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Abstract001

Transformer-based models excel in various002
tasks but their generalization capabilities, espe-003
cially in arithmetic reasoning, remain incom-004
pletely understood. Arithmetic tasks provide a005
controlled framework to explore these capabil-006
ities, yet performance anomalies persist, such007
as inconsistent effectiveness in multiplication008
and erratic generalization in modular addition009
(e.g., modulo 100 vs. 101). This paper devel-010
ops a unified theoretical framework for under-011
standing the generalization behaviors of trans-012
formers in arithmetic tasks, focusing on length013
generalization. Through detailed analysis of ad-014
dition, multiplication, and modular operations,015
we reveal that translation invariance in addi-016
tion aligns with relative positional encoding for017
robust generalization, while base mismatch in018
modular operations disrupts this alignment. Ex-019
periments across GPT-family models validate020
our framework, confirming its ability to pre-021
dict generalization behaviors. Our work high-022
lights the importance of task structure and train-023
ing data distribution for achieving data-efficient024
and structure-aware training, providing a sys-025
tematic approach to understanding of length026
generalization in transformers.027

1 Introduction028

Since the introduction of Transformer (Vaswani029

et al., 2017), Transformer-based models including030

large language models (LLMs) and large multi-031

modal models (LMMs) have experienced a rapid032

rise, excel in a wide range of tasks, such as natural033

language processing, coding, mathematical reason-034

ing, and vision understanding (Bubeck et al., 2023;035

Lu et al., 2024). However, the generalization capa-036

bilities of these transformer based foundation mod-037

els are not yet fully understood in areas such as nat-038

ural language understanding (Bender et al., 2021)039

and mathematical reasoning (Anil et al., 2022; Je-040

lassi et al., 2023).041

The generalization capabilities are often link to042

models’ capability to generalize beyond their train- 043

ing data (out-of-distribution (OOD) generalization) 044

in NLP tasks, which is much complex and challeng- 045

ing. LLMs perform exceptionally well on some 046

generalization tasks while produce factual errors or 047

misinformation on others e.g., (Bender et al., 2021; 048

Lu et al., 2024). Studies therefore try to figure 049

out why these differences exist between generaliza- 050

tion tasks (Briakou et al., 2023), what LLMs are 051

actually learning on failed ones (Xu et al., 2024), 052

and how they manage to generalize on successful 053

tasks (Jelassi et al., 2023; McLeish et al., 2024). 054

Given the complexity of next-token prediction 055

across diverse corpora and models’ opacity, mathe- 056

matical tasks (e.g., n-digit addition / multiplication 057

/ modular operations) serve as interpretable probes 058

for generalization analysis. 059

However, mysterious discrepancies in models’ 060

generalization capability still exist – (1) certain 061

tasks (e.g., addition) succeed in unseen generaliza- 062

tion with certain positional encodings (e.g., rela- 063

tive) but not other tasks (e.g., multiplication), and 064

(2) there is a significant generalization difference 065

between very close moduli in modular operations 066

(e.g., modulo 100 and 101). Specifically, previ- 067

ous studies have observed that when training mod- 068

els with absolute positional embeddings (APE) on 069

n-digit operations (e.g., addition), where both in- 070

put operands are no longer than n-digit in length 071

such as 1234+5678 for n = 4, the models success- 072

fully generalize on unseen n-digit inputs such as 073

4321+8765 (termed in-distribution (ID) general- 074

ization). However, they fail on longer unseen cases 075

such as 91234+ 15678 (termed OOD generaliza- 076

tion) as shown by Anil et al. (2022), Jelassi et al. 077

(2023), Lee et al. (2023), and Xu et al. (2024). Be- 078

sides, models with relative positional embeddings 079

(RPE) can generalize to longer unseen inputs for ad- 080

dition tasks but struggle with multiplication tasks, 081

according to Jelassi et al. (2023) and McLeish et al. 082

(2024). Additionally, models trained on modular 083
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operations with specific moduli such as 100 can084

perfectly generalize to any longer unseen inputs085

with either absolute or relative positional embed-086

dings. However, they fail to generalize to longer087

unseen inputs for other very close moduli such as088

101, as noted by Jelassi et al. (2023). These OOD089

generalization mysteries are cataloged in Table 1.090

Addition Multiplication
Modular Operations

p = 100 p = 101

APE ✗ ✗ ✓ ✗

RPE ✓ ✗ ✓ ✗

Table 1: Length Generalization of Transformers with
APE and RPE on Arithmetic Tasks

As we can summarize, these previous efforts ad-091

dress generalization issues in specific tasks, mod-092

ifying components of individual models, such093

as altering positional encodings (Jelassi et al.,094

2023; McLeish et al., 2024) or attention mecha-095

nisms (Dubois et al., 2019). Their failure in fig-096

uring out the underneath mechanism calls for a097

reflective examination – we believe the field has098

overlooked the differences in task properties (e.g.,099

addition v.s. multiplication, modulo 102 v.s. mod-100

ulo 102 +1) that may drive the difference in gen-101

eralization property among tasks. The perspective102

of mechanistic interpretability (Hernandez et al.,103

2022; Liu et al., 2022) offers an angle in this di-104

rection. This data-driven and experimentally-based105

analytical approach has helped identify and inter-106

pret phenomena such as “grokking” (Liu et al.,107

2022) and analyze the impact of repeated data on108

the performance of LLMs (Hernandez et al., 2022).109

In this paper, we present a unified theoretical110

framework integrating language modeling prin-111

ciples, universal approximation capabilities, and112

task-specific property analysis across diverse arith-113

metic tasks. Our model assumes that generaliza-114

tion behaviors depend on task properties once the115

model converges on the training data. For exam-116

ple, digital addition is translation invariant with117

a large probability, yielding consistent results de-118

spite digit shifts, aligning with RPE’s preservation119

of positional relationships, unlike multiplication.120

This leads to well generalization of addition with a121

large probability to unseen longer domains under122

RPE but not for multiplication. The modulo (e.g.123

100, 101) discrepancy stems from base alignment:124

modulo 100 matches base 10, discarding higher125

digits 11234 + 15678 ≡ 1234 + 5678 ≡ 34 + 78126

(mod 100), whereas modulo 101 requires them. 127

We then perform more extensive generaliza- 128

tion analyzes assuming that transformer models 129

are trained in n-digit operations with at least one 130

operand having a length of n such as 1234+ 567 131

for n = 4. This differs from the literature where 132

the length of both operands is no longer than n. 133

We categorize generalization into two types: down- 134

ward OOD generalization and upward OOD gen- 135

eralization. Downward OOD generalization1 in- 136

volves generalizing to downward domains, such as 137

120+235 or 11+32, while upward OOD general- 138

ization involves generalizing to upward domains, 139

such as 12035 + 235 or 123456 + 323456. The 140

core conclusions of our theoretical analysis are 141

as follows: (1) For addition, under APE, Trans- 142

former models can generalize to the downward 143

(downward) OOD domain, but not to the upward 144

(upward) OOD domain. However, under RPE, the 145

models can generalize to both downward and up- 146

ward OOD domains, benefiting from the translation 147

invariance of digit addition. (2) For multiplication, 148

even RPE has limited effectiveness in the upward 149

OOD domain due to the lack of translation invari- 150

ance property. (3) For modular operations, if the 151

modulus p divides 10n, models can generalize to 152

both downward and upward OOD domains regard- 153

less of the positional encoding, due to the compat- 154

ibility with base 10 such that the information at 155

higher-digit positions of the operands do not affect 156

the result. When the modulus p does not divide 157

10n, models can only generalize to the downward 158

OOD domain. For upward OOD domains, we have 159

derived a theoretical accuracy formula based on the 160

information loss and identification of the model’s 161

final learned function. 162

The challenge in understand the generalization 163

capacity of LLM has significant implications for 164

LLM training, alignment, and application (Ji et al., 165

2023). Our analysis highlights the importance of 166

training data distribution. If the data excluded 167

from the training dataset does not affect the desired 168

ground truth support set, such as when the down- 169

ward OOD domain is excluded during training, the 170

model can still learn to generalize to the excluded 171

downward OOD domain. However, if a significant 172

1As a note, the downward OOD domain generalization is
not trivial. If a model is trained on a smaller domain with
a significant gap from the desired training dataset, such as
training on n-digit addition with both operands having a length
of n and the highest digits of both operands being greater than,
for example, 5, the model fails to generalize to the downward
OOD domain.
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amount of data is omitted, or a large number of173

training samples are mapped to the same answer,174

as shown in our counterexample above, the down-175

ward OOD domain generalization fails. Therefore,176

when our goal is to align the model to generalize177

certain OOD domains as expected, precise analysis178

of the task nature and careful control of the training179

data are necessary.180

To validate our theoretical framework, we exper-181

iment on various generative language models, in-182

cluding models of various sizes (Karpathy, 2023),183

and our tasks involving n-digit addition, multiplica-184

tion, and modular operations. We further perform185

robustness analysis across different model scales,186

dataset sizes, and training data schemes.187

Our main contributions are as follows:188

1. Establishing a unified theoretical frame-189

work for understanding OOD generalization of190

Transformers: Our framework is the first to ad-191

dress task differences in transformer models’ gen-192

eralization ability. Comprehensive experimental193

evidences validate our theoretical predictions2.194

2. Clarifying the downward and upward195

OOD generalization and their requirement of196

task and training data. We introduce the concepts197

of downward and upward generalization, which198

more clearly delineates the differences between199

generalization to downward and upward domains.200

2 Related Work201

Generalization of Transformers and LLMs on202

Arithmetic. Numerous studies have examined203

the performance of Transformer-based language204

models in tasks involving arithmetic operations205

and mathematical reasoning. Brown et al. (2020),206

Bubeck et al. (2023) and Lu et al. (2024) investi-207

gated various LLMs, such as GPT-3, GPT-4, and208

Gemini, in performing basic arithmetic and mathe-209

matical reasoning. Nogueira et al. (2021) explored210

the limitations of Transformers in learning arith-211

metic, highlighting the significant influence of sur-212

face representation on model accuracy and the need213

for improved tokenization and positional encoding214

strategies. Subsequent research such as Qian et al.215

(2022), Anil et al. (2022), Jelassi et al. (2023), Lee216

et al. (2023), Xu et al. (2024), McLeish et al. (2024)217

and Duan et al. (2024). Abbe et al. (2023) exam-218

ined generalization on unseen logical functions.219

While previous studies have mainly focused on220

2Our opensource our code at https://anonymous.4open.
science/r/ArithmeticLLM-034D under the MIT license

evaluating or improving generalization capabilities, 221

our work develops a unified theoretical framework 222

to analyze OOD generalization behaviors in Trans- 223

former models trained on arithmetic operations, 224

bridging the gap between empirical observations 225

and theoretical understanding. 226

Mechanistic Interpretability and General Un- 227

derstanding. Many studies have focused on un- 228

derstanding and interpreting the working dynamics 229

of neural networks and Transformer models (Zhang 230

et al., 2021; Hernandez et al., 2022; Elhage et al., 231

2022; Bills et al., 2023; Templeton, 2024). From 232

the perspective of universal approximation, Yun 233

et al. (2019) and Alberti et al. (2023) demonstrated 234

that Transformer models equipped with trainable 235

positional encodings can act as universal approxi- 236

mators for continuous functions in a compact do- 237

main under the Lp norm or the supremum norm. 238

From a mechanistic viewpoint, Hernandez et al. 239

(2022) investigated the impact of repeated data on 240

the performance of LLMs, highlighting significant 241

performance degradation when a small fraction of 242

data is repeated multiple times. Liu et al. (2022) ad- 243

dressed the phenomenon of delayed generalization 244

or “grokking” using addition and modular addition 245

tasks, and Zhong et al. (2023) utilized modular 246

addition to mechanistically explain algorithm dis- 247

covery in neural networks. 248

Our work contributes to this growing field of 249

mechanistic interpretability by providing a macro- 250

scopic explanation specifically for Transformer 251

models. We systematically identify systematic bi- 252

ases and understand model behaviors in arithmetic 253

reasoning scenarios. 254

3 Theoretical Analysis on Generalization 255

for Arithmetic Reasoning 256

We first review the Transformer model and the uni- 257

versal approximation theorem, and then conduct 258

theoretical analyses of the downward and upward 259

OOD generalization capabilities of the Transformer 260

in solving tasks related to addition, modular addi- 261

tion, multiplication, and modular multiplication. 262

3.1 Preliminaries on Transformer and 263

Universal Approximation 264

A Transformer model (Vaswani et al., 2017) pre- 265

dicts the next token based on the preceding tokens 266

within the input sequence. Its output is subse- 267

quently used as input for the next prediction. For 268

a target token xi at position i in the sequence, the 269
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model generates a probability distribution over the270

vocabulary of the next potential tokens. To be pre-271

cise, let x = x1x2 . . .xT ∈ VT denote the input se-272

quence of tokens. The probability of observing this273

sequence with respect to a Transformer model is274

given as follows:275

Pθ (x) =
T

∏
i=1

Pθ (xi|x1,x2, ...,xi−1) =
T

∏
i=1

Pθ (xi|x<i).276

The conditional probability Pθ (xi|x<i) is computed277

using the softmax function applied to the last hid-278

den state.279

Universal approximation theorem for Trans-280

former models: Transformer models have the281

capacity to universally approximate any arbitrary282

continuous sequence-to-sequence function within283

a compact domain. Yun et al. (2019) and Alberti284

et al. (2023) have shown that, when equipped with285

trainable positional encodings, Transformers can286

serve as universal approximators for continuous287

functions in a compact domain under the Lp norm288

or the supremum norm. These characterizations289

highlight the representation power of fixed-width290

Transformer networks, despite the intrinsic param-291

eter sharing and permutation equivariance.292

3.2 Theoretical Analysis on Addition293

Consider two natural numbers a = ∑
n
i=1 ai ×294

10i−1 = (a1,a2, · · · ,an) and b = ∑
n
i=1 bi ×10i−1 =295

(b1,b2, · · · ,bn). The addition of these n-digit num-296

bers, denoted as f (a,b) = a+ b, is expressed by297

c = ∑
n+1
i=1 ci ×10i−1 = (c1,c2, · · · ,cn,cn+1).298

Let the dataset Dn := {(a,b) ∈ N2 : an ∨ bn ≥299

1,ai = bi ≡ 0,∀i > n}. For notation simplicity, as-300

sume (0,0) ∈ D1. Here, an ∨ bn = max{an,bn}.301

Note that Dn ∩ Dm = /0 for n ̸= m and N2 =302 ⋃
∞
n=1Dn. Denote the downward (downward) do-303

main D<n :=
⋃n−1

m=1Dm and the upward domain304

D>n :=
⋃

∞
m=n+1Dm.305

Theorem 1. (Informal) Assume a Transformer306

model with absolute positional embedding (APE)307

is trained on a multi-digit addition dataset for the308

operands (a,b) ∈ Dn (n ≥ 2) with infinite training309

computation, then the learned model can perfectly310

generalize for the downward OOD domain D<n,311

but fail for the upward OOD domain D>n.312

Proof Sketch. Assume a Transformer model is313

trained on this dataset Dn using absolute positional314

embeddings (APE). The model is trained to approx-315

imate the function that computes the sum digit by316

digit, with carries propagated as follows: 317

ci = ζ (ai +bi + cχ

i−1), 318

where cχ

i−1 is the carry from the previous position, 319

and ζ is a function taking the units of the input. 320

Case I: Downward OOD Domain (D<n) 321

For positions i ≤ n, the model can generalize 322

well to the downward OOD domain D<n by univer- 323

sal approximation theorem for Transformer mod- 324

els. Since the model has seen all possible carry 325

combinations during training, it can correctly pre- 326

dict the digit sums at positions i = 1,2, . . . ,n. For 327

position i = n + 1, the model predicts the carry 328

cn+1 = cχ
n ∈ {0,1} for all pairs where an ∨bn ≥ 1, 329

and when both an = bn = 0, the model learns 330

cn+1 = 0. For positions i > n+ 1, the model pre- 331

dicts zero, since the input digits ai and bi are zero 332

beyond the n-th position. Thus, the model perfectly 333

generalizes to D<n. 334

Case II: Upward OOD Domain (D>n) 335

For positions i ≤ n, the model behaves similarly 336

to the downward OOD case. However, when i = 337

n+1, the model is unable to predict the correct sum. 338

The probability distribution learned by the model at 339

this position only supports values in {0,1}, but for 340

the model to correctly predict the carry, the support 341

must include {0,1, . . . ,9}. Since the model has 342

never seen pairs where both an+1 and bn+1 are non- 343

zero, it cannot generalize correctly to the upward 344

OOD domain. Beyond position n+ 1, the model 345

will predict zeros, as ai = bi = 0 for all i > n. Thus, 346

the model fails to generalize to D>n. 347

Based on the analysis above, we can immediately 348

draw the following conclusion, which provides an 349

explanation for the findings by Xu et al. (2024). 350

Corollary 2. (Informal) The learned Trans- 351

former model with APE approximates the function 352

f̂ (a,b) = (a mod 10n)+(b mod 10n). The OOD 353

generalization error is zero for the downward OOD 354

domain D<n, but not less than 10n for every point 355

in the upward OOD domain D>n. 356

We are curious about the conditions under which 357

a Transformer model can learn to perform addi- 358

tion operations. With APE, the model successfully 359

generalizes downward, but fails to generalize up- 360

ward. What would be the conclusion under RPE? 361

Through theoretical and experimental analysis, we 362

have arrived at the following conclusions. 363

Theorem 3. (Informal) Assume a Transformer 364

model with relative/abacus positional embedding 365

(RPE) is trained on a multi-digit addition dataset 366
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for the operands (a,b) ∈ Dn (n ≥ 2) with infinite367

training computation, then the learned model can368

perfectly generalize for the downward OOD do-369

main D<n and generalize well for the upward OOD370

domain D>n, with a probability of failure in the up-371

ward domain being less than 1/10n−1.372

Proof Sketch. A Transformer model with relative373

positional embeddings (RPE) has a key property374

of translation invariance. This means the model’s375

predictions at any position i depend only on the376

relative distances between positions, not their abso-377

lute locations.378

Special Case: Translation Invariance379

Translation invariance can be expressed as:380

Pθ (ci | a≤i,b≤i) = Pθ (ci | ai−1,ai,bi−1,bi),381

ensuring that the carry at each position is deter-382

mined by the preceding digits ai−1,bi−1, and not383

their absolute positions. Thus, the sum at position384

i is:385

ci = ζ (ai +bi + cχ

i−1),386

where cχ

i−1 = χ(ai−1 + bi−1), as long as ai−1 +387

bi−1 ̸= 9.388

General Case: Extended Translation Invariance389

For longer sequences, the prediction390

for ci depends on the relative positions391

ai−n+1, · · · ,ai,bi−n+1, · · · ,bi. The translation392

invariance fails when carry propagation extends393

past the n-th digit, which happens if ai−k+bi−k = 9394

for all k = 1, . . . ,n − 1. The probability of this395

failure is small, less than 1/10n−1. Thus, the model396

effectively handles longer sequences by mapping397

them to shorter ones with similar relative distances,398

with the failure probability in the upward domain399

being less than 1/10n−1.400

3.3 Theoretical Analysis on Modular Addition401

Consider the function for modular addition with a402

modulus p, expressed as f (a,b) = (a+b) mod p,403

which will be the focus of our analysis in the follow-404

ing section. Subsequently, we will also represent405

modular addition using the notation cp = a+b
p
.406

For simplicity, we will omit the superscript p when407

it is clear from the context.408

Scenarios on Divisibility of 10’s Power by Mod-409

ulus410

Theorem 4. (Informal) Assume a Transformer411

model with either absolute or relative/abacus posi-412

tional embedding is trained on a multi-digit modu-413

lar addition dataset with a modulus p that divides414

10m for the operands (a,b)∈Dn (n ≥ 2 and m ≤ n) 415

with infinite training computation, then the learned 416

model can perfectly generalize both for the down- 417

ward OOD domain D<n and the upward OOD do- 418

main D>n. 419

Scenarios on Non-Divisibility of 10’s Power by 420

Modulus 421

Theorem 5. (Informal) (1) Assuming a Trans- 422

former model equipped with absolute positional 423

embeddings is trained on a multi-digit modular 424

addition dataset Dn (n ≥ 2) where the modulus 425

p neither divides 10n nor exceeds 10n, and pro- 426

vided that infinite training computation is allocated, 427

then the resulting trained model is capable of per- 428

fect generalization to the downward OOD domain 429

D<n, while encountering difficulties in general- 430

izing to the upward OOD domain D>n. (2) The 431

function that the model has learned is f̂ p(a,b) = 432

a10n
+b

10n p
. (3) Furthermore, the test accuracy 433

on D̃ntest (ntest > n) is given by Acc(p,n,ntest) ≈ 434
gcd(p,10n)

p if ntest ≥ n+ log10(p′/2+ 1), otherwise 435

Acc(p,n,ntest) = 0, where gcd(p,10n) represents 436

the greatest common divisor of p and 10n, and 437

p′ = p/gcd(p,10n). 438

3.4 Theoretical Analysis on Multiplication 439

Theorem 6. (Informal) (1) Assuming a Trans- 440

former model equipped with absolute positional 441

embeddings is trained on a multi-digit multiplica- 442

tion dataset Dn (n ≥ 2), and provided that infinite 443

training computation is allocated, then the result- 444

ing trained model is capable of perfect general- 445

ization to the downward OOD domain D<n, while 446

it cannot generalize to the upward OOD domain 447

D>n. (2) The function that the model has learned 448

is f̂ (a,b) = a10n ×b
10n

. 449

3.5 Theoretical Analysis on Modular 450

Multiplication 451

Theorem 7. (Informal) (1) Assume that a Trans- 452

former model with absolute or relative/abacus 453

positional embedding is trained on a multidigit 454

modular multiplication dataset with a modulus p 455

that divides 10m for operands (a,b) ∈ Dn (n ≥ 2 456

and m ≤ n) with infinite training computation, 457

then the learned model can perfectly generalize 458

both for the downward OOD domain D<n and 459

the upward OOD domain D>n. (2) If the mod- 460

ulus p neither divides 10n nor exceeds 10n, and 461

provided that infinite training computation is allo- 462
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cated, then the resulting trained model is capable463

of perfect generalization to the downward OOD464

domain D<n, while encountering difficulties in gen-465

eralizing to the upward OOD domain D>n. The466

function that the model with APE has learned is467

f̂ p(a,b) = a10n ×b
10n p

.468

4 Experiments469

In this section, we describe our experiment design470

with result outcome validating the prediction make471

using our theoretical framework. We also con-472

ducted additional experiment providing detailed473

investigation into the mechanism as well as check-474

ing for robustness of our result which are provided475

in Appendix.A.476

4.1 Experimental Design477

Model Description: In line with most LLMs,478

we utilize a decoder-only architecture consisting479

of multiple layers and multi-head attentions. Our480

models are trained from scratch with varying model481

scale3. Detailed configuration of training and archi-482

tecture are provided in Table3 (see Appendix).483

Data Description: We employ 4 four primary484

arithmetic operations with different symmetric485

property as well as difficulty in term of how much a486

digit can have impact in term of upward/downward487

generalization, which are described here:488

• Addition: c = a+b489

• Modular addition: c ≡ a+b (mod p)490

• Multiplication: c = a×b491

• Modular multiplication: c ≡ a×b (mod p)492

We randomly generate datasets for each arith-493

metic task. Following (Lee et al., 2023; Xu et al.,494

2024) we organize our training data as a sequence495

of operand pairs in natural order, with the results496

of the operations in reversed order with character-497

level tokenization4, which has been shown to be498

more effective for learning in next-token prediction499

models in arithmetic tasks5.500

3The models architecture are in respect NanoGPT, Mi-
croGPT, and MiniGPT (Karpathy, 2023)

4After the tokenization, “;”, “[bos]”, and “[eos]”, a “line
break” token are added to the beginning and the end of each
line of data, resulting in a vocabulary size of 16. When the
context window exceeds the required size for n-digit arithmetic
operations, we pad zeros before the numbers “a”, “b”, and
“c”.

5For example, consider an n-digit addition a+b = c, rep-
resented in standard format as “an · · ·a2a1 + bn · · ·b2b1 =
cn+1 · · ·c2c1”. By reversing the order of the output “c”, we
obtain the reversed data format “an · · ·a2a1 + bn · · ·b2b1 =
c1 · · ·cncn+1”.

We control the length of arithmetic operations n 501

and randomly generate datasets from Dn for differ- 502

ent lengths n. These datasets for each arithmetic 503

task are categorized into three distinct subsets: a 504

training set, an in-distribution (ID) test set, and ad- 505

ditional out-of-distribution (OOD) test sets which 506

we further break down by the upper bound digit 507

for upward generalization, sampled from m-digit 508

operations with m ̸= n. The case where m < n 509

is referred to as the downward (downward) OOD 510

domain, and the case where m > n is termed the 511

upward (upward) OOD domain. We also construct 512

numerous combination sets of samples from dif- 513

ferent domains Dn, such as Dn−1,n, to be used as 514

training and ID test datasets. In the demonstrative 515

example, the OOD test sets are sampled from Dm 516

with m ̸= n− 1 and n. The test accuracy is mea- 517

sured using maximum probability sampling. 518

D1 Task D2 Task

D3 Task D4 Task

D5 Task D6, · · · ,D9 Tasks

Figure 1: Test Accuracy of Transformer Models with
APE for Different Multi-digit Addition Tasks

Note: This figure presents results from three ex-
periments using different training datasets with the
MiniGPT model and a learned APE. The labels D4,
D5, and D4,5 indicate training on random samples from
D4, D5, and a combined subset of both, respectively.
Each subfigure shows test accuracy across different do-
mains Di during training.

6



Test Accuracy (%) w.r.t. the Ground Truth on the Domain D̃i Theory
Modulus 1 2 3 4 5 6 7 8 9 1/p′

p = 50 100 100 100 100 99.3 92.0 93.1 95.2 91.4 100
p = 51 100 98.5 99.9 99.3 0.3 1.8 1.9 1.9 1.6 1.96
p = 100 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 100 0.0 1.2 0.9 1.1 1.0 0.99
p = 150 100 100 100 100 33.2 33.6 32.3 33.0 33.7 33.3
p = 151 100 99.9 99.9 100 0.0 0.6 0.7 0.7 0.6 0.66
p = 200 100 100 100 100 99.8 98.9 93.7 94.1 93.5 100
p = 201 100 100 99.9 99.9 0.0 0.0 0.5 0.4 0.5 0.50

Table 2: Modular Addition: Test Accuracy w.r.t. the Ground Truth f p(a,b) = a+b
p

on D̃i

4.2 Experiments on Addition519

In this subsection, we trained multiple models on520

different datasets (e.g. D4, D5, D4,5) and tracked521

the changes in their accuracy. Additionally, we522

demonstrated how the models learn each digit dur-523

ing the training process.524

4.2.1 Generalization for Different Digit Tasks525

In Figure 1, we present the results of three different526

experiments using distinct training datasets (i.e.,527

D4, D5, D4,5). For all experiments, we employ528

the MiniGPT model equipped with a learned APE.529

Each subfigure illustrates the test accuracy on dif-530

ferent test domains Di for these models throughout531

the training process. Figure 1 verifies our Theo-532

rem 1. It demonstrates that models incorporating533

APE are unable to generalize to longer digits than534

those they are trained on but can succeed with lower535

digits. Additionally, the model trained on D5 has a536

much more challenging training process compared537

to the model trained on D4, while the model trained538

on D4,5 experiences the easiest and smoothest train-539

ing process among the three models. The reason, as540

explained in Theorem 1, is that for D4,5, the model541

learns addition tasks on lower digits directly from542

the training data. In contrast, D4 and D5 require543

OOD generalization for the edge positions.544

More results can be found in Table 4 and Ta-545

ble 5. We test the final trained model on datasets546

with varying digit lengths. While the models do547

not learn the addition of higher digits, they suc-548

cessfully learn the operation f̂ (a,b) = a10n
+b

10n

,549

supporting our Corollary 2.550

We also conduct extensive experiments using551

various training datasets, model scales, and data552

scales. The results of these experiments are robust,553

and presented in Appendix.554

4.2.2 Learning Dynamics for Each Digit 555

Position 556

The models and training datasets are identical to 557

those described in Figure 1. We have assembled a 558

comprehensive test dataset that contains a random 559

sample from D1 to D9. Our objective is to demon- 560

strate how these Transformer models equipped with 561

APE learn each digit at every position throughout 562

the training phase. The digit-wise test accuracy is 563

defined as the accuracy of the prediction for each 564

position in the result c. 565

The plots in Figure 4 (see Appendix) visually 566

represent whether these models are capable of accu- 567

rately predicting the digits ci at all positions. These 568

graphs effectively illustrate the learning dynamics 569

for each token in the context of addition tasks. The 570

models exhibit high accuracy for the first four or 571

five digits, with accuracy approaching 1.0 as train- 572

ing progresses, for datasets D4, or D5, and D4,5, 573

respectively. However, accuracy sharply declines 574

for the 5th or 6th digits and remains near zero for 575

the 7th, 8th, and 9th digits. These findings illus- 576

trate that while the models can effectively learn and 577

predict lower-position digits, they struggle signifi- 578

cantly with higher-position digits. This aligns with 579

the theorem that Transformer models with APE can 580

generalize well for downward OOD domains but 581

fail for upward OOD domains. 582

4.2.3 Generalization Under Relative/Abacus 583

Positional Embeddings 584

McLeish et al. (2024) conducted experiments using 585

a 16-layer Transformer (decoder only) model with 586

abacus positional embedding, trained on a random 587

sample from D≤20. It can generalize on 100-digit 588

addition problems (see Figure 7 in Appendix.6 Ad- 589

6Code to reproduce the results can be found on GitHub:
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ditionally, Jelassi et al. (2023) demonstrated that590

relative positional embeddings enable length gen-591

eralization in addition tasks. In their work, models592

such as Transformer and Universal Transformer593

(encoder only) trained to add 5-digit numbers could594

generalize to 20-digit operands.595

These results provide empirical evidence validat-596

ing our Theorem 3 for upward OOD generalization.597

The findings are clear, and we will not replicate598

the procedures here. Instead, we reference these599

studies in the present context.600

4.3 Experiments on Modular Addition601

The results in Table 2 validate Theorem 4, which602

states that Transformer models with absolute po-603

sitional embeddings trained on multi-digit modu-604

lar addition datasets exhibit distinct generalization605

capabilities based on the modulus p. For mod-606

uli such as p = 50,100,200 that divide 10n, the607

models achieve perfect test accuracy across all608

digit domains, demonstrating their ability to gen-609

eralize flawlessly to both downward and upward610

OOD domains. In contrast, for moduli such as611

p = 51,101,150,151,201 that do not divide 10n,612

the models maintain high accuracy for lower digit613

domains but show significant performance degra-614

dation for higher digit positions7.615

The OOD test accuracy in Table 2 for high-order616

digits can be completely expected using Theorem 5,617

which states that the test accuracy on D̃ntest (ntest >618

n) is given by Acc(p,n,ntest) ≈ 1/p′ if ntest ≥619

n+ log10(p′/2+1), otherwise Acc(p,n,ntest) = 0.620

These observations align well with the theoretical621

expectations outlined in Theorem 4 and Theorem 5,622

also explaining the experimental results found in623

the literature (see, e.g., Jelassi et al. (2023)) in han-624

dling modular addition tasks with different moduli.625

Furthermore, the results in Table 6 (see Ap-626

pendix) support Theorem 5, indicating that Trans-627

former models with absolute positional embed-628

dings trained on multi-digit modular addition629

datasets learns the function f̂ p(a,b) = a10n
+b

10n p
630

for any modulus p. These findings fully align with631

the theoretical predictions.632

https://github.com/mcleish7/arithmetic
7The task of performing addition modulo 150 requires an

extended training duration in our experiment. To facilitate
this, we prime the training process with samples that have
downward additions.

4.4 Experiments on Multiplication and 633

Modular Multiplication 634

We also conducted extensive experimental analyses 635

for multiplication and modular multiplication tasks, 636

examining the performance and generalization ca- 637

pabilities of Transformer models. These experi- 638

ments are designed to test various configurations, 639

including different positional encodings, model 640

size and training data schemes. Detailed results and 641

additional analyses are available in Appendix.The 642

experimental outcomes consistently support our 643

theoretical framework, demonstrating the robust- 644

ness of our approach and providing further insights 645

into the behavior of Transformer models in arith- 646

metic reasoning tasks. 647

5 Discussion 648

Our study sheds light on the mechanistic inter- 649

pretability of Transformer models. Understanding 650

the learning mechanisms is crucial for ensuring the 651

meaningfulness of learned representations. 652

Additionally, our work identifies challenges asso- 653

ciated with different training data schemes, such as 654

concatenation training without padding 8 and line- 655

by-line padding training 9. These approaches can 656

significantly impact model performance and gener- 657

alization. Further understanding on these problems 658

is essential for refining training strategies to im- 659

prove model robustness and generalization. 660

6 Conclusion 661

In this paper, we developed a unified theoretical 662

framework to explain OOD generalization in Trans- 663

former models trained on arithmetic operations, 664

categorizing generalization into downward OOD 665

(downward domains) and upward OOD (upward 666

domains). Our analysis highlights the interac- 667

tions among task properties, training data cover- 668

age, and model characteristics. Experiments with 669

NanoGPT, MicroGPT, and MiniGPT validate our 670

predictions, highlighting the framework’s robust- 671

ness. This work clarifies generalization mecha- 672

nisms and provides insights for efficient model 673

training and AI alignment. Future research should 674

extend this framework to more complex tasks and 675

factors influencing OOD generalization. 676

8e.g. “123+45 = 168;267+1 = 268;” as input.
9e.g. “123+45 = 168;[pad][pad][pad]” as input.
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7 Limitation677

This paper presents a unified theoretical framework678

for understanding generalization in transformers679

applied to arithmetic tasks. However, there are no-680

table limitations to our analysis. Firstly, our focus681

on length generalization may overlook other crit-682

ical aspects of out-of-distribution (OOD) general-683

ization, as the representations learned for different684

tasks can exhibit varying relationships with length.685

We selected arithmetic tasks for this study due to686

their clarity in distinguishing between downward687

and upward OOD generalization, as well as our688

ability to control the training data distribution effec-689

tively. Nonetheless, our framework’s predictions690

are predicated on the assumption that the model691

has converged on the training data, which may not692

always hold true in practice, particularly given that693

many large language models (LLMs) remain un-694

dertrained.695

Additionally, while our findings provide insights696

into generalization behaviors, they may not fully697

encompass the complexities involved in more in-698

tricate mathematical reasoning or other types of699

sequence-to-sequence tasks. Future work should700

explore these broader contexts to enhance our un-701

derstanding of transformer generalization.702
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A Appendix on Transformer 836

A Transformer model (Vaswani et al., 2017) pre- 837

dicts the next token based on the preceding tokens 838

within the input sequence. Its output is subse- 839

quently used as input for the next prediction. For 840

a target token xi at position i in the sequence, the 841

model generates a probability distribution over the 842

vocabulary of potential next tokens. To be pre- 843

cise, let x = x1x2 . . .xT ∈ VT denote the input se- 844

quence of tokens. The probability of observing this 845

sequence with respect to a Transformer model is 846

given as follows: 847

Pθ (x) =
T

∏
i=1

Pθ (xi|x1,x2, ...,xi−1) =
T

∏
i=1

Pθ (xi|x<i). 848

The conditional probability Pθ (xi|x<i) is computed 849

using the softmax function applied to the last hid- 850

den state. One way to design this model (see e.g. 851

Karpathy (2023), Brown et al. (2020)) is as follows: 852

aℓ−1 = hℓ−1 +MHAℓ(LNA
ℓ (h

ℓ−1))

hℓ = aℓ−1 +MLPℓ(LNF
ℓ (a

ℓ−1))
853

for ℓ= 1,2, . . . ,L, with the initial embedding h0 = 854

etok + epos, where etok represents the initial to- 855

ken embedding and epos represents the positional 856

embedding. In the context of GPT-series LLMs, 857

MHAℓ refers to the masked multi-head attention 858

of the ℓ-th layer, MLPℓ is a multi-layer perception 859

with one hidden layer, and LN represents layer 860

normalization. Define fℓ such that hℓ = fℓ(hℓ−1). 861

Consequently, the final hidden state of this LLM is 862

hL = fL ◦ . . .◦ f2 ◦ f1(h0) ∈ Rdm×T , 863

where dm is the embedding dimension. 864

Let X = LN(hL) = [X1,X2, . . . ,XT ]. The final 865

output conditional probability matrix 866

Pθ = softmax(WX)

=

(
exp(WXi)

∑
N
j=1 exp(WXi) j

)
i=1,2,··· ,T

∈ [0,1]NV×T ,
867

where W ∈ RNV×dm is a weight matrix. The i-th 868

column of the matrix Pθ represents the conditional 869

probability Pθ (x̃i|x<i) for any x̃i ∈ V . By training 870

on a large corpus of language texts, the LLMs pro- 871

vide the estimated probabilities. 872
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B Proofs of Theorems873

B.1 Proof of Theorem 1874

Define the functions

χ(x) := ⌊x/10⌋ and ζ (x) := x mod 10, for x ∈N.

Then ci = ζ (ai +bi + cχ

i−1),∀i, and the carry cχ

i =875

χ(ai+bi+cχ

i−1). For simplicity, assume a0 = b0 =876

0.877

We define three forms of approximation:878

• Strong form: If Pθ (c̃ = ci | a+ b = c<i) = 1879

for any i ≥ 1. This means the model Pθ (· |880

a+b = c<i) can perfectly learn the function881

ci = ζ (ai +bi + cχ

i−1),∀i.882

• Standard form: If ci = argmaxc̃ Pθ (c̃ | a+b =883

c<i) for any i ≥ 1. This means the model884

Pθ (· | a+b = c<i) can approximate the func-885

tion ci = ζ (ai +bi +cχ

i−1),∀i with the highest886

probability.887

• Weak form: If Pθ (c̃ = ci | a+b = c<i)> 0 for888

any i≥ 1. This means the model Pθ (· | a+b=889

c<i) can approximate the function ci = ζ (ai +890

bi + cχ

i−1),∀i with a non-zero probability.891

In the following, we will use the standard form
to demonstrate out-of-distribution (OOD) general-
ization. When training a Transformer model on
Dn-addition using absolute positional embedding
(APE), the learned model approximates the func-
tion at each position of c:

Pθ (ci | a≤i,b≤i)→ ci = ζ (ai +bi + cχ

i−1).

Case I: Downward OOD Domain892

Let us consider the Downward OOD domain
D<n case. If i < n, the model trained on a sample
dataset in Dn can at least approximate the function
ci in the standard form. If i = n,

Pθ (cn | a≤n,b≤n)→ cn = ζ (an +bn + cχ

n−1)

for every an ∨bn ≥ 1 except the case an = bn = 0
simultaneously. If i = n+1,

Pθ (cn+1 | a≤n+1,b≤n+1)→ cn+1 = cχ
n ∈ {0,1}

for every pair (an,bn) with an ∨bn ≥ 1 and an+1 =
bn+1 = 0. In the case where an = bn = 0, the condi-
tions for both i = n and i = n+1 necessitate OOD
generalization. Since the model has been trained
to approximate cn accurately for an ∨bn ≥ 1, it has

learned the function for the carry-over mechanism
properly. When an = bn = 0, the digit cn purely
depends on the carry from the previous position.
For i = n+1, the carry cχ

n is correctly learned such
that it maps {0,1} depending on whether there was
a carry from the n-th digit. With an = bn = 0, the
model correctly sets cn+1 = 0. The training on Dn

includes all possible carry scenarios and digit sum-
mations for an,bn ∈ {0, . . . ,9}. The zero cases are
naturally included in the learned patterns10. For
i ≥ n+2,

Pθ (ci | a≤i,b≤i)→ ci = ζ (ai +bi + cχ

i−1)≡ 0,

since ai = bi ≡ 0 for any (a,b) ∈Dn with i ≥ n+1. 893

Thus, the model Pθ can approximate the function of 894

c at every position for the downward OOD domain 895

D<n. 896

Case II: Upward OOD Domain 897

Consider the Upward OOD domain D>n case. If
i ≤ n, the analysis remains the same as above. The
learned model Pθ can predict the correct numbers
at these positions. However, when i = n+1,

Pθ (cn+1 | a≤n+1,b≤n+1)→ cn+1 = cχ
n ∈ {0,1}

for every pair (an,bn) with an ∨bn ≥ 1 and an+1 =
bn+1 = 0. Note that for inference in the OOD
domain D>n, the model needs to predict each
sample with (an+1,bn+1) at least for every an+1 ∨
bn+1 ≥ 1. However, the support of probability
measure learned by the model Pθ is suppPθ =
{0,1}. For the model to predict cn+1 correctly
even in the weak form, the support should be
suppPθ = {0,1, · · · ,9}. This indicates that the
model Pθ cannot predict the number at posi-
tion n+ 1. Additionally, the learned probability
Pθ (cn+1 | a≤n+1,b≤n+1) is actually independent of

10If the training dataset has significant gaps, such as when
a model is trained on n-digit addition but only with an,bn ≥
n0 (e.g., an,bn ≥ 6), it means the model never encounters
pairs where both an < 6 and bn < 6. While the digit-wise
addition and carry mechanisms for positions 1 through n−1
are learned correctly, since these positions involve a full range
of digit pairs during training, the model fails to learn proper
behavior for the n-th and (n+1)-th positions. Specifically, for
these positions, the model will not encounter any pairs where
both digits are simultaneously less than 6. In this scenario,
ζ (an + bn) ∈ {2,3, . . . ,8} (missing the digits 0, 1, 9), and
cχ

n ≡ 1 (missing the digit 0). Consequently, the training dataset
lacks complete coverage of all possible carry scenarios and
digit summations. This substantial gap negatively affects the
model’s ability to handle these edge situations. Thus, the final
learned model cannot generalize to the OOD domain D<n.
Specifically, you will observe that the (n+1)-th position value
cn+1 ≡ 1 for all samples in D<n.
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(an+1,bn+1). For i ≥ n+2,

Pθ (ci | a≤i,b≤i)→ ci ≡ 0,

since ai = bi ≡ 0 for any (a,b) ∈Dn with i ≥ n+1.898

This means that the learned model maps all in-899

puts to zeros for positions i ≥ n+2. If the model900

could predict the numbers at positions i ≥ n+ 2,901

the requirement even in the weak form is that at902

least {0,1} ⊂ suppPθ (ci | · · ·). This contradicts903

suppPθ (ci | · · ·) = {0}. Combining the above904

analysis, we conclude that the learned model Pθ905

cannot solve the problems in the OOD domain906

D>n but instead outputs the result (a mod 10n)+907

(b mod 10n) for every sample in D>n.908

B.2 Proof of Theorem 3.909

We begin by noting the key property that under910

the assumption of relative positional embedding911

(RPE), the Transformer model possesses a form of912

translation invariance. This property implies that913

the prediction at any position i is invariant to the914

shift of the entire sequence, as long as the relative915

distances between positions remain unchanged.916

Special Case:917

The translation invariance property is mathemat-918

ically expressed as:919

Pθ (ci | a≤i,b≤i) = Pθ (ci | ai−1,ai,bi−1,bi)

= Pθ (ci+ j | ai+ j−1,ai+ j,bi+ j−1,bi+ j),
920

for any i, j ∈ N, provided that ai−1 +bi−1 ̸= 9.921

This translation invariance arises when the carry922

cχ

i−1 is determined by the previous digits ai−1 and923

bi−1, and thus does not depend on any global po-924

sition or the absolute positions of the digits in the925

sequence. In fact, we have:926

ci = ζ (ai +bi + cχ

i−1),927

where cχ

i−1 = χ(ai−1 +bi−1), provided that ai−1 +928

bi−1 ̸= 9.929

General Case:930

The failure of the above translation invariance931

property occurs when the carry cχ

i−1 is influenced932

by more digits beyond ai−1 and bi−1. A generalized933

translation invariance property should be used, i.e.,934

Pθ (ci | a≤i,b≤i)

= Pθ (ci | ai−n+1, · · · ,ai,bi−n+1, · · · ,bi)

= Pθ (ci+ j | ai+ j−n+1, · · · ,ai+ j,bi+ j−n+1, · · · ,bi+ j).

935

The failure for above formula happens when carry936

propagation extends beyond the maximum length937

n seen during training, i.e., when the carry is in- 938

fluenced by positions greater than n. The case 939

only happens when ai−k + bi−k = 9 for all k = 940

1, · · · ,n−1. 941

The probability of this failure is quite small. 942

Specifically, it is less than 1/10n−1, because the 943

probability of the carry propagating beyond the 944

maximum digit position n (in a dataset where all 945

digits are restricted to the range 0-9) diminishes ex- 946

ponentially as the length of the sequence increases. 947

This ensures that such failures are rare, especially 948

for large n. 949

For the upward OOD domain D>n, the model 950

faces the challenge of predicting the carry prop- 951

agation for positions i > n. However, since the 952

model and addition satisfies translation invariance, 953

this ensures that the model can handle longer se- 954

quences by effectively “folding” them into smaller, 955

equivalent-length sequences with the same relative 956

distances between digits, with only a probability 957

of failure in the upward domain being less than 958

1/10n−1. 959

Remarks on APE and RPE: APE encodes po- 960

sitional information based on the absolute posi- 961

tions of tokens in a sequence. This approach can 962

limit a model’s ability to generalize to sequences 963

of different lengths or to handle out-of-distribution 964

scenarios effectively. In contrast, RPE captures 965

translation-invariant positional dependencies by en- 966

coding the relative distances between tokens. This 967

method allows the model to focus on the relation- 968

ships between tokens regardless of their absolute 969

positions, enhancing its ability to generalize across 970

varying sequence lengths and to better understand 971

contextual relationships. Consequently, RPE is 972

more robust and adaptable in the addition context 973

compared to APE. Our theoretical framework can 974

explain the addition-based experimental findings 975

reported in the following references: Jelassi et al. 976

(2023), Xu et al. (2024), Duan et al. (2024), and 977

McLeish et al. (2024). 978

B.3 Proof Sketch of Theorem 4. 979

We will initially focus on the scenario where p = 980

10m, and subsequently explore the general case 981

where p is a divisor of 10m. 982

Case I: Let us revisit the equation for modular
addition, which states that cp = a+b

p
= ap +b

p p
.

The above equation shows that for the case p= 10m,
the digits in positions higher than m in numbers a
and b do not affect the result cp; only the digits in

12



positions m and lower have an impact. Furthermore,
we have cp = (cp

1 ,c
p
2 , · · · ,c

p
m) = (c1,c2, · · · ,cm),

where c = a+b. A model trained on Dn is capable
of approximating the digits at positions ranging
from 1 to m. This can be expressed as:

Pθ (c
p
i | a≤i,b≤i)→ cp

i = ζ (ai +bi + cχ

i−1),

for i = 1, · · · ,m. All these functions are learned983

directly from the training data without the need for984

out-of-distribution (OOD) generalization if m <985

n, while m = n, only the n-th term cp
n need OOD986

generalization. For i > m, the probability Pθ (c
p
i |987

·) ≡ 0. The aforementioned conclusions apply to988

both domains D<n and D>n.989

Case II: Consider the case where p is a divisor

of 10m. Since we have cp = a+b
p
= a+b

10m p
,

the result cp is indeed not influenced by the digits
in positions higher than m in numbers a and b.
If let m be the minimum number which the m-th
power of 10 can be divided by the modulus p, i.e.
m = argmin{m̃ : p | 10m̃}, the model approximates
the function at each position i:

Pθ (c
p
i | a≤m,b≤m)→ cp

i = f p
i (a≤m,b≤m),

for i = 1, · · · ,m, where f p
i is the function for cp

i990

at the position i. As an aside, it is worth noting991

that in the case described above, the function is992

more intricate than standard addition or modular993

addition with a modulus that divides a power of994

10. These functions generally rely on the digits at995

all positions of the numbers a and b, from position996

1 through m. All these functions can be learned997

directly from the training data without the need for998

OOD generalization when training on Dn (n ≥ m)999

except the term cp
n .1000

B.4 Proof Sketch of Theorem 5.1001

In this case, the model approximates the function
for each position i as follows when training on Dn:

Pθ (c
p
i | a≤n,b≤n)→ cp

i = f p
i (a≤n,b≤n),

for i = 1, · · · ,n, where f p
i represents the func-1002

tion for cp
i at position i. Generally, the function1003

f p(a,b) = (a+ b)−⌊(a+ b)/p⌋p. Each digit f p
i1004

depends on all positions of a and b. If the model1005

is trained on Dn, the aforementioned probabili-1006

ties have been trained exclusively on scenarios1007

where an ∨ bn ≥ 1. The case where an = bn = 01008

requires OOD generalization for samples on the1009

downward domain D<n. This can be addressed1010

by aligning with the model trained on the do- 1011

main containing Dn−1,n. If the model is trained 1012

on the dataset Dn−1,n, which includes the case 1013

where an = bn = 0, it learns the relevant patterns 1014

directly from the training data without the need 1015

for OOD generalization on the domain D<n. How- 1016

ever, the model typically struggles to generalize 1017

to the upward domain D>n. This is because the 1018

model is expected to approximate the functions 1019

f p(a,b) = a+b
p
, which consider all digits of a 1020

and b. Since the model is trained on Dn, it learns 1021

the function f̂ p(a,b) = a10n
+b

10n p
, which is inde- 1022

pendent of the positions i > n of the numbers a and 1023

b. 1024

OOD Test Accuracy Analysis for Longer Length. 1025

For the model’s output to be correct, it must satisfy 1026

the condition a+b
p
= a10n

+b
10n p

. This require- 1027

ment also provides us with a method to estimate 1028

the OOD test accuracy on the upward domain D>n. 1029

Let Hn = a10n
+b

10n

, and Rn = (a+b)−Hn. The 1030

OOD generalization error is then 1031

f p(a,b)− f̂ p(a,b)=Rn−(⌊(a+b)/p⌋−⌊Hn/p⌋) p. 1032

Denote εR
n := Rn

p −⌊Rn
p ⌋ ∈ [0,1) and εH

n := Hn
p − 1033

⌊Hn
p ⌋ ∈ [0,1). Then 1034

f p(a,b)− f̂ p(a,b)

= (Rn/p−⌊(Rn +Hn)/p⌋+ ⌊Hn/p⌋)p

= (εR
n −⌊ε

R
n + ε

H
n ⌋)p.

1035

That is, 1036

f p(a,b)− f̂ p(a,b)

=

{
εR

n p ≥ 0, if εR
n + εH

n ∈ [0,1)
(εR

n −1)p < 0, if εR
n + εH

n ∈ [1,2)
.

1037

For the special case where εR
n = 0 (i.e. Rn is divis- 1038

ible by p), we have f̂ p(a,b) = f p(a,b). This im- 1039

plies that the OOD test accuracy for a finite OOD 1040

test dataset may be greater than 0. 1041

The OOD test accuracy on the domain (denote 1042

as D̃ntest and ntest > n) in which the length of a,b 1043

are both ntest is Acc(p,n,ntest) =
#{(a,b)∈D̃ntest :εR

n =0}
#D̃ntest

. 1044

This can be calculated by counting the number of 1045

Rn divisible by p in this domain. The theoretical 1046

test accuracy on D̃ntest is given by Acc(p,n,ntest)≈ 1047
1
p′ if ntest ≥ n+ log10(p′/2+1), otherwise 0. The 1048

proof can be found in the following section on test 1049

accuracy analysis. 1050
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Let’s consider some examples. For p = 151 and1051

n = 4, since gcd(151,10n)≡ 1, the test accuracy is1052

Acc(151,4,ntest) =
1

151 ≈ 0.66% if ntest ≥ 6, but 01053

when ntest = 5. For p= 201 and n= 4, the test accu-1054

racy is Acc(201,4,ntest) =
1

201 ≈ 0.5% if ntest ≥ 7,1055

but 0 when ntest = 5,6. Another example is p= 1501056

and n = 4, where the greatest common divisor is1057

gcd(150,104) = 50 and p′ = 3, resulting in a test1058

accuracy of Acc(150,4,ntest) =
50

150 ≈ 33.3% for1059

all ntest ≥ 5. In the extreme case where p is a divisor1060

of 10n, the test accuracy Acc(p,n,ntest) ≡ 100%.1061

This aligns with the results for the scenarios on the1062

divisibility of a power of 10 by the modulus. All1063

these findings are confirmed by our experimental1064

analysis (see Table 2 and Table 6).1065

B.5 Proof Sketch of Theorem 6.1066

Given two natural numbers a and b, each repre-1067

sented by n-digit sequences (a1,a2, . . . ,an) and1068

(b1,b2, . . . ,bn), respectively, the product ab is ex-1069

pressed as a 2n-digit number c = (c1,c2, . . . ,c2n).1070

To express each digit ci of the product c in terms1071

of the digits of a and b, we need to understand the1072

multiplication task and how the digits interact. The1073

product ab can be represented as:1074

ab =

(
n

∑
i=1

ai ·10i−1

)(
n

∑
j=1

b j ·10 j−1

)

=
n

∑
i=1

n

∑
j=1

aib j ·10(i−1)+( j−1).

1075

This gives us a double sum where each term aib j1076

contributes to a specific power of 10. To express1077

the digit ck (where 1 ≤ k ≤ 2n) of the product, we1078

need to collect all terms from the expansion that1079

contribute to the 10k−1 place.1080

For ck, we consider all pairs (i, j) such that i+1081

j − 2 = k − 1, which simplifies to i+ j = k + 1.1082

Define that the raw sum cR
k at the k-th position as1083

follows:1084

cR
k = ∑

1≤i, j≤n
i+ j=k+1

aib j.1085

However, since this is a digital product and carries1086

might affect higher places, the correct formulation1087

needs to account for carries from previous steps.1088

The process of digit-wise calculation and adjust-1089

ment with carries are as follows:1090

1. Initialize carry cχ

0 = 0.1091

2. Calculate the sum for each digit place:1092

Si = cR
i + cχ

i−1 = ∑
1≤i′, j′≤n
i′+ j′=i+1

ai′b j′ + cχ

i−1,1093

where ai′ and b j′ are zeros if their indices are out 1094

of bounds. 1095

3. Determine the digit and carry: 1096

ci = ζ (Si), cχ

i = χ(Si). 1097

Here, ζ (x) := x mod 10 and χ(x) := ⌊x/10⌋, for 1098

x ∈ N. This recursive formula provides the digits 1099

of the product considering the carries correctly. De- 1100

note that ci = fi(a1, · · · ,ai∧n,b1, · · · ,bi∧n) for i = 1101

1,2, · · · ,2n. A Transformer model Pθ (ci | a×b = 1102

c1 · · ·ci−1) = Pθ (ci | a1, · · · ,ai∧n,b1, · · · ,bi∧n) will 1103

learn to approximate these functions fi when given 1104

enough data and computation power. 1105

Consider the longer length OOD domain (a,b)∈ 1106

D>n. Let a = a10n
and b = b

10n

. The function 1107

learned by a Transformer model with absolute 1108

positional embeddings (APE) when trained with 1109

(a,b) ∈ Dn−1,n is then 1110

f̂ (a,b) = a10n ·b10n

= c = (c1,c2, · · · ,c2n,0, · · · ,0) 1111

with ci = fi(a1, · · · ,ai∧n,b1, · · · ,bi∧n), 1 ≤ i ≤ 2n, 1112

as all terms related to ai,bi for i > n are discarded 1113

during the training process. If the true value of 1114

ab is c, then ci = ci for 1 ≤ i ≤ n, but generally 1115

differs from ci when i > n since ci neglects the 1116

contribution of higher terms (greater than n) of a 1117

and b. 1118

Note that when a Transformer model is trained 1119

on domain Dn, if i < n, the model learns the func- 1120

tion fi(a1, · · · ,ai∧n,b1, · · · ,bi∧n) directly from the 1121

training data. However, when i ≥ n, the model 1122

learns the function fi(a1, · · · ,an,b1, · · · ,bn) only 1123

for the case where an ∨ bn ≥ 1. In the scenario 1124

where an = bn = 0, the model requires OOD gener- 1125

alization. The training on Dn includes all possible 1126

carry scenarios and digit summations (here, we 1127

only need consider the units and tens digits of cR
i 1128

and cχ

i−1) for an,bn ∈ {0, . . . ,9}. The zero cases 1129

where an = bn = 0 are naturally included in the 1130

learned patterns. 1131

B.6 Proof Sketch of Theorem 7. 1132

The proof resembles the process for modular ad-
dition. Suppose cp = ab

p
. When p is a divisor of

10m, we have cp = ab
10m p

. The value of cp remains
unaffected by the digits in positions beyond m in
the numbers a and b. Now, let m be the smallest
number such that the m-th power of 10 is divisible
by the modulus p, i.e., m = argmin{m̃ : p | 10m̃}.
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The model approximates the function for each po-
sition i as follows:

Pθ (c
p
i | a≤m,b≤m)→ cp

i = f p
i (a≤m,b≤m),

for i = 1, · · · ,m, where f p
i represents the function1133

for the i-th digit of cp. All these functions can be1134

learned directly from the training data without the1135

need for OOD generalization when training on Dn1136

(n ≥ m) except the term cp
n .1137

When p is not a divisor of 10n and p < 10n,1138

the model approximates the function f̂ p(a,b) =1139

a10n ×b
10n p

at each position i.This is because the1140

model has been trained on Dn, which is agnostic to1141

the digits in positions i > n of the numbers a and1142

b.1143

C Remarks1144

Remarks on Theorem 1: The challenging as-1145

pect of model prediction in the downward OOD1146

domain D<n arises from the need to generalize the1147

n-th and (n+ 1)-th positions in the result c when1148

trained on Dn. Specifically, these positions must1149

be generalized to the scenario where an = bn = 0.1150

Through our experimental analysis, we confirmed1151

that the positions n and n+ 1 are the last to be1152

learned during the training process. An additional1153

observation is that if the model is trained on the1154

domain Dn−1,n :=Dn−1 ∪Dn, the previously men-1155

tioned challenge is mitigated. This is because the1156

case with an = bn = 0 is already incorporated into1157

the training dataset. Consequently, the positions1158

n and n+ 1 do not require OOD generalization;1159

instead, they are learned directly from the training1160

data. We have also conducted experiments based1161

on this training scheme and found that learning1162

on the domain that includes Dn−1,n is significantly1163

easier than learning on Dn alone.1164

Remark on Transformer models based on rel-1165

ative/abacus positional embedding: The stan-1166

dard addition benefits from the property of transla-1167

tion invariance, whereas modular addition or mod-1168

ular multiplication with a modulus p that does not1169

divide 10n lacks this property. Consequently, there1170

is no apparent advantage to be gained from lever-1171

aging this characteristic.1172

D Difficulty for Learning Multiplication1173

Transition Invariance Property in Multiplica-1174

tion. The transition invariance property for multi-1175

plication refers to the idea that the position of digits1176

in the multiplication process can be shifted or “tran- 1177

sitioned” in a systematic way that still respects the 1178

overall structure of multiplication. In the context 1179

of digit-wise multiplication, each digit ci should 1180

be adjusted by the previous carry. This process is 1181

transition invariant because each digit’s place cal- 1182

culation transitions in a smooth and systematic way 1183

from one digit place to the next, maintaining the 1184

structure of the multiplication. 1185

Transformers can utilize properties like transi- 1186

tion invariance to learn multiplication using proper 1187

positional embeddings such as relative or abacus 1188

PE. In fact, the structured nature of multiplica- 1189

tion, especially when broken down into steps that 1190

involve digit-by-digit operations and carry propa- 1191

gation, aligns well with the capabilities of Trans- 1192

former models to capture sequential dependencies 1193

and patterns. However, the most challenging as- 1194

pect is computing the raw sums cR
i at each position. 1195

Each cR
i results from a sum of specific pairs of dig- 1196

its from the input sequences a and b. For a given 1197

cR
i , the valid pairs (i′, j′) must satisfy i′+ j′ = i+1. 1198

Identifying these pairs involves that (1) ensuring 1199

1 ≤ i′, j′ ≤ n, i.e., the indices must be within the 1200

bounds of the sequences. (2) For each i, determin- 1201

ing which pairs contribute to cR
i involves iterating 1202

through potential values of i′ and j′ and checking if 1203

their sum equals i+1. Digit multiplication depends 1204

on the positional significance of digits. Misalign- 1205

ment in positions can lead to incorrect contributions 1206

to the product. Therefore, positional encoding and 1207

accurate handling of positional values are neces- 1208

sary to ensure correct multiplication results. There 1209

are also efficiency considerations. Multiplication 1210

of large numbers involves many such sums. For 1211

large n, directly computing cR
i for each i involves 1212

nested loops or checks, leading to a time complex- 1213

ity of O(n2) in the worst case. This poses a great 1214

difficulty for computing the raw sum cR
i . 1215

This challenge can be understood through the 1216

following analysis. Suppose the model is provided 1217

with Chain-of-Thought (CoT) style intermediate 1218

steps of multiplication as part of the training data. 1219

The CoT-like training data format is: 1220

a×b → (cR,cχ)→ c. 1221

In digit-wise format, this is: 1222

(a1, · · · ,an)× (b1, · · · ,bn)

→ (cR
1 ,c

χ

1 , · · · ,c
R
2n−1,c

χ

2n−1)

→ (c1, · · · ,c2n).

1223
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The conditional probability equation is then given1224

by:1225

Pθ (ci | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

= Pχ

θ
(cχ

i−1 | a1, · · · ,a(i−1)∧n,b1, · · · ,b(i−1)∧n)

×PR
θ (c

R
i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

×Pθ (ci | cR
i ,c

χ

i−1),

1226

and1227

Pχ

θ
(cχ

i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

= Pχ

θ
(cχ

i−1 | a1, · · · ,a(i−1)∧n,b1, · · · ,b(i−1)∧n)

×PR
θ (c

R
i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

×Pχ

θ
(cχ

i | cR
i ,c

χ

i−1).

1228

For the carry at the i-th position, we then have that1229

Pχ

θ
(cχ

i | a1, · · · ,ai∧n,b1, · · · ,bi∧n)

=
i

∏
j=1

PR
θ (c

R
j | a1, · · · ,a j∧n,b1, · · · ,b j∧n)

×Pχ

θ
(cχ

j | cR
j ,c

χ

j−1).

1230

Note that Pθ (ci | cR
i ,c

χ

i−1) and Pχ

θ
(cχ

i | cR
i ,c

χ

i−1) ex-1231

hibit transition invariance. This could be handled1232

by relative or abacus positional embedding. The1233

difficulty lies in the computation of the raw sums1234

PR
θ
(cR

i | a1, · · · ,ai∧n,b1, · · · ,bi∧n) even when using1235

relative or abacus positional embedding.1236

Experiments on Transformer models using rela-1237

tive or abacus positional embeddings to learn mul-1238

tiplication have been presented in the literature.1239

Jelassi et al. (2023) and McLeish et al. (2024) show1240

that addition can successfully generalize to OOD1241

regions with higher numerical digits, but multi-1242

plication has largely not succeeded. Our analysis1243

provides insights into the difficulties behind gener-1244

alizing to higher numerical digits, which helps us1245

understand the reasons for the failure in learning1246

multiplication.1247

E Theoretical OOD Test Accuracy for1248

Modular Arithmetic1249

E.1 Theoretical OOD Test Accuracy for1250

Modular Addition Learning1251

To derive an accurate analytic formula (in The-1252

orem 5) for the OOD test accuracy on D̃m with1253

m > n when a Transformer model is trained on the1254

domain Dn, we must carefully count the valid pairs1255

(a,b) ∈ D̃m that satisfy a+b
p
= a10n

+b
10n p

.1256

Let a = A ·10n +a0 and b = B ·10n +b0, where 1257

A,B range from 1 to 10m−n − 1 and a0,b0 range 1258

from 0 to 10n − 1. We require a + b ≡ (a 1259

mod 10n + b mod 10n) (mod p), which simpli- 1260

fies to that 1261

(A+B) ·10n ≡ 0 (mod p). 1262

Let p′ = p
gcd(p,10n) . We are then left with the condi- 1263

tion (A+B)≡ 0 (mod p′). 1264

The number of such pairs is determined by the 1265

frequency of multiples of p′ in the valid range. The 1266

total number of pairs (A,B) is (10m−n −1)2. There 1267

are (10m−n − 1) valid values for A. For each A, 1268

the number of valid B values is determined by the 1269

number of multiples of p′ in the range. That is, 1270

for each A, the number of valid B values is about 1271

(10m−n − 1)/p′. The test accuracy is the ratio of 1272

valid pairs, i.e. the number of valid pairs divided 1273

by the total number of pairs. 1274

Note that for m ≥ n+ log10(p′/2+1), the range 1275

1 ≤ A,B < 10m−n must include at least one com- 1276

plete cycle of p′ to ensure some pairs (A,B) satisfy 1277

A+B ≡ 0 (mod p′). This condition ensures that 1278

the number of digits in A and B is large enough to 1279

cover a full period of p′. Otherwise, there exists no 1280

pair (A,B) for which A+B ≡ 0 (mod p′). 1281

The ultimate formula is as follows: 1282

Acc(p,n,m) =
Number of Valid Pairs
Total Number of Pairs

≈
(10m−n −1) ·

(
10m−n−1

p′

)
(10m−n −1)2 =

1
p′

1283

for m ≥ n+ log10(p′/2+1), otherwise 0. 1284

Given that p′ = p
gcd(p,10n) , we have that 1285

Acc(p,n,m)

≈

{
gcd(p,10n)

p , if m ≥ n+ log10(p′/2+1)

0, otherwise
.

1286

E.2 Theoretical OOD Test Accuracy for 1287

Modular Multiplication Learning 1288

To count the valid pairs (a,b) ∈ D̃m that satisfy 1289

a× b ≡ ((a mod 10n)× (b mod 10n)) (mod p), 1290

denote a and b can be written as a=A ·10n+a0 and 1291

b = B ·10n +b0, where A,B are the upper (m−n)- 1292

digit parts and a0,b0 are the lower n-digit parts. 1293

A,B range from 1 to 10m−n −1 (since they are non- 1294

zero leading digits). a0,b0 range from 0 to 10n −1. 1295

We need 1296

(A ·10n+a0)×(B·10n+b0)≡ (a0×b0) (mod p). 1297
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This simplifies to that1298

A ·B ·102n +(A ·b0 +B ·a0) ·10n ≡ 0 (mod p).1299

This further simplifies to that1300

A ·B ·10n +A ·b0 +B ·a0 ≡ 0 (mod p′),1301

1302

p′ =
p

gcd(p,10n)
.1303

The theoretical closed expression for this prob-1304

lem is challenging to derive, but the numerical so-1305

lution can be computed through an algorithmic1306

program for small-scale cases.1307

F Model and Training Hyperparameters1308

Detailed hyperparameters of the models and train-1309

ing are provided in Table 3.1310

Hyperparameter NanoGPT MicroGPT MiniGPT

num layer 3 4 6
num head 3 4 6
dim embd 48 128 384
vocab size 16 16 16

context window 256 256 256
dropout prob 0.2 0.2 0.2

optimizer AdamW AdamW AdamW
learning rate 0.001 0.001 0.001

betas (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
weight decay True True True

grad norm clip 1.0 1.0 1.0

Table 3: Hyperparameter for Arithmetic Operations
Training
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G Further Results1311

G.1 Further Results on Addition1312

Training Loss In Sample Accuracy

Figure 2: Training Loss & Out of Sample In-Distribution Test Accuracy on Addition

Note: Di is trained on two number addition task with at least one number to be a i-digit number, Di, j is trained on
the combined training dataset of Di and D j.

Training Loss In Sample Accuracy

Figure 3: Training Loss & Out of Sample In-Distribution Test Accuracy on Addition

Note: Robustness study on model and data scales. All models are trained on D4 where a and b are at least one to be
a 4-digit number. NanoGPT represents the smallest model, with MicroGPT being of medium size and MiniGPT the
largest. The designations “100k” and “200k” indicate that the training sets are 90% the size of 100,000 or 200,000,
respectively.

G.1.1 How Digits are Learned During Training?1313

The experiment results depicted in Figure 5 illustrate the learning dynamics of each function ci during1314

the training of Transformer models, using DecisionTreeRegressor to approximate these functions. The1315

R2 values, which measure how well the model’s predictions fit the actual data, indicate that the models1316

effectively learn lower-order digits with high accuracy, achieving R2 values close to 1. However, higher-1317

order digits present more challenges, resulting in lower and less stable R2 values. Furthermore, at the1318

early stages of training, the models first learn the higher-order digits (with higher R2 values) and then1319

proceed to learn the lower-order digits.1320

From Figure 5, it is evident that the Transformer model trained on D4 initially focuses on learning the1321

digits at positions 4 and 5 before addressing positions lower than 4. Here, position 6 is trivial since it1322

always equals zero. The Transformer model trained on D5 first attempts to learn the digits at positions 51323

and 6, then proceeds to positions lower than 5. The Transformer model trained on D4,5 starts by learning1324

the digits at positions 4, 5, and 6, and then moves to positions lower than 4. In our theoretical analysis, the1325
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1st digit 2nd digit 3rd digit

4th digit 5th digit 6th digit

7th digit 8th digit 9th digit

Figure 4: Digit-Wise Test Accuracy of Transformer Models with APE for Addition Tasks

Note: In this figure, we present the results of three different experiments using distinct training datasets. For all
experiments, we employ the MiniGPT model equipped with a learned APE. In the legend, the label D4 indicates
that the MiniGPT model is trained on a random sample from dataset D4. The label D5 denotes training on a random
sample from dataset D5, while D4,5 signifies training on a combined subset from D4 and D5. Each subfigure
illustrates the digit-wise test accuracy on a combined random sample sets D≤9 for these models throughout the
training process.
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Test Accuracy (%) w.r.t. the Ground Truth on the Domain Di

Training Data 1 2 3 4 5 6 7 8 9

D4 100 100 100 100 0 0 0 0 0
D̃4 100 100 72.6 100 0 0 0 0 0
D5 100 100 100 100 100 0 0 0 0
D6 100 100 100 100 100 100 0 0 0
D4,5 100 100 100 100 100 0 0 0 0
D5,6 100 100 100 100 100 100 0 0 0
D6,7 100 100 100 100 100 100 100 0 0

Table 4: Standard Addition: Test Accuracy w.r.t. the Ground Truth f (a,b)= a+b on the Domain Di for i= 1,2 · · · ,9.
All models are instances of MiniGPT. The accuracy is tested on 10,000 random test samples (when n > 2), otherwise
on the entire dataset. The outputs of models are generated using maximum probability sampling.

Test Accuracy (%) w.r.t. the Modular Truth on the Domain Di

Training Data 1 2 3 4 5 6 7 8 9

D4 100 100 100 100 100 100 100 100 100
D̃4 100 99.9 72.3 100 99.7 99.7 99.6 99.7 99.5
D5 100 100 100 100 100 100 100 100 100
D6 100 100 100 100 100 100 100 100 100
D4,5 100 100 100 100 100 100 100 100 100
D5,6 100 100 100 100 100 100 100 100 100
D6,7 100 100 100 100 100 100 100 100 100

Table 5: Standard Addition: Test Accuracy w.r.t. the Modular Truth f̂ (a,b) = a10n
+b

10n
on the Domain Di for

i = 1,2 · · · ,9. All models are instances of MiniGPT, and test methods are indicated as above.

most challenging parts are cn and cn+1 when training the model with data in Dn, since these positions1326

never encounter an = bn = 0 and require OOD generalization. The models prioritize learning the hardest1327

positions first, followed by the easier positions in these experiments.1328

D4 D5 D4,5

Figure 5: Learning Dynamics of Each Function ci = ζ (ai +bi + cχ

i−1) for Addition

Another notable result from the experiments is that the correlation of R2 values between different digit1329

pairs is around zero (see Figure 6 in this Appendix). This indicates that changes in the approximation for1330

one position have little impact on other positions. This finding suggests that the Transformer model is1331

flexible enough to handle different tokens independently, even though they share parameters.1332

G.1.2 Learning Addition Under Relative Positional Embedding1333
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D4, Ref digit 4 D5, Ref digit 5

D4,5, Ref digit 4 D4,5, Ref digit 5

Figure 6: Correlation Between Digit Pairs of Learning ci and c j for Addition

Figure 7: Test Accuracy on Addition When Training Short and Testing Long using a 16-Layer Transformer (Decoder
only) Model with Abacus Positional Embedding.

Note: The image is extracted from the work McLeish et al. (2024) and is a screenshot of their Figure 1. The interior
of the red box represents the training data domain D≤20. Code to reproduce the result can be found on the GitHub:
https://github.com/mcleish7/arithmetic. The obtained result constitutes empirical evidence that validates
our Theorem 3. The result is very clear. We will not repeat the same procedures. Use this as a reference in the
present context.
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G.2 Further Results on Modular Addition1334

Digit-wise Accuracy In Sample Accuracy

Figure 8: Digit-wise In-Distribution Test Accuracy & Total Accuracy for Modular addition

Note: These results correspond to modular addition tasks with the modulus p taking values in the set
{50,51,100,101,150,151,200,201}. Each model is trained using the MiniGPT model with a sample drawn
from the domain D4 (except p = 150, which is on D≤4).

Test Accuracy (%) w.r.t. the Modular Truth on the Domain D̃i

Modulus 1 2 3 4 5 6 7 8 9

p = 50 100 100 100 100 99.3 92.0 93.1 95.2 91.4
p = 51 100 98.5 99.9 99.3 95.1 94.4 92.6 91.3 92.4
p = 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 100 100 100 100 100 100
p = 150 100 100 100 100 100 100 100 99.8 99.7
p = 151 100 99.9 99.9 100 99.9 99.7 99.6 99.1 99.2
p = 200 100 100 100 100 99.8 98.9 93.7 94.1 93.5
p = 201 100 100 99.9 99.9 96.4 96.6 95.7 90.4 91.2

Table 6: Modular Addition: Test Accuracy w.r.t. the Modular Truth f̂ p(a,b) = a10n
+b

10n p
on the Domain D̃i for

i = 1,2 · · · ,9.

Note: All the Transformer models in above experiments are instances of MiniGPT, which have been trained on a
random sample drawn from D4 (except p = 150). The accuracy is tested on 10,000 random test samples (when
n > 2), otherwise on the entire dataset. The outputs of models are generated using maximum probability sampling.
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G.3 Further Results on Multiplication 1335

Digit-wise Accuracy In Sample Accuracy

Figure 9: Digit-wise In-Distribution Test Accuracy & Total Accuracy for Multiplication

Note: These results correspond to multiplication tasks. The models trained on D1,2 and D2 are instances of
MicroGPT, while others are of MiniGPT.

Test Accuracy (%) w.r.t. the Ground Truth on Di

Training Data 1 2 3 4 5 6 7 8 9

D1,2 100 100 0.1 0 0 0 0 0 0
D2 80.0 99.4 0.1 0 0 0 0 0 0
D3 100 96.4 99.0 0 0 0 0 0 0
D2,3,4 100 100 98.9 80.5 0 0 0 0 0

Table 7: Standard Multiplication: Test Accuracy w.r.t. the Ground Truth f (a,b) = a · b on the Domain Di for
i = 1,2 · · · ,9. The models trained on D1,2 and D2 are instances of MicroGPT, while others are of MiniGPT. The
accuracy is tested on 10,000 random test samples (when n > 2), otherwise on the entire dataset. The outputs of
models are generated using maximum probability sampling.

Test Accuracy (%) w.r.t. the Modular Truth on Di

Training Data 1 2 3 4 5 6 7 8 9

D1,2 100 99.9 93.0 90.1 86.0 82.6 80.6 78.2 77.7
D2 85.0 99.4 98.1 96.7 89.0 88.9 88.4 89.8 88.7
D3 100 96.2 98.8 98.9 99.0 97.9 97.9 97.2 97.1
D2,3,4 100 100 98.9 81.0 75.6 76.2 73.8 67.5 66.9

Table 8: Standard Multiplication: Test Accuracy w.r.t. the Modular Truth f̂ (a,b) = a10n ·b10n
on the Domain Di for

i = 1,2 · · · ,9. The models and test methods are indicated as above.
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Figure 10: Test Accuracy on Multiplication When Training Short and Testing Long using a Looped Transformer
Models with Abacus Positional Embedding.

Note: The image is extracted from the work McLeish et al. (2024) and is a screenshot of their Figure 5. The interior
of the red box represents the training data domain D≤15.

G.4 Further Results on Modular Multiplication1336

Digit-wise Accuracy In Sample Accuracy

Figure 11: Digit-wise In-Distribution Test Accuracy & Total Accuracy for Modular Multiplication

Note: These results correspond to modular multiplication tasks. The models are instances of MiniGPT and trained
on D3.
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Test Accuracy (%) w.r.t. the Ground Truth on the Domain D̃i Theor.
Modulus 1 2 3 4 5 6 7 8 9 Acc.

p = 50 100 100 100 100 100 100 100 100 100 100
p = 51 100 100 99.7 2.6 2.5 2.8 2.4 2.5 3.2 2.4
p = 100 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 1.1 1.0 1.2 0.9 1.1 1.0 1.0
p = 150 30.0 56.4 55.5 46.9 46.5 46.3 47.4 46.9 47.0 40.8
p = 200 100 63.3 61.8 62.1 62.6 62.9 62.4 61.7 62.6 100
p = 201 80.0 78.3 92.2 0.7 0.6 0.5 0.6 0.6 0.6 0.6

Table 9: Modular Multiplication: Test Accuracy w.r.t. the Ground Truth f p(a,b) = a ·bp
on D̃i

Note: All the Transformer models in above experiments are instances of MiniGPT, which have been trained on a
random sample drawn from D3. The accuracy is tested on 10,000 random test samples (when i > 2), otherwise on
the entire dataset. The outputs of models are generated using maximum probability sampling. When p = 150 and
p = 200, there is a significant difference between the experimental accuracy and the theoretical accuracy, which is
due to the fact that these two models have not yet achieved sufficient training on the training set, or in other words,
they are under-trained. This can be observed from the test accuracy in columns 1, 2, and 3 of the table above.

Test Accuracy (%) w.r.t. the Modular Truth on D̃i

Training Data 1 2 3 4 5 6 7 8 9

p = 50 100 100 100 100 100 100 100 100 100
p = 51 100 100 99.7 99.8 98.4 84.4 81.9 68.6 57.2
p = 100 100 100 100 100 100 100 100 100 100
p = 101 100 100 100 86.6 73.6 71.7 68.1 65.7 54.5
p = 150 42.0 55.7 56.0 51.0 51.2 50.0 50.0 50.3 50.1
p = 200 100 62.6 62.2 62.7 62.3 62.4 62.7 62.3 61.9
p = 201 71.0 79.5 92.1 90.9 90.7 90.5 88.7 87.9 85.0

Table 10: Modular Multiplication: Test Accuracy w.r.t. the Modular Truth f̂ p(a,b) = a10n ·b10n p
on the Domain D̃i

for i = 1,2 · · · ,9. The models and test methods are as indicated in the above table.
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