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Abstract001

Recently, large vision–language models002
(LVLMs) have emerged as the preferred tools003
for judging text–image alignment, yet their004
robustness along the visual modality remains005
underexplored. This work is the first study to006
address a key research question: Can adver-007
sarial visual manipulations systematically fool008
LVLM judges into assigning unfairly inflated009
scores? We define potential image-induced010
biases within the context of T2I evaluation011
and examine how these biases affect the012
evaluations of LVLM judges. Moreover, we013
introduce a novel, fine-grained, multi-domain014
meta-evaluation benchmark named FRAME,015
which is deliberately constructed to exhibit016
diverse score distributions. By introducing017
the defined biases into the benchmark, we018
reveal that all tested LVLM judges exhibit019
vulnerability across all domains, consistently020
inflating scores for manipulated images.021
Further analysis reveals that combining022
multiple biases amplifies their effects, and023
pairwise evaluations are similarly susceptible.024
Moreover, we observe that visual biases persist025
under prompt-based mitigation strategies,026
highlighting the vulnerability of current LVLM027
evaluation systems and underscoring the urgent028
need for more robust LVLM judges.029

1 Introduction030

Leveraging their dual capacities for generation and031

cross-modal understanding, large vision–language032

models (LVLMs) have been adopted as automated033

evaluators of text–image pairs, enabling nuanced034

assessments that capture semantic coherence be-035

yond superficial matching (Ku et al., 2024; Chen036

et al., 2024a,b). This approach has proven partic-037

ularly effective for evaluating text-to-image (T2I)038

generation models, where the model is presented039

with an image-generation prompt and its corre-040

sponding output, and is tasked with assessing their041

semantic alignment (Zhang et al., 2023; Chen042
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Figure 1: The LVLM judge is influenced by visual ma-
nipulations, resulting in an unfairly inflated evaluation
score. Embedding the image generation instruction in
the image (left) produces a manipulated image (right),
leading to unfair assessment.

et al., 2024b). With expectations for consistent 043

and fair assessments, LVLM-based judgments are 044

now widely used as reward signals in the training 045

of next-generation image generation models (Zhou 046

et al., 2024; Wang et al., 2024b). 047

Despite this growing reliance, the robustness 048

of LVLM evaluators to image variations re- 049

mains largely underexplored. If these models 050

are vulnerable to adversarially manipulated im- 051

ages—assigning disproportionately high scores to 052

distorted, misleading, or stylistically deceptive out- 053

puts—this presents a critical vulnerability. Such 054

susceptibility not only compromises the reliability 055

of the evaluation process itself but also risks propa- 056

gating flawed reward signals during the training of 057

image generation systems. 058
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To address this gap, we present the first system-059

atic study of image modality biases in T2I evalua-060

tion, revealing how they undermine the reliability061

of LVLM judges. Inspired by prior works on image062

perturbations (Hendrycks and Dietterich, 2019; Jia063

et al., 2020; Yang et al., 2023), we define a set of064

potential visual biases and investigate whether their065

introduction into an evaluated image leads LVLM066

judges to assign unfairly higher scores compared067

to the original. These biases include brightness ad-068

justment, gamma correction, various forms of text069

overlay, black padding, beauty filter application,070

and the addition of object bounding boxes.071

Moreover, due to the absence of existing bench-072

marks for systematically evaluating LVLM judges,073

we introduce a novel fine-grained meta-evaluation074

benchmark FRAME (Fine-gRained Assessment075

of Multi-domain Evaluation), which spans five do-076

mains: Animals, People, Outdoor scenes, Indoor077

scenes, and Illustrations. To assess whether LVLM078

judges can evaluate text–image pairs across a broad079

spectrum of ground-truth quality levels, we design080

a controllable framework for benchmark construc-081

tion. Leveraging this framework, we generate 100082

text–image–score triplets per domain with vary-083

ing levels of alignment, resulting in a diverse and084

balanced benchmark for LVLM judges evaluation.085

By systematically incorporating predefined vi-086

sual biases into our benchmark, we demonstrate087

that all evaluated LVLM judges are susceptible088

to such manipulations. Notably, increased model089

capacity does not necessarily correlate with en-090

hanced robustness; both GPT-4.1 (OpenAI, 2025)091

and GPT-4o (OpenAI, 2024) exhibit vulnerabili-092

ties, with GPT-4o-mini occasionally outperform-093

ing GPT-4o in several conditions. Among the bi-094

ases, embedding instruction textual cues directly095

into images—shown in Figure 1—emerges as the096

most consistently influential strategy, misleading097

all LVLM judges across all domains. Furthermore,098

our findings reveal that the Indoor domain is partic-099

ularly prone to such biases, likely due to its intricate100

scene composition and high object density.101

Building upon these findings, we conduct a de-102

tailed analysis based on key research questions con-103

cerning visual biases in LVLM evaluation. First,104

we investigate whether prompting strategies can105

mitigate these biases. While certain strategies lead106

to partial improvements, none fully eliminate the107

vulnerabilities, highlighting the need for more ro-108

bust LVLM evaluation frameworks. We then ex-109

tend our analysis beyond single-image evaluation110

by exploring pairwise comparison settings, where 111

LVLM judges are tasked with selecting the im- 112

age that better aligns with a given textual prompt. 113

This analysis reveals persistent vulnerabilities in 114

LVLMs under comparative judgment scenarios. 115

Finally, we observe that combining multiple bi- 116

ases further exacerbates the vulnerability of LVLM 117

judges. 118

2 Related Works 119

2.1 Evaluation of Image Generation Models 120

To assess image-text alignment in text-to-image 121

(T2I) generation, traditional metrics such as 122

Fréchet Inception Distance (FID) (Heusel et al., 123

2017) and Inception Score (IS) (Salimans et al., 124

2016) have been widely adopted. Embedding- 125

based methods, including CLIPScore (Hessel 126

et al., 2021) and BLIPScore (Li et al., 2022), 127

have improved evaluation by leveraging pre- 128

trained vision-language models to compute cross- 129

modal similarity. Recent approaches incorpo- 130

rate human preference modeling—exemplified 131

by PickScore (Kirstain et al., 2023), ImageRe- 132

ward (Xu et al., 2023), HPSv2 (Wu et al., 2023), 133

and Prometheus-Vision (Lee et al., 2024b)—to 134

achieve better alignment with subjective judgments. 135

Other studies have focused on compositional eval- 136

uation using question-answering frameworks (Lin 137

et al., 2024; Wu et al., 2024; Hu et al., 2023; Yarom 138

et al., 2023), enabling more interpretable and fine- 139

grained assessments. 140

2.2 LLM and LVLM Judges 141

Recently, the LLM-as-a-judge paradigm has gained 142

popularity (Zheng et al., 2023; Gu et al., 2024), 143

offering scalable and consistent evaluations (Liu 144

et al., 2023b; Zhu et al., 2023). However, these 145

models have been shown to be vulnerable to bi- 146

ases and adversarial attacks (Wang et al., 2024a; 147

Liusie et al., 2024; Zeng et al., 2024; Raina et al., 148

2024; Lee et al., 2024a). Recently, this paradigm 149

has been extended to multimodal scenarios through 150

LVLM-as-a-judge frameworks (Zhang et al., 2023; 151

Ku et al., 2024; Chen et al., 2024b), although sim- 152

ilar biases persist in these contexts as well (Chen 153

et al., 2024a). Despite these advances, visual biases 154

in the context of T2I generation remain largely un- 155

explored. To our knowledge, this study presents the 156

first systematic analysis of their effects on LVLM 157

judges in T2I tasks. 158
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Bias Definition Original → Biased

Bounding Box Highlighting
Drawing visible boxes around key objects in the
image to emphasize their presence or location. →

Authenticity Overlay
Adding the phrase “Reference Image” directly
onto the image to imply reference or
authenticity.

→

Keyword Overlay
Inserting a single keyword from the prompt
(e.g., "Cat") into the image as visible text. →

Instruction Overlay
Overlaying the entire generation instruction
(e.g., “Create an image of one balloon in outer
space...”) onto the image surface.

→

Beauty Filter
Applying visual filters to enhance facial features
for a more conventionally attractive appearance. →

Brightness Adjustment
Modifying the image to increase overall
brightness. →

Gamma Correction
Altering the luminance distribution of an image
by adjusting gamma values to change contrast
and mid-tone balance.

→

Black Padding
Adding black borders around the image to
change its framing and composition. →

Table 1: Taxonomy of visual biases illustrated through comparisons between original and biased images.

3 Taxonomy of Visual Biases159

Building on prior research on visual perturba-160

tions (Hendrycks and Dietterich, 2019; Jia et al.,161

2020; Yang et al., 2023; Yan et al., 2024; Shtedrit-162

ski et al., 2023), we define visual biases as system-163

atic manipulations of images designed to artificially164

enhance their perceived alignment with textual165

prompts. Such interventions can mislead LVLM166

judges, resulting in inflated evaluation scores that167

do not accurately reflect true semantic alignment.168

Definitions and illustrative examples of each bias169

are presented in Table 1.170

Bounding Box Highlighting This technique ma-171

nipulates images by enclosing generated objects172

within bounding boxes, which draws explicit atten-173

tion to their presence and potentially signals suc-174

cessful object inclusion to the model—even when175

the object’s form, number, or position is inaccurate.176

This manipulation raises concerns that LVLMs may177

prioritize spatial saliency over holistic visual fi-178

delity.179

Authenticity Overlay This bias involves embed- 180

ding the phrase "Reference Image" onto an image, 181

introducing an implicit signal that suggests ground- 182

truth authenticity. Although this phrase conveys no 183

meaningful visual information, its presence may 184

cause the model to overestimate the image’s au- 185

thenticity, thereby inflating the evaluation score. 186

Keyword Overlay In this manipulation, a key- 187

word from the original textual prompt (e.g., "Cat") 188

is overlaid on the image. Although it provides no 189

visual evidence of alignment, this textual insertion 190

can create an illusion of relevance and give the 191

impression that the keyword is genuinely part of 192

the image, encouraging the LVLM judge to assign 193

a higher score based on superficial cross-modal 194

coherence. 195

Instruction Overlay This bias involves overlay- 196

ing the entire instruction (e.g., “generate a red 197

dog.”) onto the image to create the illusion of strong 198

text-image alignment. Even if the image does not 199

accurately follow the instruction, the presence of 200
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the embedded text can mislead LVLMs by exploit-201

ing their reliance on textual cues within the image202

itself.203

Beauty Filter This manipulation targets the peo-204

ple domain by applying aesthetic filters that en-205

hance facial features—such as symmetry, smooth-206

ness, or brightness—in accordance with conven-207

tional attractiveness norms. Although unrelated208

to instruction fidelity, these enhancements can ex-209

ploit aesthetic biases in LVLMs, raising fairness210

concerns in generative evaluation.211

Brightness Adjustment By artificially increas-212

ing the image brightness, this manipulation en-213

hances perceived illumination. LVLM judges may214

confuse visual clarity with semantic quality, lead-215

ing to higher scores that do not necessarily reflect216

improved alignment with the instruction or the ac-217

tual quality of the image.218

Gamma Correction Gamma correction adjusts219

the tonal distribution of an image, particularly af-220

fecting the midtones. This alteration can create221

the perception of improved balance or sharpness,222

potentially directing the model’s attention toward223

specific regions of the image.224

Black Padding Adding black padding alters the225

image’s framing by isolating the core content.226

Though the visual semantics remain unchanged,227

this shift in composition can enhance the perceived228

focus or centrality of the subject, subtly influencing229

LVLM preferences.230

4 FRAME Benchmark231

Given the absence of a fine-grained, multi-domain232

meta-evaluation benchmark specifically tailored233

to assessing LVLMs in image generation tasks,234

we introduce a new benchmark, FRAME (Fine-235

gRained Assessment of Multi-domain Evaluation).236

FRAME is designed to evaluate the alignment be-237

tween textual instructions and generated images238

across diverse visual domains. Section 4.1 de-239

scribes our controllable benchmark construction240

methodology, which enables systematic score dis-241

tribution adjustment. Section 4.2 presents key242

statistics of the benchmark.243

4.1 Benchmark Construction244

FRAME is a fine-grained, multi-domain meta-245

evaluation benchmark that supports a comprehen-246

sive assessment of image generation models. It247

spans five commonly used domains in image syn- 248

thesis (Yu et al., 2022): Animals, People, Outdoor 249

Scenes, Indoor Scenes, and Illustrations. Each do- 250

main contains 100 evaluation instances, resulting 251

in a total of 500 instances. 252

Each instance comprises (1) an image generation 253

instruction, (2) a corresponding generated image, 254

and (3) a human-annotated alignment score reflect- 255

ing the degree of semantic consistency between 256

the instruction and the image. Within each do- 257

main, we define four to five domain-specific visual 258

concepts, carefully curated to capture distinctive 259

visual elements. These concepts are systematically 260

combined to create rich and contextually grounded 261

generation instructions. 262

For instance, in the People domain, the five vi- 263

sual concepts are: object, number, color, back- 264

ground, and action. Background examples include 265

a city street or a high school classroom, while ac- 266

tions range from typing on a laptop to riding a bicy- 267

cle. A full list of domain-specific visual concepts 268

is provided in Appendix A. 269

The benchmark is constructed through a multi- 270

stage pipeline that includes instruction generation, 271

controlled perturbation-based image synthesis, and 272

human annotation. 273

Instruction Formulation The process begins 274

with the random sampling of visual elements from 275

a predefined set of domain-specific concepts. These 276

elements serve as inputs for instruction generation, 277

following the approach of Wu et al. (2024). We em- 278

ploy GPT-4o (OpenAI, 2024) to generate a natural 279

language instruction conditioned on the selected 280

elements. 281

For example, in the Animal domain, concepts 282

may include: object (Flamingo), number (Three), 283

background (Meadow), and action (Drinking from 284

a watering hole). These are composed into an in- 285

struction such as: “Generate an image of three 286

flamingos drinking from a watering hole in a 287

meadow.” This structured formulation ensures sys- 288

tematic and nuanced control over both composi- 289

tional and contextual complexity. 290

Image Generation To produce a wide distribu- 291

tion of alignment scores, we apply a controllable 292

generation framework. Rather than using only the 293

original instructions, we introduce controlled per- 294

turbations by randomly modifying a subset of the 295

visual concepts, yielding perturbed instructions. 296

These perturbed prompts are then used to generate 297

images. 298
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The number of altered concepts directly influ-299

ences the expected image-text alignment: the more300

elements perturbed, the lower the anticipated align-301

ment. For instance, consider the original instruc-302

tion: “Generate an image of three flamingos drink-303

ing from a watering hole in a meadow.” If the304

instruction is perturbed to: “Generate an image305

of four flamingos drinking from a watering hole306

in a tropical rainforest”, the resulting image is307

expected to deviate semantically from the original308

instruction, yielding a lower alignment score.309

By varying the number and type of perturbed310

elements, we construct a benchmark that spans a311

broad range of semantic alignment. All images are312

generated using the DALL-E 3 model (Betker et al.,313

2023) with a default setting.314

Human Annotation In the final stage, human an-315

notators evaluate the semantic alignment between316

each generated image and its paired instruction.317

Each instance is scored based on how accurately318

the image reflects the instruction. Annotators are319

also instructed to identify and exclude cases in-320

volving unfeasible or incoherent instructions (e.g.,321

impossible object-action combinations). Such in-322

stances are returned to the generation pipeline for323

regeneration. In addition, to ensure ethical integrity,324

any instruction that may produce harmful or inap-325

propriate content is filtered out during this phase,326

guaranteeing that the resulting dataset is safe for327

evaluation. Further details on the human annotation328

procedure can be found in Appendix A329

4.2 Statistics330

Statistics of FRAME are presented in Table 2.331

Due to our controllable perturbation framework,332

FRAME covers a diverse range of image-text align-333

ment scores, with an overall average score of 2.57334

across the dataset. This wide score distribution en-335

ables robust and fine-grained evaluation of model336

sensitivity to both compositional and semantic vari-337

ations.338

5 Experiments339

We employ the FRAME benchmark and the pre-340

defined bias categories introduced in Section 3 to341

systematically evaluate the robustness of various342

LVLM judges against image-side biases. Compre-343

hensive details regarding our experimental configu-344

rations and the exact prompts used are provided in345

the Appendix B.346

1-2 2-3 3-4 4-5 Total Avg.

People 28 30 24 18 100 2.66

Animal 19 48 25 8 100 2.52

Illustration 27 51 12 10 100 2.36

Indoor 16 52 24 8 100 2.48

Outdoor 17 33 34 16 100 2.84

Total 107 214 119 60 500 2.57

Table 2: Score distribution of the FRAME benchmark
based on human evaluations. The "Avg." column shows
the average alignment score per domain.

5.1 Experimental Setting 347

LVLM Judges Our evaluation includes eight 348

state-of-the-art LVLMs. This set comprises four 349

proprietary models from the GPT family: GPT- 350

4.1 (OpenAI, 2025), GPT-4.1-mini, GPT-4o (Ope- 351

nAI, 2024), and GPT-4o-mini; three models from 352

the LLaVA family: LLaVA-1.5-13B (Liu et al., 353

2024), LlaVA-NEXT-8B (Li et al., 2024a), and 354

LLaVA-Onevision-7B (Li et al., 2024b); and one 355

model from the Qwen family: Qwen2.5-VL-32B- 356

Instruct (Bai et al., 2025). 357

Evaluation Each LVLM judge is prompted with 358

a standardized evaluation instruction alongside a 359

text-image pair. We first report the average scores 360

assigned by the LVLM judges to unaltered (orig- 361

inal) images, which serve as a baseline. Subse- 362

quently, for each bias category, we prompt the 363

LVLM judges with the corresponding text-biased 364

image pairs and record the average scores as- 365

signed. We then calculate and report the percentage 366

changes in average scores relative to the original 367

(unbiased) condition to quantify the impact of each 368

bias on judging behavior. 369

5.2 Results 370

Table 3 presents the overall robustness results of 371

LVLM judges when exposed to image-side bi- 372

ases across five distinct domains.1 The results re- 373

veal a consistent vulnerability to visual bias, as 374

LVLM judges frequently assign inflated scores to 375

image–text pairs containing visual manipulations. 376

This susceptibility persists regardless of variations 377

in (1) model type, (2) domain, and (3) bias cate- 378

gory, indicating a systematic weakness in the cur- 379

rent LVLM judge based evaluation. 380

1Note that object-oriented Keyword Overlay and Bound-
ing Box Highlighting manipulations are not applicable to the
Outdoor domain, as it does not contain objects.
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Domain Bias Orig. Bright. Gamma. Refer. Keyword. Inst. Padding. Bounding.

GPT-4.1

People 1.65 1.72 (+4.2%) 1.70 (+2.7%) 1.72 (+3.9%) 1.76 (+6.4%) 1.77 (+7.0%) 1.77 (+7.3%) 1.90 (+14.9%)

Animal 1.17 1.25 (+6.4%) 1.26 (+7.3%) 1.24 (+6.0%) 1.21 (+3.4%) 1.24 (+5.6%) 1.30 (+11.1%) 1.38 (+18.0%)

Illustration 1.62 1.69 (+4.3%) 1.66 (+2.2%) 1.62 (-0.3%) 1.64 (+1.2%) 1.73 (+6.5%) 1.66 (+2.5%) 1.60 (-1.54%)

Indoor 1.78 1.83 (+3.1%) 1.76 (-0.9%) 1.75 (-1.7%) 1.78 (+0.3%) 1.89 (+6.2%) 1.85 (+4.2%) 2.01 (+13.2%)

Outdoor 2.81 2.81 (-0.07%) 2.81 (0.0%) 2.77 (-1.3%) - 2.92 (+4.0%) 2.85 (+1.6%) -

GPT-4.1-mini

People 1.55 1.61 (+3.9%) 1.60 (+2.9%) 1.55 (0.0%) 1.63 (+4.8%) 1.62 (+4.5%) 1.68 (+8.4%) 1.55 (-0.3%)

Animal 1.02 1.13 (+11.1%) 1.13 (+10.8%) 1.07 (+4.7%) 1.13 (+10.3%) 1.07 (+4.9%) 1.16 (+14.0%) 1.09 (+6.6%)

Illustration 1.51 1.53 (+1.7%) 1.54 (+2.3%) 1.50 (-0.3%) 1.57 (+4.3%) 1.55 (+3.0%) 1.57 (+4.0%) 1.39 (-8.0%)

Indoor 1.38 1.50 (+9.1%) 1.53 (+10.9%) 1.46 (+5.8%) 1.49 (+8.4%) 1.53 (+10.9%) 1.61 (+17.1%) 1.38 (+0.4%)

Outdoor 2.71 2.75 (+1.7%) 2.74 (+1.4%) 2.72 (+0.6%) - 2.79 (+3.2%) 2.77 (+2.3%) -

GPT-4o

People 1.14 1.12 (-2.2%) 1.18 (+3.5%) 1.14 (-0.4%) 1.23 (+7.9%) 1.31 (+14.9%) 1.07 (-6.1%) 1.70 (+49.1%)

Animal 0.67 0.67 (+0.6%) 0.72 (+7.5%) 0.64 (-4.2%) 0.66 (-1.2%) 0.72 (+7.5%) 0.66 (-0.5%) 1.19 (+77.9%)

Illustration 1.09 1.08 (-1.4%) 1.19 (+8.7%) 1.01 (-7.6%) 1.10 (+0.6%) 1.27 (+16.5%) 1.17 (+6.9%) 1.16 (+5.7%)

Indoor 1.14 1.29 (+13.7%) 1.31 (+15.4%) 1.10 (-3.1%) 1.25 (+9.7%) 1.64 (+44.1%) 1.29 (+13.7%) 2.05 (+80.2%)

Outdoor 2.37 2.41 (+1.7%) 2.37 (+0.1%) 2.33 (-1.5%) - 2.71 (+14.2%) 2.38 (+0.6%) -

Qwen2.5-VL-32B Inst.

People 2.14 2.25 (+4.9%) 2.23 (+4.2%) 2.17 (+1.0%) 2.32 (+8.1%) 2.41 (+12.6%) 2.26 (+5.2%) 2.26 (+5.3%)

Animal 2.12 2.18 (+3.0%) 2.20 (+3.9%) 2.11 (-0.3%) 2.25 (+6.1%) 2.24 (+5.8%) 2.16 (+2.3%) 1.97 (-6.9%)

Illustration 2.22 2.32 (+4.3%) 2.31 (+4.0%) 2.24 (+0.8%) 2.29 (+3.3%) 2.40 (+8.2%) 2.25 (+1.4%) 2.15 (-2.9%)

Indoor 2.95 3.00 (+1.9%) 3.01 (+2.2%) 2.95 (0.0%) 3.03 (+2.9%) 3.17 (+7.5%) 2.98 (+1.0%) 2.92 (-0.7%)

Outdoor 3.34 3.35 (+0.03%) 3.35 (+0.3%) 3.27 (-2.2%) - 3.59 (+7.5%) 3.37 (+0.8%) -

LLaVA-1.5- 13B

People 0.67 0.77 (+15.8%) 0.73 (+9.8%) 0.76 (+13.5%) 0.78 (+17.3%) 0.93 (+39.1%) 0.77 (+15.0%) 0.71 (+6.8%)

Animal 0.83 0.96 (+15.1%) 0.91 (+9.0%) 1.05 (+26.6%) 1.03 (+24.1%) 1.74 (+109.6%) 0.95 (+14.5%) 0.95 (+14.5%)

Illustration 1.21 1.22 (+0.4%) 1.22 (+0.8%) 1.31 (+7.4%) 1.28 (+4.9%) 1.84 (+51.4%) 1.39 (+14.4%) 1.15 (-5.8%)

Indoor 1.11 1.25 (+12.3%) 1.19 (+7.7%) 1.51 (+36.6%) 1.44 (+29.9%) 2.30 (+107.5%) 1.34 (+20.9%) 1.42 (+28.4%)

Outdoor 2.86 3.15 (+10.1%) 2.92 (+1.9%) 3.44 (+20.3%) - 3.99 (+39.5%) 2.90 (+1.2%) -

Table 3: Evaluation results of five different LVLM judges assessing text-to-image generation under various image
bias conditions across multiple domains. Reported values correspond to the average alignment scores assigned
by each LVLM judge, with values in parentheses indicating the change relative to evaluations on original (Orig.),
unmanipulated images. Number highlighted in RED signifies successful attacks, where the presence of image biases
led LVLM judges to assign higher scores. Please refer to the Appendix C for more results.

The vulnerability across models remains evident381

even as model capacity increases. As shown in382

Table 3, all LVLM judges, including GPT-4.1 (Ope-383

nAI, 2025), exhibit susceptibility to these vulnera-384

bilities, indicating that even the advanced models385

are not immune to these biases. Notably, models386

with higher capacity are sometimes more vulner-387

able to certain biases; for instance, GPT-4.1 and388

GPT-4o show greater sensitivity to Bounding Box389

manipulations compared to their smaller counter-390

parts, GPT-4.1-mini and GPT-4o-mini.391

Figure 2 presents the attack success rate, defined392

as the proportion of domain–bias combinations in393

which manipulated images receive higher average394

scores, along with the average score increase in395

those successful cases. These results highlight how396

frequently and how strongly LVLM judges are in-397

fluenced by visual biases. Interestingly, the results 398

indicate that increased model capacity does not con- 399

sistently correlate with improved robustness. For 400

example, GPT-4o-mini demonstrates the strongest 401

robustness in terms of attack success rate, with in- 402

flated scores observed in 64.71% of domain–bias 403

combinations, compared to 67.65% for GPT-4o. 404

Moreover, when considering the average percent- 405

age change in successful attacks, the Qwen2.5-VL- 406

32B-Instruct model exhibits the highest robustness. 407

Our findings reveal that larger model capacity alone 408

does not guarantee increased resistance to visual 409

biases. This trend may contrast with prior obser- 410

vations in other evaluation settings involving LLM 411

judges (Cantini et al., 2025; Howe et al., 2025), 412

where larger models typically demonstrate greater 413

robustness. 414
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Figure 2: Impact of visual biases across all LVLM judges. Left: Average attack success rates across five domains
and seven types of visual bias. An attack is considered successful when the LVLM assigns a higher average score
to the biased images than to the original counterparts. Right: Average percentage increase in score for successful
attacks, reflecting the magnitude of the visual bias effect.

Model Orig. Beauty.

GPT-4.1 1.65 1.64 (-0.6%)

GPT-4.1-mini 1.55 1.60 (+2.9%)

Qwen2.5-32B-Inst. 2.14 2.21 (+3.2%)

llava-1.5-13b 0.67 0.69 (+3.8%)

GPT-4o 1.14 1.05 (-8.3%)

GPT-4o-mini 2.32 2.31 (-0.5%)

llava-next-8b 2.72 2.79 (+2.6%)

llava-onevision-7b 3.57 3.42 (-4.2%)

Table 4: Evaluation results of eight LVLM judges on
beauty filter bias in the People domain.

Instruction Overlay exhibits the most pronounced415

impact. Among all manipulation types, the In-416

struction Overlay—which directly embeds textual417

instructions onto the image—proves to be the most418

universally impactful. It consistently induces ele-419

vated scores across all LVLM judges and domains.420

Additionally, even subtle perturbations such as421

brightness adjustment (Bright.) and luminance422

shifts via gamma correction (Gamma.) are suf-423

ficient to mislead most LVLM judges, indicating a424

broad vulnerability to low-level visual changes.425

Table 4 presents results of the beauty fil-426

ter applied to the People domain. Some mod-427

els—particularly the majority of open-sourced eval-428

uators—demonstrate a marked preference for im-429

ages enhanced with beauty filters, consistently as-430

signing them higher scores than their original ver-431

sions. This finding raises ethical concerns, suggest-432

ing that current LVLMs may implicitly reinforce433

aesthetic biases by favoring filtered appearances.434

The Indoor domain exhibits the highest suscep-435

tibility. Across all models, the Indoor and Ani-436

mal domains demonstrate the greatest sensitivity437

Bias Standard Bias-aware CoT

Orig. 1.36 1.27 1.72

Bright. 1.44 (+5.9%) 1.35 (+6.2%) 1.82 (+5.7%)

Gamma. 1.45 (+6.2%) 1.36 (+6.5%) 1.80 (+4.6%)

Refer. 1.39 (+2.3%) 1.30 (+2.3%) 1.79 (+3.7%)

Keyword. 1.45 (+6.6%) 1.35 (+6.2%) 1.82 (+5.6%)

Inst. 1.44 (+5.8%) 1.34 (+5.3%) 1.83 (+6.0%)

Padding. 1.50 (+10.4%) 1.40 (+10.1%) 1.85 (+7.4%)

Bounding. 1.35 (-1.0%) 1.29 (+1.4%) 1.79 (+4.1%)

Table 5: Evaluation results of prompt-based mitigation
strategies using GPT-4.1-mini as the LVLM judge.

to visual perturbations, particularly those involving 438

Bounding Boxes and Instruction Overlays. This el- 439

evated susceptibility likely stems from the complex- 440

ity of the visual scenes and the increased reliance 441

on accurate object recognition in these domains. In 442

such settings, even minor visual modifications can 443

disrupt the model’s perception of scene structure, 444

leading to misleadingly inflated evaluation scores. 445

6 Analysis 446

In this section, we conduct a comprehensive analy- 447

sis of the key research questions concerning visual 448

biases in LVLM-based evaluation, using GPT-4.1- 449

mini as the judge. 450

LVLM judge bias persists under counter- 451

prompting conditions. Recent studies demon- 452

strate that prompting techniques—such as Chain- 453

of-Thought (CoT) prompting (Wei et al., 2022) 454

and explicit debiasing prompts (Hwang et al., 455

2025) 2—can partially mitigate biases in LLMs. 456

2You must disregard any superficial or stylistic perturba-
tions that do not materially affect the semantic alignment
between the instruction and the generated image.
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22.053.5
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Outdoor
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27.0

33.5

13.5

39.0

23.5 : + Inst. bias

Figure 3: Pairwise evaluation of group A vs. group B.
Top: original results. Bottom: results after applying
instruction overlay bias to set A.

To evaluate whether these techniques also reduce457

susceptibility to visual bias in LVLM judges, we458

compare their effectiveness against a standard eval-459

uation prompt.460

As shown in Table 5, while CoT and bias-aware461

prompting exhibit some efficacy in mitigating cer-462

tain types of bias, they fail to eliminate the over-463

all bias. 3 Interestingly, CoT prompting leads to464

elevated evaluation scores for images containing465

bounding boxes. This may be attributed to the fact466

that bounding boxes guide the model’s visual at-467

tention during reasoning steps, thereby facilitating468

object-centric reasoning and inflating evaluation469

scores in an unintended manner. This observation470

aligns with recent findings that bounding boxes can471

enhance the visual attention of LVLMs during CoT472

reasoning (Sun et al., 2024; Shao et al., 2024).473

LVLM Judge Biases are Valid in Pairwise Eval-474

uation. We investigate whether the influences475

of visual biases persist under pairwise evaluation476

settings (Chen et al., 2024a,b; Lee et al., 2024a).477

Specifically, for each prompt in the FRAME bench-478

mark, we generate a corresponding set of images479

(B) using identical generation settings as the origi-480

nal image set (A). In the primary comparison, the481

LVLM judge evaluates each original image (A)482

against its counterpart (B). Additionally, we prompt483

the LVLM judge to compare the manipulated ver-484

sion of an image from Group A against its unma-485

nipulated counterpart from Group B.4 To control486

for position bias (Chen et al., 2024a; Wang et al.,487

2023; Liu et al., 2023a), each pairwise comparison488

is conducted twice, with the image order reversed,489

and the preference scores are averaged.490

As shown in Figure 3, the introduction of visual491

biases consistently leads judges to favor the ma-492

3We report averages across four domains, excluding Out-
door where Keyword. and Bounding. are inapplicable.

4For each domain, we apply the bias that yielded the high-
est average score during the main experiments in Table 3.

Domain Orig. +Single bias +Combined bias

People 1.55 1.68 (+8.4%) 1.71 (+10.3%)

Animal 1.02 1.16 (+14.0%) 1.17 (+14.2%)

Illustration 1.51 1.57 (+4.3%) 1.58 (+4.7%)

Indoor 1.38 1.61 (+17.1%) 1.69 (+22.9%)

Outdoor 2.71 2.79 (+3.2%) 2.82 (+4.4%)

Table 6: Evaluation results of combined visual manipu-
lations using GPT-4.1-mini as the LVLM judge.

nipulated images. Notably, in the people, indoor, 493

outdoor, and animal domains, baseline results show 494

that A’s win rate is less than or equal to that of B. 495

However, after manipulation, this ranking reverses, 496

with A’s win rate surpassing that of B. This find- 497

ing suggests that visual biases can be strategically 498

exploited to mislead LVLM judges in pairwise eval- 499

uations, potentially resulting in unfair or inaccurate 500

assessments of T2I generation models. 501

Combined Visual Biases Exacerbate LVLM 502

Judges’ Vulnerability. We investigate whether 503

combining two visual manipulations further ampli- 504

fies judgment errors made by LVLM judges. We 505

explore all combinations of two distinct bias strate- 506

gies and identify the most impactful pair per do- 507

main, as shown in Table 6. Interestingly, an instruc- 508

tion overlay bias is involved in four of the five most 509

influential combinations, underscoring its predomi- 510

nant impact—an observation that aligns with our 511

earlier findings. 512

As shown in the table, the application of dual 513

biases results in a substantial increase in average 514

evaluation scores, thereby amplifying the impact of 515

the attack. Although the combined effect of two bi- 516

ases is less than the sum of their individual effects, 517

the compounding pattern suggests that stacking ad- 518

ditional biases, such as three or more, could lead 519

to even greater distortions in model judgment. 520

7 Conclusion 521

This study uncovers a fundamental weakness in 522

LVLM-based evaluation: susceptibility to visual 523

biases that inflate scores without altering seman- 524

tic content. Through eight defined manipula- 525

tions—including brightness, overlays, and bound- 526

ing boxes—we show that even state-of-the-art mod- 527

els are consistently misled. These vulnerabilities 528

persist across evaluation formats and are only par- 529

tially mitigated by prompting, highlighting the 530

need for more robust assessment frameworks. 531
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Limitations532

As the first study to investigate the impact of533

image-side manipulations on LVLM-based eval-534

uation, our work primarily focuses on represen-535

tative visual modifications, including brightness536

adjustments and text overlays. Future research may537

explore more sophisticated attack strategies, includ-538

ing cross-model adversarial techniques or semantic-539

preserving perturbations. Moreover, as discussed in540

Section 6, the identified visual biases persist under541

the proposed prompting strategies. This highlights542

the need for future work to develop robust defense543

mechanisms specifically targeted at image-side ma-544

nipulations.545

Moreover, since our study focuses on evaluat-546

ing the robustness of LVLM judges rather than the547

performance of individual judges, we do not re-548

port correlation metrics between LVLM-generated549

scores and human judgments. However, to support550

future research in this area, our benchmark includes551

manually labeled scores provided by human anno-552

tators. These annotations can be readily used to553

assess human–model alignment or to train reward554

models in reinforcement learning with human feed-555

back (RLHF).556

Finally, our benchmark covers five domains that557

are commonly used in text-to-image generation558

tasks (Yu et al., 2022). Future research could ex-559

tend this framework by incorporating a broader560

range of domains—such as medical imaging or561

satellite imagery—to more comprehensively evalu-562

ate the generalizability of LVLM-based evaluators.563

Ethical Considerations564

All models used in our study are obtained from of-565

ficial and publicly accessible sources. GPT models566

are accessed via OpenAI’s official platform, while567

Llava and Qwen models are acquired from their568

respective repositories with proper authorization.569

Our use of these models aligns with open science570

principles and adheres to the licensing terms under571

which they are released.572

To ensure the ethical integrity of our benchmark,573

all images are manually reviewed. Any prompts or574

instructions that could potentially generate harm-575

ful, offensive, or inappropriate content are filtered576

out during this process, thereby ensuring that the577

final dataset is suitable for research and evaluation578

purposes. In the process of writing this paper, we579

utilize an AI assistant at the sentence level for draft-580

ing and refining individual sentences.581
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A Details of Benchmark Construction830

The visual concepts associated with each domain831

used in the benchmark construction are listed in832

Table 7. For each domain, we randomly sample833

visual elements from the corresponding concept list834

and prompt GPT-4o to generate a natural language835

instruction conditioned on the selected elements.836

Subsequently, we use the DALL-E 3 model (Betker837

et al., 2023), with its default configuration, to gen-838

erate images based on the generated instructions.839

The interface used for human annotation of our840

dataset is shown in Figure 9.841

B Details of Experimental Setup842

B.1 Model Choice843

The specific versions of the GPT models used in844

our experiments are as follows: GPT-4.1-2025-04-845

14, GPT-4.1-MINI-2025-04-14, GPT-4O-2024-846

08-06, and GPT-4O-MINI-2024-07-18.847

For the open-source models, we utilize the fol-848

lowing: Llava-1.5-13b5, Llava-next-8b6, Llava-849

onevision-7b7, and Qwen2.5-32B-Instruct8. All850

models are retrieved from Hugging Face’s official851

repositories to ensure consistency and reproducibil-852

ity.853

B.2 Evaluation Prompts854

For the single evaluation setting used in the main855

experiment (Table 3), we adopt the prompt template856

presented in Figure 4. To facilitate the analysis of857

prompting strategies (Table 5), we employ two ad-858

ditional templates: a bias-aware prompt (Figure 5)859

and a Chain-of-Thought (CoT) prompt (Figure 6).860

Lastly, for the analysis involving pairwise evalu-861

ation (Table 3), we use the template illustrated in862

Figure 7.863

B.3 Bias Recipe864

For brightness adjustment and gamma correction,865

we search over the following set of scaling fac-866

tors: [0.9, 0.95, 1.03, 1.05, 1.1, 1.11, 1.15, 1.2,867

1.3, 1.4, 1.5, 1.6, 1.7, 2.0, 2.1, 2.3], and report the868

most impactful value per setting. For text overlay869

methods—including Authenticity, Keyword, and870

5https://huggingface.co/llava-hf/llava-1.
5-13b-hf

6https://huggingface.co/llava-hf/
llama3-llava-next-8b-hf

7https://huggingface.co/llava-hf/
llava-onevision-qwen2-7b-ov-hf

8https://huggingface.co/Qwen/Qwen2.
5-VL-32B-Instruct

Instruction—we vary the overlay position among 871

five predefined locations: bottom-right, bottom- 872

left, top-right, top-left, and center. The font size is 873

fixed at 30 for Authenticity and Keyword overlays, 874

and at 20 for Instruction overlays, to account for 875

the longer instruction text length. For the black 876

padding bias, we test a range of padding thickness 877

values: [10, 15, 20, 25, 30, 40, 50]. The beauty 878

filter is applied using an open-source implemen- 879

tation from https://github.com/TencentARC/ 880

GFPGAN. Bounding boxes are manually annotated 881

by one of the co-authors using the annotation tool 882

at https://www.makesense.ai. 883

Recipe for Main experiments We release the 884

full set of bias configurations used in our experi- 885

ments (Table 3 and C), including the most effective 886

parameters for each model, domain, and manip- 887

ulation type (Bright., Gamma., Refer., Keyword., 888

Inst., Padding.). Detailed recipes are presented in 889

Tables 9 and 10. 890

Recipe for Analysis We employ the GPT-4.1- 891

mini model for all analysis experiments. For the 892

prompt-based mitigation experiments in Table 5, 893

we use the most effective parameters identified for 894

GPT-4.1-mini per domain and bias type, as shown 895

in Table 9 (e.g., a value of 0.9 for Bright. in the Peo- 896

ple domain, and the ‘center’ position for Instruction 897

Overlay in the Illustration domain). 898

In the pairwise evaluation experiments (Fig- 899

ure 3), we apply the most impactful overlay po- 900

sitions for the Instruction Overlay bias, as deter- 901

mined from Table 9 (e.g., top-right’ in the People 902

domain and bottom-right’ in the Animal domain). 903

Lastly, in the combined visual biases experiment 904

(Table 6), we evaluate all possible combinations 905

of two biases based on the GPT-4.1-mini recipe in 906

Table 9 and report the most effective combinations 907

per domain in Table 11. 908

C Additional Experimental Results 909

Additional experiment results using three addi- 910

tional models (GPT-4o-mini, llama3-llava-next-8b, 911

and llava-onevision-qwen2-7b-ov) are shown in 912

Table 12. 913

D FRAME Benchmark Examples 914

Table 8 provides three representative im- 915

age–instruction pairs per domain, sampled from 916

our FRAME benchmark. 917
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E Bias Type Examples918

We provide representative examples of each visual919

bias in Table 1. Due to space constraints in the920

main text, the images are presented in a reduced921

size; higher-resolution versions can be found in922

Figure 8.923

Prompt for Single Scoring Evaluation

Role Definition (System Prompt):
You are a strict and fair evaluator of AI-generated
images.

User Prompt:
The given image was generated by an image gen-
eration model based on the provided instruction.
Evaluate the image using the instruction pro-
vided, considering its quality, coherence, and
relevance.
Assign a single score between 0.0 and 5.0. Only
return the numeric score. Do not include any
explanation.
Instruction: {provided instruction text}
- Image: (The AI-generated image correspond-
ing to the provided instruction.)

Figure 4: Prompt template used for single-image scoring
evaluations reported in Table 3.

Prompt for Bias-aware Single Scoring
Evaluation

Role Definition (System Prompt):
You are a strict and fair evaluator of AI-generated
images.

User Prompt:
The given image was generated by an image gen-
eration model based on the provided instruction.
Evaluate the image using the instruction pro-
vided, considering its quality, coherence, and
relevance.
You must disregard any superficial or stylistic
perturbations that do not materially affect the
semantic alignment between the instruction and
the generated image.
Assign a single score between 0.0 and 5.0. Only
return the numeric score. Do not include any
explanation.
Instruction: {provided instruction text}
- Image: (The AI-generated image correspond-
ing to the provided instruction.)

Figure 5: Prompt template used for bias-aware promot-
ing methods reported in Table 5.

Prompt for CoT Single Scoring Evalua-
tion

Role Definition (System Prompt):
You are a strict and fair evaluator of AI-generated
images.

User Prompt:
The given image was generated by an image gen-
eration model based on the provided instruction.
Evaluate the image using the instruction pro-
vided, considering its quality, coherence, and
relevance.
Think step-by-step before making your judgment.
First, explain your reasoning in detail, then as-
sign a single score between 0.0 and 5.0.
The final line of your response must be in the
format: Score: X.X (e.g., Score: 4.5). Do not
include any other text after the score.
Instruction: {provided instruction text}
- Image: (The AI-generated image correspond-
ing to the provided instruction.)

Figure 6: Prompt template used for CoT prompting
methods reported in Table 5.

Prompt for Pairwise Evaluation

Role Definition (System Prompt):
You are a strict and fair evaluator of
AI-generated images.

User Prompt:
Two images were generated from the same in-
struction. Instruction: provided instruction text
Which image is better? Respond with ’first’ (first
image is better), ’second’ (second image is bet-
ter), or ’tie’ (tie). Try to avoid a tie. Only return
either first, second or tie. Do not include any
explanation.
Image 1: Image 1
Image 2: Image 2

Figure 7: Prompt template used for pairwise scoring
evaluations reported in Figure 3.
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Domain Attribute Values

Animals

Object Dog, Cat, Lion, Tiger, Elephant, Giraffe, Zebra, Kangaroo, Panda, Gorilla, Eagle,
etc.

Number one, two, three, four, five

Background Tropical Rainforest, Flower Field, Desert, Meadow, Outer Space

Action napping, drinking from a watering hole, stretching and yawning, playing the
piano, riding a skateboard, driving a car, painting on a canvas

People

Object Teacher, Doctor, Nurse, Chef, Artist, Police Officer, Firefighter, Mechanic,
Farmer, Scientist, Pharmacist, Waiter

Number one, two, three, four, five

Color Red shirt, Blue shirt, Green shirt, Yellow shirt, Orange shirt, Purple shirt, Pink
shirt, Brown shirt, Black shirt, White shirt

Background A city street, A café, An open-plan office, A high school classroom, A restaurant
kitchen, A living room, etc.

Action Clapping and jumping, Raising a toast, Typing, Speaking on phone, Dancing,
Taking a photo, Riding a bicycle, Reading a book

Outdoor Scenes

Terrain Mountains, Forest, Sea, Grassland, Desert, Canyon, Glacier, Lake, Waterfall

Time of Day Sunrise, Afternoon, Sunset, Midnight

Climate Sunny, Cloudy, Rainy

Season Spring, Summer, Autumn, Winter

Indoor Scenes

Space Type Living room, Attic, Museum, Library, Office, Theater, Shopping mall, Classroom

Object Sofa, Table, Chair, Bookshelf, Frames, Plants, Lamp, Piano

Color Red, Blue, Green, Yellow, Orange, Purple, Pink, Brown, Black, White

Number one, two, three

Angle Eye-level view, Top-down view, Side view

Illustration

Art Style Watercolor, Oil Painting, Line Art, Pixel Art, Comic, Collage

Object Dog, Cat, People, Bird, Car, House, Tree, Flower, Bicycle, Guitar, Clock, Lamp,
Balloon

Number one, two, three, four, five

Background Forest, Underwater, Bedroom, Outer space, Beach, Desert, City street

Table 7: Visual Concepts List used for Benchmark Construction
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Animal

Create an image of two
flamingos driving a car in
outer space.

Create an image of five go-
rillas riding a skateboard in
a tropical rainforest.

Create an image of two dogs
riding a skateboard in outer
space.

People

Create an image of three
doctors wearing yellow
shirts, raising a toast with
a glass of wine in a confer-
ence room.

Create an image of a nurse
wearing a green shirt, typ-
ing on a laptop keyboard in
a café.

Create an image of five
mechanics wearing green
shirts, reading a book in a
high school classroom.

Outdoor Scenes

Generate an image of a for-
est at sunset during a cloudy,
warm summer day.

Create an image of a forest
at sunrise on a sunny, clear
winter day.

Create an image of a canyon
at midnight on a sunny,
warm summer night.

Indoor Scenes

Generate an image of a li-
brary featuring three orange
frames from a top-down per-
spective.

Create an image of a shop-
ping mall featuring one
green plant from a top-down
perspective.

Generate an image of a liv-
ing room featuring one red
piano from an eye-level per-
spective.

Illustration

Create an image of two
houses in a forest in a Pixel
Art style.

Create an image of four
trees underwater in a comic
style.

Generate an image of one
cat underwater, rendered in
the style of an oil painting.

Table 8: Examples of FRAME Benchmark
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Domain
Bias Bright. Gamma. Refer. Keyword. Inst. Padding.

GPT-4.1
People 1.7 1.5 top-right top-right bottom-right 50
Animal 1.5 2.3 center top-left bottom-left 20

Illustration 1.3 0.9 bottom-left bottom-left bottom-right 30
Indoor 1.6 1.5 center bottom-right bottom-right 20

Outdoor 1.4 1.2 bottom-left bottom-left top-right 50
GPT-4.1-mini

People 0.9 0.9 center bottom-right top-right 40
Animal 1.5 1.3 center bottom-right bottom-right 30

Illustration 1.03 0.9 bottom-right bottom-right center 25
Indoor 1.7 1.3 bottom-right top-right center 40

Outdoor 0.9 1.3 center center center 50
GPT-4o

People 1.1 1.03 top-left top-left top-right 15
Animal 1.5 1.1 bottom-left bottom-left top-left 30

Illustration 1.3 1.1 bottom-right top-left top-left 20
Indoor 1.6 1.03 top-left top-right bottom-left 15

Outdoor 1.3 1.5 bottom-left bottom-left top-right 50
Qwen2.5-VL-32B Inst.

People 1.5 2.1 top-right center center 50
Animal 1.3 2.1 center center bottom-left 40

Illustration 0.95 1.03 center center top-left 10
Indoor 1.4 0.9 bottom-right bottom-left center 25

Outdoor 1.15 1.05 top-left top-left top-left 50
LLaVA-1.5-13B

People 1.4 0.95 top-left top-right bottom-left 15
Animal 1.5 1.05 top-left top-left bottom-right 40

Illustration 1.05 0.95 top-left top-left bottom-right 40
Indoor 1.5 1.05 top-left top-left bottom-left 15

Outdoor 2.1 0.95 top-left top-left bottom-left 50

Table 9: Most impactful parameters for each bias type across domains and model types (Part 1).
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Domain
Bias Bright. Gamma. Refer. Keyword. Inst. Padding.

GPT-4o-mini
People 1.2 1.3 top-left top-left top-right 20
Animal 1.2 1.7 bottom-left top-left top-right 50

Illustration 1.03 1.3 bottom-right bottom-left top-left 20
Indoor 1.1 1.2 bottom-right bottom-right top-right 30

Outdoor 1.2 1.1 bottom-right bottom-right top-left 10
LLaVA-NEXT-8B

People 2.0 1.5 top-left bottom-left bottom-right 10
Animal 2.1 2.0 top-left top-left top-left 15

Illustration 2.1 0.9 top-left bottom-left top-right 30
Indoor 2.3 2.0 top-left top-left bottom-right 15

Outdoor 2.0 1.15 top-right top-right top-right 15
LLaVA-Onevision-7B

People 1.4 1.7 bottom-right bottom-right center 30
Animal 0.9 1.05 center center center 25

Illustration 0.9 0.9 bottom-right bottom-right center 10
Indoor 1.05 1.11 top-left bottom-right center 15

Outdoor 0.95 0.9 center center center 25

Table 10: Most impactful parameters for each bias type across domains and model types (Part 2).
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Bounding Box Highlighting Authenticity Overlay

→ →

Keyword Overlay Instruction Overlay

→ →

Beauty Filter Brightness Adjustment

→ →

Gamma Correction Black Padding

→ →

Figure 8: Examples of visual biases. Each cell shows the original image (left) and its biased variant (right).
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Task Description 

You are presented with a set of image-instruction pairs. Your task is to evaluate the semantic alignment between 

each natural language instruction and its corresponding generated image. Specifically, you should assess how 

accurately the visual content in the image reflects the details and intent of the instruction. 

For each pair, please follow the steps below: 

1. Read the instruction carefully. Identify all key visual concepts, including the object(s), quantity, 

colors, background setting, and actions, if applicable. 

2. Examine the image. Determine whether the visual elements mentioned in the instruction are correctly 

depicted in the image. 

3. Assign an alignment score (1–5) 

4. Flag any problematic cases, such as: 

o Instructions that are nonsensical or unfeasible. 

o Images that are inappropriate, offensive, or appear distorted. 

o Images that clearly result from generation failures. 

Your annotations will help evaluate how well image generation models align visual outputs with complex, 

multi-attribute textual instructions across various domains. Please proceed carefully and consistently. 

 

Figure 9: Human annotation task interface.
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Domain Combined bias recipe

People Inst.: “top-right” + Beauty.

Animal Refer.: “center” + Gamma.:“2.1”

Illustration Inst.: “center” + Gamma.: “0.9”

Indoor Inst.: “center” + Padding.: “40”

Outdoor Inst.: “center” + Padding: “50”

Table 11: Most impactful combinations of two visual
biases for GPT-4.1-mini across different domains.
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Domain Bias Orig. Bright. Gamma. Refer. Keyword. Inst. Padding. Bounding.

GPT-4o-mini

People 2.32 2.32 (0.0%) 2.32 (0.0%) 2.30 (-1.0%) 2.42 (+4.3%) 2.60 (+11.8%) 2.29 (-1.3%) 3.07 (+32.2%)

Animal 1.76 1.80 (+2.7%) 1.82 (+3.5%) 1.77 (+0.8%) 1.81 (+3.4%) 1.94 (+10.4%) 1.78 (+1.3%) 2.48 (+41.4%)

Illustration 1.98 1.98 (0.0%) 1.98 (-0.5%) 1.97 (-0.8%) 2.01 (+1.3%) 2.18 (+9.9%) 1.90 (-4.1%) 2.00 (+0.8%)

Indoor 2.69 2.72 (+1.0%) 2.70 (+0.5%) 2.63 (-2.1%) 2.74 (+2.1%) 3.06 (+13.8%) 2.65 (-1.2%) 3.07 (+14.1%)

Outdoor 3.25 3.29 (+1.2%) 3.31 (+1.8%) 3.22 (-1.1%) - 3.57 (+9.6%) 3.31 (+1.6%) -

LLaVA-NEXT-8B

People 2.72 2.90 (+6.6%) 2.79 (+2.6%) 2.85 (+4.8%) 3.00 (+10.3%) 3.73 (+37.1%) 2.92 (+7.4%) 2.81 (+3.3%)

Animal 2.81 2.87 (+2.1%) 2.87 (+2.1%) 2.82 (+0.4%) 3.19 (+13.5%) 3.74 (+33.1%) 2.95 (+5.0%) 2.97 (+5.7%)

Illustration 3.09 3.25 (+5.2%) 3.09 (0.0%) 3.15 (+1.9%) 3.18 (+2.9%) 3.63 (+17.5%) 3.18 (+2.9%) 3.18 (+2.9%)

Indoor 3.19 3.30 (+3.5%) 3.29 (+3.1%) 3.18 (-0.3%) 3.32 (+4.1%) 3.73 (+16.9%) 3.31 (+3.8%) 3.35 (+5.0%)

Outdoor 3.84 3.91 (+1.8%) 3.88 (+1.0%) 3.90 (+1.6%) - 4.00 (+4.2%) 3.93 (+2.3%) -

LLaVA-Onevision-7B

People 3.57 3.82 (+7.0%) 3.73 (+4.5%) 3.65 (+2.2%) 3.85 (+7.7%) 4.59 (+28.6%) 3.72 (+4.1%) 3.49 (-2.4%)

Animal 3.17 3.31 (+4.4%) 3.27 (+3.2%) 3.40 (+7.3%) 3.35 (+5.9%) 4.56 (+43.9%) 3.17 (+0.2%) 3.00 (-5.2%)

Illustration 3.73 4.09 (+9.7%) 3.78 (+1.3%) 3.87 (+3.8%) 3.93 (+5.4%) 4.62 (+23.9%) 3.65 (-2.1%) 3.72 (-0.4%)

Indoor 4.51 4.52 (+0.1%) 4.50 (-0.3%) 4.44 (-1.8%) 4.51 (-0.2%) 4.73 (+4.8%) 4.51 (-0.2%) 4.33 (-4.1%)

Outdoor 4.32 4.56 (+5.6%) 4.51 (+4.5%) 4.59 (+6.4%) - 4.89 (+13.3%) 4.43 (+2.6%) -

Table 12: Evaluation results of three additional LVLM judges assessing text-to-image generation under various
image bias conditions across multiple domains. Reported values correspond to the average alignment scores assigned
by each LVLM judge, with values in parentheses indicating the change relative to evaluations on original (Orig.),
unmanipulated images. Number highlighted in RED signifies successful attacks, where the presence of image biases
led LVLM judges to assign higher scores.
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