nnterp: A Standardized Interface for Mechanistic
Interpretability of Transformers

Clément Dumas
Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay
clement.dumas@ens-paris-saclay.fr

Abstract

Mechanistic interpretability research requires reliable tools for analyzing trans-
former internals across diverse architectures. Current approaches face a funda-
mental tradeoff: custom implementations like TransformerLens ensure consistent
interfaces but require coding a manual adaptation for each architecture, introduc-
ing numerical mismatch with the original models, while direct HuggingFace ac-
cess through NNsight preserves exact behavior but lacks standardization across
models. To bridge this gap, we develop nnterp, a lightweight wrapper around
NNsight that provides a unified interface for transformer analysis while preserving
original HuggingFace implementations. Through automatic module renaming and
comprehensive validation testing, nnterp enables researchers to write interven-
tion code once and deploy it across 50+ model variants spanning 16 architecture
families. The library includes built-in implementations of common interpretabil-
ity methods (logit lens, patchscope, activation steering) and provides direct access
to attention probabilities for models that support it. By packaging validation tests
with the library, researchers can verify compatibility with custom models locally.
nnterp bridges the gap between correctness and usability in mechanistic inter-
pretability tooling.'

1 Introduction

Mechanistic interpretability research aims to reverse-engineer the computational mechanisms within
neural networks [Elhage et al., 2021, Olah et al., 2020]. For transformer language models, this re-
quires tools that can reliably access and modify internal representations across diverse architectures.
However, the field faces a fundamental engineering challenge: balancing implementation correct-
ness with practical usability across the rapidly expanding landscape of transformer variants.

Two dominant paradigms have emerged. TransformerLens [Nanda and Bloom, 2022] provides
a clean, unified interface by reimplementing transformer architectures from scratch. This en-
sures consistent module naming and reliable hooks but requires manual implementation for each
new architecture, may introduce subtle differences from original models, and cannot leverage
architecture-specific optimizations. Conversely, NNsight [Fiotto-Kaufman et al., 2024] operates
directly on HuggingFace implementations, preserving exact model behavior and supporting any
architecture HuggingFace provides. However, this approach inherits the fragmentation of Hug-
gingFace’s naming conventions—accessing layers requires model. transformer.h for GPT-2 but
model .model.layers for LLaMA—and leaves researchers vulnerable to breaking changes in
transformer implementations. For example, since HugginFace transformers 4.54, Qwen and Llama

'Repository available at https://github.com/Butanium/nnterp, documentation at https://
butanium.github.io/nnterp/. Install with pip install nnterp.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

https://github.com/Butanium/nnterp
https://butanium.github.io/nnterp/
https://butanium.github.io/nnterp/

StandardizedTransformer
Module Structure and Accessor Methods
Modules Accessor Methods
| Im_head l I model.logits — get I Example Usage
l model =StandardizedTransformer ("gpt2")
| In_final l
Access modules
| layer = model.layers[5]
layers{i] l model.mlps_output[i] — get/set I attn = model.attentions[5]
norm = model.ln_final
output I model.mlps_input[i] — get/set I head = model.lm_head
’ model.mlps[i] > module l # Activations & interventions (in trace)
mip with model.trace ("Hello") :
Feed-Forward a r
I I _, get/set I # Get activations (respect execution order)
= layer in = model.layers input[5]
[pt] I model.attentions_input[i] — get/set I mip ouE = model.mlps ouEpuE[S]
model.logits
self attn ’ TECAL o EiEEerEens (2] PEEE l # Set activations (intervention)
Ss/f—Aﬂenﬁon model.attentions_output([6] =...
. model.mlps input[6] =...
output model.layers_output[i] — get/set -
[input] # Builtin interventions
I model.layers_input[i] — get/set I p = model.pro on_vocab (mlp_out)
‘ R
I model.layers[i] — module I model . .- , vec, factor=0.5)
All *_input and *_output accessors support
embed_tokens I model.token_embeddings — get/set I both get and set for activation patching
I:l Module / Module accessor |:| /0 accessor

Figure 1: nnterp provides a standardized interface for transformer models. Left: It renames
transformer modules to a consistent naming scheme (layers, self_attn, mlp, etc.). Middle: It
provides accessor methods for internal activations, with get and set for all *_input and *_output.
This handles whether the module returns a tuple or a single tensor. Right: Example usage for
intervention and analysis.

layers return activation tensors instead of tuples, which caused silent bugs in many interpretability
experiments.

This fragmentation creates significant friction. Researchers must either commit to a single tool’s
limitations or maintain parallel codebases for different architectures. As mechanistic interpretability
increasingly emphasizes cross-model validation and scalability to large models requiring optimiza-
tions, neither approach alone suffices.

We present nnterp, a lightweight library that bridges this gap by providing a standardized inter-
face atop NNsight’s HuggingFace integration. Through systematic module renaming and valida-
tion, nnterp enables researchers to write model .layers_output [5] consistently across GPT-2,
LLaMA, Gemma, and other architectures while preserving exact HuggingFace behavior. Key con-
tributions include:

* A unified API for accessing transformer internals (layers, attention, MLP outputs) that
works identically across 50+ model variants from 16 architecture families.

* Automatic validation upon model loading that verifies module shapes and intervention cor-
rectness. This caught the HuggingFace transformers 4.54 bug mentioned earlier day-1.

* Built-in implementations of common interpretability methods (logit lens, patchscope, steer-
ing) that work across all supported models.

* Direct access to attention probabilities for compatible architectures through NNsight’s in-
termediate variable tracking.

» Packaged test suite enabling local verification of custom models.

2 Background and Related Work

Mechanistic Interpretability Tooling. Early mechanistic interpretability relied on manual Py-
Torch hooks to intercept activations [Elhage et al., 2021]. As the field matured, specialized libraries
emerged to streamline common operations. Pyvene [Wu et al., 2024] provides a declarative frame-

work for causal interventions, while TransformerLens [Nanda and Bloom, 2022] offers a unified
interface through custom implementations. NNsight [Fiotto-Kaufman et al., 2024] takes a different
approach, wrapping existing models with a tracing system that enables interventions while preserv-
ing original implementations.

The Standardization Challenge. HuggingFace Transformers [Wolf et al., 2020] has become the
de facto repository for transformer implementations, but its design prioritizes flexibility over con-
sistency. Each architecture follows its own naming conventions and internal structure. This hetero-
geneity reflects genuine architectural differences but complicates systematic analysis. Recent work
on model diffing [Lindsey et al., 2024] and circuit discovery [Conmy et al., 2023] highlights the
need for tools that work reliably across architectures.

3 nnterp Design and Implementation

nnterp extends NNsight’s LanguageModel class with a StandardizedTransformer that au-
tomatically renames modules to follow a consistent naming scheme and provides some I/O ac-
cessors as shown in Figure 1. The module renaming system is implemented using the rename
argument from the NNsight class, which allow to pass a dictionary of original names and new
names. Different architectures require different renaming strategies. GPT-2’s transformer.h,
attn, transformer.ln_f becomes layers, self_attn, 1n_final, while LLaMA’s structure
just moves model.layers to layers. nnterp maintains a configuration system that maps each
architecture class to its renaming rules:

model = StandardizedTransformer ("gpt2")
Internally applies:

rename = {
"transformer": "model", "h": "layers", "model.layers": "layers",
"attn": "self_attn", "transformer.In_f": "In_final"

}

nnterp also providesmodel . {layers/mlps/attentions}_input/output [layer_idx] which
allow to get and set the input and output of the specified layer. This should be preferred over using
e.g. model.layers[layer_idx].output as this can be a tensor or a tuple depending on the
architecture, while model . layers_output [layer_idx] always get/set the output tensor.

This standardization leverages NNsight’s module renaming capability while maintaining full com-
patibility with NNsight’s intervention API (the modules are still available under their original
names). Researchers can use nnterp’s simplified interface for common operations or drop down to
raw NNsight for advanced use cases.

Attention probabilities access. To enable access to attention probabilities — which requires to
use the slower eager attention implementation — enable_attention_probs=True needs to be
passed to the StandardizedTransformer class. Once enabled, the attention probabilities can
be accessed and set using the model.attention_probabilities[layer_idx] property. This
relies on NNsight’s source feature, which allows to access intermediate variables in the forward
pass. This means, that this is very implementation sensitive, and may break with new HuggingFace
releases, e.g. if the name of the attention variable changes. The attention probabilities hookpoint is
therefore not available on all models. See Appendix A for how to add support for new models.

Validation guarantees. Upon initialization, nnterp runs automatic tests to verify: (1) module
outputs have expected shapes, (2) attention probabilities sum to 1, (3) interventions affect outputs,
and (4) layer skip operations preserve causality. These tests catch common issues like incorrect
module identification or incompatible attention implementations. The validation suite ships with the
package, allowing researchers to test custom models locally via python -m nnterp run_tests.

4 Extra features

Built-in interventions. nnterp implements common interpretability methods that work across all
supported models. Logit Lens [nostalgebraist, 2020] projects hidden states through the unembed-
ding to see intermediate predictions. Patchscope [Ghandeharioun et al., 2024] replaces activations

from one context into another. Activation Steering adds steering vectors at specified layers. All
methods use the same unified API across architectures.

Prompt Management. nnterp provides a Prompt class that allows to track probabilities of
specific target tokens in different categories. The easiest way to create a Prompt is to use the
Prompt.from_strings method, which takes a prompt string and a dictionary of categories and
target strings. The tracked tokens of each category is the set of all first tokens of the target strings
with and without beginning of word. E.g for ["London", "Lyon"], the tracked tokens could be
["_LOIldOIl" s "T.on" s "_Lyo" s "Ly"] .

prompt = Prompt. from_strings (
"The_capital _of_France_is",

{"target": "Paris", "fake": ["London", "Lyon"]},
tokenizer

)

results = run_prompts(model, [prompt])

Returns probabilities for each category
{"target": torch.Tensor ([0.7]), "fake": torch.Tensor([0.1])}

S Empirical Validation

nnterp supports 21 architecture families?. nnterp adds minimal overhead to NNsight’s already
efficient implementation. NNsight’s performance analysis [Fiotto-Kaufman et al., 2024] shows it
matches or exceeds TransformerLens speed while using less memory. Since nnterp is a thin wrap-
per providing only interface standardization, it inherits these performance characteristics.

6 Discussion and Future Work

Limitations. nnterp’s validation tests provide sanity checks rather than formal correctness guar-
antees. While they catch common issues, subtle bugs in attention probability hooks or module
identification may persist. The library also inherits NNsight’s limitations, including incompatibility
with some attention implementations (e.g., Flash Attention for attention probabilities).

Impact on Research Workflow. By separating interface standardization from implementation
details, nnterp enables more reproducible mechanistic interpretability research. Researchers can
share intervention code that works across models, facilitating replication and cross-architecture val-
idation. The packaged test suite ensures that even custom models can be verified for compatibility.

Future Directions. Future work includes automated architecture detection, support for non-causal
and encoder-decoder architectures, access to attention KQV and MLP intermediate activations and
access to MoE router’s logits. We are also exploring integration with NNsight itself and how to
support remote execution via NDIF, which allow researcher to run their NNsight experiments on
remote machines.

7 Conclusion

nnterp demonstrates that the tradeoff between implementation correctness and interface usability
in mechanistic interpretability tooling is not fundamental. By leveraging NNsight’s model wrapping
capabilities and adding systematic validation, we provide researchers with both reliable access to
exact HuggingFace implementations and a consistent interface across architectures. As mechanistic
interpretability scales to larger models and broader architectural diversity, tools that balance correct-
ness with usability become essential. nnterp represents a step toward more robust and reproducible
interpretability research.

2See Appendix B for the full list.

References

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/TransformerLensOrg/
TransformerLens, 2022.

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, Jannik Brinkmann, Caden Juang, Koyena
Pal, Can Rager, Aaron Mueller, Samuel Marks, Arnab Sen Sharma, Francesca Lucchetti, Michael
Ripa, Adam Belfki, Nikhil Prakash, Sumeet Multani, Carla Brodley, Arjun Guha, Jonathan Bell,
Byron Wallace, and David Bau. Nnsight and ndif: Democratizing access to foundation model
internals. arXiv, 2024. URL https://arxiv.org/abs/2407.14561.

Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing Huang, Zheng Wang, Noah Goodman,
Christopher Manning, and Christopher Potts. pyvene: A library for understanding and improving
PyTorch models via interventions. In Kai-Wei Chang, Annie Lee, and Nazneen Rajani, edi-
tors, Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations),
pages 158-165, Mexico City, Mexico, June 2024. Association for Computational Linguistics.
URL https://aclanthology.org/2024.naacl-demo. 16.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38—45, Online, 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6/.

Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
Olah. Sparse crosscoders for cross-layer features and model diffing. Transformer Circuits Thread,
2024. URL https://transformer-circuits.pub/2024/crosscoders/index.html.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In Ad-
vances in Neural Information Processing Systems, volume 36, 2023. URL https://arxiv.
org/abs/2304.14997.

nostalgebraist. interpreting GPT: the logit lens. LessWrong, August 2020. URL https://www.
lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscopes:
A unifying framework for inspecting hidden representations of language models. In Forty-first
International Conference on Machine Learning, 2024. URL https://arxiv.org/abs/2401.
06102.

A Adding Support for Custom Models

nnterp uses a standardized naming convention to provide a unified interface across transformer
architectures. When a model doesn’t follow the expected naming patterns, researchers can use
RenameConfig to map custom module names to the standardized interface.

https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://arxiv.org/abs/2407.14561
https://aclanthology.org/2024.naacl-demo.16
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://transformer-circuits.pub/2024/crosscoders/index.html
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2304.14997
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2401.06102
https://arxiv.org/abs/2401.06102

A.1 Target Structure

nnterp expects all models to follow this structure:

StandardizedTransformer
|-— embed_tokens

|—— layers[i]

| |-— self_attn

| ‘—— mlp

|-— 1In_final

‘—— 1m_head

Models are automatically renamed to match this pattern using built-in mappings. The li-
brary provides convenient accessors: layers_input[i], layers_output[i] for layer I/O,
attentions[i], attentions_input[i], attentions_output [i] for attention, and mlps[i],
mlps_input[i], mlps_output[i] for MLP components.

A.2 Basic RenameConfig Usage

When automatic renaming fails, create a custom RenameConfig specifying module names in the
original model:

from nnterp import StandardizedTransformer
from nnterp.rename_utils import RenameConfig

rename_config = RenameConfig(
model_name="custom_transformer",
layers_name="custom_layers",
attn_name="custom_attention",
mlp_name="custom_ffn",
In_final_name="custom_norm",
Im_head_name="custom_head"

)

model = StandardizedTransformer (
"your—-model—name" ,
rename_config=rename_config

)

For nested modules, use dot notation (e.g., layers_name="transformer.encoder_layers").
Multiple alternative names can be provided as lists (e.g., attn_name=["attention",
"self_attention"]).

A.3 Implementing Attention Probabilities

Attention probabilities support requires implementing AttnProbFunction. Here’s the GPT-J im-
plementation:

from nnterp.rename_utils import AttnProbFunction

class GPTJAttnProbFunction(AttnProbFunction):
def get_attention_prob_source(self, attention_module,
return_module_source=False):
if return_module_source:
return attention_module.source.self__attn_0.source
return attention_module.source.self__attn_0.source\
.self_attn_dropout_0

model = StandardizedTransformer (
"yujiepan/gptj—tiny —random",
enable_attention_probs=True,
rename_config=RenameConfig (
attn_prob_source=GPTJAttnProbFunction ()
)

The process involves: (1) using model.scan() to explore the forward pass, (2) locating where
attention probabilities are computed (typically after dropout), (3) implementing the hook via
AttnProbFunction, and (4) testing with dummy inputs to verify shapes and normalization.

A.4 Validation

nnterp automatically validates configurations during initialization, checking: module naming cor-
rectness, tensor shapes at each layer, attention probabilities normalization (if enabled), and I/O com-
patibility. Manual validation can be performed using model.trace() to verify expected tensor
shapes and properties.

B Model coverage

The following model classes were tested and work with nnterp:

* BloomForCausallLM

* BloomModel

* Ernie4_5_MoeForCausallLM
* GPT2LMHeadModel

* GPTBigCodeForCausallM
* GPTJForCausallLM

* Gemma2ForCausallM

* Gemma3ForCausallM

* Gemma3ForConditionalGeneration
* GemmaForCausallLM

* Glm4ForCausallM

* Glm4MoeForCausalLM

¢ LlamaForCausallLM

¢ MistralForCausalLM

¢ MixtralForCausalLM

* OPTForCausalLM

* Phi3ForCausallLM

* Qwen2ForCausallLM

* Qwen3ForCausallLM

¢ Qwen3MoeForCausallLM

* SeedOssForCausallLM

* SmolLM3ForCausallLM

* DbrxForCausallLM

* GptOssForCausallM

¢ Qwen2MoeForCausallLM

* StableLmForCausallM

Support for attention probabilities is still a work in progress for the following model classes:

* DbrxForCausallLM

* GptOssForCausallM

* Qwen2MoeForCausallLM
* StableLmForCausallLM

	Introduction
	Background and Related Work
	nnterp Design and Implementation
	Extra features
	Empirical Validation
	Discussion and Future Work
	Conclusion
	Adding Support for Custom Models
	Target Structure
	Basic RenameConfig Usage
	Implementing Attention Probabilities
	Validation

	Model coverage

