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Abstract

Feint behaviors refer to a set of deceptive behaviors in a nuanced manner, which
enable players to obtain temporal and spatial advantages over opponents in com-
petitive games. Such behaviors are crucial tactics in most competitive multi-player
games (e.g., boxing, fencing, basketball, motor racing, etc.). However, existing lit-
erature does not provide a comprehensive (and/or concrete) formalization for Feint
behaviors, and their implications on game strategies. In this work, we introduce
the first comprehensive formalization of Feint behaviors at both action-level and
strategy-level, and provide concrete implementation and quantitative evaluation of
them in multi-player games. The key idea of our work is to (1) allow automatic
generation of Feint behaviors via Palindrome-directed templates, combine them
into meaningful behavior sequences via a Dual-Behavior Model; (2) concertize
the implications from our formalization of Feint on game strategies, in terms of
temporal, spatial and their collective impacts respectively; and (3) provide a unified
implementation scheme of Feint behaviors in existing MARL frameworks. The
experimental results show that our design of Feint behaviors can (1) greatly im-
prove the game reward gains; (2) significantly improve the diversity of Multi-Player
Games; and (3) only incur negligible overheads in terms of time consumption.

1 Introduction
In most real-world Multi-Player Games (e.g., boxing, basketball, motor racing, and etc.), players
exhibit complex behaviors, which imply hard-to-be-quantified interactions. Simulating these games
requires to model the players’ behaviors into action spaces as the elements (i.e., which we denote
such a decision as “action-level"), and explore strategies based on these elements [34, 35]. As one of
the most common behaviors in real-world games, Feint behaviors represent a class of tactic behaviors,
which are used to mislead opponents to obtain temporally-strategic advantages1. Such behaviors
generally exhibit nuanced differences with normal behaviors, in terms of action movements2; but
these behaviors can help the agent to obtain strategic advantages to a considerable extent3. However,
no existing literature provides a comprehensive formalization (and/or concrete modeling of) Feint
behaviors, at either action level or strategy level, and we justify this claim below.

• To the best of our knowledge, [34] is the first work to mention Feint behaviors, as a proof-of-
concept to construct animations for nuanced behaviors in two-player boxing games, based
on the unpredictability introduced in stochastic and simultaneous decision making.

• A more recent work [35] learn control strategies to animate nuanced agent behaviors like
Feint in gaming environments, from motion clips using Deep Reinforcement Learning.

1Note that the resulting advantages may be exhibited temporally and/or spatially.
2Examples include fake punch in boxing, early-braking in motor racing, and etc.
3And, clearly, Feint behaviors can also increase the diversity of those games, according to [19, 26].
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Summary. Prior attempts do not provide detailed formalization to address the action-level char-
acteristic of Feint and do not give Feint behavior generation guidelines. As for the strategy-level
formalization, existing learning-based works either neglect Feint behaviors or assume that Feint are
just glitches from other behaviors, by inducing similar impacts implicitly.4

Overview. Our work provides the first comprehensive and concrete formalization of Feint behaviors
in action-level and strategy-level. We first present an automatic approach to generate Feint behaviors
using Palindrome-directed Templates based on our observation on Feint characteristics, and provide
Dual-Behavior Model to examine the design for the combination of Feint behaviors and normal
actions. Based on the action-level formalization, we then model the Feint behavior impacts on
strategy-level in terms of the temporal, spatial, and their collective impacts under a learnable scheme.
Then, we provide a concrete and unified implementation to incorporate the action-level and strategy-
level formalization in common Multi-Player Reinforcement Learning (MARL) frameworks; so that
we can showcase the effectiveness of our formalization5.

Results. To properly examine the effectiveness of our formalization, we extensively construct a
complex and physics-based boxing game as abstraction of some animation-related works [34, 35].
We use a two-player and a six-player scenario with 4 commonly used MARL models (MADDPG [20],
MASAC [11, 13], MATD3 [2], and MAD3PG [4, 6]) to extensively evaluate our formalization. We
also evaluate our formalization of Feint in a strategic real-game, Alpha Star, to examine the diversity
gain introduced by our formalization. The results show that our formalization of Feint can significantly
increase the gaming rewards in all scenarios with all 4 MARL models. We also extensively examine
our approaches: for the Diversity Gain, our method can increase the exploitation of the search
space by 1.98X, measured by the Exploitability metrics; and our implementation scheme only incur
less than 5% overheads in terms of per game episode time consumption. We conclude that our
formalization of Feint behaviors is effective and practical, significantly increasing players’ game
rewards and making Multi-Player Games more interesting.

2 Background
2.1 Feint Behaviors in the Real-World and Simulated Games
Feint behaviors are common for human players, as a set of active actions to obtain strategic advantages
in real-world games. Examples can include sports games such as boxing, basketball, and motor racing
[10, 9, 12], and electronic games such as King of Fighters and Starcraft [33, 5]. Feint behaviors are
not simple deceptive behaviors as their goal is to not to gain rewards for themselves but to create
temporal and spatial advantages for some short-term follow-up actions. In addition, Feint behaviors
have nuanced action formalizations. Though Feint is undoubtedly important in many real-world
games, there still lacks a comprehensive formalization of Feint in Multi-Player Game simulations
using Non-Player Characters (NPCs). There are only a limited amount of works to tackle this issue.
[34] is an early example of incorporating Feint as a proof-of-concept, which focuses on constructing
animations for nuanced game strategies for more unpredictability from NPCs. More recently, [36]
learn multi-level control strategies of agents via deep reinforcement learning from a set of motion
clips including nuanced behaviors like Feint (i.e. in animating combat scenes). However, these
prior works (1) lack concrete formalizations of Feint behavior characteristics, which cannot fully
unveil the variety of Feint behaviors in the action level; and (2) lack comprehensive explorations
of Feint behaviors implications on game strategies, which neglects the potential impacts of fusing
effective Feint behaviors into strategies; and (3) solely focus on Two-Player Games, which can not be
effectively generalized to multi-player scenarios.

2.2 MARL Models at Strategy-Level in Multi-Player Game Simulations
Multi-Agent Reinforcement Learning (MARL) aims to learn optimal policies for agents in a multi-
agent environment, which consists of various agent-agent and agent-environment interactions6. Many
single-agent Reinforcement Learning methods (e.g. DDPG [18], SAC [11], PPO [29] and TD3 [8],
D4PG [4]) can not be directly used in multi-agent scenarios, since the rapidly-changing multi-agent
environment can cause highly unstable learning results (evidenced by [20]). Thus, recent efforts

4As shown in this work, existing learning-based approaches can not effectively model Feint behaviors in
strategy-level, since Feint behaviors require intricate planning which is an active process.

5To deliver a unified definition of Feint behavior in both continuous and discrete action space, we highlight
the difference in appendix A.1

6Note that these efforts can establish Feint upon prior arts (as covered in appendix A.2), and we have justified
the novelty of our approach in appendix A.2.
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on MARL model designs aim to address such an issue. [7] proposes Counterfactual Multi-Agent
(COMA) policy gradients, which uses centralised critic to estimate the Q-function and decentralised
actors to optimize agents’ policies. [20] proposes Multi-Agent Deep Deterministic Policy Gradient
(MADDPG), which decreases the variance in policy gradient and instability of Q-function of DDPG
in multi-agent scenarios. [13] proposes Multi-Agent Actor-attention Critic (MAAC), which applies
attention entropy mechanism to enable effective and scalable policy learning. These models can
have varied impacts within a diverse set of scenarios. [6] introduces Multi-agent Distributed Deep
Deterministic Policy Gradient (MAD3PG), which extends the D4PG to multi-agent scenarios with
distributed critics to enable distributed tracking. [2] proposes Multi-Agent Twin Delayed Deep
Deterministic Policy Gradient (MATD3), which integrates twin delayed Q-learning and addressing
the overestimation bias in Q-values in a multi-agent setting. Though different MARL models have
different design details, they all share the same high-level learning structure. Thus, our goal is to
provide a unified scheme to fuse our formalization of Feint behaviors into game simulations that can
be learned using common MARL models, enabling effective Feint behaviors impacts regardless of
specific design choices of MARL models.

3 Formalizing Feint Behavior
We introduce our formalization of Feint behaviors in action level regarding (1) how to automatically
generate Feint behavior with templates from common attack behaviors; and (2) how can the generated
Feint behaviors be synergistically combined with follow-up high-reward actions. We first introduce
our methodology to automatically generate Feint behaviors, by exploiting our newly-revealed insight
called Palindrome-directed Generation of Feint Templates. Next, we illustrate key design choices
on how to combine the generated Feint behaviors with follow-up actions in a Double-Behavior
Model, which forms the foundation for the designs of Feint-accounted strategy designs in Section 47.

3.1 Feint Behavior Characteristics and Templates
Since Feint behaviors aim to provide deceptive attacks, they are naturally expected to be derived from
a subset of existing attack behaviors. Based on our exploration, we derive two key findings from an
extensive amount of attack behaviors. First, most attack behaviors can be decomposed into three
action sequences, which are Stretch-out Sequence (Sequence 1), Reward Sequence (Sequence 2), and
Retract Sequence (Sequence 3) (an example shown in the first row in Figure 1). We elaborate on each
action sequence in detail.

Sequence 1 leads the agent’s movements to the Reward Sequence (in boxing, approaching the
opponents before actually hitting them); Sequence 2 contains actions that gain game rewards (in
boxing, physical contact with the opponents); and Sequence 3 retracts an agent’s movements to a
relative rest position (in boxing, retracting back to a preparation position for next behaviors). Second,
body movements in Sequence 1 and Sequence 3 usually have semi-symmetric yet reverse-order action
patterns in the timeline. A behavior usually starts and ends in a similar physical state due to physical
restrictions (e.g., bones and muscles stretching restrictions for a humanoid).

The above three-stage decomposition of attack behaviors has motivated a series of constraints, to
deliver proper design of Feint generators. To satisfy the above two requirements, we propose a
Feint behavior template generator called Palindrome-directed Generation of Feint Templates, by
extracting subsets of semi-symmetrical actions from an attack behavior and synthesizing them as a
Feint behavior. The general method to generate these templates are (1) by extracting subsets of unit
actions from an attack behavior, a Feint behavior can be considered as a semi-finished real attack
behavior. This ensures the high similarity of a generated Feint behavior with an attack behavior,
thus opponents can be deceived; and (2) by synthesizing semi-symmetric action sections, the overall
movements can be connected smoothly and the naturalness of humanoid actions can be guaranteed.
Within our proposed template generator Palindrome-directed Generation of Feint Templates, there
are two key adjustable parameters in practice: (1) sequence composition positions for Feint templates;
and (2) sequence length for Feint templates. We describe our rationale in appendix B. Figure 1
demonstrates 3 templates for generating Feint behavior templates in boxing games.

3.2 Feint Behavior in Consecutive Game Steps
Standalone Feint behaviors are meaningless in competitive games since the Feint behaviors themselves
do not gain rewards. Only by effectively combining Feint behaviors with intended follow-up actions

7We choose boxing game as an example to concretely explain our insights for Feint behaviors in this section
but our formalization is a unified abstraction of common games and can be easily adapted to other games
including basketball, fencing, motor racing, etc.
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Figure 1: An example of Palindrome-directed Generation Templates of Feint behaviors. The first
row shows an action sequence of a cross-punch behavior. Three examples of templates are shown as
➊, ➋, and ➌ to demonstrate physically realistic generation of Feint behaviors.

can showcase their effectiveness. Thus, we define an effective Feint cycle as a Dual-Behavior Model,
which jointly considers a Feint behavior and its intended follow-up behavior (can be a single action or
an action sequence). Our formalization for standalone Feint behaviors (Section 3.1) already provides
a large number of possible Feint behaviors. However, not all these morphologically reasonable Feint
actions can be directly combined with all high-reward follow-up actions in combating scenarios.
Therefore, certain constraints are demanded to construct effective combinations of Feint behaviors
and follow-up actions. Hereby, we introduce two major considerations and then propose relevant
restrictions, to enable naturalistic and suitable combinations of Feint behaviors and follow-up actions.

Figure 2: Dual-action Model - high-level abstraction and demonstration of internal stage transitions

(1) Physical Constraints: Physical constraints need to be accounted for when synthesizing Feint
behaviors and follow-up actions. The ending physical state for a Feint behavior must be a state that is
physically possible for an agent to perform the follow-up high-reward actions. For example, if an
agent in boxing games finishes Feint behavior with the left foot forward, but the following attack
behavior starts with the right foot forwarded, the synthesis of these two behavior is inappropriate
since this combination is physically unrealistic.
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To ensure that the combinations of Feint behaviors and follow-up actions obey the physical constraints,
we use a Reverse Search Principle which decides the intended follow-up actions (behavior) first and
then use the starting physical state of this behavior to search and compose proper Feint behaviors (a
more detailed description combined with strategy is described in Section 5). By first selecting an
intended follow-up high-reward behavior, the end physical state of the Feint behavior is constrained
to be close to the starting physical state of the follow-up behavior. Thus the composition of possible
Feint behaviors using the Palindrome-directed templates should aim to start and end at a physical
state that is close to the follow-up behavior.

(2) Effectiveness: The effectiveness of the incorporation of Feint behaviors is evaluated by whether
the following attack actions can successfully gain rewards from the opponent. A successful Feint
behavior would usually enable an agent to gain temporal and spatial advantages when performing the
follow-up behaviors. Thus, the two design parameters introduced in Section 3.2 play crucial roles in
combining Feint with follow-up behaviors. The abstraction of an ideal Dual-Behavior model that can
enable an agent with temporal and spatial advantage is illustrated in Figure 2 and a corresponding
example is provided in Figure 6. An effective Feint behavior creates temporal advantages that make
the opponents to defend in a wrong direction and enable temporal advantages to allow the follow-up
high-reward behavior to successfully gain rewards on the opponents.

To ensure the consistency and correctness of the understanding, we provide a detailed demonstration
for successful and unsuccessful Feint cases in Appendix C.

4 Formalizing Feint Behaviors in Strategies
To effectively fuse the Feint beahviors with Dual-Behavior Model into game interactions, we provide
the strategy-level formalization of Feint behaviors. We use Multi-Agent Reinforcement Learning
(MARL) schemes to discuss our formalization of Feint behaviors in the strategy level, as MARL
provides flexibility in exposing multiple adjustable parameters in learnable policy models. As
discussed in generating Feint behaviors (Section 3.1) and composing them in the Dual-Behavior
Models (Section 3.2), the key considerations for effective Feint cycle is to enable temporal and
spatial advantages for an agent. Thus, our strategy-level formalization centers on how to address
the temporal, spatial, and their collective impacts of Feint behaviors with Dual-Behavior Models. A
more concrete introduction for fusing of Feint into the MARL frameworks is presented in Section 5.

4.1 The Basic Formalization: Derivation and Limitations
Under commonly used MARL schemes [25, 19], we define a K-agent Non-transitive Active Markov
Game Model as a tuple ⟨K,S,A, P,R,Π,Θ⟩: S is the state space; A = {Ai}Ki=1 is the set of action
space for each agent, where there are no dominant actions; P performs state transitions of current
state by agents’ actions: P : S × A1 × A2 × ... × AK → P(S), where P(S) denotes the set of
probability distribution over state space S; R = {Ri}Ki=1 is the set of reward functions for each
agent; Π = {πi}Ki=1 is the set of policy models for each agent; and Θ = {Θi}Ki=1 is the set of policy
parameters for each agent’s policy model. For simplicity, we use i to denote an agent from our
description perspective and use −i to refer to all other agents.

We first summarize two major limitations of existing works to justify that they cannot deliver a suffi-
cient formalization of Feint behaviors in Multi-Player Games. Since there is no prior formalization,
we discuss relevant works and derive the key features to discuss them in detail.

➊ The basic formalization on temporal impacts is insufficient for Multi-Player Games. Multi-Player
Games require agents to account for complex future planning for decision-making, which is critical
for deceptive behaviors like Feint [22, 24, 26]. Several works simplify the temporal impacts of
deceptive game strategies in different gaming scenarios. [22] uses a discount factor γ to calculate
the reward for an agent i following actions as

∑∞
t=0 γ

tRi(st, a
i
t, a

−i
t ) for agent i. However, such a

method suffers from the "short-sight" issue [24], since the weights for future actions’ rewards shrink
exponentially with time, which are not suitable for all gaming situations (discussed in [26]). More
recently, [14] applies a long-term average reward for an agent i, to equalize the rewards of all future
actions as 1

T

∑T
t=0 R

i(st, a
i
t, a

−i
t ). However, such a method is restricted by the "far-sight" issue,

since there are no differentiation between near-future and far-future planning. The mismatch between
abstraction granularity heavily saddles with the design of Feint , because they use relatively static
representations (e.g. static γ and T ). Therefore, they cannot be aware of any potential changes of
strategies in different phases of a game. Hence, the temporal dimension is simplified hereby.
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➋ The basic formalization of spatial impacts are generally in simplified 2-player scenarios only,
which cannot be effectively generalized to Multi-Player Game scenarios. Prior works, which attempt
to fuse Feint into complete game scenarios, only consider two-player scenarios [36, 31]. However,
in Multi-Player (more then two player) Games, gaming strategies (especially deceptive strategies)
yield spatial impacts on other agents. Such impacts have been overlooked by all prior works. This is
because an agent, who launches the Feint behaviors, can impact not only the target agent but also
other agents in the scenario. Therefore, the influences of such an action needs to account for spatial
impacts [19]. Moreover, with a new dimension accounted, the interactions between them also raise a
potential issue for their mutually collective impacts.

4.2 Our Formalization in a Generalized Game Model
Therefore, to deliver an effective formalization of Feint in Multi-Player Games, it is essential to
consider the temporal, spatial and their collective impacts comprehensively. We first discuss the
Temporal Dimension, then we elaborate our considerations on Spatial Dimension, and finally we
summarize the design for the collective impacts from both temporal and spatial dimensions.

4.2.1 Temporal Dimension: Influence Time
To formalize the temporal impacts of Feint behaviors based on our Palindrome-directed Templates
and the Dual-Behavior Model, we use a Dynamic Short-Long-Term manner to emulate them, which
differ from the prior works’ formalization (Section 4.1). The short-term period refers to a complete
Dual-Behavior Model (Section 3.2), including a Feint behavior followed by an intended high-reward
behavior led by the Feint. The long-term period is the time steps after this Feint cycle. The rationale
behind such a design choice is that: the purpose of Feint is to obtain strategic advantages against the
opponent in the temporal dimension, aiming to benefit the follow-up high-reward behavior. Hence,
the Dynamic Short-Long-Term temporal impacts of Feint shall be (1) the actions that follow Feint
beahviors (e.g. actual attacks) in a short-term period of time should have a strong correlation to Feint
; (2) the actions in the long-term periods explicitly or implicitly depend on the effect of the Feint and
its following actions; and (3) for different Dual-Behavior models in different gaming scenarios, the
threshold that divides short-term and long-term should be dynamically adjusted to enable sufficient
flexibility in strategy making.

For Dynamic Short-Long-Term, we use the time-step length of a Dual-Behavior Model ts as the
short-term planning threshold. The short-term (the Dual-Behavior) starts at time step t0 with actions
of a Feint behavior {ait0 , ..., a

i
t0+tf

} and actions of a high-reward behavior {ait0+tf+1, ..., a
i
t0+ts}

sampled from Feint policy π′ (tf denotes the Feint behavior length). We use two different set of
scheduler weights on Feint behaviors αFeint = {αt0 , ..., αt0+tf } and the following attack behavior
αattack = {αtsf , ..., αt0+ts}. αFeint are small weights as regularizers since the Feint behaviors
themselves do not intend to gain rewards, while αattack are large weights to emphasize the importance
of the intended behaviors that Feint lead to. Thus, we formalize the short-time reward as

Rewshort(π
′

i, t0, tf , ts,α) =

t=t0+tf∑
t=t0

αFeinttR
i(st, a

i
t, a

−i
t ) +

t=t0+ts∑
t=tsf

αattackt
Ri(st, a

i
t, a

−i
t ) (1)

, since the purpose of Feint policy π′
i is to actively find effective combinations of Feint behaviors

and high-reward behaviors in Dual-Behavior Models that can benefit in a short-term period. We
then consider long-term planning after the short-term planning threshold ts: we use a set of discount
factor β = {βt0+ts+1, ..., βT } on the long-term average reward calculation (proposed by [14]), to
distinguish these reward from short-term rewards:

Rewlong(π
′

i, t0, ts, T,β) =
1

T

T∑
t=t0+ts+1

βtR
i(st, a

i
t, a

−i
t ) (2)

where T denotes the end time of the long-term planning threshold.

Finally, we put them together to formalize the Short-Long-Term reward calculation mechanism, when
an agent i plans to perform a Feint action at time t0 with a short-term planning threshold ts and the
end time T as:

Rewtemporal(π
′

i, t0, tf , ts, T,α,β) = λshortRewshort(π
′

i, t0, tf , ts,α)

+ λlongRewlong(π
′

i, t0, ts, T,β) (3)
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where λshort and λlong are weights for dynamically balancing the weight of short-term and long-term
rewards for different gaming scenarios. λshort and λlong are initially set as 0.67 and 0.33 and are
adjusted to achieve better performance with the iterations of training.
4.2.2 Spatial Dimension: Influence Range
The spatial advantage of Feint behaviors refers to deceiving the opponents (i.e., deviating the
opponents’ actions from their policies while exploring new possible advantage game states). In a
Multi-Player Game (i.e. usually more than two players), the strict one-to-one relationship between
two agents is not realistic, since an agent can impact both the target agent and other agents. Therefore,
the influences on all other agents shall maintain different levels [19]. Therefore, our work includes
the spatial dimension of Feint impacts by fusing spatial distributions (i.e., joint state-action space
distribution). The key idea of this design is to model the influence range of Feint behaviors as
the divergence of occupancy measures during policy learning. More specifically, we incorporate
Behavioral Diversity from [19], to mathematically calculate and maximize the diversity gain of Feint
behaviors on the influence range.

We follow the occupancy measure introduced in [19], the distribution of state-action pairs ρπ(s,a) =
ρπ(s)π(a | s), to measure a joint policy π = (πi, π−i). ρπ(s) can be calculated by the normalized-
weighted sum of game state visit probabilities for the joint policy π = (πi, π−i) of all agents. Game
state s can be parameterized by a set of physical properties. We demonstrate a set of commonly used
parameters in boxing games [35]: the relative positions p(i,−i), relative moving orientations o(i,−i),
the linear velocities l_vel(i,−i), and angular velocities a_vel(i,−i). s can thus be composed in
a vector s = (p(i,−1), o(i,−i), l_vel(i,−i), a_vel(i,−i)). The spatial domain influence of Feint
policy can be naturally represented by the occupancy measure. When players apply Feint behaviors
to deceive opponents, the resulting spatial impact is to exploit new possibilities to achieve more
advantageous state transitions from the current state. When a Feint policy π′

i is added, we aim to
maximize the effective influence range under the influence distribution of Feint . Specifically, we
maximize the divergence of the new distribution of joint policy π′ = (π′

i, π−i) introduced by Feint
from the distribution of the old one π = (πi, π−i) without Feint . By using Behavior Diversity [19],
such a maximization problem at state s can be formalized as:

maxπ′
i
Rewspatial(π

′

i, π−i, s) = Df (ρπ′
i,π−i

(s) || ρπi,π−i
(s)) (4)

where we use the divergence as the reward Rewspatial and the general f -divergence is used to measure
the discrepancy of two distributions. [19] introduces multiple ways to approximately calculate such
divergence for policy models represented by neural networks.

4.3 Collective Impacts: Influence Degree
Solely relying on the Temporal Dimension and Spatial Dimension overlooks the interactions between
them, and these two dimensions are expected to have mutual influences for realistic modeling [19].
Therefore, we consider the influence degree for the collective impacts.

We formulate it for a Feint policy π′
i in Multi-Player Games which performs a full Feint cycle (i.e., a

complete Dual-Behavior Model and long-term actions) that starts at t0 and ends at T as:

Rewcollective(π
′

i, π−i) = µ1

∑
π∈{π′

i ,π−i}

Rewtemporal(π, t0, tf , ts, T,α,β)

+ µ2

sT∑
s=s0

Rewspatial(π
′

i, π−i, s) (5)

where temporal impacts Rewtemporal (Section 4.2.1) for agent i are are aggregated on spatial domain
considering all agents and spatial impacts Rewspatial (Section 4.2.2) are aggregated on the temporal
domain for all the states in the time period. µ1 and µ2 denote the weights of aggregated temporal
impacts and spatial impacts respectively, enabling flexible adaption to different gaming scenarios.
They are initially set as 0.5.

In addition to the collective impacts of Feint itself in terms of temporal domain and spatial domain, our
formalized impacts of Feint can also result in response diversity of opponents, since different related
opponents (spatial domain) at different time steps (temporal domain) can have diverse response.
Such Response Diversity can be used as a reward factor that makes the final reward calculation
more comprehensive [25, 19]. Thus, to incorporate the Response Diversity together with our final
reward calculation model, we refer to [19] to characterize the diversity gain incurred by our collective
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impacts formalization. For an agent who maintains a pool of policy Pi = {π1
i , . . . , π

M
i } while

opponents maintain a pool of policy P−i = {π1
−i, . . . , π

N
−i}, an empirical payoff matrix APi×P−i

can
be calculated element-wise using the reward function Rewcollective(π

k
i , π

j
−i) for (k, j) entry. Thus

the Response Diversity gain for a Feint policy πM+1 can be measured by follows:

Rewcollective−diversity(π
M+1
i ) = D(aM+1 || APi×P−i

) (6)

aT
M+1 := (Rewcollective(π

M+1
i , πj

−i))
N
j=1. (7)

where D(aM+1 || APi×P−i
) represents the diversity gain of the Feint action on current policy space.

We follow the method in [19] for the quantification of diversity gain, which uses a practical and
differential lower bound for feasible computation.

5 Proof-of-concept Implementation
To provide a unified implementation scheme of Feint into most MARL frameworks, we choose to
implement on the training iteration level and avoid changing the MARL models themselves. We create
an additional policy model (e.g., MADDPG [20], MASAC [11, 13], MAD3PG [4, 6], MATD3 [2],
etc.) for each agent as the Feint policy, which works together with the regular policy models for
agents but is trained and inferenced differently.

Figure 3: Illustration of Feint behavior implementation in game iterations

Figure 3 illustrates the full process of our implementation of Feint in game iterations. We implement
the Feint behavior generation in an imaginary play module in training iterations (i.e., game steps).
The imaginary play module decides whether an agent should initiate a Feint behavior, composes a
Dual-Behavior Model using Palindrom-directed templates, and utilizes the Feint reward calculation
to evaluate the quality of the generated action sequence in the Dual-Behavior model.

In our experimental settings, Feint behavior templates can be pre-computed only once before training,
providing a fast lookup for composing Dual-Behavior models in gaming iterations. Algorithm 1 in
Appendix E illustrates the pseudo-code for pre-computing available Feint behavior templates given
a set of available attack behaviors B. For each pair of attack behaviors (Behaviori, Behaviorj)
in B, we check whether there are physically satisfiable states illustrated in Figure 1. If any of the
three conditions are satisfied, we cut out the available actions (Availi and Availj) and store their
compositions as an available template candidate. Note that the stored templates do not enforce the
Feint behaviors to contain the exact same action sequences. Instead, tuples (ak, Availi, Availj) are
served as keys for quick lookup and action restrictions in composing Dual-Behavior models during
gaming iterations.

During gaming iterations, the imaginary play will only be activated when no Dual-Behavior Model
is in progress and the current physical state sc of an agent is close to a physical state sr where it is
physically realistic for the agent to perform a high-reward action atarget, while the possibility of
performing atarget is relatively low according to its regular policy model (i.e., action atarget are
highly likely to be diminished by other agents current actions). Thus, the purpose of Feint behavior
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is to lead the agent to a state sr where the agent can maximize the game environment reward by
performing the intended high-reward action atarget (i.e., other agents are deceived by Feint to perform
other actions which cannot effectively diminish the high-reward actions performed by the agent).

When the imaginary play is activated, available Dual-Behavior models can be generated using the last
known action at and the intended high-reward action atarget. Algorithm 2 in Appendix E shows the
pseudo-code for composing available Dual-Behavior models with backward searches. The intended
high-reward action atarget provides constraints on the ending actions of the Feint behaviors, while the
last known action at provides constraints on the starting action of Feint behaviors. Thus, the available
Dual-Behavior models can be quickly computed by doing a one-pass search from the pre-computed
Feint behavior templates. The composed Dual-Behavior models can thus constrain the available
action choices for the Feint policy model (set other actions’ possibilities to 0) in corresponding
templates and use a reflection frame to compose a (semi-)palindrome leading to the agent’s physical
state sr. After having available Dual-Behavior models which are composed of Feint behavior and
followed by high-reward actions, the short-term reward can be calculated by Equation 1. After
this Dual-Behavior action sequence, the imaginary play would play a few steps to incorporate the
long-term reward (using Equation 1). The collective reward (Section 4.2.2) can thus be calculated.
This reward is then compared to an accumulated reward from an imaginary play using only the
agent’s regular policy model in the same number of time steps. If the Feint collective reward is higher,
the action sequence of the dual action model will be applied in the following real-game steps. When a
Dual-Behavior Model is in progress, the actions will not be sampled from the regular policy models.

In the real game steps, where all the agents’ actions interact with the environment and the real game
rewards are calculated, our formalization of Feint only changes the way to update the Feint policy
models for agents. The Feint policy models are updated only when corresponding Dual-Behavior
Models finish and are updated using the accumulated real game rewards for that period. The regular
policy models are updated as usual settings (e.g., after some fixed steps - an episode).

6 Experimental Studies
6.1 Methodology
Testbed Implementations. Due to the lack of a general benchmark, we selectively implement two
scenarios under a customized manner. They consist of a "1 vs 1" and a "3 vs 3" multi-player free
fight games, based on widely-provided testbeds. We provide additional details on how our testbeds
are designed and implemented in appendix D.

Evaluation Metrics. Our main evaluation objective is the gaming rewards. We first examine the
gaming outcomes when using the MADDPG, MASAC, MATD3, and MAD3PG MARL models, by
comparing the per episode gaming rewards of agents across all scenarios8. We also evaluate other
metrics, and report our results in appendix F.

6.2 Major Results
Figure 4 shows the game reward comparisons of using Feint behaviors or not in the Two-Player
scenario (Section 6.1) for 4 MARL models. The first row shows the baseline results where all agents
are trained normally, while the second row shows the results where the player labeled with "Good"
incorporates Feint behaviors. In most of the baseline results (e.g., using MADDPG, MAD3PG, and
MATD3), the two players’ rewards tend to progress to a similar level when after enough training
iterations. For MASAC, the "Good" player seems to gain higher rewards than its opponents when
the training iterations are large, but the advantage is not stable and such a phenomenon can likely
be the instability of the MASAC algorithm itself. For all the results where Feint behaviors are
incorporated, we can see a significant advantage gain for the "Good" player. Thus, our formalization
of incorporating Feint behaviors can effectively improve the actual game rewards in two-player
combating scenarios.

To further evaluate the effectiveness of our formalization of Feint behaviors in multi-player scenarios,
Figure 5 shows the game reward comparisons in Six-Player scenario (Section 6.1) for 4 MARL
models. The first row shows the baseline results while the second row shows the results where
the player labeled with "Good 3" incorporates Feint behaviors. In all baseline results, all 6 players
seem to achieve similar levels of rewards after enough training iterations. In comparison, in all
results where the "Good 3" player incorporates Feint , it gains significantly more rewards than the

8Note that these rewards are the actual game rewards (the reward that returned by the gaming environment),
which are not the rewards that policy models used to select actions or update parameters
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Figure 4: Comparison of Game Reward when using Feint and not using Feint in a 1 VS 1 scenario.

opponents as well as its teammates. This result shows that our formalization of Feint can not only
gain higher rewards towards the direct opponents, but also gain advantages among teammates who do
not incorporate Feint . Another interesting observation is that there are no more symmetric patterns
in the players’ rewards, showing that the gaming interactions in multi-player scenarios have enough
complexity (Note that the scenario is not designed to be a zero-sum game).

Figure 5: Comparison of Game Reward when using Feint and not using Feint in a 3 VS 3 scenario.

7 Conclusions and Main Implications

This work introduces the first comprehensive formalization, implementation and quantitative evalu-
ations of Feint in Multi-Player Games. We provide automatic generation of Feint behaviors using
Palindrome-directed Templates and synergistically combine Feint with follow-up actions in Dual-
Behavior Model. The decision choices on the action-level are fused into strategy-level formalizations
in game interactions. We provide a concrete implementation scheme to incorporate Feint into common
MARL frameworks. The results show that our design of Feint can (1) greatly improve the reward
gains from the game; (2) significantly improve the diversity of Multi-Player Games; and (3) only
incur negligible overheads in terms of the time consumption. We conclude that our formalization of
Feint is effective and practical, to make Multi-Player Games more interesting.

The successful formation of Feint behaviors and strategies imply the potential unsafety of existing
machine learning models (and, clearly, future ones also). Therefore, the wide adoption of machine
learning models certainly demand the consideration of this work (and its variants), for building
responsible Artificial Intelligence; and/or leveraging them for the future society in a responsible way.
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A Conceptual Clarifications

Since this work spans multiple disciplines, there are a few clarifications to ensure the consistent
understanding between our work and prior arts.

A.1 Differences between actions and behaviors in our formalization

To provide a unified definition of Feint behavior in both continuous and discrete action space, we
highlight the difference between the terms action and behavior used in our formalization. We use
action as the minimal unit movement in a unit time step, such as a unit step movement along the
X and Y axis in a 2D board game, raising arms for a certain distance in a boxing game, turning
steering wheels while applying brakes for a certain degree in a racing game, etc. This definition
of action coincides with the commonly used definition of action in general MARL environments,
which is intuitive to understand, simulate, and build our formalization of Feint upon it. One may
argue that in some game simulations, combat movements like a cross punch are simply considered as
one action, but one can always divide those movements into several unified unit-time-step actions to
create a unified alignment in terms of time step in games. In terms of behavior, we refer to it as a
combination of several actions in a sequence (e.g., a cross punch in boxing games). Thus, Feint can be
naturally defined as a behavior that uses a sequence of actions to deceive opponents and lead to large
reward actions in the near future. We describe our observation of Feint behaviors’ characteristics and
introduce our formalization at the action level in Section 3.

A.2 Modeling Behaviors at Action-Level in Game Animation and Simulation

Modeling characters’ behaviors (series of actions) in games can be divided into two categories
based on the main purpose: animation-driven modeling or simulation-driven modeling, though
animation and simulation are inherently closely correlated. Animation-driven methods mainly focus
on modeling the behaviors themselves, with goals of producing a variety of nuanced and coherent
action sequences. The interactions with the environment (whether physics-based or not) are generally
considered after the modeling of the behaviors and are generally simplified to showcase the behaviors
themselves. Patch-based generation is a direct way for such methods, which directly compose
behaviors by combining pre-defined action sequences [35]. This approach is widely adopted in
the industry due to its high production efficiency, supported by an extensive amount of animation
libraries (e.g. Mixamo [32]) [16, 30, 37]. However, in recent years, Learning-based generation
dominates the field as they can automatically produce animated behaviors to mimic the styles of
learned actions from the training inputs [17, 27]. On the other hand, simulation-driven modeling
usually considers the full interactions with the environment in the first hand. These methods generally
formalize the behavior modeling process using Reinforcement Learning (RL) based frameworks
to fully explore the complicated space of physics-based action modeling [35]. In our work, we
use a animation-driven modeling with strong physical constraints to describe our observations of
Feint behavior characteristics and use the general simulation-driven modeling in MARL schemes for
learnable formalization of Feint in action and strategy levels.
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B Feint Behavior Generator and the Resulting Templates

Under the above three-stage decomposition of attack behaviors, there are abundant possibilities to
compose Feint behaviors from the three action sequences. However, to ensure physically realistic
generation, we summarize two requirements that Feint behaviors must follow: (1) Feint behaviors
should follow semi-symmetrical patterns to effectively deceive opponents and return to a rest position
for follow-up moves. In boxing, a human player must retract the stretched-out limbs to the relatively
rest position, before stretching out to perform an actual attack action. This is because the retraction
requires recharging the force to contracted muscles; and (2) transitions between adjacent actions in
different behaviors are expected to be smooth, as humanoid body movements must provide continuous
movements.

To satisfy the above two requirements, we propose a Feint behavior template generator called
Palindrome-directed Generation of Feint Templates, by extracting subsets of semi-symmetrical
actions from an attack behavior and synthesizing them as a Feint behavior. The general method to
generate these templates are (1) by extracting subsets of unit actions from an attack behavior, a Feint
behavior can be considered as a semi-finished real attack behavior. This ensures the high similarity
of a generated Feint behavior with an attack behavior, thus opponents can be deceived; and (2) by
synthesizing semi-symmetric action sections, the overall movements can be connected smoothly and
the naturalness of humanoid actions can be guaranteed. Within our proposed template generator
Palindrome-directed Generation of Feint Templates, there are two key adjustable parameters in
practice: (1) sequence composition positions for Feint templates; and (2) sequence length for Feint
templates. We provide the rationales for these two key design choices.

(1) Sequence composition positions for Feint templates: Determining which position to extract the
subsets of action sequences needs to ensure that the extracted actions are semi-symmetrical and allow
physically realistic connections. To this end, we can have three templates with different restrictions
to exploit the composing patterns: (A) For template ➊, if there are similar physical states, which
refer to the positions of all joints and stretching angles are similar (as shown in ➊ of Figure 1),
actions before the first similar state and after the second similar state can be extracted and directly
synthesized as a Feint behavior (shown in ➊ of Figure 1); (B) For template ➋, by cutting once at any
time point in Sequence 1, action sequences before the selected point and the corresponding reversion
can be synthesized as a Feint behavior (shown in ➋ of Figure 1); and (C) For template ➌, similar
to the second situation, by cutting once at any time point in sequence 3, action sequences after the
selected point and the corresponding reversion can be synthesized as a Feint behavior (as shown in
➌ of Figure 1). With these considerations, the Feint behavior generation templates guarantee the
naturalness of continuous movements via semi-symmetrical patterns.

(2) Sequence length for Feint templates: The choices for the length of extracted action sequences in
each template can vary greatly, since multiple actions in an attack behavior can be extracted based on
different time ranges. The available choices can be any time length that results in action sequences
that satisfy the physical requirements discussed above (e.g. morphologically reasonable Template ➋
or Template ➌ in Figure 1). Note that it is also possible to construct nested Feint behaviors, given
a large number of feasible extraction positions. We formalize this choice as a learnable parameter
that needs to combine Feint behaviors with their intended follow-up actions (Section 3.2), and the
learning adjustment is described in Section 5.
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C Demonstration of Feint Behaviors

C.1 Demonstration of Feint Behaviors in Dual-Beahvior Models

To explain the generation of physically realistic Feint behavior in a Dual-Behavior Model in detail,
we use humanoid models: when selecting the corresponding actions (i.e. from Feint behaviors and
then an attack behavior), the starting position (jointly connected body) of the second action should be
the same as the ending position of the starting action. With such a principle, the joints of a character’s
body can perform natural movements during the transition between these two behaviors. Figure 6
demonstrates a physically realistic combination of a Feint behavior and a follow-up attack behavior.
When checking the end of NPC A’s Feint behavior and the beginning of the Agent’s (left white agent)
real attack, both the upper and lower body parts of NPC A perform the same postures (the left arm
raised and the right arm charged, performing a punch for the upper body, and the left foot forward for
lower body).

Figure 6 provides a detailed example of a successful Feint behavior in a Dual-Behavior Model. We
refer to the Agent as the white player on the left and its Opponent as the black player on the right,
and describe the Feint behavior from the Agent perspective. The agent first performs a Feint behavior
which is fake punch towards its opponent’s head, which leads the opponent to defend towards its
head. However, the agent connects such Feint behavior with a follow-up hook towards the opponent’s
waist. Due to the temporal advantage gained by the quick Feint behavior and the spatial advantage
gained by deceiving the opponents to defend to wrong directions, the opponent would be knocked
down by the follow-up behavior of the agent. Thus, a successful Feint behavior is performed in this
Dual-Behavior Model.

Figure 6: Dual-action Model - snapshots of the full process

C.2 Demonstration of Successful and Unsuccessful Feint Behaviors

To enable a successful Feint behavior in a Dual-Behavior Model, the temporal and spatial advantages
should be properly formalized. The advantages of combining Feint behaviors with follow-up high-
reward actions stem from an appropriate time difference, incurred by Feint behaviors to mislead the
opponents’ actions. If the length of a Feint behavior is too short, the following attack actions might
not gain much advantage compared to actions combinations without Feint behaviors; and if the length
of a Feint action is too long, the process to perform a Feint behaviors can leave sufficient time for
the opponent to react and even attack back. We provide examples for these scenarios in Figure 7,
Figure 8, and Figure 9. We refer to the left white player as NPC A and describe the Feint from its
perspective, and the right black agent NPC B is considered as its opponent.
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We use the timeline of the Dual-Behavior Model in Figure 2 to analyze and evaluate the three Feint
behaviors. We use three key time points that are highlighted in Figure 7, Figure 8, and Figure 9 to
explain the action sequences, in which tB1 indicates the end of defense behavior while tA2 indicates
the estimated start of reward in the second action sequence for NPC A and tB2

indicates the estimated
start of reward in second action for NPC B. The three consequences mainly differ in these three key
time points.

1) Very short Feint behaviors tA2 < tB1: The action sequence of simulation is shown in Figure 7,
in which the Feint behaviorsduration is extremely short and the estimated start of reward in second
action for NPC A (tA2 ) happens when NPC B is still in the first defense action (thus tA2 < tB1 ). As
the sequence shows, the second real action of NPC A would not benefit much since NPC B is still in
defense.

Figure 7: Demonstration of unsuccessful Feint behavior when its too short

2) Proper length Feint behaviors tB1
< tA2

< tB2
: The action sequence of simulation is shown in

Figure 8, in which the Feint behaviors have a moderate duration. The key difference of this duration
is that the estimated start of reward in the second behavior for NPC A happens after the end of the
defense behavior of NPC B and before the estimated start of reward in the second behavior for NPC
B, thus showing the temporal advantages introduced in Section 3.2. With such temporal advantages,
NPC A gains preemptive advantage over NPC B, inflicting rewards from NPC B (at time tA2 in
Figure 8) before NPC B’s reward inflicting of second behavior starting (at time tB2 in Figure 8).
When NPC A hits NPC B at tA2, the ongoing action of NPC B will be interrupted and NPC B would
be knocked down.

3) Very long Feint behaviors tA2 > tB2 : The action sequence of simulation is shown in Figure 9, in
which the Feint actions duration is too long and the estimated start of reward in second behavior for
NPC A (tA2) happens after the estimated start of damage in second action for NPC B (tB2). This
condition has the opposite consequence of a moderate length Feint behaviors, in which NPC B can
inflict rewards on NPC A before NPC A’s reward inflicting of the second behavior starts. When NPC
B hits NPC A at tA2, the ongoing action of NPC A will be interrupted and NPC A would be knocked
down.

Thus, the choice of the time duration for Feint actions highly depends on the action combinations
and the estimation of opponents’ actions, proving our observation in Section 3. Thus the learning to
formalize such a choice in the strategy learning scheme (Section 4) is important to construct effective
Feint behaviors with corresponding Dual-Behavior Models.
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Figure 8: Demonstration of successful Feint behavior with proper length

Figure 9: Demonstration of unsuccessful Feint behavior when its too long

D Testbed Implementations

Our main testbed game environment is a multi-player boxing game, which is based on OpenAI’s
open-source environment Multi-Agent Particle Environment [23], but with heavy additional imple-
mentation to create a physically realistic scenario.This game resembles intense free fight scenarios in
ancient Roman free fight scenarios [21], where interactions are intense and Feint is expected to be
effective. We incorporate common boxing behaviors (action sequences) in boxing games. following
the methodology in some animation and simulation works [34, 36]. This handcrafted scenario
contains complex physics-based interaction systems and fine-grained time steps to enable learning
and generating Feint behaviors. A detailed description of the reward gaining system, environment
parameters, and agent settings is presented in Appendix D.1. We also modify and extend a strategic
real-world game, AlphaStar [3], which is widely used as the experimental testbed in recent studies
of Reinforcement Learning studies [28, 19]. We make extra efforts to emulate a six-player game,
where players are free to have convoluted interactions with each other. And we implement Feint as
dynamically generated policies, based on the 888 regular gaming policies.
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D.1 Details of Boxing Game Scenario

Our testbed game scenario is emulates a complex boxing game by modeling all the detailed combat
behaviors except building the graphical rendering process. The reason we neglect the rendering
process is that our main goal is to evaluate the effectiveness of formalization of Feint behaviors in
multi-player games, and the building a real-time graphical rendering with such complex humanoid
interactions would be a graphics paper itself. We fully emulate all the behavior details in our game
simulation, thus our constructed game simulation is detailed enough to evaluate our formalization of
Feint behaviors. We provide a detailed description of the game scenario here.

We follow a similar boxing game scenario construction approach as [34, 35], and model the full set
of Mixamo [32] 22 behaviors (action sequences) which contain over 250 available full body actions
(illustrated in Figure 10). We extensively construct a gaming environment based on Multi-Agent
Particle System [23] to incorporate these behaviors, which then can be seamlessly integrated with
common MARL models.

Figure 10: The full set of 22 behavior (action sequences) of a boxing game from Mixamo.

The players can move around in a 2D plane. We use a vector to model the physical state of players,
which stores and tracks the body movements of a player. This vector tracks the positions of body
parts: left and right limbs, the left and right legs, and the center body, which is used to select available
combat behaviors (the transitions of body movements must be smooth as mentioned in Section 3.1
and Section 3.2). With this setting, Feint behaviors can be naturally generated and incorporated
into suitable Dual-Behavior Models. We follow the exact Mixamo dataset to model the length of
the behaviors (the length of action sequences) and rewards the behaviors (e.g., a successful long
punch would gain more rewards than a short punch.) Specifically, we measure the number of frames
contained in all behaviors and normalize them to define unit time steps for action space and thus
get the action sequence lengths for all behaviors. An example of game rewards and action sequence
length of 5 behaviors are provided in Figure 11.

D.2 Experimental Procedure

We choose 4 commonly used MARL models: MADDPG [20], MASAC [11, 13], MATD3 [2], and
MAD3PG [4, 6] and incorporate them into testbed scenarios. Our implementation is based on [1],
which provides a unified MARL frameworks for the above models. We aim to test whether Feint
behaviors can be uniformly and effectively learned using all these commonly used MARL models and
how can Feint affect the game rewards for agents. Note that our purpose is to verify the effectiveness
of our formalization of Feint behaviors and not to compare or modify the MARL models themselves.
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Figure 11: Demonstration of the game rewards and action sequence lengths of 5 Mixamo behaviors.

We create two test scenarios, the first one with two players (one player per team) and the second one
with six players (3 players per team). For all of these scenarios, we first train the agents without
Feint as baselines using the 4 models. Then for the two-player scenario, we incorporate Feint on
one player (shown as the Good player in Figure 4). For the six-player scenario, we select 1 agent in
the Good team (labeled as Good 3 in Figure 5), to incorporate our formalization of Feint , and keep
all other 3 agents regular. The reason for this design in the six-player scenario is that we want to
not only test how Feint behaviors can affect the reward gain against direct opponents, but also see
whether Feint can bring advantages for a player among its teammates. All the players are rewarded
independently and the notion of the "Good" and "Adv" team does not mean that teammates have a
shared reward (i.e., not explicit constraints that force them to cooperate). Note that all players have
identical capabilities and are rewarded using the same mechanisms, thus Feint can be incorporated on
any player. Our labeling choice here is to provide to a consistent way to track and analysis the game
rewards. All experiments for the two-player scenario are trained for 75,000 game iterations and all
experiments for the six-player scenario are trained for 150,000 game iterations.
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E Implementation Details

We provide the pseudo-code for computing Feint behavior templates and composing Dual-Behavior
Models for our proof-of-concept implementation discussed in Section 5.

Algorithm 1 Precompute Available Feint Behavior Templates
1: Input: Set of behaviors B = {Behaviori|i ∈ [1, n]}, where each Behaviori =
{Ai1 , Ai2 , . . . , Aik} is a sequence of actions.

2: Output: Set of physically available Feint behavior templates T .
3: Compose a set of behavior pairs: Bpair = {(Behaviori, Behaviorj)|i, j ∈ [1, n]}
4: Initialize empty set of templates: T = ∅
5: for each (Behaviori, Behaviorj) ∈ Bpair do
6: Compute the common action set: Acommon = {ak|ak ∈ Behaviori and ak ∈ Behaviorj}
7: if |Acommon| ≠ 0 then
8: for each ak ∈ Acommon do
9: Available actions from Behaviori: Availi = {am|am ∈ Behaviori,m < k}

10: Available actions from Behaviorj : Availj = {an|an ∈ Behaviorj , n > k}
11: Update T : T ← T ∪ {(ak, Availi, Availj)}
12: end for
13: end if
14: end for
15: return T

Algorithm 2 Backward Search to Compose Dual Behavior Models
1: Input: Last action at, beginning of the high-rewards behavior atarget, precomputed Feint

templates T
2: Output: Set of available Dual Behavior Models D
3: Initialize empty set of Dual Behavior Models: D = ∅
4: for each (ak,Availi = {ap|p ∈ [0, k − 1]},Availj = {aq|q ∈ [k + 1,max]}) in T do
5: ▷ Here, max is the maximum index of action in Availj
6: if (at ∈ Availi) and (atarget ∈ Availj) then
7: Select actions from at to ak in Availi: Selecti = {am|m ∈ [t, k − 1]}
8: Select actions from ak to atarget in Availj : Selectj = {an|n ∈ [k + 1,max]}
9: Update D: D ← D ∪ {(Selecti, ak, Selectj)}

10: end if
11: end for
12: return D
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F Additional Experimental Results

We report the effects of Feint on ➊ diversity gain of policy space; and ➋ overhead of computation
load. We examine the effects of Feint actions on how Feint can improve the diversity of gaming
policies (Section 4.3). We also perform overhead analysis, incurred by fusing Feint formalization in
strategy learning.

F.1 Diversity Gain

To examine the impacts on the policy diversity in AlphaStar games, we perform a comparative study
between MARL training with and without Feint . Specifically, We use Exploitability and Population
Efficacy (PE) to measure the diversity gain in the policy space. Exploitability [15] measures the
distance of a joint policy chosen by the multiple agents to the Nash equilibrium, indicating the
gains of players compared to their best response. The mathematical expression of Exploitability is
expressed as:

Expl(π) =

N∑
i=1

(maxπ′
i
Rewi(π

′
i, π−i)−Rewi(π

′
i, π−i)) (8)

where πi stands for the policy of agent i and π−i stands for the joint policy of other agents. Rewi

denotes our formalized Reward Calculation Model (Section 4.3). Thus, small Exploitability values
show that the joint policy is close to Nash Equilibrium, showing higher diversity. In addition, we
also use Population Efficacy (PE) [19] to measure the diversity of the whole policy space. PE is a
generalized opponent-free concept of Exploitability by looking for the optimal aggregation in the
worst cases, which is expressed as:

PE({πk
i }Nk=1) = minπ−imax1⊤α=1 ai>=0

N∑
k=1

αkRewi(π
k
i , π−i) (9)

where πi stands for the policy of agent i and π−i stands for the joint policy of other agents. α denotes
an optimal aggregation where agents owning the population optimizes towards. Rewi denotes our
formalized Reward Calculation Model (Section 4.3) and opponents can search over the entire policy
space. PE gives a more generalized measurement of diversity gain from the whole policy space.

Figure 12 shows the experimental results for evaluating diversity gains. From the figure, we obtain
two observations. First, agents that can dynamically perform Feint actions (Agent 1, 2, and 3) achieve
lower Exploitability (around 4.9× 10−2) compared to agents who perform regular actions (around
9.7×10−2) and have higher PE (lower negative PE - around 5.3×10−2) than those who only perform
regular actions (around 1.2 × 10−2). This result shows that our formalized Feint can effectively
increase the diversity and effectiveness of policy space. Second, agents with Feint have slightly higher
variations in both metrics. This is because Feint naturally incurs more randomness (e.g. succeed or
not) in games, resulting in higher variations in metrics.

Figure 12: Diversity gain for agents, in terms of the exploitablity and the negative population efficacy.

F.2 Overhead Analysis

Figure 13 shows the results of our overhead analysis. We make two observations. First, fusing Feint
in MARL training do incur some overhead increment in terms of running time. This is because the
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formalization and fusion of Feint in MARL incur additional calculation load. Secondly, in both
MADDPG models and MAAC models, the increased overhead is generally lower than 5%, which still
indicates that our proposed formalization of Feint actions can have enough feasibility and scalability
on fusing with MARL models. Note that even we use two policy models for each agent in our
implementation, our designs restrict that only one model is inferenced in each game step (Section 5),
thus the overhead is low.

1
V

S
1

3
V

S
3

Figure 13: Overhead of Feint the 1 VS 1 and 3 VS 3 scenarios using 4 MARL models.

G Limitations

We want to point out that our current design aims to provide a generalizable and as-automatic-as-
possible approach to concretely implement Feint behaviors into MARL models as a proof-of-concept.
We acknowledge that there are possible ways to optimize this template selection stage in different
gaming scenarios, for example, adding human-knowledge guidance or learning heuristics. However,
we believe that the variations at this implementation level do not harm our main proof-of-concept
contribution.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract accurately describes our main ideas, paper structures, and contri-
butions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation discussed in the Discussions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the theorems, formulas, and proofs in the paper are well stated and
referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation and experimental details are introduced in Section 5 and
Section D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Our main contribution is a unified formalization of Feint behaviors which
could be widely adapted to most commonly used MARL frameworks. We have provided a
detailed description of the codebase our implementation is based on in Section 6.1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details are provided in Section D.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiment shows that Feint behaviors could significantly increase agents’
reward and game diversity, by comparing the agents’ rewards and game diversity to other
agents’ values in all our plots. These plots show clear differences which proves the effec-
tiveness of our formalization and implementation. The exact reward values are not are main
concern thus we don’t include error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are described in Section D.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We fully follow NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

27

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Well-cited in Section 6.1
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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