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ABSTRACT

Large Language Model (LLM)-based generative recommendation has achieved
notable success, yet its practical deployment is costly particularly due to excessive
inference latency caused by autoregressive decoding. For lossless LLM decoding
acceleration, Speculative Decoding (SD) has emerged as a promising solution.
However, applying SD to generative recommendation presents unique challenges
due to the requirement of generating top-K items (i.e., K distinct token sequences)
as a recommendation list by beam search. This leads to more stringent verification
in SD, where all the top-K sequences from the target LLM must be successfully
drafted by the draft model at each decoding step. To alleviate this, we consider
1) boosting top-K sequence alignment between the draft model and the target
LLM, and 2) relaxing the verification strategy to reduce trivial LLM calls. To
this end, we propose an alignment framework named AtSpeed, which presents
the AtSpeed-S optimization objective for top-K alignment under the strict top-K
verification. Moreover, we introduce a relaxed sampling verification strategy that
allows high-probability non-top-K drafted sequences to be accepted, significantly
reducing LLM calls. Correspondingly, we propose AtSpeed-R for top-K alignment
under this relaxed sampling verification. Empirical results on two real-world
datasets demonstrate that AtSpeed significantly accelerates LLM-based generative
recommendation, e.g., near 2× speedup under strict top-K verification and up to
2.5× speedup under relaxed sampling verification. The codes and datasets are
available at https://github.com/Linxyhaha/AtSpeed.

1 INTRODUCTION

Large Language Model (LLM)-based generative recommendation has achieved remarkable perfor-
mance, emerging as a promising avenue and attracting widespread attention (Bao et al., 2023; Rajput
et al., 2023b). Technically speaking, LLMs encode the user’s historical interactions, and then perform
multiple LLM calls (i.e., forward processes of LLMs) autoregressively to decode top-K ranked items
as recommendations (Zheng et al., 2024). Despite the effectiveness, the inference of LLM-based
recommender models is unaffordably time-consuming, hindering real-world deployments (Cui et al.,
2024). Such intolerable time consumption primarily arises from the decoding process as shown in
Figure 1(a), where multiple serial LLM calls are required for step-by-step autoregressive genera-
tion (Leviathan et al., 2023; Cai et al., 2024). In light of this, it is essential to achieve lossless LLM
decoding acceleration for LLM-based generative recommendation.

To accelerate the LLM decoding losslessly, Speculative Decoding (SD) (Leviathan et al., 2023; Xia
et al., 2023) has been proposed as a promising approach in Natural Language Processing (NLP). SD
utilizes a draft model (e.g., a compatible small-sized language model) to reduce the number of target
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Figure 1: (a) The inference time costs of LC-Rec (Zheng et al., 2024) with LLaMA-7B on a single
A5000 GPU. (b) The illustration of the N -to-1 verification of SD with greedy decoding in NLP tasks.
(c) N -to-K verification of SD with beam search in recommendation tasks, where the drafting length,
candidate number N , and beam size K are set at 3 for illustration.

LLM calls in the decoding process (Miao et al., 2023). Technically, SD follows a draft-then-verify
paradigm (Xia et al., 2024), which first efficiently drafts multiple subsequent tokens by a draft model,
and then verifies the drafted tokens in parallel by the target LLM in a single call. As depicted in
Figure 1(b), tokens are either accepted or rejected, with the accepted tokens up to the first rejection
step being utilized for subsequent decoding. As such, the number of LLM calls can be reduced by
leveraging the accepted tokens from the draft model, thereby improving the decoding efficiency.

However, it is non-trivial to apply SD for LLM-based generative recommendation due to the challenge
of more stringent N -to-K verification. Specifically, traditional SD for NLP tasks typically follows
an N -to-1 verification to generate only one response, which requires accepting a single token out
of N drafted tokens at each step (Figure 1(b)). In contrast, recommendation tasks necessitate
generating top-K items (i.e., K distinct token sequences) through beam search, resulting in an
N -to-K verification problem (Figure 1(c)). For each verification step, one LLM call can be skipped
if and only if all the top-K sequences are successfully drafted from the N candidates. To elaborate,
SD fails to reduce target LLM calls in Figure 1(c) since a3 is not drafted in the first step. As such, the
N -to-K verification poses greater challenges than N -to-1 verification as each step requires drafting
all the top-K sequences.

To achieve effective SD for LLM-based generative recommendation, we formulate the SD task under
the N -to-K verification. To reduce the target LLM calls under N -to-K verification, we consider two
objectives in the drafting and verification steps of SD: 1) top-K alignment, which aims to align the
drafted sequences with the top-K sequences generated by the target LLM, thereby maximizing the
recall of all top-K sequences; and 2) verification relaxation, which seeks to ease the strict matching
with the top-K sequences from the target LLM, enhancing the acceptance rate of drafted sequences
while maintaining the accuracy of top-K recommendations.

To this end, we propose an Alignment framework for Speculative decoding (AtSpeed) tailored for
LLM-based generative recommendation. First, under the strict top-K verification, we propose an
optimization objective named AtSpeed-S to train the draft model. AtSpeed-S improves the top-K
alignment theoretically by minimizing the Reverse Kullback-Leibler Divergence (RKLD) (Huszár,
2015) and a probability density regularization term (see Section 3.1). Moreover, for verification
relaxation, we introduce a relaxed sampling verification strategy that allows the non-top-K drafted
sequences with high generation probabilities to be accepted. To maintain recommendation accuracy,
this verification strategy ensures that the generation distribution of SD is approximately equivalent
to that of the target LLM with sampling-based beam search (see Section 3.2). Under the relaxed
sampling verification, we design AtSpeed-R for top-K alignment, which minimizes the Total Variance
Distance (TVD) on the generation probabilities of top-K sequences (see Section 3.2).

We conduct extensive experiments using both verification strategies on two real-world recommen-
dation datasets, demonstrating that AtSpeed significantly accelerates the decoding for LLM-based
recommendation (around 2× speedup). Besides, the results confirm that the relaxed sampling verifi-
cation strategy substantially improves decoding efficiency without sacrificing much recommendation
accuracy. The contributions of this work are summarized as follows:

• We are the first to propose the speculative decoding task for LLM-based recommender acceleration,
highlighting the significant challenge of shifting from N -to-1 verification to N -to-K verification.
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Algorithm 1 SD step with Top-K Strict Verification
Input: Draft modelMq , target LLMMp, prefix, target beam size K, draft beam size N
1: Yq

0 ← prefix, Yq
γ+1 ← ∅, Yout ← ∅

2: for j = 1 to γ do
3: qj ←Mq(Yq

j−1), Yj ← TopN(qj) ▷ Drafting sequences for every beam search step

4: p1, p2, . . . , pγ+1 ←Mp(Yq
0 ),Mp(Yq

1 ), . . . ,Mp(Yq
γ) ▷ RunMp in parallel

5: for j = 1 to γ + 1 do
6: Yp

j ← TopK(pj), Yout ← Yp
j

7: if Yp
j ∈ Y

q
j then

8: continue ▷ Accept if ideal top-K sequences are fully drafted
9: else

10: break ▷ Reject
Output: Yout

• We propose a novel alignment framework named AtSpeed for speculative decoding under N -to-
K verification, with a relaxed sampling verification strategy for verification relaxation and two
alignment objectives for superior top-K alignment of draft models.

• We conduct extensive experiments on two datasets, which 1) demonstrate the verification efficiency
and accuracy of the relaxed sampling verification strategy; and 2) validate that AtSpeed achieves
almost 2× speedup for LLM-based recommender decoding.

2 TASK FORMULATION

LLM-based Generative Recommendation. In LLM-based generative recommendation, each item is
represented by an item identifier, i.e., a token sequence such as item title (Bao et al., 2023) or learnable
token sequence (Zheng et al., 2024), linking the recommendation items to the language space for
LLMs to understand user behaviors and recommend items (Lin et al., 2024a). Formally, given the
user’s historical interactions x, the well-trained target LLM-based recommender modelMp generates
top-K ranked items via beam search, i.e., {yL,i}Ki=1 ← Mp(x), where yL,i = (y1, y2, . . . , yL)i
is the item identifier of the i-th recommended item of length L1. However, the LLM inference
is time-consuming due to the need to perform multiple LLM calls (i.e., forward process) during
autoregressive generation. To accelerate the LLM inference, we are motivated to leverage SD for
LLM-based generative recommendation for its decoding acceleration without losing accuracy.

SD for LLM-based Recommendation. The challenge of applying SD to LLM-based generative
recommendation with beam search lies in the shift from N -to-1 to the harder N -to-K verification.
In the following, we detail the draft-then-verify paradigm under the strict top-K verification and
formulate the task of SD for LLM-based generative recommendation under N -to-K verification.

• Drafting. Given the user’s historical interactions x and the generated sequences in the previous
SD step Yt = {yt,i}Ki=1, a compatible small-sized draft modelMq is used to generate the drafted
beam sequences for γ steps via beam search with the beam size of N :

qt+1, qt+2, . . . ,qt+γ ← BeamSearch(x,Yt,Mq),

Yq
t+1,Y

q
t+2, . . . ,Y

q
t+γ ← TopN(qt+1),TopN(qt+2), · · · ,TopN(qt+γ),

(1)

where qt+j with j ∈ {1, . . . , γ} is the sequence probability distribution at step j obtained by
the beam search of draft model; and Yq

t+j collects the top-N drafted sequences with highest
probabilities. The drafted sequences are then fed into the target LLMMp to obtain the target
sequence probability pt+1, pt+2, . . . , pt+γ+1, where pt+j = Mp(Yq

t+j) with j ∈ {0, . . . , γ}.
Target LLMMp then select the sequences with top-K probabilities as ideal sequences, i.e., Yp

t+j ←
TopK(pt+j). For simplicity, we omit the subscript t and use qj , pj , Yq

j , and Yp
j as shorthand for

qt+j , pt+j , Yq
t+j , and Yp

t+j , respectively, in contexts where the exact value of t is not essential.

1We follow the widely used codebook-based item identifier, due to its promising results and generalization
ability on cold-start items (Wang et al., 2024a; Rajput et al., 2023a). The codebook-based identifier will ensure
each item has an identifier of the same length.
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Figure 2: Overview of AtSpeed. (a) shows the alignment training of the draft model with an additional
alignment loss tailored for different verification strategies, e.g., LAlign-R. (b) depicts the AtSpeed
inference, where the well-trained draft model produces beam search sequences from each step, i.e.,
Yq
j , for the target LLM to verify. The beam sequences from the last accepted step before encountering

the first rejection are utilized in the following SD step, i.e., Yq
2 . (c) demonstrates the tree-based

attention for the drafted beam sequences (N=2 and γ=3).

• Strict Top-K Verification. For every beam search step j, we have N drafted sequences Yq2 and
K ideal sequences Yp. We define the step acceptance as successfully drafting all the top-K ideal
sequences for that step. Formally, the beam search step is accepted if Yp ∈ Yq. Otherwise, we
reject the step, and discard the whole drafted sequences Yq and correct it with Yp. From beam
search step j = 1 to j = γ, we sequentially verify Yq until the first rejection step occurs. The
corrected sequences Yp at the first rejection step will be the output of the current SD step. If every
step is successfully accepted, we select top-K sequences from pγ+1 as the output of the current
SD step. The target LLM calls for all previously accepted steps could be reduced as they are
successfully skipped through a single LLM call via parallel verification. The process of strict top-K
verification is presented in Algorithm 1.

It is highlighted that SD for beam search under N -to-K verification is more difficult than N -to-1
verification because an LLM call can be skipped if and only if the top-K sequences are entirely
drafted. To improve the acceptance rate of the drafted sequences to reduce the LLM calls, we have
two key considerations: 1) top-K alignment, which encourages the draft model to generate strongly
aligned top-K sequences; and 2) verification relaxation, which seeks to relax the strict matching for
greater acceleration without much accuracy sacrifice.

3 ATSPEED

To pursue the two objectives, we propose AtSpeed, an alignment framework for SD under N -to-K
verification. AtSpeed designs two effective alignment objectives for the draft model to get a higher
acceptance rate under the strict top-K verification (Section 3.1) and the proposed novel relaxed
verification (Section 3.2). The overview of AtSpeed is presented in Figure 2.

3.1 ALIGNMENT FOR STRICT TOP-K VERIFICATION (ATSPEED-S)

Under strict top-K verification, the draft model is expected to generate top-K sequences that strictly
align with the top-ranked sequences from the target LLM. To achieve this, we design an optimization
objective named AtSpeed-S that directly optimizes the acceptance rate for the strict top-K verification.

Acceptance Rate. We define the acceptance rate β as the probability of the step acceptance, i.e.,
accepting all the top-K ideal sequences from the draft sequences Yq. With strict top-K verification
strategy, for each step, we have β = 1 if ∃Y ′

q ⊆ Yq such that p(y) ≥ p(yK) for ∀y ∈ Y ′
q , where

|Y ′
q| = K, and yK is the sequence that has the K-th highest probability in p.

Alignment Objective. Since the acceptance rate directly affects the acceleration performance, we
aim to optimize the acceptance rate of the draft model to achieve superior top-K alignment with the
target LLM. To elaborate, we consider the following alignment objective for the draft modelMq:

θ∗ := argmax
θ∈Θ

Ey∼Yqθ

p(y)

p(yK)
= argmax

θ∈Θ
−

∑
y∈Yqθ

qθ(y)log
qθ(y)

p(y)
+

∑
y∈Yqθ

qθ(y) log
qθ(y)

p(yK)
, (2)

2We denote Yp
j and Yq

j with Yp and Yq , respectively, whenever step j is clear.
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where Yqθ = Yq
1 ∪ Y

q
2 · · · ∪ Y

q
L aims at maximizing acceptance rate for every beam search step (see

detailed derivatives in Appendix A.2.2). This alignment objective can be further expanded as:

θ∗ := argmin
θ∈Θ

E(x,Y)∼D′
∑
y∈Y

[ 1

|y|

|y|∑
t=1

[∑
yt∈V

qθ(yt|c<t) log
qθ(yt|c<t)

p(yt|c<t)
−

∑
yt∈V

qθ(yt|c<t) log
qθ(yt|c<t)

p(yK)

]]
,

(3)
where ct = (x,y<t) is the context, p(yK) = p(yK,t|yK,<t), and D′ = {(x,Y = TopK((1 −
λ)Mq(x) + λMp))|x ∼ D}3, and V is the LLM vocabulary.

However, aligning every token over the entire vocabulary with yt ∈ V might lead to suboptimal results
due to the noises introduced by invalid tokens with high probabilities. LLM-based recommender
models usually employ constrained generation (Hua et al., 2023) to generate valid item identifiers only.
Blindly aligning across all tokens in V may cause unnecessary alignment to these high-probability
but invalid tokens that will never be generated by the target LLM. To mitigate this issue, we define
Vc = ConstrainedTopK(q) to block out the potential alignment noises from invalid tokens. We then
define the alignment loss as:

LAlign-S =
1

|D′|
∑

(x,Y)∼D′

∑
y∈Y

[ 1

|y|

|y|∑
t=1

[ ∑
yt∈Vc

qθ(yt|c<t) log
qθ(yt|c<t)

p(yt|c<t)︸ ︷︷ ︸
(RKLD)

−
∑

yt∈Vc

qθ(yt|c<t) log
qθ(yt|c<t)

p(yK)︸ ︷︷ ︸
(Density Regularization)

]]
,

(4)
which is essentially minimizing the RKLD over the top-K sequence probabilities and a density
regularization term. Intuitively, minimizing RKLD emphasizes aligning the draft modelMq to the
target LLMMp within the draft model’s generation capability (Gu et al., 2024), particularly for the
top-K sequence probability distribution. Moreover, the density regularization term encourages the
top-K sequence probabilities of the draft model to dominate the whole probability distribution.

Overall Loss. Based on Eq.(4), AtSpeed-S defines the overall training loss for the draft model as:
LAtSpeed-S = αLAlign-S + (1− α)LRec, (5)

where LRec is the original loss to train the model for the recommendation tasks (see Appendix A.3.1)
and α is the hyper-parameter to control the alignment strength.

3.2 ALIGNMENT FOR RELAXED SAMPLING VERIFICATION (ATSPEED-R)

In addition to the strengthened alignment for the strict top-K verification, we further consider
verification relaxation to reduce the trivial LLM calls. From the angle of verification, we introduce a
relaxed sampling verification strategy based on the sequence generation probability to improve the
acceptance rate of draft sequences. This verification strategy ensures that sequences falling outside
the target’s top-K predictions can still be accepted with a certain probability, while preserving the
output distribution closely aligned with that of the target LLM to maintain the recommendation
accuracy to some extent. Under this relaxed sampling verification strategy, we propose AtSpeed-R
for top-K alignment accordingly.

Relaxed Sampling Verification. We design the verification strategy for each beam search step
j ∈ {1, . . . , γ} as follows. Given the drafted results Yq ∼ q4, for each y ∈ Yq , we accept y if p(y) ≥
q(y). Intuitively, if the target LLM is even more confident in generating a high-probability sequence,
the candidate sequence is likely to be generated by the LLMs and should be accepted. Otherwise,
we reject y with probability of 1 − p(y)

q(y) and resample y ∼ p′ = norm(max(0, p(y) − q(y))).
Notably, for the non-top-K drafted sequence y with a high draft probability (i.e., q(y) ≥ p(y)), this
verification strategy ensures they have a certain probability of p(y)

q(y) to be accepted. We present more
details on the relaxed sampling verification strategy in Algorithm 2 in Appendix. Drawing upon the
with-replacement sampling approximation5, the joint distribution of K output sequences under such

3We follow (Gu et al., 2024) to adopt the target LLM-mixed sampling for data construction to improve
training efficiency and generated data quality.

4The drafted sequences are sampled from the sequence distribution qj , and superscript j is omitted for clarity.
5When the sample size (i.e., the number of recommended items K) is much smaller than the total population

size (i.e., all sequences for sampling), the sampling without replacement can be effectively approximated to the
sampling with replacement. See Appendix A.2.1 for proof.
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verification is approximately equivalent to that of the target LLM as proven in Appendix A.2.1. Such
equivalence ensures that the relaxed sampling verification does not sacrifice much recommendation
accuracy (see Section 4.2 for empirical evidence).

Acceptance Rate. For the relaxed sampling verification strategy, we obtain the probability of step
acceptance β =

∏
K b under the with-replacement sampling approximation, where

b = Ey∼q(y)

{
1, q(y) ≤ p(y)
p(y)
q(y)

, q(y) > p(y)
= Ey∼q(y) min(1,

p(y)

q(y)
) = 1− TVD(p(y), q(y)). (6)

The derivation of Eq.(6) can be easily extended from (Leviathan et al., 2023) as in Appendix A.2.3.

Alignment Objective. Under the relaxed sampling verification, we consider maximizing log β =
−
∑

K logTVD(q, p), which is equivalent to minimizing
∑

K TVD(q, p) to improve the acceptance
rate. Thereafter, we present the alignment objective for the draft model:

θ∗ : = argmin
θ∈Θ

E(x,y)∼D′K ·
[ 1

|y|

|y|∑
t=1

TVD(p′(·|x,y<t), q
′(·|x,y<t))

]
. (7)

Similar to AtSpeed-S, we perform constrained alignment over the top-K valid tokens, and therefore
p′(·|x,y<t) and p′(·|x,y<t) is the normalized truncated sequence probability over top-K valid
tokens. Based on the with-replacement sampling approximation, Eq.(7) minimizes TVD with the
strength of K for the same sequence. Nevertheless, considering the beam search with sampling would
obtain K different sequences, we alternatively leverage the top-K sequences from the target LLM,
i.e., D′ = {(x,y ∼ TopK(Mp(x)))|x ∼ D} to minimize the TVD. Finally, we define the alignment
loss of AtSpeed-R as,

LAlign-R =
1

|D′|
∑

(x,y)∼D′

[
1

|y|

|y|∑
t=1

TV D(p′(·|x,y<t), q
′(·|x,y<t))]. (8)

Overall Loss. The overall loss of AtSpeed-R is defined as:
LAtSpeed-R = αLAlign-R + (1− α)LRec, (9)

where α controls the strength of the alignment loss.

3.3 INFERENCE OF ATSPEED

The inference of AtSpeed follows the draft-then-verify paradigm. To efficiently recommend items
during inference, AtSpeed first leverages a well-aligned draft model for drafting and then chooses a
specific strategy for verification. Specifically, 1) to obtain identical recommendation results, AtSpeed
can utilize the draft model trained by AtSpeed-S and adopt the strict top-K verification strategy for SD.
Alternatively, 2) to further improve the inference speedup, AtSpeed can use the draft model trained by
AtSpeed-R along with the corresponding relaxed sampling verification strategy. Note that any draft
model can be interchangeably applied to the strict top-K and relaxed sampling verification strategies,
although they may not be optimized for enhancing the acceptance rate under the corresponding
verification strategy.

Tree-based Attention. A challenge of AtSpeed inference is the verification inefficiency issue. Using
beam search results from every step would largely increase the number of drafted sequences (γN
sequences), where some prefix is shared by different beam sequences. As such, self-attention is
repeatedly calculated for the same prefix through a single LLM call, thus leading to verification
inefficiency, especially with a larger N (e.g., N = 20). In this work, we leverage the tree-based
attention (Miao et al., 2024) to eliminate the repeated calculations via a single flattened sequence,
thereby boosting the efficiency of verification. The tree-based attention for the drafted sequences
from all steps is illustrated in Figure 2(c) and implementation details are presented in Appendix A.3.1.

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions:

1) RQ1: How does our proposed AtSpeed perform on LLM-based recommendation under strict top-K
and relaxed sampling verification strategies? 2) RQ2: How do different components of AtSpeed affect
the decoding acceleration? 3) RQ3: How do different hyper-parameters affect the performance?
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4.1 EXPERIMENTAL SETTINGS

Datasets and Baselines. To evaluate our proposed framework, we instantiate AtSpeed on a SOTA
LLM-based generative recommender model LC-Rec (Zheng et al., 2024) and test on two real-world
recommendation datasets6 from the popular benchmark Amazon review datasets7. 1) Beauty contains
user interactions with the beauty products and 2) Games collects the user interactions with the
video games. For both datasets, each item has rich textual information such as title and description.
Based on the item textual information, we follow LC-Rec to assign each item with an item identifier
generated by RQ-VAE (Lee et al., 2022). More details of the datasets can be found in Appendix A.3.1.

We compare our proposed alignment methods with Supervised Fine-tuning (SFT) and several repre-
sentative Knowledge Distillation (KD) methods as follows: 1) SFT fine-tunes the draft model with
the recommendation loss LRec on the recommendation dataset; 2) WordKD (Sanh, 2019; Hinton,
2015) fine-tunes the draft model to align with the token probability of the target LLM by KLD on the
recommendation dataset; 3) SeqKD (Kim & Rush, 2016) additionally utilizes the top-K target LLM-
generated data to fine-tune the draft model with the recommendation loss LRec; 4) TVDKD (Wen
et al., 2023) aligns the draft model and the target LLM with the symmetric divergence TVD. We also
extend a retrieval-based drafting method 5) DARE (Xi et al., 2024) for a comprehensive comparison.

Evaluation Metrics. To measure the decoding efficiency, we use walltime speedup@K (WS@K)
compared to the standard target LLM inference for evaluation. In addition, we report accept step@K
(AS@K), which is defined as the average number of accepted steps during the SD for each user. As
for the recommendation performance, we adopt the widely used metrics Recall@K and NDCG@K
for evaluation.

Implementation Details. We instantiate AtSpeed on LC-Rec, where the backend LLM is LLaMA-
7B (Touvron et al., 2023). For each dataset, we fine-tune the target LLM using the recommendation
loss LRec with the parameter-efficient fine-tuning technique LoRA (Hu et al., 2021). As for the
draft model, we fully fine-tune a compatible small-sized model LLaMA-68M (Miao et al., 2024)
for alignment training, and then utilize the fine-tuned model for SD inference. We set draft length
γ = 4, number of recommended items K = {1, 3, 5, 10, 20}, and draft beam size N = 40. More
implementation details are provided in Appendix A.3.1.

4.2 OVERALL PERFORMANCE (RQ1)

We evaluate our method under both standard beam search (beam size=K) with strict top-K verification
and sampling-based beam search (temperature=1) with relaxed sampling verification. The acceleration
results of the baselines and AtSpeed on two datasets are presented in Table 1. We can observe that:

• The walltime speedup under the relaxed sampling verification is generally better than the strict
top-K verification, validating the effectiveness of our proposed relaxed strategy. It boosts the
speedup by allowing non-top-K sequences to be accepted with a certain probability.

• Compared to SFT, the logit-level KD methods (WordKD and TVDKD) often yield comparable
or even inferior performance. However, this is not surprising because the alignment task for the
logit-level KD is more difficult due to two possible reasons. 1) While SFT solely focuses on fitting
the top-1 probability token, logit-level KD requires alignment across the entire vocabulary, making
it more difficult to achieve due to the limited expressiveness of the smaller model (Agarwal et al.,
2024). 2) The alignment on the top-K ranked items might be negatively affected by the invalid
tokens with high probabilities. During item generation, certain tokens with high probabilities will
never be generated as they are deemed invalid tokens, and thereby will never be accepted by the
target LLM (cf. Section 3.1).

• Among the baselines, SeqKD yields competitive results in most cases. This is reasonable since
SeqKD 1) aligns the draft model with the target LLM at the sequence level, which fosters the
generation of sequences more aligned with the target LLM’s distribution (superior performance
than WordKD); and 2) fine-tunes the draft model with target LLM-generated data, which implicitly
incorporates the information of valid tokens in item identifiers, thereby alleviating the negative

6We also evaluate our methods on MovieLens-1M and Goodreads datasets (refer to Table 6 in Ap-
pendix A.3.2).

7https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/.
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Table 1: Overall comparison of walltime speedup (WS@K) and accept steps (AS@K) between the
baselines and AtSpeed instantiated on LC-Rec (LLaMA-7B) across two datasets. “Avg” is calculated
across K from 1 to 20 (full results are presented in Table 4 in Appendix A.3.2). For each verification
strategy, the best results are highlighted in bold and the second-best results are underlined.

Beauty
Verification Method WS@5 WS@10 WS@20 Avg WS AS@5 AS@10 AS@20 Avg AS Recall@5 NDCG@5

Strict Top-K

DARE 1.06 1.15 1.48 1.18 0.26 0.05 0.00 0.31 0.0056 0.0051
SFT 1.43 1.37 1.55 1.56 1.32 0.66 0.09 1.18 0.0056 0.0051
WordKD 1.58 1.52 1.58 1.68 1.60 1.03 0.16 1.40 0.0056 0.0051
TVDKD 1.44 1.37 1.57 1.55 1.31 0.65 0.09 1.17 0.0056 0.0051
SeqKD 1.75 1.67 1.68 1.83 1.85 1.27 0.30 1.60 0.0056 0.0051
AtSpeed-S 1.84 1.87 1.84 1.97 2.00 1.64 0.57 1.80 0.0056 0.0051
AtSpeed-R 1.70 1.71 1.74 1.76 1.82 1.33 0.43 1.56 0.0056 0.0051

Relaxed Sampling

DARE 1.70 1.53 1.69 1.73 1.97 1.14 1.00 1.62 0.0059 ↑0.0003 0.0044 ↓0.0007

SFT 1.80 2.06 2.36 1.95 2.03 1.99 1.48 1.94 0.0057 ↑0.0001 0.0041 ↓0.0010

WordKD 1.81 1.99 2.05 1.87 2.01 1.87 1.07 1.82 0.0066 ↑0.0010 0.0043 ↓0.0008

TVDKD 1.81 2.06 2.35 1.96 2.03 1.99 1.45 1.94 0.0057 ↑0.0001 0.0045 ↓0.0006

SeqKD 1.90 2.11 2.31 2.01 2.10 2.01 1.40 1.97 0.0055 ↓0.0001 0.0045 ↓0.0006

AtSpeed-S 1.89 2.12 2.51 2.07 2.09 2.03 1.71 2.05 0.0060 ↑0.0004 0.0046 ↓0.0005

AtSpeed-R 1.94 2.16 2.47 2.11 2.13 2.01 1.77 2.10 0.0058 ↑0.0002 0.0049 ↓0.0002

Games
Verification Method WS@5 WS@10 WS@20 Avg WS AS@5 AS@10 AS@20 Avg AS Recall@5 NDCG@5

Strict Top-K

DARE 0.99 1.13 1.44 1.09 0.00 0.00 0.00 0.03 0.0074 0.0065
SFT 1.43 1.40 1.58 1.53 1.32 0.91 0.15 1.20 0.0074 0.0065
WordKD 1.31 1.35 1.47 1.48 1.10 0.80 0.14 1.13 0.0074 0.0065
TVDKD 1.24 1.32 1.50 1.42 0.95 0.66 0.09 0.99 0.0074 0.0065
SeqKD 1.60 1.46 1.77 1.71 1.67 1.05 0.76 1.55 0.0074 0.0065
AtSpeed-S 1.78 1.85 1.76 1.83 1.96 1.69 0.68 1.72 0.0074 0.0065
AtSpeed-R 1.76 1.76 1.60 1.74 1.95 1.53 0.32 1.59 0.0074 0.0065

Relaxed Sampling

DARE 1.68 1.19 1.42 1.51 1.96 0.37 0.00 1.27 0.0076 ↑0.0002 0.0065 ↑0.0000

SFT 1.84 1.97 1.69 1.86 2.05 1.89 0.58 1.78 0.0073 ↓0.0001 0.0060 ↓0.0005

WordKD 1.78 1.84 1.56 1.76 1.99 1.68 0.25 1.63 0.0072 ↓0.0002 0.0058 ↓0.0007

TVDKD 1.81 1.90 1.55 1.80 2.02 1.80 0.29 1.69 0.0069 ↓0.0005 0.0061 ↓0.0004

SeqKD 1.90 2.03 2.05 1.95 2.10 1.98 1.22 1.93 0.0071 ↓0.0003 0.0059 ↓0.0006

AtSpeed-S 1.91 2.04 2.13 2.04 2.10 1.98 1.28 2.00 0.0080 ↑0.0006 0.0068 ↑0.0003

AtSpeed-R 2.00 2.05 2.20 2.05 2.17 1.98 1.35 2.02 0.0076 ↑0.0002 0.0063 ↓0.0002

effect from the noisy invalid tokens (superior performance than TVDKD). The competitiveness
of SeqKD is also consistent with the observations in NLP tasks (Agarwal et al., 2024). The less
satisfying performance of DARE is reasonable since the uniformly retrieved valid sequences might
not be aligned with the target LLM specifically on top-K sequences.

• AtSpeed significantly accelerates the LLM-based recommender inference under both strict top-K
and relaxed sampling verifications, showing the superiority of our proposed method for strong
top-K alignment. In particular, AtSpeed-S under strict top-K verification achieves an average
speedup of 1.97× on Beauty and 1.83× on Games while obtaining the identical results of the
top-K recommended items. Moreover, AtSpeed-R further enhances the efficiency with an average
speedup of 2.11× and 2.05× on Beauty and Games, respectively. Furthermore, as K increases,
the number of accept steps gradually decreases due to the increased difficulty of the N -to-K
verification. Nevertheless, it is highlighted that the speedup for K = 20 is still comparable to that
for K = 5 and outperforms the speedup for K = 10. This is attributed to tree-based attention,
which efficiently verifies the drafted sequences (more detailed analysis in Appendix A.3.2).

• The ranking performance under strict top-K verification is lossless because we only accept the
perfectly matched top-K beam sequences to obtain identical recommendation results. For relaxed
sampling verification, the ranking performance across different alignment methods only shows
limited performance drops compared to the target LLM’s top-K results, i.e., performance under
strict top-K verification. This meets our expectations since the sampling-based verification ensures
the approximately equivalent distribution between the SD output and target LLM output (refer to
Appendix A.3.2 for additional accuracy results and analysis).

4.3 IN-DEPTH ANALYSIS

Ablation Study (RQ2). To analyze the effect of AtSpeed-S, we remove the density regularization term
(“w/o DR”), constrained alignment (“w/o CA”), and tree-based attention (“w/o TA”) for AtSpeed-S.
These variants of AtSpeed-S are evaluated under the strict top-K verification. For AtSpeed-R, we
replace the top-K sequences with the top-1 sequence from target LLM (denoted as “w/o top-K”),
and separately remove the constrained alignment (“w/o CA”) and the tree-based attention (“w/o TA”).
These variants are evaluated under the relaxed sampling verification.
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Figure 3: Ablation study of AtSpeed-S and AtSpeed-R on Beauty dataset.
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Figure 4: Effect of draft beam size N and the alignment strength α on Beauty dataset.

From the results as shown in Figure 3, we have the following observations. 1) the performance decline
of “w/o DR” indicates that aggregating probability around the top-K tokens can effectively strengthen
the alignment. 2) The use of top-1 sequence from the target LLM to execute AtSpeed-R results in
a lower acceptance rate. This makes sense since the top-1 sequence lacks diversity, which might
overemphasize the alignment on the top-1 sequence and hurt the speedup. 3) By discarding either the
constrained alignment or tree attention would lead to performance decline for both AtSpeed-S and
AtSpeed-R. This is expected since removing constrained alignment would introduce potential noisy
tokens, which have high probability yet will be rejected to ensure in-corpus item recommendation.
Furthermore, 4) the removal of tree-based attention would hurt the speedup although it does not affect
the acceptance rate, which validates the efficiency of utilizing tree-based attention for verification.

Effect of Draft Beam Size N (RQ3). To study how the draft beam size N affects the acceleration of
AtSpeed, we vary N from 20 to 60 and test AtSpeed-S under strict top-K verification (Figure 4) and
AtSpeed-R under relaxed sampling verification, respectively. From the figures, we can observe that 1)
from N = 20 to N = 60, the acceptance rate constantly increases for both AtSpeed-S and AtSpeed-R.
This is reasonable as a larger beam size can produce more drafted sequences for verification, thus
enhancing the acceptance rate. Moreover, 2) the walltime speedup continues to improve steadily
as N gets larger. We attribute this phenomenon to the utilization of tree-based attention, which
efficiently verifies drafted sequences with a single flattened sequence (refer to Appendix A.3 for
detailed speedup analysis of tree-based attention). Nevertheless, 3) the improvement of acceptance
rate and speedup gradually slows down (i.e., decreasing slope), indicating continuously increasing N
is approaching a balance between the enhanced acceptance rate and the increased overhead.

Effect of Alignment Strength α (RQ3). We train the draft model with different alignment strength
α and present the results of AtSpeed-S in Figure 4(c)8. From the figure, it is observed that the
integration of alignment loss (incrementally increased from 0) improves performance, which validates
the necessity of alignment to improve acceptance rate. However, 2) blindly emphasizing the alignment
loss may be ineffective, as the model struggles to capture the output of the target LLM due to the
limited expressiveness of the small-sized model without the knowledge of recommendation task.
Therefore, it is essential to strike a balance between the task-specific objective and the alignment
objective. Empirically, we recommend setting α = 0.5 for alignment training.

5 RELATED WORK

Speculative Decoding. As an efficient LLM decoding technique, SD (Leviathan et al., 2023; Fu
et al., 2024; Du et al., 2024; Liu et al., 2024c; Chen et al., 2024; Sun et al., 2024) has been proposed

8More analysis of AtSpeed is presented in Appendix A.3.2 to save space.
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to reduce the LLM calls by efficiently drafting multiple future tokens and then verifying them in
parallel. Early studies focus on SD in greedy decoding, where the draft model generates one token
at each generation step for LLM to verify if they match the LLM’s top-1 token. Later on, some
studies extend SD to nucleus sampling to accelerate LLM decoding without changing its output
distribution (Leviathan et al., 2023). However, the early attempts simply draft one token at each
step for verification, which significantly limits the acceptance rate (Xia et al., 2023). To improve the
acceptance rate, subsequent work designs various relaxed verification strategies for greedy decoding
such as enlarging LLM candidates with a tolerable score away from the top-1 token (Xia et al., 2023)
and measuring the distance of the probability between the draft model and the target LLM (Kim
et al., 2024). Concurrently, some studies propose different methods to draft multiple candidates
for different sampling, as seen in Medusa (Cai et al., 2024), EAGLE (Li et al., 2024a) and so on.
While previous work primarily applies SD for NLP tasks and follows the N -to-1 verification, our
work extends SD to LLM-based generative recommendation tasks, addressing the unique challenge
of N -to-K verification, i.e., perfect matching over the top-K sequences. Closely related to our
work, DistillSpec (Zhou et al., 2024) investigates the use of various KD techniques to enhance the
alignment between the draft model and the target LLM, to achieve high acceptance rate. However,
they mainly focus on how KD helps for the N -to-1 verification. In contrast, this work studies the SD
under N -to-K verification for recommendation tasks, and proposes a framework to align the draft
model with the target LLM on the top-K sequences specifically for recommendation tasks. While
another conceptually similar work SpecGR (Ding et al., 2024) drafts unseen items for cold-start
recommendations, this work aims at drafting beam sequences at every step for inference acceleration.

Inference Acceleration for LLM-based Recommendation. While LLM-based generative recom-
mendations have shown remarkable performance (Liu et al., 2024a; Xu et al., 2024a; Zhang et al.,
2024a; Lv et al., 2025; Lin et al., 2024b; Zhao et al., 2025) compared to traditional recommender
models (Liu et al., 2024b; Gao et al., 2023; Li et al., 2024b; Zhang et al., 2021), their practical
implementation is impeded due to the high time latency of LLM decoding. Consequently, acceler-
ating LLM decoding is imperative to facilitate real-world deployment of the powerful LLM-based
recommender models. To tackle this issue, several approaches leverage KD to transfer knowledge
from a teacher LLM to either a smaller language model (Xu et al., 2024b; Wang et al., 2024b) or a
traditional recommender model (Cui et al., 2024). Additionally, some methods focus on designing
more lightweight model architectures, such as narrow and deep transformer structures (Mei & Zhang,
2023). However, the application of SD is underexplored in LLM-based recommendation. DARE (Xi
et al., 2024) is a relevant study that applies SD in user feature augmentation for LLM-based recom-
mendation. However, they focus on the LLM decoding for user feature generation that requires only
one response from the target LLM, which is essentially SD under the N -to-1 verification. In contrast,
our work explores decoding acceleration for top-K ranked item recommendation, tackling the more
difficult N -to-K verification problem. In addition to these approaches, various other techniques, such
as model quantization (Xiao et al., 2023), model pruning (Hassibi & Stork, 1992), and Key-Value
(KV) cache optimization (Zhang et al., 2024b), can also enhance inference acceleration. Nonetheless,
these methods are orthogonal to SD and can be effectively integrated with SD to further improve
decoding efficiency.

6 CONCLUSION AND FUTURE WORK

In this work, we formulated the speculative decoding task for LLM-based generative recommendation,
highlighting the significant challenge of shifting from N -to-1 to N -to-K. To effectively accelerate
decoding under N -to-K verification, the key lies in drafting all top-K sequences from the target
LLM, which drives two objectives for SD: top-K alignment and verification relaxation. To achieve
this, we proposed an alignment framework called AtSpeed, along with a relaxed sampling verification
strategy. AtSpeed designs two alignment objectives for the strict top-K verification and relaxed
sampling verification strategies. Extensive experiments show that AtSpeed achieves around 2×
speedup on two real-world recommendation datasets. As an initial attempt work, it points out many
promising directions for further explorations, such as 1) more efficient drafting methods to reduce the
overhead of drafting, such as non-LLM recommender models for efficient high-quality drafting that
might lead to better recommendation accuracy under the relaxed sampling verification strategy, and
2) integration with other acceleration techniques such as memory access optimization.
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ETHICS STATEMENT

Our research focuses on effectively boosting the inference efficiency of LLM-based generative recom-
mendation with the AtSpeed framework, unlocking the significant practical potential of LLM-based
recommender models. This work is technical and practical, with applications to LLM-based genera-
tive recommendation. We have fully considered the potential societal impacts and do not foresee any
direct, immediate, or negative consequences. We are committed to the ethical dissemination of our
findings and encourage their responsible use.

REPRODUCIBILITY STATEMENT

All the results in this work are reproducible. We provide all the necessary code to replicate our results
in an GitHub repository. The repository includes environment configurations, run scripts, and other
relevant materials. We discuss the experimental settings in Section 4.1, including implementation
details such as the utilization of parameter-efficient training. Additionally, detailed experimental
settings are provided in Appendix A.3.1.
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A APPENDIX

A.1 ALGORITHM OF RELAXED SAMPLING VERIFICATION

Algorithm 2 SD step with Relaxed Sampling Verification
Input: Draft modelMq , target LLMMp, prefix, target beam size K, draft beam size N
1: Yq

0 ← prefix, Yq
γ+1 ← ∅, Yout ← ∅

2: for j = 1 to γ do
3: qj ←Mq(Yq

j−1), Y
q
j ← Sample K sequences from qj

4: p1, p2, . . . , pγ+1 ←Mp(Yq
0 ),Mp(Yq

1 ), . . . ,Mp(Yq
γ) ▷ RunMp in parallel

5: for j = 1 to γ + 1 do
6: Yrej ← ∅
7: for i = 1 to K do ▷ Verify each sequence based on independent modeling
8: ri ∼ U(0, 1), yi ← The i-th sequence from Yq

j

9: if ri ≤ p(yi)
q(yi)

then ▷ Accept the sequence
10: Yout ← Yout

⋃
{yi}

11: else ▷ Reject the sequence
12: Yrej ← Yrej

⋃
{yi}

13: if |Yout| > K then ▷ Accept the step
14: Yout ← Randomly sample K sequences from Yout
15: else ▷ Reject the step and resample the sequences
16: p′j ← norm(max(0, pj − qj))
17: p′j(yi)← 0 for y ∈ Yout
18: Yresample ← Sample B sequences from p′j , B = K − |Yout|
19: Yout ← Yout

⋃
Yresample

Output: Yout

In Algorithm 2, norm(max(0, pj − qj)) =
max(0,pj−qj)∑
max(0,pj−qj)

.

A.2 PROOF AND DETAILED DERIVATION

A.2.1 WITH-REPLACEMENT SAMPLING APPROXIMATION

We aim to prove that the distribution of sampling without replacement is approximately equivalent to
that of sampling with replacement. Our proof is mainly based on Stirling’s approximation (Dutka,
1991). In the following, we will first clarify notations, and introduce multivariate hypergeometric
distribution and the multinomial distribution, which are used to model the sampling without replace-
ment and sampling with replacement, respectively. We then present Stirling’s approximation, and
show the step-by-step proof.

Notations. To model the sampling, we have the total population size N , sample size n, the category
size r, the number of items in category i in the population Ki, and the number of items in category i
in the samples ki. In the case of sequence sampling in LLM decoding, the population includes every
possible sequence. Every possible sequence is a unique category, and the sample size n is the beam
size, the population size is the total number of all possible sequences at each beam search step. Now
we assume the population sizes go to infinity in such a way that pi = Ki

N . And we have
∑r

i=1 ki = n
and

∑r
i=1 Ki = N .

Multivariate Hypergeometric Distribution. Formally, when sampling without replacement, the
probability of drawing k1, k2, . . . , kr items from each category is given by the multivariate hypergeo-
metric distribution

Phyper(k1, k2, . . . , kr) =

∏r
i=1

(
Ki

ki

)(
N
n

)
=

∏r
i=1

Ki!
ki!(Ki−ki)!

N !
n!(N−n)!

.

(10)
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Multinomial Distribution. Formally, when sampling with replacement, the probability follows the
multinomial distribution as

Pmulti(k1, k2, . . . , kr) =
n!∏r

i=1 ki!

r∏
i=1

pki
i . (11)

Stirling’s Approximation. Stirling’s approximation (Dutka, 1991) gives us the approximation of the
logarithm of factorials as:

lnn! ≈ n lnn− n+
1

2
ln(2πn). (12)

Theorem 1. When population size N is large and sample size n is small compared to N (i.e.,
n≪ N ), the multivariate hypergeometric distribution approximates the multinomial distribution:

Phyper(k1, k2, . . . , kr) ≈ Pmulti(k1, k2, . . . , kr). (13)

Proof. We can expand the logarithm of multivariate hypergeometric probability in factorials as
follows:

lnPhyper(k1, k2, . . . , kr) = ln

∏r
i=1

Ki!
ki!(Ki−ki)!

N !
n!(N−n)!

= ln

r∏
i=1

Ki!

ki!(Ki − ki)!
− ln

N !

n!(N − n)!

=

r∑
i=1

ln
Ki!

ki!(Ki − ki)!
− ln

N !

n!(N − n)!

=

r∑
i=1

[lnKi!− ln ki!− ln(Ki − ki)!]− [lnN !− lnn!− ln(N − n)!].

(14)

Using the Stirling’s approximation, we have:



lnKi! ≈ Ki lnKi −Ki +
1

2
ln 2πKi,

ln ki! ≈ ki ln ki − ki +
1

2
ln 2πki,

ln(Ki − ki)! ≈ (Ki − ki) ln(Ki − ki)− (Ki − ki) +
1

2
ln 2π(Ki − ki),

lnN ! ≈ N lnN −N +
1

2
ln 2πN,

lnn! ≈ n lnn− n+
1

2
ln 2πn,

ln(N − n)! ≈ (N − n) ln(N − n)− (N − n) +
1

2
ln 2π(N − n).

(15)
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Then, we can substitute the logarithm of factorials with the approximation in Eq.(14) as:

lnPhyper(k1, k2, . . . , kr)

=

r∑
i=1

[lnKi!− ln ki!− ln(Ki − ki)!]− [lnN !− lnn!− ln(N − n)!]

=

r∑
i=1

[Ki lnKi −Ki +
1

2
ln 2πKi − (ki ln ki − ki +

1

2
ln 2πki)

− ((Ki − ki) ln(Ki − ki)− (Ki − ki) +
1

2
ln 2π(Ki − ki))]

− [N lnN −N +
1

2
ln 2πN − (n lnn− n+

1

2
ln 2πn)

− ((N − n) ln(N − n)− (N − n) +
1

2
ln 2π(N − n))]

=

r∑
i=1

[Ki lnKi − ki ln ki − (Ki − ki) ln(Ki − ki) +
1

2
ln 2πKi −

1

2
ln 2πki −

1

2
ln 2π(Ki − ki)]

− [N lnN − n lnn− (N − n) ln(N − n) +
1

2
ln 2πN − 1

2
ln 2πn− 1

2
ln 2π(N − n)].

(16)

Since N is a very large number and n≪ N , ki ≪ Ki, we have 1
2 ln 2πKi− 1

2 ln 2πki−
1
2 ln 2π(Ki−

ki) ≈ 0 and 1
2 ln 2πN −

1
2 ln 2πn −

1
2 ln 2π(N − n) ≈ 0. Then, the logarithm of multivariate

hypergeometric distribution is approximated as:

lnPhyper ≈
r∑

i=1

[Ki lnKi−ki ln ki−(Ki−ki) ln(Ki−ki)]−[N lnN−n lnn−(N−n) ln(N−n)].

(17)

Since ki is small compared to Ki, we can expand ln(Ki − ki) using Taylor expansion

ln(Ki − ki) = lnKi −
ki
Ki
− 1

2
(
ki
Ki

)2 + . . . , (18)

where we can neglect the high-order terms and obtain

ln(Ki − ki) ≈ lnKi −
ki
Ki

. (19)

Similarly, for ln(N − n), we have

ln(N − n) ≈ lnN − n

N
. (20)

We can then substitute ln(Ki − ki) and ln(N − n) in logarithm of multivariate hypergeometric
distribution (Eq.(17)) and obtain

lnPhyper ≈
r∑

i=1

[Ki lnKi − ki ln ki − (Ki − ki) ln(Ki − ki)]− [N lnN − n lnn− (N − n) ln(N − n)]

=

r∑
i=1

[Ki lnKi − ki ln ki − (Ki − ki)(lnKi +
ki
Ki

)]− [N lnN − n lnn− (N − n)(lnN +
n

N
)]

=

r∑
i=1

[Ki lnKi − ki ln ki − (Ki lnKi − ki lnKi + ki −
k2
i

Ki
)]− [N lnN − n lnn− (N lnN − n lnN + n− n2

N
)]

=

r∑
i=1

[ki ln
Ki

ki
+

k2
i

Ki
− ki]− [n ln

N

n
+

n2

N
− n]

=

r∑
i=1

[ki ln
Ki

ki
+

k2
i

Ki
]− [n ln

N

n
+

n2

N
]. (we have−

r∑
i=1

ki + n = 0 in last expression)

(21)
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We then relate Ki to N and pi. Since Ki = Npi, we have ln Ki

ki
= ln Npi

ki
. We also have

n =
∑r

i=1 ki. Then, we can express the logarithm of hypergeometric distribution in terms of pi and
ki as

lnPhyper ≈
r∑

i=1

[ki ln
Ki

ki
+

k2i
Ki

]− [n ln
N

n
+

n2

N
]

=

r∑
i=1

[ki ln
Npi
ki

+
k2i
Npi

]− [n ln
N

n
+

n2

N
]

=

r∑
i=1

[ki(lnN + ln pi − ln ki) +
k2i
Npi

]− [n ln
N

n
+

n2

N
]

=

r∑
i=1

ki lnN +

r∑
i=1

[ki(ln pi − ln ki) +
k2i
Npi

]− n ln
N

n
− n2

N

= n lnN − n lnN + n lnn− n2

N
+

r∑
i=1

[ki(ln pi − ln ki) +
k2i
Npi

] (we have
r∑

i=1

ki = n in last expression)

=

r∑
i=1

[ki(ln pi − ln ki) +
k2i
Npi

] + n lnn− n2

N

= n lnn−
r∑

i=1

ki ln ki +

r∑
i=1

ki ln pi −
n2

N
+

r∑
i=1

k2i
Npi

.

(22)

Now the approximation of the logarithm of multivariate hypergeometric distribution has been finished.
Similarly, we approximate the multinomial distribution with Stirling’s approximation. We expand the
logarithm of multinomial distribution as

lnPmulti(k1, k2, . . . , kr) = ln
n!∏r

i=1 ki!

r∏
i=1

pki
i

= lnn!−
r∑

i=1

ln ki! +

r∑
i=1

ki ln pi.

(23)

Using Stirling’s approximation, we have lnn! ≈ n lnn − n and ln ki! ≈ ki ln ki − ki. We then
substitute lnn! and ln ki! with the approximation and obtain

lnPmulti ≈ n lnn− n−
r∑

i=1

(ki ln ki − ki) +

r∑
i=1

ki ln pi

= n lnn− n−
r∑

i=1

ki ln ki +

r∑
i=1

ki +

r∑
i=1

ki ln pi.

(24)

Since we have
∑r

i=1 ki = n, we have

lnPmulti ≈ n lnn− n−
r∑

i=1

ki ln ki + n+

r∑
i=1

ki ln pi

= n lnn−
r∑

i=1

ki ln ki +

r∑
i=1

ki ln pi.

(25)

Now, comparing the approximated logarithm of multinomial distribution with the approximated
logarithm of multivariate hypergeometric distribution, we have

lnPmulti ≈ lnPhyper +
n2

N
−

r∑
i=1

k2i
Npi

. (26)
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Note that the term n2

N −
∑r

i=1
k2
i

Npi
is negalectable when N is large and ki and n are small compared

to N. Therefore, we show that when the population size N is large (e.g., all sequences for sampling)
and ki, n are small (e.g., ki = 1 or 0 since each sequence represents a category and n is usually
less than 20 in LLM-based recommendation), the multivariate hypergeometric distribution can be
approximated to the multinomial distribution. That is, sampling without replacement is approximately
equivalent to sampling with replacement.

A.2.2 DERIVATION OF ALIGNMENT OBJECTIVES OF ATSPEED-S

To maximize the acceptance rate under the strict top-K verification, we consider:

argmax
θ∈Θ

Ey∼Yqθ

p(y)

p(yK)

argmax
θ∈Θ

Ey∼Yqθ
log

p(y)

p(yK)

=
∑
y

q(y) log p(y)−
∑
y

q(y) log p(yK)

= −
∑
y

q(y) log
1

p(y)
−

∑
y

q(y) log p(yK).

(27)

We can add (
∑

y q(y) log q(y) −
∑

y q(y) log q(y)) to the expression since
∑

y q(y) log q(y) −∑
y q(y) log q(y) = 0. After adding the term with some rearrangement, we obtain

−
∑
y

q(y) log
1

p(y)
−

∑
y

q(y) log p(yK) + (
∑
y

q(y) log q(y)−
∑
y

q(y) log q(y))

= −
∑
y

q(y) log
1

p(y)
−

∑
y

q(y) log q(y) +
∑
y

q(y) log q(y)−
∑
y

q(y) log p(yK)

= −
∑
y

q(y) log
q(y)

p(y)
+

∑
y

q(y) log q(y)−
∑
y

q(y) log p(yK)

= −
∑
y

q(y) log
q(y)

p(y)
+

∑
y

q(y) log
q(y)

p(yK)
,

(28)

where p(yK) = p(yK,t|yK,<t). According to the derivation, we obtain the alignment objective as
in Eq.(2). We now consider context in LLM-based recommendation. We omit input x and denote
c<t = y<t, referred to as context, then we have q(y) =

∏
t q(yt|c<t) and p(y) =

∏
t p(yt|c<t). We

then can substitute q(y) with
∏

t q(yt|c<t) and p(y) with
∏

t p(yt|c<t) and rewrite the objective in
Eq.(28) as:

−
∑
y

q(y) log
q(y)

p(y)
+

∑
y

q(y) log
q(y)

p(yK)

=−
∑
y

q(y) log

∏
t q(yt|c<t)∏
t p(yt|c<t)

+
∑
y

q(y) log

∏
t q(yt|c<t)∏

t p(yK,t|yK,<t)

=−
∑
y

q(y)[log
∏
t

q(yt|c<t)− log
∏
t

p(yt|c<t)] +
∑
y

q(y)[log
∏
t

q(yt|c<t)− log
∏
t

p(yK,t|yK,<t)]

=−
∑
y

q(y)[
∑
t

log q(yt|c<t)−
∑
t

log p(yt|c<t)] +
∑
y

q(y)[
∑
t

log q(yt|c<t)−
∑
t

log p(yK,t|yK,<t)]

=−
∑
y

q(y)
∑
t

log
q(yt|c<t)

p(yt|c<t)
+

∑
y

q(y)
∑
t

log
q(yt|c<t)

p(yK,t|yK,<t)

=−
∑
t

∑
y

q(y) log
q(yt|c<t)

p(yt|c<t)
+

∑
t

∑
y

q(y) log
q(yt|c<t)

p(yK,t|yK,<t)
.

(29)
Since y = (y1, y2, . . . , yn) = (y<t, yt,y>t) is a sequence, we can decompose

∑
y q(y) into

nested sum
∑

y<t

∑
yt

∑
y>t

q(y) =
∑

y<t

∑
yt

∑
y>t

q(y<t, yt,y>t), where the nested sum over
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three parts of y, i.e., y<t,yt, and y>t can cover all possible sequence y. Since q(y<t, yt,y>t) =
q(y<t)q(yt|c<t)q(y>t|c≤t), we can rewrite the nested sum of q(y<t, yt,y>t) over y:∑

y

q(y)

=
∑
y<t

∑
yt

∑
y>t

q(y<t)q(yt|c<t)q(y>t|c≤t)

=
∑
y<t

∑
yt

q(y<t)q(yt|c<t)
∑
y>t

q(y>t|c≤t)

=
∑
y<t

q(y<t)
∑
yt

q(yt|c<t)
∑
y>t

q(y>t|c≤t).

(30)

We then can substitute
∑

y q(y) with
∑

y<t
q(y<t)

∑
yt
q(yt|y<t)

∑
y>t

q(y>t|c≤t) into Eq.(29)
and obtain

−
∑
t

∑
y

q(y) log
q(yt|c<t)

p(yt|c<t)
+
∑
t

∑
y

q(y) log
q(yt|c<t)

p(yK,t|yK,<t)

= −
∑
t

[
∑
y<t

q(y<t)
∑
yt

q(yt|c<t)
∑
y>t

q(y>t|c≤t)] log
q(yt|c<t)

p(yt|c<t)

+
∑
t

[
∑
y<t

q(c<t)
∑
yt

q(yt|c<t)
∑
y>t

q(y>t|c≤t)] log
q(yt|c<t)

p(yK,t|yK,<t)

= −
∑
t

∑
y<t

q(y<t)
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)

∑
y>t

q(y>t|c≤t)

+
∑
t

∑
y<t

q(y<t)
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)

∑
y>t

q(y>t|c≤t).

(31)
Since

∑
y>t

q(y>t|c≤t) = 1, we can remove
∑

y>t
q(y>t|c≤t) in Eq.(31):

−
∑
t

∑
y<t

q(y<t)
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)

∑
y>t

q(y>t|c≤t)

+
∑
t

∑
y<t

q(y<t)
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)

∑
y>t

q(y>t|c≤t)

=−
∑
t

∑
y<t

q(y<t)
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)
+

∑
t

∑
y<t

q(y<t)
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)

=−
∑
t

∑
y<t

q(y<t)[
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)
−

∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)
]

=−
∑
t

Ey<t∼q[
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)
−

∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)
].

(32)

Now we have a step-wise alignment over all sequence from q, i.e., Ey<t∼q . We aim to align the draft
model with the target LLM at every beam search step. Notably, at each beam search step T , the
sequence lengths are fixed and is independent with t. Therefore, we can rewrite Eq.(32) as:

−
∑
t

Ey<t∼q[
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)
−

∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)
]

=− Ey≤T∼q

T∑
t=1

[
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)
−

∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)
].

(33)

Since we aim to align at every step T ∈ {1, . . . , L}, where L is the length of item identifier in
LLM-based recommendation, we further normalize the expression by sequence length to prevent
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different scales on alignment loss across different steps. As such, for every step T ∈ {1, . . . , L}, the
objective can be rewritten as

− Ey≤T∼q
1

|yT |

|yT |∑
t=1

[
∑
yt

q(yt) log
q(yt|c<t)

p(yt|c<t)
−

∑
yt

q(yt) log
q(yt|c<t)

p(yK,t|yK,<t)
]. (34)

However, the expectation over the sequence space, (i.e., Ey≤T∼q) is intractable, so we follow previous
work (Wen et al., 2023; Kim & Rush, 2016) to approximate it by sampling top-K sequences generated
by draft modelMq. Now we can rewrite our alignment objective for strict top-K verification and
obtain Eq.(3) in our paper:

argmax
θ∈Θ

−E(x,Y)∼D′
∑
y∈Y

1

|y|

|y|∑
t=1

[
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)
−

∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)
]

= argmin
θ∈Θ

E(x,Y)∼D′
∑
y∈Y

1

|y|

|y|∑
t=1

[
∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yt|c<t)
−

∑
yt

q(yt|c<t) log
q(yt|c<t)

p(yK,t|yK,<t)
],

(35)
where Y denotes the top-K beam sequences generated from the mixture distribution of draft model
and target LLM (see “Alignment Objective” paragraph in Section 3.1).

A.2.3 DERIVATIVES OF ACCEPTANCE RATE FOR RELAXED SAMPLING VERIFICATION.

Based on the with-replacement sampling approximation, for every independent sampling, we have
acceptance rate of a sequence

b = Ey∼q(y)

{
1, q(y) ≤ p(y)
p(y)
q(y)

, q(y) > p(y)
= Ey∼q(y) min(1,

p(y)

q(y)
) = 1− TVD(p(y), q(y)), (36)

which can be easily extended from (Leviathan et al., 2023) as follows.

Definition 1. TV D(p, q) =
∑

y |p(y)−M(y)| =
∑

y |q(y)−M(y)|, where M(q) = p(y)+q(y)
2

.

Lemma 1. TV D = 1−
∑

y min(p(y), q(y)).

Proof. TV D(p, q) =
∑

y |p(y) − M(y)| =
∑

y
|p(y)−q(y)|

2
= 1 −

∑
y

p(y)+q(y)−|p(y)−q(y)|
2

= 1 −∑
y min(p(y)− q(y)).

Theorem 2. b = 1− TV D(p, q).

Proof. b = Ey∼q(y)

{
1, q(y) ≤ p(y)
p(y)
q(y)

, q(y) > p(y)
= Ey∼q(y) min(1, p(y)

q(y)
) =

∑
y min(1, p(y)

q(y)
) = 1 −

TVD(p(y), q(y)).

Based on the with-replacement sampling approximation (see Appendix A.2.1 for proof), we can
obtain the acceptance rate of a step with K accepted sequences as β =

∏
K b. Similarly, we could

also extend the distribution equivalence for sampling a sequence between the draft model and the
target LLM from Appendix A.1 in (Leviathan et al., 2023). As such, when the sampling-based beam
search is performed with a beam size K, the joint distribution of the output K sequences from the SD
under the relaxed sampling verification is approximately equivalent to the counterparts from the target
LLM, according to the approximation of with-replacement sampling, i.e., independent sampling.

A.3 EXPERIMENTAL DETAILS AND ANALYSIS

A.3.1 DETAILED EXPERIMENTAL SETTINGS

Datasets Details. For both Beauty and Games, all interactions are sorted according to the global
timestamps, and then split into training, validation, and testing sets with the ratio of 8:1:1. The dataset
statistics is presented in Table 2. For the item identifier, we follow LC-Rec (Zheng et al., 2024) to set
the length L = 4, i.e., the token sequence length of a generated item would be 4.
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Table 2: Statistics of the datasets.
Datasets # Users # Items # Interactions Density

Beauty 19,383 12,035 138,870 0.06%
Games 49,156 17,332 342,329 0.04%
MovieLens-1M 6,038 3,017 60,162 0.33%
Goodreads 2,437 4,667 80,744 0.71%

Implementation Details. For draft model training, we use AdamW optimizer with batch size= 64,
learning rate=0.001, and a cosine scheduler with warmup step of 200 to adjust the learning rate. We
train the draft model for 20 epochs on 4 NVIDIA RTX A5000 GPUs. Meanwhile, we search the
alignment strength α in {0.1, 0.3, 0.5, 0.7} and weight decay in {0.01, 0.1}. For efficient training, we
utilize top-K sequences from the last step of beam search to construct the alignment data D′. Despite
the utilization of beam sequences from different steps of beam search could potentially enhance the
acceleration effects further, it exacerbates the training burden regarding time cost and storage cost
(see Table 7).

Recommendation Loss. The recommendation loss used for the backbone LLM-based recommender
model in our work is defined as

LRec = −
1

N

∑
(x,y)∼D

|y|∑
t=1

logMp(yt|y<t,x), (37)

where x is user’s historical interactions, y is the user’s next interacted item identifier, and D =
{(x,y)} denotes the original recommendation dataset. Nevertheless, our method is model-agnostic,
thus the recommendation loss LRec can be can be substituted by any form of the loss function from
the backend LLM-based recommender models.

Implementation of Tree-based Attention. We first compress the N beam sequences into a single
flattened sequence, and then construct the sparse tree-based attention mask for efficient target LLM
verification. More precisely, given γN drafted beam sequences with different lengths, where N is the
draft beam size and γ is the number of drafted beam steps, we first 1) flattened the beam sequences
by sequentially adding the newly generated tokens from the beam sequences at each step. We denote
the length of the flattened sequence as Lf . Then, based on the flattened sequence, 2) we construct
an attention mask with the shape of Lf × Lf . Specifically, each row in attention mask represents a
specific beam sequence. For each row, we set the corresponding column of the last token as well as
the preceding tokens in the beam sequence as 1, otherwise 0. For example, we set the beam size of 2
and collect the beam sequences of 3 steps as shown in Table 3.

step 1 beam 1: a1
step 1 beam 2: a2
step 2 beam 1: a1 b1
step 2 beam 2: a2 b2
step 3 beam 1: a1 b1 c1
step 3 beam 2: a1 b1 c2

Table 3: Beam sequences from 3 beam search steps with beam size 2. The flattened sequence is “a1
a2 b1 b2 c1 c2”.

The flattened sequence will be “a1 a2 b1 b2 c1 c2”. The constructed tree-based attention is shown in
Figure 2(c) of our manuscript, where each row represents a specific beam sequence. For each row,
the tickled cell represents the preceding tokens and the last tokens of each beam. And the different
colors represent the different steps of beam search. This flattened sequence and sparse tree-based
attention enable efficient verification since it saves the repeated calculation of the same prefix across
different beam sequences, e.g., “a1 b1”.

A.3.2 ADDITIONAL EXPERIMENT RESULTS.

Comprehensive Results on Beauty and Games Datasets. We report the full acceleration perfor-
mance comparison on Beauty and Games datasets in Table 4 and the full recommendation performance
comparison on the two datasets in Table 5, where we can have similar observations as in Table 1.
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Table 4: Full results of walltime speedup (WS@K), accept steps (AS@K) between the baselines and
AtSpeed instantiated on LC-Rec (LLaMA-7B) across two datasets. For each verification strategy, the
best results are highlighted in bold and the second-best results are underlined.

Beauty
Verification Method WS@1 WS@3 WS@5 WS@10 WS@20 AS@1 AS@3 AS@5 AS@10 AS@20

DARE 1.13 1.07 1.06 1.15 1.48 0.81 0.44 0.26 0.05 0.00
SFT 1.88 1.55 1.43 1.37 1.55 2.19 1.66 1.32 0.66 0.09
WordKD 2.02 1.70 1.58 1.52 1.58 2.33 1.89 1.60 1.03 0.16
TVDKD 1.84 1.55 1.44 1.37 1.57 2.15 1.67 1.31 0.65 0.09
SeqKD 2.18 1.88 1.75 1.67 1.68 2.46 2.10 1.85 1.27 0.30
AtSpeed-S 2.33 1.97 1.84 1.87 1.84 2.58 2.20 2.00 1.64 0.57

Strict Top-K

AtSpeed-R 1.95 1.71 1.70 1.71 1.74 2.26 1.96 1.82 1.33 0.43

DARE 1.61 1.65 1.70 1.53 1.95 2.00 2.00 1.97 1.14 1.00
SFT 1.77 1.76 1.80 2.06 2.36 2.15 2.06 2.03 1.99 1.48
WordKD 1.74 1.75 1.81 1.99 2.05 2.11 2.04 2.01 1.87 1.07
TVDKD 1.80 1.77 1.81 2.06 2.35 2.17 2.07 2.03 1.99 1.45
SeqKD 1.85 1.86 1.90 2.11 2.31 2.21 2.13 2.10 2.01 1.40
AtSpeed-S 1.94 1.87 1.89 2.12 2.51 2.26 2.14 2.09 2.03 1.71

Relaxed Sampling

AtSpeed-R 2.05 1.94 1.94 2.16 2.47 2.37 2.19 2.13 2.01 1.77

Games
Verification Method WS@1 WS@3 WS@5 WS@10 WS@20 AS@1 AS@3 AS@5 AS@10 AS@20

DARE 0.94 0.95 0.99 1.13 1.44 0.15 0.00 0.00 0.00 0.00
SFT 1.82 1.45 1.43 1.40 1.58 2.13 1.49 1.32 0.91 0.15
WordKD 1.82 1.45 1.31 1.35 1.47 2.13 1.49 1.10 0.80 0.14
TVDKD 1.70 1.33 1.24 1.32 1.50 1.99 1.26 0.95 0.66 0.09
SeqKD 2.01 1.72 1.60 1.46 1.77 2.31 1.95 1.67 1.05 0.76
AtSpeed-S 2.01 1.77 1.78 1.85 1.76 2.27 2.02 1.96 1.69 0.68

Strict Top-K

AtSpeed-R 1.85 1.71 1.76 1.76 1.60 2.15 1.98 1.95 1.53 0.32

DARE 1.59 1.64 1.68 1.19 1.42 2.00 2.00 1.96 0.37 0.00
SFT 1.96 1.85 1.84 1.97 1.69 2.28 2.12 2.05 1.89 0.58
WordKD 1.84 1.77 1.78 1.84 1.56 2.17 2.05 1.99 1.68 0.25
TVDKD 1.96 1.81 1.81 1.90 1.55 2.26 2.08 2.02 1.80 0.29
SeqKD 1.91 1.87 1.90 2.03 2.05 2.22 2.13 2.10 1.98 1.22
AtSpeed-S 2.16 1.94 1.91 2.04 2.13 2.44 2.19 2.10 1.98 1.28

Relaxed Sampling

AtSpeed-R 2.10 1.92 2.00 2.05 2.20 2.40 2.18 2.17 1.98 1.35

Table 5: Full results of ranking performance in terms of Recall and NDCG between the baselines and
AtSpeed instantiated on LC-Rec (LLaMA-7B) on Beauty and Games datasets.

Beauty
Method Recall@5 Recall@10 NDCG@5 NDCG@10

Without SD Target LLM (TopK) 0.0056 0.0098 0.0051 0.0066
Target LLM (Sampling) 0.0056 0.0082 0.0043 0.0066

Relaxed Sampling Verification

DARE 0.0059 0.0102 0.0044 0.0060
SFT 0.0057 0.0091 0.0041 0.0063
WordKD 0.0066 0.0105 0.0043 0.0058
TVDKD 0.0057 0.0083 0.0045 0.0054
SeqKD 0.0055 0.0116 0.0045 0.0067
AtSpeed-S 0.0060 0.0096 0.0046 0.0060
AtSpeed-R 0.0058 0.0092 0.0049 0.0063
Average 0.0059 0.0098 0.0045 0.0061

Games
Method Recall@5 Recall@10 NDCG@5 NDCG@10

Without SD Target LLM (TopK) 0.0074 0.0125 0.0065 0.0083
Target LLM (Sampling) 0.0075 0.0115 0.0066 0.0079

Relaxed Sampling Verification

DARE 0.0076 0.0119 0.0065 0.0080
SFT 0.0073 0.0112 0.0060 0.0074
WordKD 0.0072 0.0113 0.0058 0.0073
TVDKD 0.0069 0.0108 0.0061 0.0074
SeqKD 0.0071 0.0110 0.0059 0.0073
AtSpeed-S 0.0080 0.0131 0.0068 0.0085
AtSpeed-R 0.0076 0.0123 0.0063 0.0080
Average 0.0074 0.0117 0.0062 0.0077

Detailed Analysis on Recommendation Accuracy. Based on the results in Table 5, we have
following observations: 1) The ranking performance under strict top-K verification is lossless.
This is expected since strict verification only accepts the drafts that perfectly match the top-K
sequence from the target LLM. Therefore, we obtain identical generation results with and without
speculative decoding under strict verification. Based on lossless results, our proposed method
AtSpeed-S achieves up to an average of 1.85× speedup. 2) The ranking performance under relaxed
sampling verification across different alignment methods only shows limited performance drops
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Table 6: Performance comparison between AtSpeed and baselines on MovieLens-1M dataset. For
each verification strategy, the best results are highlighted in bold and the second-best results are
underlined.

MovieLens-1M
Verification Method WS@3 WS@5 WS@10 WS@20 AS@3 AS@5 AS@10 AS@20

Strict Top-K

DARE 1.26 1.28 1.39 1.72 1.00 1.00 1.00 1.00
SFT 1.65 1.35 1.48 1.76 1.99 1.26 1.14 1.03
WordKD 1.29 1.29 1.39 1.69 1.07 1.02 1.00 1.00
TVDKD 1.73 1.72 1.25 1.24 1.98 1.90 1.04 1.00
SeqKD 1.77 1.78 1.42 1.50 2.03 2.00 1.24 1.05
AtSpeed-S 1.86 1.79 1.80 1.75 2.08 2.03 1.98 1.09
AtSpeed-R 1.76 1.78 1.54 1.74 2.01 1.99 1.29 1.08

Relaxed Sampling

DARE 2.01 1.84 1.35 1.44 2.16 2.02 1.00 0.35
SFT 2.08 2.03 2.02 1.61 2.28 2.20 2.06 0.93
WordKD 1.97 1.87 1.48 1.28 2.15 2.08 1.23 0.00
TVDKD 2.00 1.98 1.68 1.29 2.30 2.21 1.59 0.00
SeqKD 2.13 2.08 1.93 1.56 2.19 2.14 2.01 0.78
AtSpeed-S 2.23 2.16 2.11 1.65 2.41 2.33 2.16 1.02
AtSpeed-R 2.24 2.22 2.14 1.64 2.44 2.38 2.15 0.95

Goodreads
Verification Method WS@3 WS@5 WS@10 WS@20 AS@3 AS@5 AS@10 AS@20

Strict Top-K

DARE 1.30 1.32 1.44 1.75 1.00 1.00 1.00 1.00
SFT 1.83 1.81 2.17 2.46 2.04 1.98 1.72 1.07
WordKD 1.83 1.92 2.07 2.38 2.00 1.96 1.58 1.00
TVDKD 1.89 1.93 2.17 2.46 2.07 1.97 1.70 1.07
SeqKD 1.82 1.89 2.19 2.48 2.00 1.96 1.73 1.08
AtSpeed-S 2.25 2.26 2.20 2.48 2.32 2.18 1.81 1.08
AtSpeed-R 2.11 2.07 2.20 2.49 2.24 2.09 1.80 1.12

Relaxed Sampling

DARE 1.84 1.83 1.35 1.43 2.06 2.02 1.00 0.35
SFT 2.15 2.09 1.70 1.91 2.27 2.08 1.01 0.10
WordKD 2.01 2.04 1.68 1.92 2.15 2.05 1.00 0.15
TVDKD 2.27 2.22 1.71 2.02 2.36 2.18 1.03 0.25
SeqKD 1.90 1.96 1.66 1.85 2.08 2.01 1.00 0.02
AtSpeed-S 2.18 2.13 1.71 1.93 2.28 2.12 1.02 0.17
AtSpeed-R 2.45 2.39 1.77 2.36 2.50 2.32 1.10 0.87

compared to the target LLM’s top-K results (comparable performance on AtSpeed-S, AtSpeed-R
and “Average” line), which is consistent with the results in Table 1. This also meets our expectations
since the sampling-based verification ensures the approximately equivalent distribution between the
SD output and target LLM output under sampling-based generation. We calculate the average over
all methods for comparison because we care about how relaxed sampling verification affects the
recommendation accuracy. In other words, baseline draft models are also expected to show limited
ranking performance drop even if they are less aligned with the target LLM and have a relatively
low speedup (e.g., SFT on Beauty). 3) Compared to NDCG, the Recall under relaxed sampling
verification usually achieves comparable or even better values than that of the target LLM. This is
reasonable since this work aims to align the top-K sequence distribution between the draft model and
the target LLM. We emphasize the top-K drafted sequence to be accepted with a higher acceptance
rate (i.e., a high recall of topK sequences), which does not explicitly require the draft model to
distinguish the ranking between top-K sequences (potentially lead to relatively limited performances
in terms of NDCG). Nonetheless, it is worth pursuing the non-trivial explicit probability ordering
during alignment, which we consider leaving for further exploration in future work.

Additional Results on MovieLens-1M9 and Goodreads Datasets10. To evaluate the generalization
ability of AtSpeed across different domains, we compare our proposed method with baselines on
the MovieLens-1M and Goodreads datasets. The results are presented in Table 6. From the results,
we can observe that 1) AtSpeed-S and AtSpeed-R outperforms baselines in most cases under strict
top-K verification and relaxed sampling verification, respectively. This validate the effectiveness of
our proposed method on diverse datasets and is consistent with the observations on Amazon Beauty
and Games (see Table 1). 2) The relaxed sampling verification generally shows superior speedup
compared to strict top-K verification when K = 3, 5, while yields inferior speedup when K is
large (e.g., K = 20 on MovieLens-1M and Goodreads). One possible reason is that the item size is
relatively small on the two datasets (3, 017 movies and 4, 667 books) compared to Beauty (12, 035
products) and Games (17, 332 products), which might results in long-tailed draft distribution, where

9https://grouplens.org/datasets/movielens/1m/.
10https://www.kaggle.com/datasets/bahramjannesarr/goodreads-book-datasets-10m.
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topK valid sequences have overwhelmingly high probabilities (i.e., q ≥ p), thus leading to a high
rejection probabilities.

Speedup of Tree-based Attention. To analyze the speedup effect of tree-based attention, we
instantiate it on the standard LLM decoding with beam search, where each decoding step will utilize
the tree-based attention in the LLM forward process. We compare the beam search with and without
tree-based attention and report the results in Figure 5 (a). As shown in the figure, we can find that the
utilization of tree-based attention indeed exhibits an acceleration effect, corroborating the efficacy of
our method. Furthermore, as the draft beam size N grows larger, the speedup of tree-based attention
becomes higher. This enhancement is attributed to the substantial reduction in repeated calculations
of the same prefix shared across different beam sequences.
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Figure 5: (a) Speedup effect of tree-based attention on Beauty. (b) Performance of AtSpeed on
varying hyper-parameters (alignment strength α) on Beauty.

Utilization of Beam Sequences from All Steps. Table 7 shows inference and training efficiency
comparison between AtSpeed training with and without additional data generated from beam search
results on diverse steps. From the table, it is observed that incorporating data from diverse generating
steps usually enhances the speedup and accept steps, which is attributed to the additional alignment
of top-K sequences across different steps. Nevertheless, using additional data could incur increased
training time and storage cost. Specifically, utilizing a larger dataset necessitates greater storage
capacity and extends the training duration. Despite these additional costs, the marginal improvement
in performance is not substantial, leading to a low cost-effectiveness ratio. Therefore, we should
carefully consider the balance between the benefits of enhanced alignment against the increased
training resource burden.

Table 7: Comparison between AtSpeed with and without additional training data regarding decoding
efficiency, training time efficiency, and storage efficiency. “w/ AD” denotes AtSpeed trains the draft
model with additional data generated from different steps.

Verification Method WS@10↑ WS@20↑ AS@10↑ AS@20↑ Time Cost (h)↓ Storage Cost (GB)↓

Strict Top-K AtSpeed-S 1.87 1.84 1.64 0.57 2.56 14.68
AtSpeed-S w/ MD 6661.87↑0.00 6661.66↓0.18 6661.60↓0.04 6660.65↑0.08 6664.10↑1.54 666628.09↑13.41

Relaxed Sampling AtSpeed-R 2.09 2.44 2.01 1.61 2.63 14.68
AtSpeed-R w/ MD 6662.16↑0.07 6662.42↓0.02 6662.08↑0.07 6661.65↑0.04 6663.00↑0.37 666628.09↑13.41

Hyper-parameter Analysis. 1) Effect of alignment strength α. Figure 5(b-c) presents the results
indicating the impact of alignment strength on AtSpeed-R. As the value of α increases, the overall
trend of accept steps exhibits an upward trajectory from 0.1 to 0.9, which validates the necessity of
alignment to improve the performance. Nevertheless, compared to AtSpeed-S (Figure 4(b-c)), we
can find that only extremely large α (e.g., 1) would hurt the performance of AtSpeed-R while setting
α to 0.7 for AtSpeed-S already cause a performance drop. We suspect the different behaviors are
due to the different scales between LAlign-S and LAlign-R. Specifically, given the sequence distribution
from draft model q and that from target LLM p, we have RKLD q log q

p in AtSpeed-S and TVD
|q−p|

2 in AtSpeed-R to align the two models. When sequence probability q becomes small as the
sequence length increases, q

p becomes very large. It is possible for AtSpeed-S to give a larger loss

value compared to AtSpeed-R (i.e., |p−q|
2 ). Therefore, for the same α < 1, the strength that is too

large for AtSpeed-S might still benefit alignment for AtSpeed-R.
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Figure 6: Performance of AtSpeed with different draft length γ on Beauty.

Figure 7: Comparison of the time cost ratio between the prefilling and decoding. The time cost of
prefilling is the same across different methods.

2) Effect of draft length γ. Figure 6 presents the impact of varying γ on the performance of
AtSpeed. Despite acceptance generally increases with γ, speedup does not consistently improve with
γ. The trend of speedup in relation to γ is influenced by draft beam size parameter N . Specifically,
when N is small, speedup tends to increase with γ; conversely, when N is large, speedup tends to
decrease with γ. This variation is primarily attributed to the computational overhead during the draft
phase, which escalates with larger beam size, thereby diminishing the acceleration benefits. The key
determinant of the draft phase’s computational cost is the constraint search process.

Case Study. As shown in Figure 7, our proposed methodology achieves a significant reduction
in decoding time. Since the prefilling time is the same between target LLM with and without SD,
AtSpeed boosts the LLM decoding by reducing the percentage of decoding by 58% (N=1), 37%
(N=10), and 23% (N=20).
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