.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Social impacts are discussed at the end of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release data or models that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites the original paper that produced the code package or
dataset. The license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Model details are included in the paper and the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Related work
	Preliminary
	Method
	Prompt Formation
	Vector Quantization Prompting (VQ-Prompt)
	Stabilizing Task Knowledge Learning with Representation Statistics
	Overall Optimization Objective

	Experiment
	Experimental Setups
	Comparison Results
	Ablation Study and Additional Analysis

	Discussion and Conclusion
	Appendix / supplemental material
	Evaluation Metrics
	More Implementation Details
	Configurations of Prompt-based Methods
	More Experiment Results

