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Extended Abstract

Networks pervade social, economic, and epidemiological systems, yet real-world studies typi-
cally yield only one large network observation, compromised by sampling gaps, survey error, or
privacy-preserving noise. Under such partial and noisy measurement, classical network infer-
ence and experimental design methods fail, since they assume multiple independent graphs or
fully observed ties. This paper delivers two distinct but complementary contributions—one fo-
cused on inference under a single imperfect network, the other on experimental design and pol-
icy optimization, providing a unified toolkit for rigorous causal analysis and intervention plan-
ning in realistic settings. Our method is based on representing common processes on graphs
as structural causal models. A structural causal model is a set of equations and exogenous
noise variables that together define how treatments, network structure, and latent disturbances
generate observed outcomes, making all counterfactuals well-defined.

1. Inference with a Single Noisy Network. We begin by showing how to recover consistent
parameter estimates when only a mismeasured network G* is available. First, an iterated-
expectations argument yields unbiased moment equations

E[m(Y;, Si, Vi B)] =0,

where exposures V; = fy(a; ¢;(G*)) and pre-treatment confounders S; = f5(X; 9;(G*)) are built
from the observed graph. Under mild “affinity-set” dependence conditions, we prove a Cen-
tral Limit Theorem for these moments, despite network-driven correlations. Second, to guard
against misspecification of either the outcome model or the network-measurement model, we
propose a doubly robust estimator that merges outcome regression f1(S;,V;) with a graph-
reconstruction correction G. We show consistency if either component is correctly specified.
Third, leveraging a graphon perspective via stochastic block models (SBMs), we denoise G*
by partitioning nodes into K = O(1/n/logn) communities, achieving vanishing L, error and
markedly improving finite-sample bias and variance in both simulation and application.

2. Experimental Design and Policy Optimization. Building on our inference machinery, we
tackle the challenge of designing experiments and allocating treatments when network ties are
noisy. Directly optimizing over all 2" assignments is intractable for moderate n. We introduce
a block-saturation technique: after denoising via SBMs, treatments are assigned at the com-
munity level, reducing the decision space from size 2" to 2K, with K < n. We then express the
design problem—whether minimizing estimator variance or maximizing expected outcomes
under budget constraints—as a convex program over block-level saturation variables. Finally,
a Bayesian optimization routine rapidly identifies near-optimal allocations in seconds, even for
n ~ 103, enabling scalable and cost-effective network intervention planning.



NetSciX2026: International School and Conference on Network Science
February 17/7-20"", 2026 - Auckland, New Zealand

3. Validation and Empirical Case Studies. In synthetic networks spanning sparse to dense
regimes and varying measurement error levels, our inference procedures achieve nominal 95%
confidence coverage and reduce bias by up to 50% relative to naive plug-in estimators. In a pit-
planting trial in Malawi [1], our design raises knowledge-adoption rates by 22% over standard
A/B allocation with identical sample sizes. For example, Figure 1 shows that targeting by
estimated block structure outperforms naive degree-based seeding, with the greatest gains in
sparser villages. Further refinement by choosing the highest-degree within each block delivers
adoption rates very close to the oracle optimum. In an information-diffusion experiment in
India [2], our seeding strategy increases call-in responses by 24% relative to random seeding
under the same budget.
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Figure 1: Adoption ratio under complex contagion as a function of village network density,
comparing seeding by highest-degree nodes, uniform random, and model-based block targeting
(with and without degree refinement).

By explicitly modeling network measurement imperfections and uniting robust estimation
with scalable design algorithms, we extend rigorous causal network analysis to settings once
considered intractable. This framework empowers researchers and policymakers to draw valid
inferences and plan effective interventions from a single noisy network. Future work will ex-
plore dynamic networks, endogenize tie formation, and apply these methods to digital platforms
and epidemic control.
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