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Abstract

For faster sampling and higher sample quality, we propose DiNof (Diffusion with
Normalizing f low priors), a technique that makes use of normalizing flows and diffusion
models. We use normalizing flows to parameterize the noisy data at any arbitrary step of
the diffusion process and utilize it as the prior in the reverse diffusion process. More specif-
ically, the forward noising process turns a data distribution into partially noisy data, which
are subsequently transformed into a Gaussian distribution by a nonlinear process. The
backward denoising procedure begins with a prior created by sampling from the Gaussian
distribution and applying the invertible normalizing flow transformations deterministically.
To generate the data distribution, the prior then undergoes the remaining diffusion stochas-
tic denoising procedure. Through the reduction of the number of total diffusion steps, we are
able to speed up both the forward and backward processes. More importantly, we improve
the expressive power of diffusion models by employing both deterministic and stochastic
mappings. Experiments on standard image generation datasets demonstrate the advantage
of the proposed method over existing approaches. On the unconditional CIFAR10 dataset,
for example, we achieve an FID of 2.01 and an Inception score of 9.96. Our method also
demonstrates competitive performance on CelebA-HQ-256 dataset as it obtains an FID score
of 7.11. Code is available at https://anonymous.4open.science/r/DiNof-F2D2.

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021; Chen et al., 2020; Ho et al., 2020;
Kong et al., 2020; Song & Ermon, 2020) are a promising new family of deep generative model that have
recently shown remarkable success on static visual data, even beating GANs (Generative Adversarial Net-
works) (Goodfellow et al., 2014) in synthesizing high-quality images and audio. In a diffusion model, noise is
gradually added to the data samples using a predetermined stochastic forward process, converting them into
simple random variables. This procedure is reversed using a separate backward process that progressively
removes the noise from the data and restores the original data distributions. In particular, the deep neural
network is trained to approximate the reverse diffusion process by predicting the gradient of the data density.

Existing diffusion models (Yang et al., 2022; Zhang & Chen, 2021; Wehenkel & Louppe, 2021) define a
Gaussian distribution as the prior noise, and a non-parametric diffusion method is developed to procedurally
convert the signal into the prior noise. The traditional Gaussian prior is simple to apply, but since the
forward process is fixed, the data itself has no impact on the noise that is introduced. As a result, the
learned network may not model certain intricate but significant characteristics within the data distribution.
Particularly, employing purely stochastic prior noise in modeling complex data distributions may not fully
leverage the information and completely encompass all data details in the diffusion models.

Another issue is that the sampling procedure in most current methods involves hundreds or thousands of
steps (time-discretization stages) (Salimans & Ho, 2022; Ramachandran et al., 2017; Zhang & Chen, 2021).
This is due to the fact that the noise in the forward process must be added to the data at a slow enough
rate to enable a successful reversal of the forward process for the reverse diffusion to produce high-quality
samples. This, however, slows down training and sampling because it requires sufficiently long trajectories
(the paths between the data space and the latent space), resulting in a substantially slower sampling rate
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Figure 1: Uncurated samples generated by DiNof on CelebA-HQ-256 (left) and CIFAR-10 (middle) datasets.
On the right figure, sample quality in terms of FID is shown versus diffusion/sampling steps for different
diffusion-based generative models. As opposed to several other methods, DiNof can speed up the process
while improving the sample quality.

than, for example, GANs or VAEs (Lu et al., 2022; Zhang & Chen, 2022; Salimans & Ho, 2022), which are
single-step at inferences.

In this work, we leverage the use of flow-based models, to learn noise priors deterministically from the data
itself, which is then applied to improve the effectiveness of diffusion-based modelling. We propose the use of
a deterministic prior as an alternative to the completely random noise of conventional diffusion models. We
specifically develop a novel diffusion model where the data and latent spaces are connected by the nonlinear
invertible maps from normalizing flows. Our model thus preserves all the benefits of the original diffusion
model formulation, while employing both deterministic and stochastic trajectories in the mappings between
the latent and data spaces. Our hypothesis is that data-informed latent feature representations and using
both stochastic and deterministic processes can improve the representational quality and sample fidelity of
generative models. We can generate samples using fewer sampling steps while attaining a sample quality
that is superior to existing models (see Figure 1). Moreover, our model can be used in both conditional and
unconditional settings, which can enable various image and video generation tasks.

Our contributions can be summarized as follows:

(1) We propose the use of a data-dependent, deterministic prior as an alternative to the random noise used
in standard diffusion models, to enable modeling complex distributions more accurately, with a smaller
number of sampling steps. Our new generative model leverages the strengths of both diffusion models and
normalizing flows to improve both accuracy and efficiency in the mappings between the latent and data
spaces.

(2) We evaluate our approach on CIFAR-10 and CelebA-HQ-256 datasets, which are the most commonly
used datasets in this problem space. We achieve state-of-the-art results in the image generation task, yielding
2.01 and 7.11 FID scores on the CIFAR-10 and Celeb datasets, respectively.

(3) To allow reproducibility and contribute to the area, we release our code at:

https://anonymous.4open.science/r/DiNof-F2D2.

2 Related work

There has been previous research looking towards creating a more informative prior distribution for deep
generative models. For instance, hand-crafted priors (Nalisnick & Smyth, 2016; Tomczak & Welling, 2018),
vector quantization (Razavi et al., 2019), and data-dependent priors (Li et al., 2020; Lee et al., 2021) have
been proposed in the literature. As priors for variational autoencoders (VAE), normalizing flows and hi-
erarchical distributions (Maaløe et al., 2019; Child, 2020; Vahdat & Kautz, 2020; Rezende & Mohamed,
2015; Kingma et al., 2016) have been employed in particular. Prior distributions have also been defined
implicitly (Bauer & Mnih, 2019; Aneja et al., 2020; Takahashi et al., 2019). Mittal et al. (2021) parame-
terized the discrete domain in the continuous latent space for training diffusion models on symbolic music
data. They conducted two independent stages of training for an VAE and the denoising diffusion model.
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Wehenkel & Louppe (2021) proposed an end-to-end training method that modeled the prior distribution of
the latent variables of VAEs using Denoisng Diffusion Probabilistic Models (DDPMs). They demonstrated
that the diffusion prior model outperformed the Gaussian priors of traditional VAEs and was competitive
with normalized flow-based priors. They also showed how hierarchical VAEs might profit from the improved
capability of diffusion priors. Sinha et al. (2021) combined contrastive learning with diffusion models in the
latent space of VAEs for controllable generation.

More recently, Lee et al. (2021) proposed PriorGrad to improve conditional denoising diffusion models with
data-dependent adaptive priors for speech synthesis. They calculated the statistics from conditional data
and utilized them as the Gaussian prior’s mean and variance. Vahdat et al. (2021) proposed the Latent
Score-based Generative Model (LSGM), a VAE with a score-based generative model (SGM) prior. They
used the SGM after mapping the input data to latent space. The distribution over the data set embeddings
was then modeled by the SGM. New data synthesis was accomplished by creating embeddings by drawing
data from a base distribution, iteratively denoising the data, and then converting the embedding to data
space via a decoder.

Denoising Diffusion Implicit Model (DDIM) proposed by Song et al. (2020a) was basically a fast sampling
algorithm for DDPMs. It creates a new implicit model with the same marginal noise distributions as DDPMs
while deterministically mapping noise to images. Specifically, an alternative non-Markovian noising process
is developed that has the same forward marginals as the DDPM but enables the generation of various reverse
samplers by modifying the variance of the reverse noise. An implicit latent space is therefore created from the
deterministic sampling process. This is equivalent to integrating an ordinary differential equation (ODE)
in the forward direction, followed by obtaining the latents in the backward process to generate images.
Salimans & Ho (2022) proposed to reduce the number of sample steps in a progressive distillation model.
The knowledge of a trained teacher model, represented by a deterministic DDIM, is distilled into a student
model with the same architecture but with progressively halved sampling steps, thereby improving efficiency.

Slow generating speed continues to be a significant disadvantage of diffusion modeles, despite the outstanding
performance and numerous variations. Different strategies have been investigated to overcome the efficiency
issue. Rombach et al. (2022) used pre-trained autoencoders to train a diffusion model in a low-dimensional
representational space. The latent space learned by an autoencoder was employed for both the forward and
backward processes. Deterministic forward and reverse sampling strategies were suggested by DDIM (Song
et al., 2020a) to increase generation speed.

Similar to our approach, Zhang & Chen (2021) connected normalizing flows and diffusion probabilistic
models, and presented diffusion normalizing flow (DiffFlow) based on stochastic differential equations (SDEs).
The reverse and forward processes were made trainable and stochastic by expanding both diffusion models
and normalizing flows. They extended the normalizing flow approach by progressively introducing noise to
the sampling trajectories to make them stochastic. The diffusion model was also expanded by making the
forward process trainable. By minimizing the difference between the forward and the backward processes
in terms of the Kullback-Leibler (KL) divergence of the induced probability measures, the forward and
backward diffusion processes were trained simultaneously. Kim et al. (2022) also combined a normalizing
flow and a diffusion process. They proposed an Implicit Nonlinear Diffusion Model (INDM), which implicitly
constructed a nonlinear diffusion on the data space by leveraging a linear diffusion on the latent space through
a flow network. The linear diffusion was expanded to trainable nonlinear diffusion by combining an invertible
flow transformation and a diffusion model.

Truncated diffusion probabilistic modeling (TDPM) (Zheng et al., 2023), an adversarial auto-encoder em-
powered by both the diffusion process and a learnable implicit prior, is another method in this vein. Similar
to LSGM, TDPM utilized variational autoencoder when transitioning from data to latent space. Specifically,
TDPM is most closely related to an adversarial auto-encoder (AAE) with a fixed encoder and a learnable
decoder, which uses a truncated diffusion and a learnable implicit prior. It is therefore a diffusion-based AAE
that emphasizes shortening the diffusion trajectory through learning an implicit generative distribution.

In contrast to existing techniques, our method uses SDEs and ODEs to map between data space and latent
space utilizing both linear stochastic and nonlinear deterministic trajectories. We concentrate on nonlin-
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earizing the diffusion process by using nonlinear trainable deterministic processes via nonlinear invertible
flow mapping.

3 Method

Although diffusion models have unique advantages over other generative models, including stable and scalable
training, insensitivity to hyperparameters, and mode-collapsing resilience, producing high-fidelity samples
from diffusion models involves a fine discretization sampling process with sufficiently long stochastic tra-
jectories (Song et al., 2020b; Vahdat et al., 2021; Zhang & Chen, 2021; Zhang et al., 2022). Several works
investigated this and improved the efficiency. However, their improved runtime comes at the expense of
poorer performance compared to the seminal work by Song et al. (2020b).

This motivates us to develop a new approach that simultaneously improves the sample quality and sampling
time. We hence propose to integrate nonlinear deterministic trajectories in the mapping between the data and
latent spaces. The deterministic trajectories are learned by using normalizing flows. In our diffusion/sampling
steps, therefore, both stochastic and deterministic trajectories are employed. In the following subsections, we
provide preliminary remarks on the diffusion models and normalizing flows before introducing our approach.

3.1 Background

3.1.1 Diffusion models

Diffusion models are latent variable models that represent data x(0) through an underlying series of latent
variables {x(t)}T

t=0. The key concept is to gradually destroy the structure of the data x(0) by applying a
diffusion process (i.e., adding noise) to it over the course of T time steps. The incremental posterior of the
diffusion process generates x(0) through a stochastic denoising procedure (Yang et al., 2022; Rasul et al.,
2021; Voleti et al., 2022; Ho et al., 2022; Croitoru et al., 2022; Ho et al., 2020; Song et al., 2020a).

The diffusion process (also known as the forward process) is not trainable and is fixed to a Markov chain that
gradually adds Gaussian noise to the signal. For a continuous time variable t ∈ [0, T ], the forward diffusion
process {x(t)}T

t=0 is defined by an Itô SDE as:

dx = f(x, t)dt + g(t)dw, (1)

where f(., t) : Rd → Rd and g(.) : R → R denote a drift term and diffusion coefficient of x(t), respectively.
Also, w denotes the standard Wiener process (known as Brownian motion). To obtain a diffusion process
as a solution for this SDE, the drift coefficient should be chosen so that it gradually diffuses the data x(0),
while the diffusion coefficient regulates the amount of added Gaussian noise. The forward process transforms
x(0) ∼ p0 into simple Gaussian x(T ) ∼ pT so that at the end of the diffusion process, pT is an unstructured
prior distribution that contains no information of p0, where pt(x) denotes the probability density of x(t).

It is shown by Song et al. (2020b) that the SDE in Eq. 1 can be converted to a generative model by starting
from samples of x(T ) ∼ pT and reversing the process as a reverse-time SDE given by:

dx = [f(x, t) − g2(t)∇x log pt(x)]dt + g(t)dw̄, (2)

where w̄ denotes a standard Wiener process when the time is reversed from T to 0 and dt denotes an
infinitesimal negative time step. We can formulate the reverse diffusion process from Eq. 1 and simulate it
to sample from p0 after determining the ∇x log pt(x) score for each marginal distribution for all t. We can
thereby restore the data by eliminating the drift that caused the data destruction.

A time-dependent score-based model sθ(x, t) can be trained to estimate ∇x log pt(x) at time t ∼ U [0, T ] by
optimizing the following objective:

θ∗ = arg min
θ

Et{λ(t)Ex(0)Ex(t)|x(0)[∥sθ(x(t), t) − ∇x(t) log p0t(x(t)|x(0))∥2
2]}, (3)

where λ : [0, T ] → R+ denotes a weighting function, x(0) ∼ p0(x), x(t) ∼ p0t(x(t)|x(0)), and p0t denotes the
transition from x(0) to x(t). By using score matching with enough data and model capabilities, the optimum
solution sθ∗(x, t) can be achieved for nearly all x and t. It is hence equivalent to ∇x log pt(x).
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To solve Eq. 3, the transition kernel p0t(x(t)|x(0)) must be known. For an affine drift coefficient f, it is usually
a Gaussian distribution, whose mean and variance are known in closed-forms. Once a time-dependent score-
based model sθ has been trained, it can be utilized to create the reverse-time SDE. It can then be simulated
using numerical methods to generate samples from p0. Any numerical method applied to the SDE specified in
Eq. 1 can be used to carry out the sampling. Song et al. (2020b) introduced some new sampling techniques,
the Predictor-Corrector (PC) sampler being one of the best at generating high-quality samples. In PC, at
each time step, the numerical SDE solver is used as a predictor to give an estimate of the sample at the next
time step. Then, a score-based technique, such as the annealed Langevin dynamics (Song & Ermon, 2019),
is used as a corrector to correct the marginal distribution of the estimated sample. The annealed Langevin
dynamics algorithm (Song & Ermon, 2019) begins with white noise and runs xi = xi−1+ γ

2 ∇x log p(x)+√
γwi,

a certain number of iterations, where γ controls the magnitude of the update in the direction of the score
∇x log p(x).

The reverse-time SDE can also be solved using probability flow, a different numerical approach, thanks to
score-based models (Song et al., 2020b). A corresponding deterministic process with trajectories that have
the same marginal probability densities {pt(x)}T

t=0 as the SDEs exists for every diffusion process. This
process is deterministic and fulfills an ordinary differential equation (ODE) as (Song et al., 2020b):

dx = [f(x, t) − 1/2G(t)G(t)⊤∇x log pt(x)]dt. (4)

This process is called probability flow ODE. Once the scores are known, one can determine it from the SDE.

3.1.2 Normalizing flows

In normalizing flows, a random variable with a known (usually Normal) distribution is transformed via a
series of differentiable, invertible mappings (Abdelhamed et al., 2019; Kobyzev et al., 2020; Zhang & Chen,
2021; Zand et al., 2023). Let Z ∈ RD be a random variable with the probability density function pZ : RD → R
being a known and tractable function and Y = g(Z). The probability density function of the random variable
Y can then be calculated using the change of variables formula as shown below:

pY(y) = pZ(f(y))| det ∂f

∂y
| = pZ(f(y))| det ∂g

∂f(y) |−1, (5)

where ∂g
∂f(y) denotes the Jacobian of f , and f is the inverse of g.

In generative models, the aforementioned function g (a generator) ‘pushes forward’ the initial base density
pZ, often known as the ‘noise’, to a more complicated density. This is the generative direction, in which a
data point y is generated by sampling z from the base distribution and applying the generator as y = g(z).
In order to normalize a complex data distribution, the inverse function f moves (or ‘flows’) in the opposite
way, from the complex distribution to the simpler, more regular or ‘normal’ form of pZ. Given that f is
‘normalizing the data distribution’, this viewpoint is the source of the term ‘normalizing flows’.

It can be challenging to build arbitrarily complex nonlinear invertible functions (bijections) such that the
determinant of their Jacobian can be calculated. To address this, one strategy is to use their composition,
since the composition of invertible functions is itself invertible. Let g1, . . . , gM be a collection of M bijective
functions, and let g = gM ◦ gM−1 ◦ · · · ◦ g1 represent the composition of the functions. The function g can
then be demonstrated to be bijective as well, which its inverse given as f = f1 ◦ · · · ◦ fM−1 ◦ fM . The latent
variables are then given as:

xi = fi(xi−1, θ)
xi−1 = f−1

i (xi, θ),
(6)

where {xi}M
i=0 denote the trajectories between the data space and the latent space.

3.2 Proposed method

A schematic illustration of the proposed method in comparison to other generative models is shown in
Figure 2. In diffusion models, the forward process is fixed while the backward process is trainable. Yet, they
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Figure 2: Architectural comparison of Diffusion, Normalizing Flows, DiffFlow (Zhang & Chen, 2021), and
the proposed DiNof models. DiffFlow uses stochastic and trainable processes for both the forward and the
backward processes, whereas DiNof utilizes a deterministic trainable process only at the final steps of the
forward process. The backward process initiates with a deterministic process and turns to a stochastic
process to generates images. We use Tm to denote an arbitrary intermediate latent variable between data
space and latent space.

are both stochastic. Both the forward and the backward processes of normalizing flow are deterministic.
They combine into a single process since they are the inverse of one another. In DiffFlow (Zhang & Chen,
2021), both the forward and the backward processes are stochastic and trainable. Our method however
employs both stochastic and deterministic trajectories that follow each other in both directions. This is
more effective due to the possible reduction of the diffusion/sampling steps.

More specifically, we aim to improve the effectiveness of diffusion-based modelling by representing data x(0)
via a set of latent variables x(t) between the data distribution and a data-dependent and deterministic prior
distribution. We use a total number of N noise scales and define x( i

N ) = xi, where {xi}N
i=0 denotes the

Markov chain. An SDE and an ODE both are used to model the forward diffusion process. We employ an
Itô stochastic SDE as follows:

dx = f(t)xdt + g(t)dw, (7)

where t is a continuous time variable uniformly sampled over [0, Tm). Theoretically Tm can be any number
between 1 and T , implying a potential for reducing the diffusion steps. Furthermore, we model latent variables
{x(t)}t<Tm

in the forward process using Eq. 7. Here, we can use one of the original diffusion models, such as
VESDE (variance exploding SDE) or VPSDE (variance preserving SDE) (Song et al., 2020b). These models
are linear, where f(x, t) = f(t)x is a function of x(t), and g is a function of t.

In VESDE, f(t) = 0 and g(t) =
√

dσ2/dt, where σ2(t) denotes the variance of latent variable x(t). Com-
parably, f(t) = −1/2β(t), and g(t) =

√
β(t) in VPSDE, where β( i

N ) = β̄i, and {β̄i = Nβi}N
i=0. We can

also employ the discretized versions of the VESDE and VPSDE known as SMLD and DDPM noise per-
turbations (Song et al., 2020b). Using these conventional linear SDEs in the forward diffusion process, we
transform the data x(0) ∼ p0 to a diffused distribution pTm . Hence, we connect the data space and the latent
variables {x(t)}t<Tm through stochastic trajectories.
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Figure 3: An overview of DiNof. It employs both linear stochastic and nonlinear deterministic trajectories
in the mapping between data space and latent space using SDEs and ODEs. It hence utilizes normalizing
flows to nonlinearize the diffusion models. Glow (Kingma & Dhariwal, 2018) architecture is used as the
normalizing flow model.

We propose exploiting the nonlinearity in the diffusion process by applying a nonlinear ODE on the rest
of trajectories (i.e., {x(t)}t≥Tm

). In contrast to a few prior works that use nonlinearity in the diffusion
models (Vahdat et al., 2021; Zhang & Chen, 2021; Kim et al., 2022), we follow the existing linear process
with a subsequent nonlinear process. This is shown in Figure 3, where the diffusion process is nonlinearized
by employing nonlinear trainable deterministic processes. Intuitively and empirically, utilizing both linear
and nonlinear processes can boost the sample quality. As demonstrated in our experiments, executing an
efficient nonlinear process after an existing linear process can reduce the number of sampling steps and
accelerate sampling. We choose normalizing flows as the means to nonlinearize the diffusion models, as they
learn the nonlinearity by invertible flow mapping. Normalizing flows are in this way used to complete the
remaining steps of the diffusion process in a single phase, which improves efficiency.

In our normalizing flow network, we consider a bijective map between pTm and z, a latent variable with
a simple tractable density such as a Gaussian distribution as pθ(z) = N (z; 0, I). The log-likelihood of
x = x(Tm) is then defined as:

log pθ(x) = log pθ(z) + log | det(dz/dx)| = log pθ(z) +
M∑
i

log | det(dhi/dhi−1)| (8)

where {hi}M
i=1 are intermediate representations generated by the layers of a neural network, h0 = x(Tm),

and hM = z. We train this model by minimizing the negative log-likelihood. The overall objective which
includes training our SDE and our ODE is a joint training objective that merges the ODE objective with
the diffusion model’s score matching objective ( i.e., Eqs. 3 and 8).

As noted earlier, data and the latent variables are coupled through both stochastic and deterministic tra-
jectories in an end-to-end network. We therefore employ two different forms of trajectories for the mapping
between data and latent spaces using SDEs and ODEs. Stochastic trajectories are utilized between Tm latent
variables, while deterministic trajectories are employed for M latent variables in the flow process. Although
Tm +M might be greater than the N steps of a standard diffusion model, employing an efficient flow network
which generates samples at a single step will nevertheless, speed up the process (Song et al., 2020b).

The typical strategy in current diffusion models is to restore the original distribution by learning to pro-
gressively reverse the diffusion process, step by step, from T to 0. In our approach, however, we reconstruct
x(Tm) using the backward process in the flow network via a single path. Furthermore, by reconstructing
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x(Tm), the Gaussian noise is deterministically mapped to a partially noisy sample pTm
. New samples are

generated in the backward process by simulating remaining stochastic trajectories from t = Tm to t = 0 by
the reverse-time SDE.

In contrast to generic SDEs, we have extra information close to the data distribution that can be leveraged to
improve the sample quality. Specifically, pTm which is sampled by the flow network is used as an informative
prior for the reverse-time diffusion. To incorporate the reverse-time SDE for sampling, we can use any
general SDE solver. In our experiments, we choose stochastic samplers such as Predictor-Corrector (PC)
to incorporate stochasticity in the process, which has been shown to improve results (Song et al., 2020b).
Another notable advantage of this approach is its ability to semantically modify images by changing the
value of Tm. It can interpolate between deterministic and the stochastic processes. In our experiments, we
demonstrate the impact of the value of Tm on sample quality.

4 Experiments

We conduct a systematic evaluation to compare the performance of our method with competing methods in
terms of sample quality on image generation.

4.1 Protocols and datasets

We show quantitative comparisons for unconditional image generation on CIFAR-10 (Krizhevsky et al.,
2009) and CelebA-HQ-256 (Karras et al., 2017). We perform experiments on these two challenging datasets
following the conventional experimental setup in the field (such as Kim et al. (2022); Salimans & Ho (2022);
Song et al. (2020a)). We follow the experimental design of Ho et al. (2020); Song et al. (2020b), using the
Inception Score (IS) (Salimans et al., 2016) and Frechet Inception Distance (FID) (Heusel et al., 2017) for
comparison across models.

Table 1: Effect of varying {Tm}T
T/10 on the CIFAR-10 dataset, where T = 1

Model Tm # samp. steps ↓ IS ↑ FID ↓
NCSN++ cont. (Song et al., 2020b) - 1000 8.91 4.29

DiNof

0.1 100 5.29 46.60
0.2 200 6.11 34.63
0.3 300 7.50 21.32
0.4 400 8.82 10.76
0.5 500 9.41 3.94
0.6 600 9.23 3.16
0.7 700 9.13 3.29
0.8 800 8.99 3.95
0.9 900 9.21 3.76
1.0 1000 8.87 4.18

We use different SDEs such as VESDE, VPSDE, and sub-VPSDE to show our consistency with the existing
approaches. The NCSN++ architecture is used as our VESDE model whereas DDPM++ architecture is
utilized for VPSDE and sub-VPSDE models. PC samplers with one corrector step per noise scale are also used
to generate the samples. As our normalizing flow model, we use the multiscale architecture Glow (Kingma
& Dhariwal, 2018) with the number of levels L = 3 and the number of steps of each level K = 16. We also
set the number of hidden channels to 256.

To ensure that the amount of neural network evaluations required during sampling is consistent with prior
work (Ho et al., 2020; Jing et al., 2022; Vahdat et al., 2021; Song et al., 2020b), we set T = 1000 and T = 1
for discrete and continuous diffusion processes, respectively. The number of noise scales N is however set
to 1000 for both cases. Additionally, the number of conditional Langevin steps is set to 1. The Langevin
signal-to-noise ratio for CIFAR-10 and CelebA-HQ-256 are fixed at 0.16 and 0.17, respectively. The default
settings are fixed for all other hyperparameters based on the optimal parameters determined in (Song et al.,
2020b; Jing et al., 2022). All details are available in the source code release.
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Table 2: Generative performance on CIFAR-10 dataset

Class SDE Type Method IS ↑ FID ↓

GAN - -

StyleGAN2-ADA (Karras et al., 2020) 9.83 2.92
SNGAN + DGflow (Ansari et al., 2020) - 9.62
TransGAN (Jiang et al., 2021) - 9.26
StyleFormer (Park & Kim, 2022) - 2.82

VAE - -
NVAE (Vahdat & Kautz, 2020) - 23.5
DCVAE (Parmar et al., 2021) - 17.9
CR-NVAE (Sinha & Dieng, 2021) - 2.51

Flow - -

Glow (Kingma & Dhariwal, 2018) - 46.90
ResFlow (Chen et al., 2019) - 46.37
Flow++ (Ho et al., 2019) - 46.4
DenseFlow-74-10 (Grcić et al., 2021) - 34.9

Diffusion

Linear -

NCSN (Song & Ermon, 2019) 8.87 25.32
NCSN v2 (Song & Ermon, 2020) 8.40 10.87
NCSN++ cont. (deep, VE) (Song et al., 2020b) 9.89 2.20
DDPM (Ho et al., 2020) 9.46 3.17
DDIM (Song et al., 2020a) - 4.04
Distillation (Salimans & Ho, 2022) - 2.57
Subspace Diff. (NSCN++, deep) (Jing et al., 2022) 9.94 2.17

Nonlinear

SBP SB-FBSDE (Chen et al., 2021) - 3.01

VAE-based
LSGM (FID) (Vahdat et al., 2021) - 2.10
LSGM (NLL) (Vahdat et al., 2021) - 6.89
TDPM (TT runc=99) (Zheng et al., 2023) - 2.83

Flow-based

DiffFlow (Zhang & Chen, 2021) - 13.43
INDM (FID) (Kim et al., 2022) - 2.28
INDM (NLL) (Kim et al., 2022) - 4.79
DiNof (Ours) 9.96 2.01

Table 3: Generative performance on
CelebA-HQ-256 dataset

Method FID ↓
Glow (Kingma & Dhariwal, 2018) 68.93
NVAE (Vahdat & Kautz, 2020) 29.76
DDIM (Song et al., 2020a) 25.60
SDE (Song et al., 2020b) 7.23
D2C (Sinha et al., 2021) 18.74
LSGM (Vahdat et al., 2021) 7.22
DiNof (Ours) 7.11

Table 4: Generative performance and sampling time on CIFAR-10

Model IS ↑ FID ↓ Time ↓
DDPM++ 9.64 2.78 43s
DiNof (Glow, DDPM++) 9.65 2.51 24s
DDPM++ cont. (VP) 9.58 2.55 45s
DiNof (Glow, DDPM++ cont. (VP)) 9.75 2.40 25s
DDPM++ cont. (sub-VP) 9.56 2.61 44s
DiNof (Glow, DDPM++ cont. (sub-VP)) 9.73 2.43 24s
NCSN++ 9.73 2.45 97s
DiNof (Glow, NCSN++) 9.85 2.25 56s
NCSN++ cont. (VE) 9.83 2.38 97s
DiNof (Glow, NCSN++ cont. (VE)) 9.87 2.12 56s
NCSN++ cont. (deep, VE) 9.89 2.20 150s
DiNof (Glow, NCSN++ cont. (deep, VE)) 9.96 2.01 90s

4.2 Results

4.2.1 Model parameters

We first optimize for the CIFAR10 sample quality, and then we apply the resulting parameters to the other
dataset. To find the optimal value for Tm, we investigate the results for a variety of thresholds. We select
NCSN++ cont. (Song et al., 2020b), which is an NCSN++ model conditioned on continuous time variables
as the baseline model. We calculate FIDs for various Tm values with T/10 increments on the models trained
for 500K training iterations with a batch size of 32, where T = 1. Depending on the Tm value, a different
number of sampling steps is used in our model. Note that the number of sampling steps are reduced except
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Tm = 0.1 Tm = 0.2 Tm = 0.3 Tm = 0.4 Tm = 0.5 Tm = 0.6 Tm = 0.7 Tm = 0.8 Tm = 0.9 Tm = 1.0

Figure 4: CIFAR-10 samples with different Tm thresholds.

when Tm = T . In this case, normalizing flows provide an initial prior as an alternative to the standard
Gaussian prior.

As reported in Table 1, the best IS and FID are obtained when Tm = 0.5 and Tm = 0.6, respectively. Also,
our method with Tm = 0.5 and 500 fewer sampling steps, outperforms the baseline model. It achieves 0.35
improvement in terms of FID over the baseline method by obtaining an FID = 3.94. Improvements can
be seen for all Tm ≥ 0.5. For smaller Tm values, however, our method suffers a significant degradation.
This is due to the high and imbalanced stochasticity at smaller Tm values. This is shown in Figure 4,
where unrecognizable images are generated with a high stochasticity for Tm < 0.5. Smaller Tm makes the
backward process simple and fast but challenging to reconstruct the data. By additional noise, however,
the high-quality images are successfully reconstructed, although with more sampling steps. Nonetheless, the
capacity to explicitly trade-off between accuracy and efficiency is still a crucial feature. For instance, the
number of function evaluations is decreased by nearly 50% while maintaining the visual quality of samples
by using a smaller threshold, such as Tm = 0.5 that balances sample quality and efficiency (i.e., the number
of sampling steps). We fix Tm = 0.6 for the rest of the experiments as it results in the best FID score of
3.16.

4.2.2 Unconditional color image generation

We compare our method with state-of-the-art diffusion-based models as well as nonlinear diffusions. There
have been a few prior works that have leveraged diffusion models with nonlinear diffusions. Specifically,
the examples found in the literature are: LSGM (Vahdat et al., 2021) which implements a latent diffusion
using VAE; DiffFlow (Zhang & Chen, 2021) which uses a flow network to nonlinearize the drift term;
SB-FBSDE (Chen et al., 2021) and (De Bortoli et al., 2021) which reformulate the diffusion model into
a Schrodinger Bridge Problem (SBP); TDPM (Zheng et al., 2023) that focuses on reducing the diffusion
trajectory by learning an implicit generative distribution using AAE, and; INDM (Kim et al., 2022) which
uses a flow network to implicitly construct a nonlinear diffusion on the data space by leveraging a linear
diffusion on the latent space. We show that, compared to these methods, our flexible approach provides better
generative modeling performance. We demonstrate this on the CIFAR-10 image dataset, which compared
to CelebA-HQ-256 is far more diversified and multimodal.

As is done in previous research (Song et al., 2020b; Jing et al., 2022), the best training checkpoint with
the smallest FID is utilized to report the results on CIFAR-10 dataset. One checkpoint is saved every 50k
iterations for our models, which have been trained for 1M iterations. The batch size is also fixed to 128.

Table 2 summarizes the sample quality results on the CIFAR-10 dataset for 50K images. Our method with
continuous NCSN++ (deep) obtains the best FID and IS of 2.01 and 9.96, respectively. The considerable
improvement over other nonlinear models such as DiffFlow, SB-FBSDE, INDM, LSGM, and TDPM shows
the potential of using both SDEs and ODEs. More importantly, our method maintains full compatibility with
the underlying diffusion models, and hence, retaining all their capabilities. Our method also consistently
improves over the baseline methods. For example, it achieves 0.19 increase in the FID score compared
to NCSN++ cont. (deep, VE) with the same diffusion architecture. Furthermore, our method not only
preserves the flexibility of existing SDEs but also boosts their effectiveness.

We evaluate the applicability of our method to the high-resolution dataset of CelebA-HQ-256. We trained
on this dataset for 0.5M iterations, and the most recent training checkpoint is used to derive the results.
We use a batch size of 8 for training and a batch size of 64 for sampling. To save the computations, we use
the optimal Tm value of 0.6, which is obtained on the CIFAR-10 dataset. We also utilize the continuous
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Figure 5: Visual samples for various iteration numbers during training on the CelebA-HQ-256 dataset.

NCSN++ with PC samplers. As shown in Table 3, DiNof achieves competitive performance in terms of
FID on the CelebA-HQ-256 dataset. It specifically obtains a state-of-the-art FID of 7.11 which outperforms
LSGM, another nonlinear model by a considerable margin of 0.11 FID. The performance gain is mainly
contributed to the integrated deterministic nonlinear priors as our diffusion architecture is similar to the one
used in SDE and LSGM.

4.2.3 Sampling time

We evaluate DiNof in terms of sampling time on the CIFAR-10 dataset. We specifically measure the improved
runtime in comparison to the original SDEs (VESDE, VPSDE, and sub-VPSDE) with PC samplers (Song
et al., 2020b) on an NVIDIA A100 GPU. The sampler is discretized at 1000 time steps for all SDEs.
We however discretize it at 600 steps in our models. Thus, we employ a considerably less number of
diffusion/sampling steps. As we employ a Glow architecture, our models include ∼ 7M more parameters
than the standard SDE models. In contrast to the SDE models which are trained for 1.3M iterations, we
train our models for 1M iterations to suppress overfitting. We follow the same strategy as (Song et al.,
2020b), and report the results on the best training checkpoint with the smallest FID.

Table 5: Intermediate results for different it-
eration numbers on the CIFAR-10 dataset

Model Iteration IS ↑ FID ↓

DDPM++

50k 8.62 6.05
100k 8.97 3.71
150k 9.34 2.99
200k 9.50 2.72
250k 9.57 2.70
300k 9.60 2.69

DDPM++

50k 8.48 6.13
100k 8.96 3.83
150k 9.22 3.05
200k 9.43 2.79

cont. (VP) 250k 9.58 2.66
300k 9.71 2.69

DDPM++

50k 8.32 7.55
100k 8.75 4.91
150k 9.00 3.85
200k 9.15 3.35

cont. (sub-VP) 250k 9.31 3.11
300k 9.37 2.94

As shown in Table 4, our method consistently reduces sam-
pling time and improves sample quality. For instance, it
takes 24s to generate an image sample, while yielding an
FID score of 2.51 on the DDPM++ model. It however takes
43s using the original DDPM++ architecture which achieves
FID = 2.78. Our method is hence ∼ 1.7× faster than original
SDEs. It also performs better in terms of FID and IS. For
instance, it improves over SDEs by ∼ 1.1× FID on average.

4.2.4 Intermediate results

We save one checkpoint every 50k iterations for our models
and report the results on the best training checkpoint with
the smallest FID. It is however worthwhile considering the
intermediate results to better understand the entire training
and inference procedures. In Table 5, we show IS and FID
for DDPM++, DDPM++ cont. (VP), and DDPM++ cont.
(sub-VP) models trained for various iteration numbers on
the CIFAR-10 dataset. As can be observed, DDPM++ and
DDPM++ cont. (VP) models improve more quickly than
DDPM++ cont. (sub-VP).

Visual samples during training are also illustrated in Fig-
ure 5 for the CelebA-HQ-256 dataset, where improvements
over the course of training are obvious. Further details are
updated and modified as training progresses.
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Figure 6: Uncurated CIFAR-10 generated samples. Figure 7: Uncurated CelebA-HQ-256 generated samples.

4.2.5 Qualitative results

We visualize qualitative results for CelebA-HQ-256 and CIFAR-10 in Figure 1. We show that as opposed to
several other methods, DiNof can speed up the process while improving the sample quality. Other methods
that shorten the sampling process like (Song et al., 2020a; Zhang & Chen, 2021) frequently compromise the
sample quality.

Random samples from our best models on the CIFAR-10 and CelebA-HQ-256 datasets are further depicted
in Figure 6 and Figure 7, respectively. They demonstrate the robustness and reliability of our approach for
generating realistic images. Our method creates diverse samples from various age and ethnicity groups on
CelebA-HQ-256, together with a range of head postures and face expressions. DiNof also produces sharp
and high-quality images with density details on the challenging multimodal CIFAR-10 dataset.

5 Conclusion

We propose DiNof, which improves sample quality while also reducing runtime. Our model breaks previous
records for the inception score and FID for unconditional generation on both CIFAR-10 and CelebA-HQ-
256 datasets. As compared to the previous best diffusion-based generative models, it is surprising that we
are able to reduce the sampling time while improving the sample quality. Unlike many other methods,
our approach also maintains full compatibility with the underlying diffusion models and so retains all their
features. It should also be noted that even though incremental experiments are used to determine the optimal
value of the single model hyperparameter (Tm), we only needed to run 10 increments (on CIFAR-10) to beat
the other SOTA methods and show how useful DiNof is in real-world situations. We did not conduct this
experiment again to acquire our results on the CelebA-HQ-256 dataset, further demonstrating the robustness
and applicability of our technique.

A variety of image and video generation tasks may be made possible by our model’s ability to be applied in
both conditional and unconditional scenarios. It is beneficial to investigate its effectiveness for several other
tasks including conditional image generation, interpolations, colorization, and inpainting.
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