

000 001 002 003 004 005 006 DA-MERGELORA: HYPERNETWORK-BASED LORA 007 MERGING FOR FEW-SHOT TEST-TIME DOMAIN ADAP- 008 TATION 009 010 011

012 **Anonymous authors**
013 Paper under double-blind review
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Few-shot Test-Time Domain Adaptation (FSTT-DA) seeks to adapt models to novel domains using only a handful of unlabeled target samples. This setting is more realistic than typical domain adaptation setups, which assume access to target data during source training. However, prior FSTT-DA approaches fail to effectively leverage source domain-specific knowledge, relying on shallow batch normalization updates, prompt-based methods that treat the model as a black box, or ensembling strategies that do not capture cross-domain relationships. To address these limitations, we introduce a new FSTT-DA framework that integrates LoRA fine-tuning with model merging. In our approach, separate LoRA modules are fine-tuned on CLIP’s vision encoder for each source domain. Since LoRA modifies only a small fraction of the model’s parameters, it retains the base model’s generalized knowledge while internally learning domain-specific features. To adapt the learned knowledge to a specific target domain, we propose a hypernetwork trained via meta-learning that generates per-column merging factors to combine LoRA modules. Given a small batch of target images, the hypernetwork produces merging weights that fuse source LoRA modules into a single adapted representation. Our results demonstrate state-of-the-art performance across various domain adaptation datasets. Our source code and trained models will be available upon acceptance of the paper.

1 INTRODUCTION

Machine learning models typically assume that training and test data are identically distributed; when the test distribution differs (domain shift), performance degrades (Wang et al., 2022; Zhou et al., 2022). Test-Time Adaptation (TTA) addresses domain shift by adapting a model at inference time, typically operating in either an offline or online mode. In the offline setting, the model is given a large corpus of unlabeled target data and performs multi-step unsupervised adaptation before inference. In the online setting, the model receives a stream of target samples and updates itself incrementally, often on a per-sample or per-mini-batch basis, throughout deployment (Wang et al., 2021). Both modes assume access to many target samples and allow repeated adaptation steps.

In contrast, Few-Shot Test-Time Domain Adaptation (FSTT-DA) assumes that the model receives only a single small batch of unlabeled target images at deployment and must perform a one-shot adaptation step before processing the entire target domain, with no further updates (Wu et al., 2024b). In this setting, the model is trained on labeled data from multiple source domains during development, but the target domain remains completely unseen until test time and is available only as a small unlabeled batch for adaptation. This differs from typical multi-source domain adaptation (Peng et al., 2019), which assumes access to the unlabeled target domain during source training for alignment or distribution matching.

FSTT-DA naturally arises in real applications where data are limited, inference-time overhead must be minimal, or adaptation using target data is restricted by privacy or safety constraints. For example, medical imaging models deployed in new hospitals face domain shifts; however, regulations can prevent iterative or large-scale adaptation using patient data (Bandi et al., 2018). Likewise, robots entering novel environments typically receive only a handful of initial observations before they must

begin downstream tasks. FSTT-DA is therefore a practical yet more challenging setting than typical TTA.

This setting posing two key difficulties: **(CI)** extracting domain-specific cues from diverse source domains without harming cross-domain generalization, and **(CII)** transferring that knowledge to a new target domain under severe data and label scarcity. Despite recent progress, current FSTT-DA methods remain limited. BatchNorm-based adaptation, MABN (Wu et al., 2024b), is efficient but restricted to re-estimating BatchNorm statistics and affine parameters; with small test batches, these estimates become noisy and lead to unstable transfer. Meta-DMoE (Zhong et al., 2022) employs ensemble/distillation strategies to train multiple source-domain experts via a teacher–student pipeline, incurring substantial compute, scaling poorly with the number of sources, and limiting cross-domain sharing. Prompt-based approaches (Chi et al., 2024; 2025) treat the backbone model as a black box and adjust only external prompts, leaving internal representations fixed and restricting knowledge transfer. As a result, existing methods make shallow updates, scale poorly, or restrict knowledge sharing, and ultimately fall short of the two key requirements **(CI–CII)**.

To overcome **(CI)**, we draw inspiration from recent work showing that inserting lightweight low-rank adapters (LoRA) (Hu et al., 2022) in parallel to model weights can effectively capture domain-specific information (Liu et al., 2024). We attach separate sets of LoRAs to a frozen CLIP backbone to model knowledge from multiple source domains. This design provides more expressive adaptation than shallow BatchNorm updates (Wu et al., 2024b) and allows internal knowledge steering, unlike black-box prompting methods such as VDPG (Chi et al., 2024) and L2C (Chi et al., 2025). Moreover, unlike ensemble methods that require a full model per source domain, our approach enables cross-domain knowledge sharing while retaining the generalization of the base model.

To address **(CII)**, we adopt parameter-space model merging to integrate domain-specific LoRA modules into a single model adapted to the target domain. Unlike prompt-based methods (Chi et al., 2024; 2025), merging updates internal weights and aligns both low- and high-level features. Compared to ensembling (Zhong et al., 2022), it avoids running multiple experts and produces one model with fixed memory and a single forward pass. Beyond efficiency, merging promotes direct knowledge sharing across domains and avoids the instability of retraining or distillation in the few-shot setting.

To further motivate our approach, parameter-space model merging has been successfully applied in several other areas. One line of work merges task-specific models into a single multi-task generalist model (Yadav et al., 2023; Jin et al., 2022; Matena & Raffel, 2022; Marczak et al., 2025; Stoica et al., 2024; Gargiulo et al., 2025). Unlike these approaches, which aim to unify different tasks into one model, our goal is to create a specialized domain-specific model tailored to a novel visual domain. Another line of work merges pairs of target LoRAs at test time to produce mixed style-content LoRAs in diffusion models (Shenaj et al., 2024; Shah et al., 2024). In contrast, our setting has no target LoRA available; instead, we must synthesize a domain-specific LoRA by combining source-domain LoRAs guided by only a few unlabeled target samples. Unlike diffusion-based hypernetwork approaches, our hypernetwork accepts two modalities: the LoRA models (as in prior work) and a batch of target images that guide the merge. Model merging has also been explored for NLP task adaptation (Wu et al., 2024a; Huang et al., 2024; Akiba et al., 2025), where each LoRA corresponds to a different supervised task (QA, translation, NLI, etc.). Our setting keeps the task fixed (classification with the same label space) while the input distribution shifts across visual domains. Domain adaptation requires solving the same task under new visual styles and environments, fundamentally differing from previous task-merging scenarios and motivating our domain-driven merging strategy.

To this end, we introduce **DA-MergeLoRA**, an FSTT-DA framework that reformulates adaptation as parameter-space merging. For each source domain, we fine-tune a separate LoRA module on the CLIP vision encoder (Radford et al., 2021), while keeping the base parameters frozen to preserve cross-domain generalization. At test time, given a few unlabeled target images, a hypernetwork predicts merging weights to combine the source-domain LoRAs into a single target LoRA. The hypernetwork is conditioned on both target images and the pool of source LoRA weights, and is trained in a meta-learning fashion to learn effective merging policies. Empirically, our approach achieves state-of-the-art results across multiple FSTT-DA benchmarks, including a **+1.24%** gain in average accuracy on DomainNet, **+2.70%** on Camelyon17, and **+11.40%** in worst-case accuracy on FMoW.

108 Our work makes the following contributions: (i) Novel FSTT-DA framework: we formulate FSTT-
 109 DA as a parameter-space merging problem, yielding a single adapted model. (ii) **Hypernetwork**
 110 **architecture**: We introduce a meta-learned hypernetwork that generates per-column merge weights
 111 to combine multiple source LoRA modules into a specialized, domain-specific target model, con-
 112 ditioned on a small batch of unlabelled target data, enabling effective FSTT-DA. (iii) State-of-
 113 the-art results: Our approach achieves SOTA on the DomainNet and WILDS benchmarks, em-
 114 pirically demonstrating that parameter-space merging is an effective approach for FSTT-DA. To-
 115 gether, these contributions move beyond prior FSTT-DA methods (batch normalization, prompt-
 116 based, and distillation ensembles) toward modular internal source-domain representations and an
 117 adaptive parameter-space mechanism for effective test-time adaptation.

118 2 RELATED WORK

120 **Test-time domain adaptation.** Distribution shift between training and test data often degrades per-
 121 formance when models are deployed to new domains (Csurka et al., 2017). Domain adaptation
 122 algorithms address this by learning features shared between source and target domains, enabling
 123 better generalization (Long et al., 2015; Ganin et al., 2016; Bousmalis et al., 2016). Test-time adap-
 124 tation (TTA) considers the setting where no target-domain data is available during model develop-
 125 ment (Wang et al., 2021). After deployment to a new domain, the model may adapt in an offline
 126 manner, where the model is trained on all unlabelled target data before inference, or in an online
 127 manner, where the model is continually adapted to streaming test data (Liang et al., 2025). Common
 128 TTA strategies include entropy minimization (Wang et al., 2021; 2024), pseudo-labels (Liang et al.,
 129 2020), auxiliary tasks (Sun et al., 2020; Liu et al., 2022), and contrastive learning (Chen et al., 2022).

130 **Few-shot test-time domain adaptation.** In FSTT-DA, models adapt to unseen domains using only
 131 a batch of unlabeled samples at inference (Zhong et al., 2022). Prior works approach this challenge
 132 in different ways. Meta-DMoE distills knowledge from a mixture of source-domain experts to a new
 133 target model via a meta-learned Transformer aggregator (Zhong et al., 2022). MABN adapts batch-
 134 normalization affine parameters using a self-supervised auxiliary branch (Wu et al., 2024b). VDPG
 135 generates domain-specific visual prompts from a knowledge bank conditioned on target samples
 136 (Chi et al., 2024). L2C enhances VDPG by attaching a parallel branch to CLIP, learning directly
 137 from dataset-specific input knowledge and text semantics (Chi et al., 2025).

138 **Foundation models.** Recent FSTT-DA methods, VDPG (Chi et al., 2024) and L2C (Chi et al.,
 139 2025), use CLIP as a frozen backbone. CLIP is a vision–language model whose image and text
 140 encoders are trained using contrastive learning so that paired images and captions have high cosine
 141 similarity. Classification then selects the prompt “a photo of a <classname>” with the highest
 142 similarity (Radford et al., 2021). Vision–language models are appealing for domain adaptation
 143 because of their strong out-of-distribution generalization. However, prior research shows that full
 144 fine-tuning of CLIP can degrade its generalization capabilities (Wortsman et al., 2022b), motivating
 145 parameter-efficient methods such as prompt tuning (Chi et al., 2024) and LoRA (Hu et al., 2022),
 146 which keep the backbone frozen while learning domain-specific features. Similar to VDPG and L2C,
 147 our work builds on CLIP, but differs by encoding domain knowledge directly in LoRA modules,
 148 enabling richer and more flexible adaptation than prompt- or batch normalization-based approaches.

149 **Model merging.** Model-merging methods aim to combine multiple task-specific models into a
 150 single general-purpose model while mitigating task interference. Examples include parameter av-
 151 eraging (Wortsman et al., 2022a; Choshen et al.), Task Arithmetic (Ilharco et al., 2022), Fisher
 152 Merging (Matena & Raffel, 2022), RegMean (Jin et al., 2022), and structured merging methods
 153 such as TIES (Yadav et al., 2023), which resolves sign conflicts and averages only aligned updates.
 154 Several recent advances further improve alignment and reduce interference: KnOTS (Stoica et al.,
 155 2024) applies singular value decomposition (SVD) to concatenated LoRA updates before merging
 156 task-aligned components; Iso-C / Iso-CTS (Marczak et al., 2025) use SVD and isotropic scaling to
 157 identify shared and task-specific directions; and TSV-M (Gargiulo et al., 2025) extracts low-rank
 158 task directions via SVD and orthogonalizes them across tasks. These approaches all aim to pro-
 159 duce a single multi-task model that preserves performance across the original training tasks. In
 160 contrast, our method targets few-shot test-time domain adaptation, where the objective is to gener-
 161 ate a domain-specialized model for a previously unseen target domain. Merging in prior work is
 162 unconditional (merge rules do not depend on target data) whereas our merging is conditional and
 163 meta-learned, driven by a target-domain embedding extracted from a few unlabeled target images.

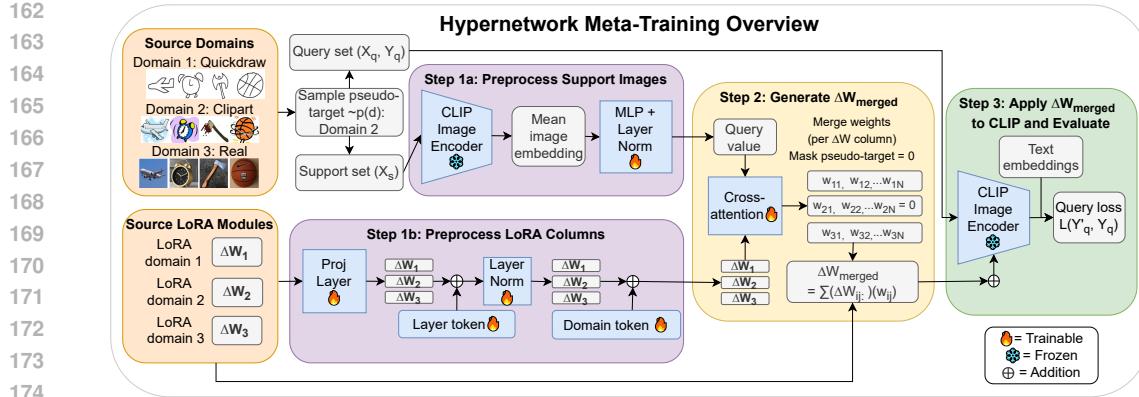


Figure 1: Overview of our hypernetwork training procedure – A LoRA module is trained on each source domain using a frozen CLIP backbone. Afterwards, a meta-trained hypernetwork learns to generate merge weights to combine the columns from each LoRA ΔW , conditioned on pseudo-target support images. The merged LoRA model is applied to the frozen backbone and evaluated with pseudo-target query images and labels. LoRA columns from the pseudo-target domain are masked during training to simulate adaptation to unseen domains.

LoRA Merging. LoRA fine-tuning inserts low-rank adapters into frozen foundation models, enabling efficient adaptation with fewer trainable parameters. LoRA merging has recently been applied across multiple domains (Huang et al., 2024; Shenaj et al., 2024; Wu et al., 2025; Shao et al., 2025; Shu et al., 2025; Li et al., 2025; Lee et al., 2024; Charakorn et al., 2025). In diffusion models, LoRA.rar (Shenaj et al., 2024) and ZipLoRA (Shah et al., 2024) merge pairs of content and style LoRAs for personalized image generation, while MoLE (Wu et al., 2024a) trains a gating network to combine multiple content-specific LoRAs into a mixed-content adapter. These approaches all assume that target LoRA modules already exist and focus on fusing them coherently. In contrast, we assume no target LoRA is available; our method must construct a target LoRA by merging source-domain LoRAs, guided only by a few unlabeled target images. Several recent works explore LoRA merging and LoRA generation in NLP and vision. LoRAHub (Huang et al., 2024) learns to merge LoRA modules for NLP task transfer but requires few-shot labeled examples, whereas our adaptation uses only unlabeled target data. SD-LoRA (Wu et al., 2025) incrementally incorporates new LoRA modules for continual learning by decoupling their direction and magnitude. Text-to-LoRA (Charakorn et al., 2025) uses a hypernetwork to generate LoRA weights from natural-language task descriptions. ICM-Fusion (Shao et al., 2025) fuses LoRA modules using a VAE-based latent representation, and RegCL (Shu et al., 2025) merges LoRA adapters for continual domain-specific segmentation. These diverse successes from other research areas further motivate exploring LoRA merging within the FSTT-DA setting.

Meta-learning. Meta-learning is a training paradigm that enables a model to quickly adapt to new tasks (Finn et al., 2017). Previous FSTT-DA methods, such as VDPG (Chi et al., 2024), use meta-learning to quickly adapt to novel domains using a prompt generator. Following a similar approach, we use meta-learning to train the hypernetwork so it can rapidly adapt to the target domain.

3 METHOD

Problem setting. In this work, we follow the same problem setting as previous FSTT-DA methods (Zhong et al., 2022; Chi et al., 2024; 2025). The training set consists of N labeled source domains $\mathcal{D}_s = \{\mathcal{D}_s^n\}_{n=1}^N$, where each source domain $\mathcal{D}_s^n = (x_s, y_s)^n$ contains image-label pairs (x, y) . The test set includes M target domains $\mathcal{D}_t = \{\mathcal{D}_t^m\}_{m=1}^M$, where each target domain $\mathcal{D}_t^m = (x_t)^m$ provides only unlabeled images x_t . We assume a distribution shift exists between any source and target domain, while all domains share the same label space. FSTT-DA trains exclusively on the source domains, without access to target data. At test time, when an unseen target domain \mathcal{D}_t^m is encountered (deployed in a new environment), the model must adapt to this domain using only a few-shot set of unlabeled samples. The adapted model is then evaluated on the entire target domain.

216 **Overview.** In this work, we develop a hypernetwork that generates merging factors to combine
 217 LoRA modules, conditioned on a batch of target images. Sec. 3.1 outlines the training of individual
 218 LoRA modules. Sec. 3.2 presents the architecture of the LoRA hypernetwork, which produces per-
 219 column merging weights. Sec. 3.3 details the meta-learning setup used to train the hypernetwork
 220 and the inference procedure.

221 **3.1 LORA MODULE TRAINING**

224 To capture domain-specific knowledge, a LoRA model is trained on each source domain using CLIP
 225 (Radford et al., 2021). LoRA adapts the vision encoder by adding trainable low-rank matrices to its
 226 attention and projection weight matrices (Hu et al., 2022). Instead of fine-tuning the weight matrix
 227 $W \in \mathbb{R}^{d \times k}$, LoRA replaces the weight update with a low-rank approximation, learned through two
 228 smaller matrices A and B :

$$W' = W + \Delta W, \quad \Delta W = BA \quad (1)$$

229 where $A \in \mathbb{R}^{r \times k}$ and $B \in \mathbb{R}^{d \times r}$ with $r \ll \min(d, k)$. The rank r controls the trade-off between
 230 capacity and efficiency. During training, only A and B are updated, while W remains frozen. For
 231 an input h , the forward pass becomes:

$$h' = Wh + BAh = Wh + \Delta Wh. \quad (2)$$

235 The backbone CLIP model is frozen throughout training, and only the LoRA parameters are updated.
 236 Before training, class-specific text prompt embeddings (e.g., “a photo of a <classname>”)
 237 are precomputed using CLIP’s text encoder. During training, the model uses the cross-entropy loss
 238 to learn to select the prompt embedding with the highest cosine similarity to the LoRA-modified
 239 image embedding.

240 **3.2 LORA MERGING HYPERNETWORK**

242 A hypernetwork is a neural network that generates the weights or parameters of another network
 243 (Shenaj et al., 2024). Here, we use a hypernetwork that learns to generate merging weights to
 244 combine the columns of LoRA matrices ΔW trained on different source domains. It accepts as
 245 input the batch of target images and the LoRA columns from the different source domains. The
 246 hypernetwork uses cross-attention to find the LoRA columns from the domains which correlate best
 247 with the target domain images.

248 **Target image preprocessing:** Before being used for cross-attention, the batch of target domain
 249 images is preprocessed. The images, X_d , are passed through the frozen CLIP backbone to generate
 250 embeddings, and the mean embedding, e_d , is found:

$$e_d = \text{mean}(\text{EncodeImage}(X_d)) \quad (3)$$

254 The mean embedding is then passed through a small multi-layer perceptron (MLP) network to
 255 reduce its dimension to \mathbb{R}^{128} and extract domain-specific information. The MLP consists of two
 256 linear layers with a GELU activation and hidden dimension size of \mathbb{R}^{256} . The output from the MLP
 257 is then passed through a LayerNorm (LN) to normalize the output:

$$e'_d = \text{LN}(\text{MLP}(e_d)) \quad (4)$$

260 **LoRA column preprocessing:** Before being used for cross-attention, the LoRA columns are also
 261 preprocessed. Firstly, they are passed through a projection layer, which maps their input dimension
 262 to a uniform dimension of \mathbb{R}^{128} . Additionally, we add three content tokens to the columns to help the
 263 hypernetwork learn more fine-grained and context-aware merging weights: (i) Layer index token:
 264 a learnable embedding $u_\ell \in \mathbb{R}^{128}$ representing the transformer layer ℓ the column came from; (ii)
 265 Sub-layer type token: a learnable embedding $v_t \in \mathbb{R}^{128}$ indicating whether the column comes from
 266 an attention (qkv) or projection (proj) site of the transformer layer. These two tokens act as
 267 positional embeddings. (iii) Domain token: for each source domain d , a learnable embedding q_d
 268 is projected to \mathbb{R}^{128} and added after normalization, providing a lightweight bias indicating which
 269 domain the column came from:

$$c^* = \text{LN}(\tilde{c} + u_\ell + v_t) + \alpha P_{\text{dom}} q_d, \quad (5)$$

270 Here, $\tilde{c} \in \mathbb{R}^{128}$ is the projected LoRA column, $P_{\text{dom}} \in \mathbb{R}^{128 \times E'}$ projects the domain embedding
 271 into the 128-dimensional space, and α is a small scaling factor that controls the influence of the
 272 domain token. The resulting $c^* \in \mathbb{R}^{128}$ is the final context-enriched column representation used in
 273 cross-attention.

274 **Cross-attention:** Cross-attention is then used to produce the merge weights, where the query is the
 275 embedded target domain representation and the keys are the processed LoRA columns:
 276

$$277 \quad 278 \quad 279 \quad w_{\ell,t,c}^{(k)} = \text{softmax}_k \left(\frac{Q K_{\ell,t,k,c}^\top}{\tau} \right), \quad (6)$$

280 Here, Q is the projected target-domain embedding, $K_{\ell,t,k,c}$ is the key vector for the LoRA column
 281 at transformer layer ℓ , site t , domain k , and column index c , and τ is a temperature scaling factor.
 282 The softmax is taken along the domain axis k , producing normalized per-domain weights for each
 283 column.

284 After the merge weights are generated using the hypernet, the LoRA matrices ΔW from the different
 285 source domains are combined together:
 286

$$287 \quad 288 \quad 289 \quad (\Delta W_{\ell,t}^{\text{merge}})_{:,c} = \sum_{k=1}^K w_{\ell,t,c}^{(k)} (\Delta W_{\ell,t}^{(k)})_{:,c}, \quad c = 1, \dots, C_{\ell,t}.$$

290 Here, $\Delta W_{\ell,t}^{(k)}$ denotes the LoRA update at transformer layer ℓ and site $t \in \{\text{attn}, \text{proj}\}$ for source
 291 domain k . $w_{\ell,t,c}^{(k)}$ is the merging weight for column c . $C_{\ell,t}$ is the number of columns at that (ℓ, t) site.
 292 K is the number of source domains. We follow LoRA.rar (Shenaj et al., 2024) and use per-column
 293 merging, rather than per-model or per-layer merging, to allow for fine-grained feature-level merging.
 294 After each merged ΔW is computed, they are applied to the frozen CLIP model to generate the new
 295 merged LoRA model.
 296

297 3.3 HYPERNETWORK META-TRAINING AND INFERENCE

298 **Training:** The hypernetwork is trained using a meta-learning setup, similar to the approach pro-
 299 posed in (Chi et al., 2024). At each training iteration, one source domain is randomly selected as
 300 the pseudo-target domain. The LoRA columns of this pseudo-target model are masked with zeros
 301 before being input to the hypernetwork, while all other source LoRA models are provided as inputs.
 302 From the pseudo-target domain, one batch of images is randomly selected as the support set and
 303 another as the query set. The support set conditions the hypernetwork: its average image embed-
 304 ding is passed to the hypernetwork along with the LoRA columns from the other source domains.
 305 The hypernetwork then outputs weights for merging the LoRA columns from different source do-
 306 mains. The merge weights of the pseudo-target domain are set to zero. This simulates the process
 307 of encountering novel domains at test time. The merged LoRA matrices are applied to the base
 308 CLIP model, and the new LoRA model is evaluated using the images and labels from the query set.
 309 Cross-entropy is used as the loss; the merged LoRA model selects the precomputed text prompt with
 310 the highest similarity to the adapted target image embedding as the predicted label. Gradients flow
 311 end-to-end from the predicted outputs of the merged LoRA model back to the hypernetwork. All
 312 parameters are frozen except those of the hypernetwork. The training algorithm is summarized in
 313 Algorithm 1. Fig. 1 shows the overall training process and hypernetwork architecture.

314 **Inference:** At test time, a batch of images from the target domain and all source LoRA modules
 315 are passed to the hypernetwork. The target domain is novel and completely excluded from the
 316 hypernetwork training process. The hypernetwork outputs the merging weights, which are used to
 317 combine the source LoRA modules into a new model optimized for the target domain. The adapted
 318 model is then evaluated on the entire target domain.
 319

320 4 EXPERIMENTS

321 **Datasets.** We evaluate on three WILDS (Koh et al., 2021) benchmark classification datasets: iWild-
 322 Cam (Beery et al., 2021), FMoW (Christie et al., 2018), and Camelyon17 (Bandi et al., 2018).

324

Algorithm 1: Overview of our hypernetwork meta-training algorithm.

325

Input: \mathcal{D}_s : source domains; $\{\Delta W^{(k)}\}_{k=1}^K$: frozen LoRA weight matrices from the K source domains; frozen base weights W (CLIP); trainable hypernetwork \mathcal{H} ; step size α

326

Output: Trained hypernetwork \mathcal{H}

327

Randomly initialize θ (params of \mathcal{H})

328

while not converged **do**

329

```

    Sample pseudo-target domain index  $d \sim \{1, \dots, K\}$ 
    Sample support/query from domain  $d$ :  $(X_{S_d}, Y_{S_d}), (X_{Q_d}, Y_{Q_d})$ 
    Compute support embedding with frozen CLIP:  $e_{S_d} \leftarrow \text{mean}(\text{EncodeImage}(X_{S_d}))$ 
    Set pseudo-target LoRA columns to zero:  $\Delta W^{(d)} \leftarrow 0$ 
    Generate per-column merge weights using the hypernet:  $w \leftarrow \mathcal{H}(e_{S_d}, \{\Delta W^{(k)}\}_{k=1}^K)$ 
    foreach layer,  $\ell$ , layer type  $t$ , and column  $c$  do
         $(\Delta W_{\ell,t}^{\text{merge}})_{:,c} = \sum_{k=1}^K w_{\ell,t,c}^{(k)} (\Delta W_{\ell,t}^{(k)})_{:,c}$ 
    end
    Apply merged LoRA matrices to base CLIP model:  $W' \leftarrow W + \Delta W^{\text{merge}}$ 
    Evaluate on query set with merged model:  $\hat{Y}_{Q_d} \leftarrow f_{W'}(X_{Q_d})$ 
    Calculate loss:  $\mathcal{L} \leftarrow \text{CE}(\hat{Y}_{Q_d}, Y_{Q_d})$ 
     $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}$ 

```

end

340

341

342

These datasets consist of real-world data with distribution shift. We use the official WILDS evaluation metrics for each dataset (average accuracy, F1-score, and worst-case (WC) accuracy) and the official train/test-OOD splits. We also evaluate on DomainNet (Peng et al., 2019), which contains roughly 600k images from 345 classes across six domains. We use the standard leave-one-out protocol for DomainNet, selecting one domain for testing and the remainder as source domains. We follow prior FSTT-DA work (Chi et al., 2024; 2025) and evaluate on the WILDS and DomainNet benchmarks. As our method is designed for classification, we exclude the PovertyMap regression benchmark and leave extending to regression tasks for future work. For all datasets, images are preprocessed using CLIP’s standard train and test transforms.

351

The iWildCam dataset contains 243 source domains, some with very few images. Following Meta-DMoE (Zhong et al., 2022), we reduce them to 10 training domains by clustering. Image embeddings are extracted using the frozen CLIP ViT-B/16 model, averaged per domain, and clustered with K-means. IWILDCam also exhibits class imbalance, with many domains containing classes exclusive to that domain. This makes the task more challenging, requiring both domain and class merging. To address this, we do not mask the pseudo-target domain during meta-training, providing a stronger learning signal and ensuring all classes are represented.

358

Baselines: We compare our results against common CNN-based (Sun & Saenko, 2016; Arjovsky et al., 2019; Zhang et al., 2021; Zhong et al., 2022; Wu et al., 2024b; Xu et al., 2020; Blanchard et al., 2011; Nam et al., 2021) and CLIP-based (Chi et al., 2024; 2025; Zheng et al., 2022; Cha et al., 2022) domain adaptation methods, which include recent FSTT-DA algorithms (MABN, Meta-DMOE, VDPG, L2C). As well, we compare against zero-shot CLIP (no fine-tuning).

363

Training details. We use OpenAI’s pretrained CLIP ViT-B/16 backbone (Radford et al., 2021). All LoRA models use rank 16, $\alpha = 32$, and dropout = 0. Learning rates are 5×10^{-4} for LoRA fine-tuning, and either 1×10^{-5} or 5×10^{-5} for hypernetwork training, with a batch size of 16 for both query and support sets. Models are trained for between 1 and 5 epochs. The text prompts used for training are dataset-specific, following L2C’s templates (Chi et al., 2025); the mean embedding from the text prompts is used as the final text embedding. Table 3 in Appendix A.2 summarizes all hyperparameters per dataset and training details.

390

391

4.1 MAIN RESULTS

393

Table 1b and Table 1a present the performance of our hypernetwork on DomainNet and WILDS, respectively.

396

397

DomainNet. Compared to the state-of-the-art (SOTA) ViT-B/16 FSTT-DA method L2C (Chi et al., 2025), our approach improves average accuracy on DomainNet by 1.24%. Our model outperforms all methods across all domains except “quickdraw,” where it performs slightly lower (-0.83%) than

378 MIRO (Cha et al., 2022). Relative to the SOTA CNN-based architecture MABN (Wu et al., 2024b),
 379 our method improves average accuracy on DomainNet by 16.94%.

380 **WILDS.** Compared to the SOTA ViT-B/16 FSTT-DA method L2C (Chi et al., 2025), our approach
 381 improves average accuracy by 2.80% on FMoW, 2.70% on Camelyon17, and 0.24% on iWildCam,
 382 along with a 11.36% gain in worst-case accuracy on FMoW. Our model outperforms L2C on all
 383 metrics except the iWildCam F1-score, where it performs slightly worse (−1.58%). Relative to
 384 the SOTA CNN-based architecture MABN (Wu et al., 2024b), our method improves average accu-
 385 racy by 4.40% on FMoW, 4.50% on Camelyon17, and boosts worst-case accuracy on FMoW by
 386 15.66%, while underperforming only on iWildCam. One contributing factor to the slightly weaker
 387 performance on iWildCam may be the disjoint label sets across its source domains. Our meta-
 388 training method assumes a shared label space, but many iWildCam source domains contain classes
 389 that appear in only one location. Prior work shows that domain adaptation performance degrades
 390 when label distributions diverge or when classes are domain-exclusive (Chidlovskii, 2019; Yan et al.,
 391 2017; Tan et al., 2020). Since our focus is domain adaptation, extending the framework to explicitly
 392 handle class-parameter merging is an important direction for future work.

393 4.2 ABLATION AND ANALYSES

394
 395 We conduct ablation studies on the WILDS datasets, evaluating LoRA training techniques, merging
 396 strategies (per-model, per-layer, per-column), and the impact of different architectural components.
 397 We also present the heatmaps of merge weights before and after hypernetwork training. [Additional](#)
 398 [ablations and analyses, including architecture comparisons, t-SNE visualizations, batch-size studies,](#)
 399 [qualitative examples, merge-weight vs. domain similarity correlation analysis, and computational](#)
 400 [analysis are provided in Appendix A.3.](#)

401 **Merging weight heatmaps.** To evaluate whether the hypernetwork learns meaningful merging
 402 weights, we plot heatmaps of average per-domain merging weights before and after training. [Ap-](#)
 403 [pendix A.3 Fig. 2](#) shows results for FMoW (2016 test year) and DomainNet (“sketch” target do-
 404 main). The x-axis denotes source domains (FMoW: years; DomainNet: image styles), and the
 405 y-axis denotes transformer layers. Before training, weights are nearly uniform (~ 0.09 for FMoW,
 406 ~ 0.20 for DomainNet). After training, the hypernetwork shifts weights towards domains visually
 407 similar to the target domain (later years for FMoW, “clipart” for sketch), and down-weights dissim-
 408 ilar and difficult domains (earlier years for FMoW, “quickdraw” for sketch), indicating it learns to
 409 emphasize relevant domains.

410 **LoRA training techniques.** We compare our method against four additional techniques for train-
 411 ing LoRA on the source data: (i) LoRA-universal – Train a single LoRA model on all source
 412 domains combined into one dataset. This yields a domain-invariant LoRA module, rather than
 413 domain-specific modules; (ii) LoRA-average – Combine domain-specific LoRA modules by simple
 414 parameter-wise averaging; (iii) LoRA-entropy-average – A simple few-shot method where we use
 415 a batch of target images to compute the entropy using each source LoRA model. The inverse en-
 416 tropy (normalized) is used as the merging weight, where lower entropy implies higher weight; (iv)
 417 **LoRA-TIES and LoRA-TIES-per-column** – We implement the TIES (Yadav et al., 2023) merging
 418 procedure to merge LoRA modules. We evaluate two variants: one that merges all LoRA delta
 419 matrices jointly, and one that merges individual delta columns separately (similar to our approach). We
 420 use the same hyperparameter settings recommended in the original paper: trim step K=20%, sign
 421 election using resolve = mass, and disjoint merging using merge = dis-mean. Results are shown
 422 in Table 2a. Our method outperforms the other LoRA techniques. On harder datasets (iWildCam,
 423 FMoW), simple averaging, entropy averaging, and TIES perform markedly worse than the hypernet-
 424 work (approximately ~ 20% decrease on iWildCam F1-score, and between 10% to 20% decrease
 425 on FMoW worst-case accuracy). On datasets with fewer source domains and more balanced per-
 426 domain classes (Camelyon17), simpler merging methods degrade less (~ 2% decrease), suggesting
 427 the hypernetwork excels in more complex merging situations. Our model also outperforms the uni-
 428 versal LoRA in all cases, highlighting the benefit of domain-specific knowledge.

429 **Per-model vs. per-layer vs. per-column.** Beyond merging LoRA columns, we compare two ad-
 430 dditional strategies: (i) Per-model – one merge weight per source model; (ii) Per-layer – one merge
 431 weight per layer of each source model. In the hypernetwork architecture, per-model merging av-
 erages all LoRA columns before cross-attention, while per-layer merging averages columns within
 each layer. All source models share the same architecture and training hyperparameters to ensure

432 Table 1: Evaluation of our method (DA-MergeLoRA) on the (a) WILDS datasets and (b) DomainNet
 433 dataset. The best CNN and best ViT methods are bolded separately. Results are reported as mean
 434 (standard deviation) over three trials with different random seeds. The \dagger symbol denotes the official
 435 dataset metric. Our method achieves SOTA results on two of the three official WILDS metrics and
 436 on five of the six DomainNet domains.

Method	Backbone	Clip	Info	Paint	Quick	Real	Sketch	Avg.
ERM	CNNs	58.1 (0.3)	18.8 (0.3)	46.7 (0.3)	12.2 (0.4)	59.6 (0.1)	49.8 (0.4)	40.9
Mixup (Xu et al., 2020)		55.7 (0.3)	18.5 (0.5)	44.3 (0.5)	12.5 (0.4)	55.8 (0.3)	48.2 (0.5)	39.2
CORAL (Sun & Saenko, 2016)		59.2 (0.1)	19.7 (0.2)	46.6 (0.3)	13.4 (0.4)	59.8 (0.2)	50.1 (0.6)	41.5
MTL (Blanchard et al., 2011)		57.9 (0.5)	18.5 (0.4)	46.0 (0.1)	12.5 (0.1)	59.5 (0.3)	49.2 (0.1)	40.6
SegNet (Nam et al., 2021)		57.7 (0.3)	19.0 (0.2)	45.3 (0.3)	12.7 (0.5)	58.1 (0.5)	48.8 (0.2)	40.3
ARM (Zhang et al., 2021)		49.7 (0.3)	16.3 (0.5)	40.9 (1.1)	9.4 (0.1)	53.4 (0.4)	43.5 (0.4)	35.5
Meta-DMoE (Zhong et al., 2022)		63.5 (0.2)	21.4 (0.3)	51.3 (0.4)	14.3 (0.3)	62.3 (1.0)	52.4 (0.2)	44.2
MABN (Wu et al., 2024b)		64.2	23.6	51.5	15.2	64.6	54.1	45.5
DoPrompt (Zheng et al., 2022)	ViT-B/16 IMN	67.6 (0.2)	24.6 (0.1)	54.9 (0.1)	17.5 (0.2)	69.6 (0.3)	55.2 (0.5)	48.3
Zero-shot (Radford et al., 2021)	ViT-B/16	69.9	48.2	65.4	14.5	82.3	62.5	57.1
ERM		68.0 (0.1)	22.5 (0.6)	46.5 (4.2)	18.5 (0.9)	58.7 (2.7)	52.5 (1.2)	44.4
MIRO (Cha et al., 2022)		74.9 (0.2)	37.1 (0.4)	59.8 (0.6)	18.7 (1.2)	72.2 (0.2)	61.2 (0.9)	54.0
VDPG (Chi et al., 2024)		76.3 (0.2)	49.3 (0.1)	67.8 (0.1)	17.4 (0.2)	81.5 (0.3)	66.6 (0.2)	59.8
L2C (Chi et al., 2025)		75.6 (0.1)	52.1 (0.1)	69.4 (0.1)	17.3 (0.2)	85.5 (0.1)	67.1 (0.2)	61.2
DA-MergeLoRA (ours)		76.66 (0.08)	54.49 (0.21)	70.91 (0.05)	17.87 (0.72)	85.52 (0.12)	69.17 (0.08)	62.44 (0.16)

450 (a) Evaluation of our method (DA-MergeLoRA) on the DomainNet dataset using the leave-one-out domain
 451 testing protocol.

Method	Backbone	iWildCam		Camelyon17		FMoW	
		Acc	Macro F1 \dagger	Acc \dagger	WC Acc \dagger	Acc	
ERM	CNNs	71.6 (2.5)	31.0 (1.3)	70.3 (6.4)	32.3 (1.25)	53.0 (0.55)	
CORAL (Sun & Saenko, 2016)		73.3 (4.3)	32.8 (0.1)	59.5 (7.7)	31.7 (1.24)	50.5 (0.36)	
IRM (Arjovsky et al., 2019)		59.8 (3.7)	15.1 (4.9)	64.2 (8.1)	30.0 (1.37)	50.8 (0.13)	
ARM-CML (Zhang et al., 2021)		70.5 (0.6)	28.6 (0.1)	84.2 (1.4)	27.2 (0.38)	45.7 (0.28)	
ARM-BN (Zhang et al., 2021)		70.3 (2.4)	23.7 (2.7)	87.2 (0.9)	24.6 (0.04)	42.0 (0.21)	
Meta-DMoE (Zhong et al., 2022)		77.2 (0.3)	34.0 (0.6)	91.4 (1.5)	35.4 (0.58)	52.5 (0.18)	
MABN (Wu et al., 2024b)		78.4 (0.6)	38.3 (1.2)	92.4 (1.9)	36.6 (0.41)	53.2 (0.52)	
Zero-shot (Radford et al., 2021)		14.9	9.7	50.1	14.5	16.3	
VDPG (Chi et al., 2024)	ViT-B/16	71.4 (0.2)	30.1 (0.3)	93.2 (0.3)	37.8 (0.5)	52.7 (0.3)	
L2C (Chi et al., 2025)		73.4 (0.4)	35.2 (0.3)	94.2 (0.2)	40.9 (0.4)	54.8 (0.1)	
DA-MergeLoRA (ours)		73.70 (1.49)	33.62 (1.63)	96.90 (0.14)	52.26 (0.16)	57.60 (0.14)	

463 (b) Evaluation of our method (DA-MergeLoRA) on the WILDS datasets (IWildCam, Camelyon17, and FMoW)
 464 under out-of-distribution (OOD) test conditions.

466 fair comparison. In theory, per-column merging should outperform others, because its finer granu-
 467 larity allows the hypernetwork to generate more flexible weights. However, empirical results (Table
 468 2b) show that all three strategies achieve similar performance across most datasets ($\sim 1\%$ difference
 469 across metrics), except that per-model merging underperforms on IWildCam. The weaker perfor-
 470 mance of per-column merging likely stems from two factors: (i) Source LoRA modules are trained
 471 independently on different domains, therefore columns may not be perfectly aligned. As a result,
 472 column-wise merging may combine misaligned information and thus degrade performance (Shah
 473 et al., 2024); and (ii) the single-head cross-attention hypernetwork has limited capacity to model
 474 fine-grained per-column weights. Future work could address these issues by explicitly aligning
 475 columns across source domains and employing more expressive hypernetwork architectures.

476 **Component analysis.** We remove specific components of the hypernetwork to evaluate their im-
 477 pact on performance. The components examined are: (i) Layer and layer-type tokens – we remove
 478 the learnable transformer layer ID token embeddings and layer-type (attention or projection) token
 479 embeddings appended to the LoRA columns; (ii) Domain tokens – we remove the learnable domain-
 480 specific token embeddings appended to the LoRA columns; (iii) Conditional target images (re-
 481 placed with noise) – we remove the pseudo-target and target images as inputs to the hypernetwork during
 482 training and inference, replacing them with random noise; and (iv) Conditional target images (re-
 483 placed with a trainable vector) – We remove the target-image embedding branch and replace it with
 484 a trainable vector. Instead of using pseudo-target images as the support set during training, we train
 485 a learnable query vector, which represents learning a general merging policy. Table 2c reports the
 486 results on WILDS. For IWWildCam, removing the conditional target images sharply reduces perfor-

486
 487 Table 2: Ablation experiments on the WILDS datasets. Results are reported as mean (standard
 488 deviation) over three trials with different random seeds. The \dagger symbol denotes the official dataset
 489 metric.

Method	IWildCam Acc	IWildCam Macro F1 \dagger	Camelyon17 Acc \dagger	FMoW WC Acc \dagger	FMoW Acc
LoRA-universal	72.77 (3.13)	28.88 (1.12)	89.81 (6.89)	51.02 (1.28)	55.69 (0.24)
LoRA-average	14.98 (0.19)	10.21 (0.05)	95.26 (0.12)	20.63 (0.08)	21.95 (0.11)
LoRA-entropy-average	41.89 (0.81)	12.24 (0.22)	95.28 (0.09)	21.71 (0.50)	23.15 (0.25)
LoRA-TIES	49.85 (3.25)	12.94 (0.84)	95.95 (0.18)	38.54 (1.27)	43.98 (1.06)
LoRA-TIES-per-column	51.25 (3.09)	13.44 (0.20)	95.35 (0.45)	40.34 (1.12)	45.35 (0.89)
DA-MergeLoRA (ours)	73.70 (1.49)	33.62 (1.63)	96.90 (0.14)	52.26 (0.16)	57.60 (0.14)

496 (a) Comparison of LoRA training strategies: LoRA-universal (a single LoRA model trained on all source data
 497 combined), LoRA-average (simple parameter averaging), LoRA-entropy-average (entropy-weighted averaging),
 498 LoRA-TIES (TIES merging applied to all LoRA parameters at once), LoRA-TIES-per-column (TIES
 499 merging applied to each LoRA delta column separately), and ours (hypernetwork-based merging).

Method	IWildCam Acc	IWildCam Macro F1 \dagger	Camelyon17 Acc \dagger	FMoW WC Acc \dagger	FMoW Acc
Per-model	56.81 (1.44)	18.39 (0.28)	96.07 (0.89)	53.22 (0.10)	58.01 (0.32)
Per-layer	73.64 (1.40)	33.53 (1.35)	96.07 (0.72)	53.03 (0.46)	57.94 (0.37)
Per-column (ours)	73.70 (1.49)	33.62 (1.63)	96.90 (0.14)	52.26 (0.16)	57.60 (0.14)

500 (b) Comparison of per-model merging (one merge weight per source model), per-layer merging (one merge
 501 weight per layer for each source model), and per-column merging (one merge weight per column within each
 502 layer).

Method	IWildCam Acc	IWildCam Macro F1 \dagger	Camelyon17 Acc \dagger	FMoW WC Acc \dagger	FMoW Acc
No layer and layer type token	72.31 (0.43)	28.95 (0.78)	96.86 (0.34)	49.16 (0.34)	54.79 (0.05)
No domain token	67.21 (1.50)	25.72 (1.81)	96.92 (0.12)	48.80 (0.38)	54.16 (0.02)
No target images (noise)	55.86 (1.00)	17.39 (0.66)	95.86 (0.48)	43.04 (0.28)	48.43 (0.18)
No target images (trainable vector)	63.47 (1.30)	19.92 (0.65)	96.92 (0.14)	51.98 (0.18)	57.36 (0.13)
DA-MergeLoRA (ours)	73.70 (1.49)	33.62 (1.63)	96.90 (0.14)	52.26 (0.16)	57.60 (0.14)

503 (c) Ablation studying the effect of: (i) removing the layer and layer-type tokens, which indicate the transformer
 504 layer from which each LoRA column originates; (ii) removing the domain tokens, which identify the source
 505 domain of each column; (iii) providing random noise as input to the hypernetwork instead of target images
 506 for the support set; and (iv) replacing the target-embedding branch with a trainable query vector that learns a
 507 general merging policy.

508 mance (a decrease of 13.7%–16.2% in F1-score). This is expected, as IWildCam is the most difficult
 509 dataset, with 48 target domains exhibiting significant domain shifts. For FMoW, removing conditional
 510 images also decreases performance, though not as severely. Results show that the learnable
 511 query vector reduces performance less than using noise as input, indicating that a general merging
 512 policy can still learn useful priors from the source domains. However, as seen in IWildCam,
 513 for complex domain shifts, a domain-specific model performs better. Removing the layer tokens
 514 and domain tokens also lowers performance for both IWildCam and FMoW, showing that appending
 515 layer- and domain-specific information enables the hypernetwork to produce more meaningful
 516 merge weights. For Camelyon17, removing any component has little effect, as it is a simpler dataset
 517 with only three source domains, where the optimal merge weights are already close to uniform, as
 518 shown by the simple parameter-wise averaging results in Table 2a.

5 CONCLUSION

519 In this work, we introduce a model-merging framework for few-shot test-time domain adaptation.
 520 We capture domain-specific information by training a LoRA module for each source domain. A hyper-
 521 network, trained via meta-learning, then generates merging weights to optimally combine these
 522 modules for adaptation to a target domain, given a batch of unlabeled target images. Our method
 523 effectively adapts to novel domains and achieves state-of-the-art performance across diverse benchmarks.
 524 This work also opens several avenues for future research, including: (i) exploring merging
 525 strategies beyond meta-learning (e.g., reinforcement learning); (ii) developing mechanisms to handle
 526 class imbalance and novel classes; (iii) leveraging CLIP’s text encoder for stronger vision–language
 527 alignment; (iv) increasing the diversity of pseudo-target domains during meta-training through data
 528 augmentation, style mixing, or combining images from multiple source domains; (v) designing
 529 richer hypernetwork architectures such as bidirectional cross-attention; and (vi) employing LoRA
 530 column-alignment strategies to improve merging.

540

REPRODUCIBILITY STATEMENT

541

To ensure reproducibility, we follow standard best practices in machine learning. All code will be made publicly available on GitHub upon acceptance of this paper, including configuration files and scripts to reproduce experiments. All hyperparameters and training details are reported in the paper. We also provide hardware and software configurations (GPU type, CUDA/PyTorch version) to facilitate replication. Experiments were run over multiple trials with fixed random seeds. All datasets are open-source and publicly available, and we use the official WILDS library for data loading and evaluation.

548

549

REFERENCES

550

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of model merging recipes. *Nature Machine Intelligence*, 7(2):195–204, 2025.

553

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.

556

Peter Bandi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, et al. From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. *IEEE transactions on medical imaging*, 38(2):550–560, 2018.

559

560

Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh Birodkar. The iwildcam 2021 competition dataset. *arXiv preprint arXiv:2105.03494*, 2021.

561

562

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification tasks to a new unlabeled sample. *Advances in neural information processing systems*, 24, 2011.

563

564

Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. *Advances in neural information processing systems*, 29, 2016.

565

566

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-information regularization with pre-trained models. In *European conference on computer vision*, pp. 440–457. Springer, 2022.

567

568

Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, and Robert Tjarko Lange. Text-to-lora: Instant transformer adaption. *arXiv preprint arXiv:2506.06105*, 2025.

569

570

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 295–305, 2022.

571

572

Zhixiang Chi, Li Gu, Tao Zhong, Huan Liu, Yuanhao Yu, Konstantinos N. Plataniotis, and Yang Wang. Adapting to distribution shift by visual domain prompt generation. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2024. URL https://proceedings.iclr.cc/paper_files/paper/2024/file/440f269a4a6b9d51c51b4997963761ff-Paper-Conference.pdf. ICLR 2024.

573

574

Zhixiang Chi, Li Gu, Huan Liu, Ziqiang Wang, Yanan Wu, Yang Wang, and Konstantinos N. Plataniotis. Learning to adapt frozen clip for few-shot test-time domain adaptation. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2025. URL <https://openreview.net/forum?id=TD3SGJfBC7>. ICLR 2025.

575

576

Boris Chidlovskii. Using latent codes for class imbalance problem in unsupervised domain adaptation. *arXiv preprint arXiv:1909.08962*, 2019.

577

578

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better pretraining, 2022. URL: <https://arxiv.org/abs/2204.03044>.

579

580

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6172–6180, 2018.

594 Gabriela Csurka et al. *Domain adaptation in computer vision applications*, volume 2. Springer,
 595 2017.

596

597 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 598 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

599

600 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 601 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 602 *Journal of machine learning research*, 17(59):1–35, 2016.

603

604 Antonio Andrea Gargiulo, Donato Crisostomi, Maria Sofia Bucarelli, Simone Scardapane, Fabrizio
 605 Silvestri, and Emanuele Rodola. Task singular vectors: Reducing task interference in model
 606 merging. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18695–
 18705, 2025.

607

608 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 609 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

610

611 Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
 612 Efficient cross-task generalization via dynamic lora composition. In *Conference on Language
 Modeling (COLM)*, 2024. URL <https://openreview.net/forum?id=TrloAXEJ2B>.

613

614 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 615 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint
 arXiv:2212.04089*, 2022.

616

617 Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
 618 merging weights of language models. *arXiv preprint arXiv:2212.09849*, 2022.

619

620 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 621 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
 622 benchmark of in-the-wild distribution shifts. In *International conference on machine learning*,
 623 pp. 5637–5664. PMLR, 2021.

624

625 Gyuseong Lee, Wooseok Jang, Jinhyeon Kim, Jaewoo Jung, and Seungryong Kim. Domain general-
 626 ization using large pretrained models with mixture-of-adapters. *arXiv preprint arXiv:2310.11031*,
 627 2024. URL <https://arxiv.org/abs/2310.11031>.

628

629 Yinghao Li, Vianne Gao, Chao Zhang, and MohamadAli Torkamani. Ensembles of low-rank expert
 630 adapters. In *International Conference on Learning Representations (ICLR)*, 2025. URL <https://openreview.net/forum?id=10gZS0sAlf>.

631

632 Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
 633 hypothesis transfer for unsupervised domain adaptation. In *International conference on machine
 learning*, pp. 6028–6039. PMLR, 2020.

634

635 Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
 636 bution shifts. *International Journal of Computer Vision*, 133(1):31–64, 2025.

637

638 Huan Liu, Zijun Wu, Liangyan Li, Sadaf Salehkalaibar, Jun Chen, and Keyan Wang. Towards multi-
 639 domain single image dehazing via test-time training. In *Proceedings of the IEEE/CVF conference
 on computer vision and pattern recognition*, pp. 5831–5840, 2022.

640

641 Jiaming Liu, Senqiao Yang, Peidong Jia, Renrui Zhang, Ming Lu, Yandong Guo, Wei Xue, and
 642 Shanghang Zhang. Vida: Homeostatic visual domain adapter for continual test time adaptation.
 643 In *The Twelfth International Conference on Learning Representations*, 2024.

644

645 Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
 646 deep adaptation networks. In *International conference on machine learning*, pp. 97–105. PMLR,
 647 2015.

648

649 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 arXiv:1711.05101*, 2017.

648 Daniel Marczak, Simone Magistri, Sebastian Cygert, Bartłomiej Twardowski, Andrew D Bagdanov,
 649 and Joost van de Weijer. No task left behind: Isotropic model merging with common and task-
 650 specific subspaces. *arXiv preprint arXiv:2502.04959*, 2025.

651

652 Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. *Advances
 653 in Neural Information Processing Systems*, 35:17703–17716, 2022.

654

655 Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing do-
 656 main gap by reducing style bias. In *Proceedings of the IEEE/CVF conference on computer vision
 657 and pattern recognition*, pp. 8690–8699, 2021.

658

659 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 660 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 661 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

662

663 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 664 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference
 665 on computer vision*, pp. 1406–1415, 2019.

666

667 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 668 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 669 models from natural language supervision. In *International conference on machine learning*, pp.
 670 8748–8763. PMLR, 2021.

671

672 Viraj Shah, Nataniel Ruiz, Forrester Cole, Erika Lu, Svetlana Lazebnik, Yuanzhen Li, and Varun
 673 Jampani. Ziplora: Any subject in any style by effectively merging loras. In *European Conference
 674 on Computer Vision*, pp. 422–438. Springer, 2024.

675

676 Yihua Shao, Xiaofeng Lin, Xinwei Long, Siyu Chen, Minxi Yan, Yang Liu, Ziyang Yan, Ao Ma,
 677 Hao Tang, and Jingcai Guo. Icm-fusion: In-context meta-optimized lora fusion for multi-task
 678 adaptation. *arXiv preprint arXiv:2508.04153*, 2025.

679

680 Donald Shenaj, Ondrej Bohdal, Mete Ozay, Pietro Zanuttigh, and Umberto Michieli. Lora. rar:
 681 Learning to merge loras via hypernetworks for subject-style conditioned image generation. *arXiv
 682 preprint arXiv:2412.05148*, 2024.

683

684 Yuan-Chen Shu, Zhiwei Lin, and Yongtao Wang. Regcl: Continual adaptation of segment anything
 685 model via model merging. *arXiv preprint arXiv:2507.12297*, 2025.

686

687 George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, and Judy Hoffman. Model
 688 merging with svd to tie the knots. *arXiv preprint arXiv:2410.19735*, 2024.

689

690 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
 691 *European conference on computer vision*, pp. 443–450. Springer, 2016.

692

693 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
 694 ing with self-supervision for generalization under distribution shifts. In *International conference
 695 on machine learning*, pp. 9229–9248. PMLR, 2020.

696

697 Shuhan Tan, Xingchao Peng, and Kate Saenko. Class-imbalanced domain adaptation: An empirical
 698 odyssey. In *European Conference on Computer Vision*, pp. 585–602. Springer, 2020.

699

700 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 701 test-time adaptation by entropy minimization. In *International Conference on Learning Repre-
 702 sentations*, 2021.

703

704 Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
 705 Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generalization. *IEEE
 706 Transactions on Knowledge and Data Engineering*, 2022.

707

708 Ziqiang Wang, Zhixiang Chi, Yanan Wu, Li Gu, Zhi Liu, Konstantinos Plataniotis, and Yang Wang.
 709 Distribution alignment for fully test-time adaptation with dynamic online data streams. In *Euro-
 710 pean Conference on Computer Vision*, pp. 332–349. Springer, 2024.

702 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 703 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 704 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing in-
 705 ference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022a.
 706

707 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
 708 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
 709 Schmidt. Robust fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF Conference
 710 on Computer Vision and Pattern Recognition (CVPR)*, pp. 7959–7971, June 2022b.
 711

712 Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. *arXiv preprint arXiv:2404.13628*,
 713 2024a.

714 Yanan Wu, Zhixiang Chi, Yang Wang, Konstantinos N Plataniotis, and Songhe Feng. Test-time
 715 domain adaptation by learning domain-aware batch normalization. In *Proceedings of the AAAI
 716 Conference on Artificial Intelligence*, volume 38, pp. 15961–15969, 2024b.
 717

718 Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
 719 Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class incre-
 720 mental learning. *arXiv preprint arXiv:2501.13198*, 2025.

721 Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang.
 722 Adversarial domain adaptation with domain mixup. In *Proceedings of the AAAI conference on
 723 artificial intelligence*, volume 34, pp. 6502–6509, 2020.

724 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
 725 solving interference when merging models. *Advances in Neural Information Processing Systems*,
 726 36:7093–7115, 2023.

727 Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang, Yong Xu, and Wangmeng Zuo. Mind the
 728 class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In
 729 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2272–2281,
 730 2017.

731 Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea
 732 Finn. Adaptive risk minimization: Learning to adapt to domain shift. *Advances in Neural Infor-
 733 mation Processing Systems*, 34:23664–23678, 2021.
 734

735 Zangwei Zheng, Xiangyu Yue, Kai Wang, and Yang You. Prompt vision transformer for domain
 736 generalization. *arXiv preprint arXiv:2208.08914*, 2022.

737 Tao Zhong, Zhixiang Chi, Li Gu, Yang Wang, Yuanhao Yu, and Jin Tang. Meta-dmoe: Adapting
 738 to domain shift by meta-distillation from mixture-of-experts. *Advances in Neural Information
 739 Processing Systems*, 35:22243–22257, 2022.

740 Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization:
 741 A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(4):4396–4415,
 742 2022.

743

744

745

746

747

748

749

750

751

752

753

754

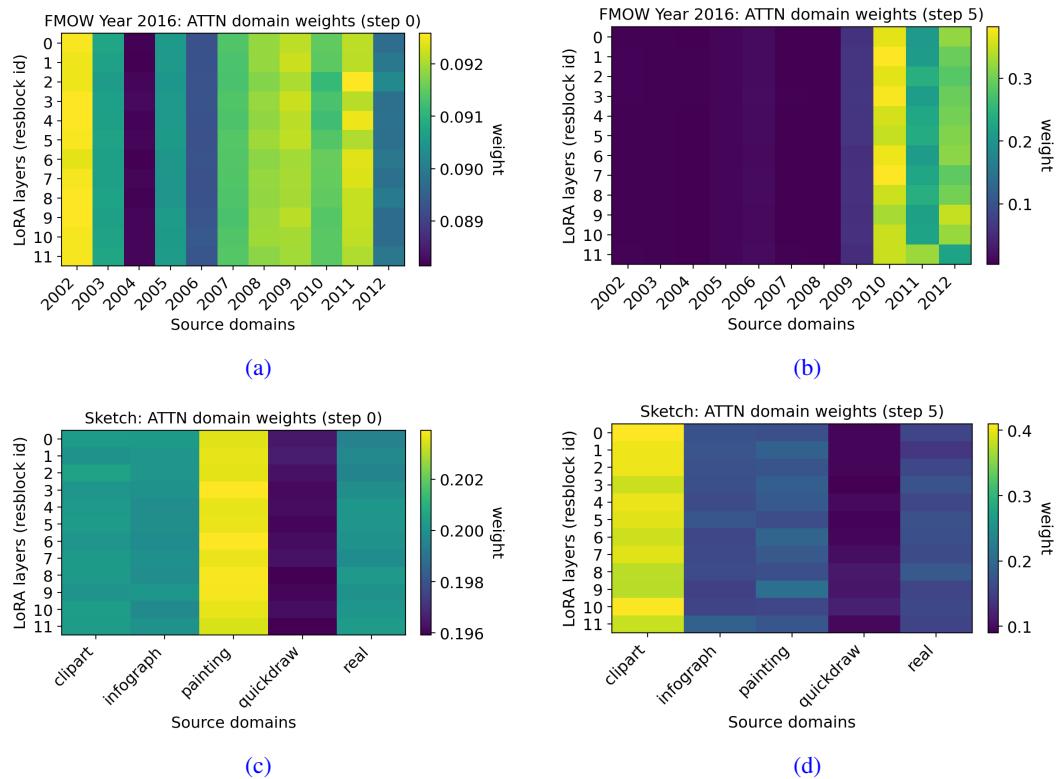
755

756 **A APPENDIX**
757758 **A.1 LARGE LANGUAGE MODEL USAGE DECLARATION**
759760 LLMs were used in the development of this paper for the following purposes:
761762

- 763 1. To aid/polish writing: ChatGPT was used for proofreading. Example prompt: “Proofread
764 this paragraph for spelling, grammar, and conciseness without changing the meaning.”
- 765 2. For retrieval and discovery: ChatGPT was used to help identify related work. Example
766 prompt: “What are commonly used model merging techniques?”
- 767 3. For research ideation: ChatGPT was used to brainstorm ideas, including clarifying and
768 understanding existing approaches. Example prompt: “Can you explain how this paper’s
769 algorithm works?”
- 770 4. For code development and debugging: All code was written in Cursor (an IDE based on
771 Visual Studio Code with a built-in LLM) to assist with coding and debugging. Example
772 prompt: “What is causing this bug and how can I fix it?”

773 All LLM outputs were reviewed by the authors for accuracy. All novel research ideas, scientific
774 contributions, analyses, and results were developed independently by the authors without the use of
775 LLMs.776 **A.2 HYPERPARAMETER SELECTION**
777778 Appendix Table 3 summarizes the hyperparameters used for each experiment and dataset. For hy-
779 pernetwork meta-training, one epoch is defined as 1000 episodes, with each episode consisting of a
780 single update using the support and query sets. For the hypernetwork’s domain-token scaling factor
781 (α), we use 0.1 for all datasets, except for iWildCam, where we use 0.3. All experiments are trained
782 with 6 workers, pinned memory, and the AdamW optimizer (Loshchilov & Hutter, 2017). For all
783 source-LoRA experiments, we use AdamW hyperparameters of betas = [0.9, 0.999], eps = 1e-8, and
784 weight decay = 0.001. For all hypernetwork experiments, we use AdamW hyperparameters of betas
785 = [0.9, 0.999], eps = 1e-8, and weight decay = 0.01. Experiments are implemented in PyTorch 2.8.0
786 (CUDA 12.8) (Paszke et al., 2019) and run on NVIDIA A100 GPUs with 20GB memory.787 **Table 3: Hyperparameters used for different experiments across datasets.**
788789

790 Experiment	791 Dataset	792 Learning Rate	793 # Epochs	794 Batch Size
795 LoRA (All Sources)	796 DomainNet	797 5e-4	798 1	799 128
	iWildCam	5e-4	1	128
	FMoW	5e-4	1	128
	Camelyon17	5e-4	1	128
800 LoRA (Per Domain)	801 DomainNet	802 5e-4	803 1	804 128
	iWildCam	5e-4	5	128
	FMoW	5e-4	5	128
	Camelyon17	5e-4	1	128
805 Hypernet (Cross-Attn)	806 DomainNet	807 1e-5	808 1	809 16
	iWildCam	5e-5	2	16
	FMoW	1e-5	5	16
	Camelyon17	1e-5	3	16
812 Hypernet (MLP)	813 iWildCam	814 5e-4	815 4	816 16
	FMoW	1e-5	5	16
	Camelyon17	5e-5	1	16

810 A.3 ADDITIONAL ABLATION AND ANALYSES
811812 A.3.1 MERGING WEIGHT HEATMAPS
813814 Appendix Fig. 2 provides the full set of merging-weight heatmaps referenced in Section 4.2 of
815 the main paper. These include before/after training visualizations for FMoW (2016 test year) and
816 DomainNet (“sketch” target domain) after training the hypernetwork for 5 epochs.
817844 Figure 2: Heatmaps of average merge weights - These figures illustrate the average merge weights
845 per-layer produced by the hypernetwork for each of the source domains. The x-axis shows the source
846 domains and the y-axis shows the transformer layer. Plots (a) and (c) show the merge weights before
847 training on FMoW (domain - Year 2016) and DomainNet (domain - Sketch). Plots (b) and (d) show
848 results after training. Before training, merge weights are nearly uniform across source domains.
849 After training, the hypernetwork shifts merge weights towards source domains visually similar to
850 the target domain, and down-weights dissimilar and difficult domains.
851
852
853854 A.3.2 MLP VS. CROSS-ATTENTION HYPERNETWORK ARCHITECTURES
855856 We compare our hypernetwork architecture against an MLP-based hypernetwork. Both architectures
857 have a similar number of parameters (MLP: $\sim 690k$; cross-attention: $\sim 600k$). The MLP concate-
858 nates the target image embedding, layer tokens, domain tokens, and LoRA columns as input, and
859 consists of two layers with a hidden size of 256. Results are shown in Appendix Table 4. Results
860 show that both architectures achieve comparable performance. In general, MLPs may provide more
861 stable training, but cross-attention is better suited for modeling inter-domain relationships. We ex-
862 pect future work exploring richer cross-attention variants (multi-head or bidirectional) to be more
863 promising than simply deepening MLPs, as cross-attention is better at capturing complex dependen-
864 cies.

864
 865 Table 4: Ablation of multi-layer perceptron (MLP) vs. cross-attention (CA) hypernetwork archi-
 866 tectures. Results are reported as mean (standard deviation) over three trials with different random
 867 seeds. The \dagger symbol denotes the official dataset metric.

Method	IWildCam Acc	IWildCam Macro F1 \dagger	Camelyon17 Acc \dagger	FMoW WC Acc \dagger	FMoW Acc
MLP	71.97 (2.41)	31.83 (2.12)	96.85 (0.12)	53.17 (0.10)	57.99 (0.42)
CA (ours)	73.70 (1.49)	33.62 (1.63)	96.90 (0.14)	52.26 (0.16)	57.60 (0.14)

873 A.3.3 EFFECTS OF DIFFERENT SUPPORT SET BATCH SIZES

874 We assess our hypernetwork’s robustness to different batch sizes for the unlabeled target support set,
 875 which is used to guide the merging process. We evaluate batch sizes of 1, 4, 8, and 16 (ours), and
 876 also include a baseline with no conditional input for reference, where a matrix of zeros is provided
 877 to the hypernetwork. During source-domain meta-training, we use a batch size of 16 for both the
 878 query and support sets. Results are shown in Appendix Table 5. Performance remains consistent
 879 across metrics (within $< 1\%$ variation), except for a slight drop on IWildCam when using a batch
 880 size of 1 ($\sim 3\%$ decrease), demonstrating that our method performs meaningful merging even with
 881 very limited target data.

882
 883 Table 5: Comparison of different support set batch sizes at inference time for our algorithm DA-
 884 MergeLoRA. Results are reported as mean (standard deviation) over three trials with different ran-
 885 dom seeds. The \dagger symbol denotes the official dataset metric.

Method	IWildCam Acc	IWildCam Macro F1 \dagger	Camelyon17 Acc \dagger	FMoW WC Acc \dagger	FMoW Acc
Batch size 0 (zeros as input)	55.72 (0.99)	17.35 (0.51)	95.87 (0.49)	43.06 (0.27)	48.40 (0.12)
Batch size 1	71.32 (0.55)	29.99 (1.34)	96.91 (0.13)	52.30 (0.25)	57.62 (0.21)
Batch size 4	73.64 (1.36)	32.91 (2.05)	96.91 (0.14)	52.24 (0.16)	57.60 (0.13)
Batch size 8	73.71 (1.40)	33.47 (1.96)	96.90 (0.14)	52.26 (0.17)	57.60 (0.14)
Batch size 16 (ours)	73.70 (1.49)	33.62 (1.63)	96.90 (0.14)	52.26 (0.16)	57.60 (0.14)

894 A.3.4 EMBEDDING-SPACE VISUALIZATION (t-SNE)

895 To assess whether the merged LoRA produces meaningful domain-specific features, we compare
 896 t-SNE visualizations of target-domain image embeddings generated by the baseline CLIP model
 897 versus the merged domain-specific LoRA model. We compute image embeddings for 2,000 ran-
 898 domly sampled “painting” DomainNet images spanning various classes. Appendix Fig. 3 shows the
 899 plots, where each colour represents a different class. We circle two classes before and after apply-
 900 ing the merged LoRA model to illustrate the improved separation. The t-SNE plot for the merged
 901 LoRA model exhibits tighter class clusters and inter-class separation, indicating that the merged
 902 domain-specific LoRA yields more discriminative feature representations.

904 A.3.5 QUALITATIVE PREDICTION EXAMPLES

905 To better understand why the hypernetwork improves prediction quality, we qualitatively analyze
 906 cases where the baseline CLIP model fails but the merged LoRA model succeeds. We include 8
 907 examples from the “painting” domain (Appendix Fig. 4a) and 8 examples from the “quickdraw”
 908 domain (Appendix Fig. 4b) of DomainNet. In the painting domain, the baseline model frequently
 909 misclassifies images as “picture frame” because it focuses on the border of the artwork rather than the
 910 object depicted inside, whereas the merged LoRA model correctly identifies the underlying object.
 911 In the quickdraw domain, the baseline CLIP model often misclassifies sketches as “squiggle,” failing
 912 to recognize the intended object, while the merged LoRA model correctly interprets the concept
 913 despite the abstract style.

914 After observing these qualitative trends, we also evaluated whether these distractor-class errors occur
 915 systematically across the full target domains. In quickdraw, the baseline predicts the distractor class
 916 squiggle for 19.25% of images, compared to 11.71% for the merged model. In the painting domain,
 917 the baseline misclassifies 1.57% of images as picture frame, whereas the merged model reduces this

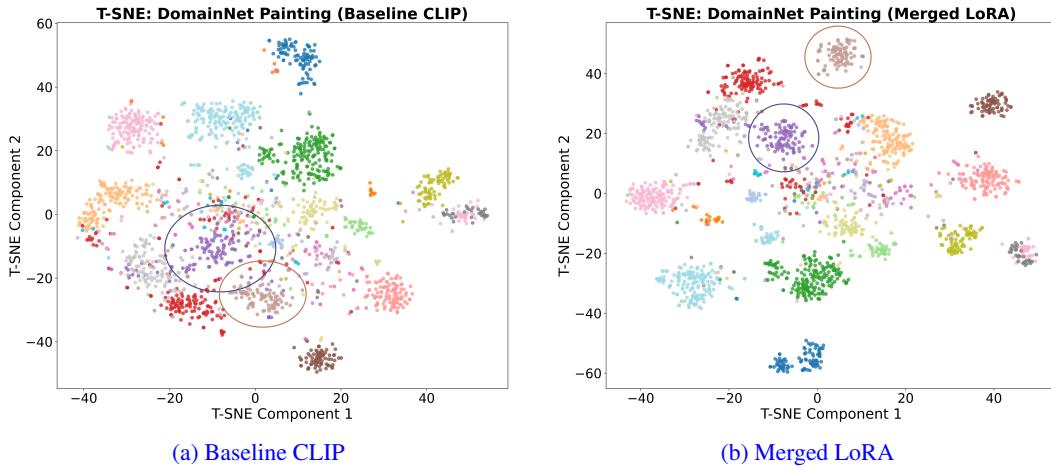


Figure 3: T-SNE comparison on the “painting” DomainNet domain for (a) the baseline CLIP model and (b) the merged painting-specific LoRA model, computed over 2,000 images. Each colour represents a different class. We circle two classes before and after applying the merged LoRA model to illustrate the improved separation.

to 0.40%. Note that a 1.57% misclassification rate is significant, given that the vast majority of painting-domain images do not contain picture frames.

These examples and statistics demonstrate that the merged LoRA parameters help the model attend to domain-appropriate visual cues and improve reliability under appearance shifts.

A.3.6 MERGE-WEIGHT VALUES VS. DOMAIN SIMILARITY - CORRELATION

To analyze the relationship between source domains and the predicted merge weights, we plot the average merge weight assigned to each source domain against the cosine similarity between that source domain and the target domain after training the hypernetwork for 5 epochs. We compute cosine similarity using 16 image embeddings per domain, extracted with the baseline CLIP model. We present results for the IWildCam target domain “29” and for the DomainNet “Real” domain. As shown in Appendix Fig. 5, there is a positive correlation: visually similar domains (those with higher cosine similarity to the target) receive higher merge weights. This indicates that the learned merging policy aligns with intuitive domain relationships. Another factor that influences the merge weights is source-domain difficulty: domains that achieve lower accuracy during meta-training tend to be down-weighted. For example, “quickdraw,” (the most challenging DomainNet domain) receives the lowest merge weight.

A.3.7 COMPUTATIONAL ANALYSIS

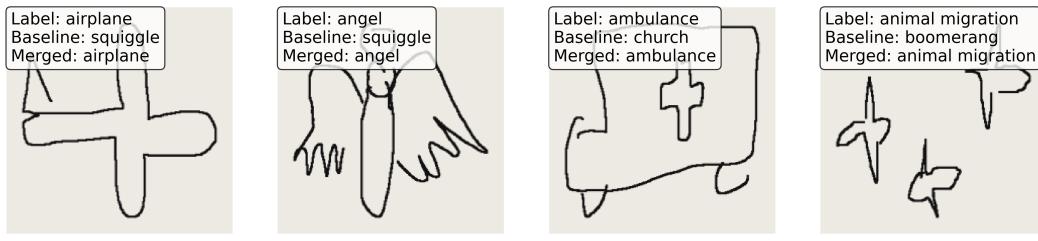
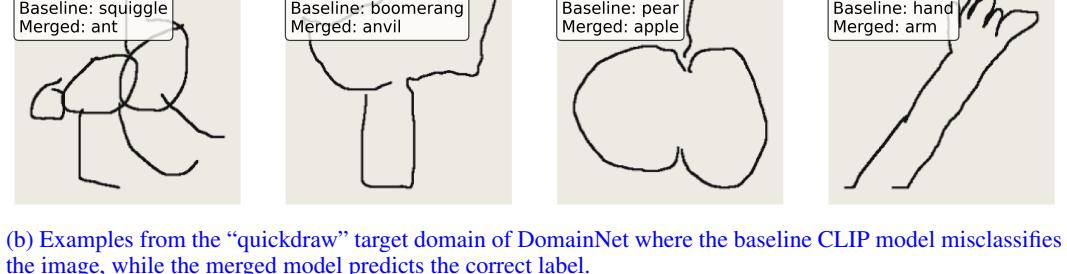
Below we analyze the memory footprint and computational requirements of our method.

Memory. The ViT-B/16 CLIP vision encoder has $\sim 87M$ parameters (out of $\sim 150M$ total in CLIP, though only the vision encoder is used). Each LoRA module adds 884,736 parameters ($< 1\%$ of the base model), and the hypernetwork adds $\sim 600k$ parameters. After merging, only the base model with the synthesized target-domain LoRA is required; source LoRAs and the hypernetwork are not used.

Test-time computation. The hypernetwork is executed once to generate merge weights and construct the target-domain LoRA. This one-time operation takes ~ 1.76 seconds on average across datasets. Afterward, inference is identical to a standard LoRA-augmented CLIP model, with no additional runtime overhead.

Comparison with other methods. Appendix Table 6 compares our train and inference time peak memory usage (MB) and speed (seconds per batch) against the results reported in the L2C-CPNet framework (Chi et al., 2025). Our method requires roughly 50% less memory and is 50% faster at

(a) Examples from the “painting” target domain of DomainNet where the baseline CLIP model misclassifies the image, while the merged model predicts the correct label.



(b) Examples from the “quickdraw” target domain of DomainNet where the baseline CLIP model misclassifies the image, while the merged model predicts the correct label.

Figure 4: Qualitative comparison illustrating how the merged LoRA model improves predictions over the baseline CLIP model across various DomainNet domains.

inference time compared to previous approaches, making it advantageous for FSTT-DA deployment. Our training memory is comparable to prior methods, with slightly slower training speed. Since meta-training occurs offline before deployment, we assume sufficient pre-deployment compute as in standard TTA and meta-learning pipelines.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

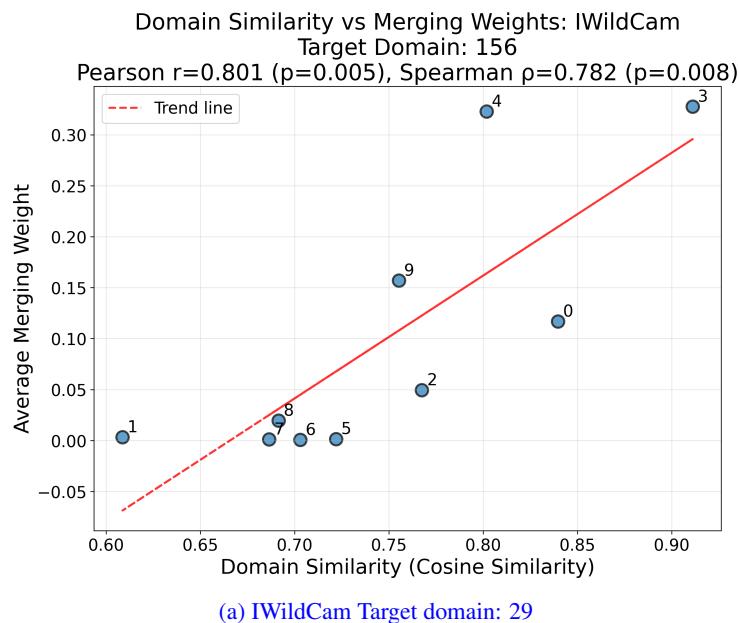
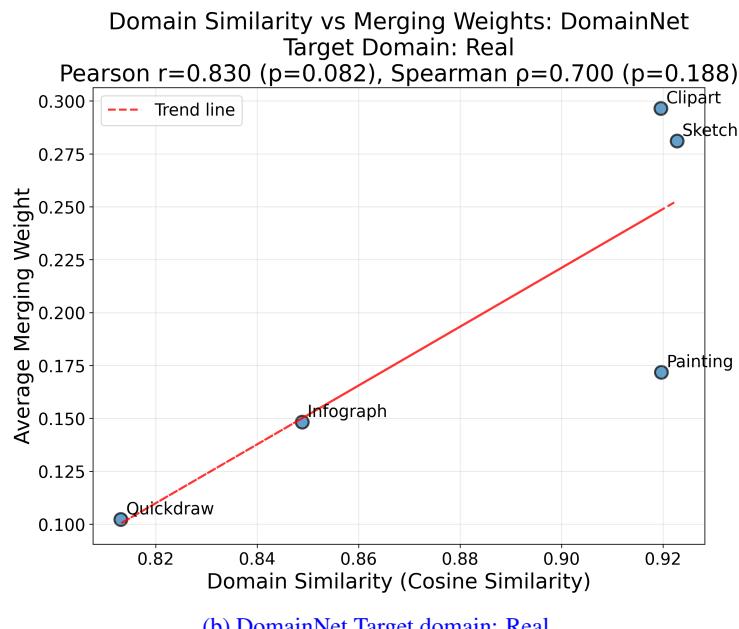


Figure 5: Correlation between domain similarity and average merging weights - To analyze the relationship between source domains and the predicted merge weights, we plot the average merge weight assigned to each source domain against the cosine similarity between that source domain and the target domain after training.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101

1102 **Table 6: Training and Inference-time speed (batch per second) and memory usage (MB) compared**
 1103 **to the L2C-CPNet (Chi et al., 2025) and VDPG (Chi et al., 2024) FSTT-DA frameworks. N denotes**
 1104 **the number of source domains.**

1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Method	CPNet (1 layer)	CPNet (3 layer)	CPNet (6 layer)	VDPG	DA-MergeLoRA
Datasets	Camelyon17	DomainNet, iWildCam	FMoW	All datasets	All datasets
# Learnable params	13.8M	27.9M	49.2M	32.1M	$600k + 885k \times N$
Train memory (MB)	3872	5554	8106	3672	4739
Train speed (s/batch)	0.84	0.88	0.97	0.87	1.78
Inference memory (MB)	2270	2330	2430	2798	1056
Inference speed (s/batch)	0.64	0.67	0.73	0.69	0.34