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Abstract

A typical large multimodal model (LMM) involves several encoders, one for
each modality, for contextual encoding. Transmission of the encoder outputs,
potentially residing at different devices, can lead to significant and intolerable
communication overhead for resource-constrained environments. Then, a large
language model (LLM) combines the encoded sources with text that can be regarded
as side information before the generative process. This structure resembles the
Wyner-Ziv problem that promises considerable compression of multiple correlated
sources. Motivated by the Wyner-Ziv theorem, we propose a novel compression
algorithm for the encoded sources and examine it in terms of semantic efficiency.
The developed algorithm is applied to two architectures in terms of performance-
complexity tradeoff, namely incorporation of sources (i) at the beginning (for
best performance) and (ii) at the later layers (for fast inference) of a decoder.
The results indicate that the compression for fast inference has less impact on
bad (noisy/low-throughput) channels than on the best performance case, and the
semantic similarity can be moderately preserved under certain circumstances.
Additionally, the performance drop is negligible for certain compression ratios in
both approaches.

1 Introduction

In a multi-user environment, compression can be greatly boosted by the processing of correlated
sources in different devices. This is particularly true when multiple users possess highly correlated
input sources due to their proximity and shared environment. This has been well proven with the
theoretical results of Slepian and Wolf [1973], and Wyner and Ziv [1976]. In this paper, motivated
by the inherent distributed nature, the compression limits of large multimodal models (LMMs) are
investigated through the lens of the Wyner-Ziv problem.

The seminal work of Slepian-Wolf proves that the case of side information available to both encoder
and decoder can achieve the same lossless compression rate when the encoder does not access
the side information if the joint distribution of the sources is known Slepian and Wolf [1973]. As
a generalization to lossy compression, the same problem was studied when the decoder accesses
the correlated side information directly by Wyner and Ziv [1976]. Despite the motivating and
surprising results, there have been limited structured coding schemes that establish constructive
practical frameworks. One reason for this is that the random coding argument, which divides the
set of jointly typical sequences into bins in the proof of distributed coding, does not specify how
practical binning should be implemented.

Most of the existing constructive coding studies are limited to special distribution and correlation
structures, e.g., Gaussian or doubly symmetric binary sources, and there is a lack of a general
framework for any distribution and correlation. Data-driven methods, mainly referred to as neural
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coding in the literature, can promise the generalization of distributed coding to arbitrary correlation
scenarios and input types. In this direction, neural coding has been studied in the context of distributed
source coding by Whang et al. [2024], Ozyilkan et al. [2024]. Specifically, Whang et al. [2024]
parametrizes an encoder-decoder pair as a vector-quantized variational autoencoder (VQ-VAE) and
trains it for the distributed compression of arbitrarily correlated sources. VQ-VAE learns a codebook
in the process to be utilized for the quantization of the latents. Ozyilkan et al. [2024] proposes an
unstructured entropy-constrained vector quantization (ECVQ) that utilizes side information without
imposing any particular structure. They show that a learned compressor exhibits the highly used
binning mechanisms in information theory as well as the optimal combination of the quantization
index and side information.

Foundation models are utilized within the scope of neural coding as well. Being excelled at the
prediction of next tokens, foundation models can unlock efficient compression algorithms relying on
the interplay between prediction and compression in information theory. To illustrate, Valmeekam
et al. [2023] suggests to exploit a pre-trained large language model (LLM) for lossless compression by
combining the output of LLMs (or the probabilities of tokens) with a compressor, such as arithmetic
coding and zlib. In the same manner, competitive compression rates are presented for different data
modalities with the lossless compression capabilities of foundation models in Deletang et al. [2024].
These promising initial studies do not consider a distributed setting.

This paper considers a distributed scenario by integrating LMMs with Wyner-Ziv coding. Specifically,
a novel compression algorithm for arbitrary distributions is developed for the LMM encoder built
upon Wyner-Ziv coding. The proposed algorithm is applied to the two fundamental information-
combining techniques. The first one combines the sources at the front-end of a decoder to focus on
the performance at the expense of more computational complexity, termed as information-theoretic
or best performance approach. The second one postpones combining to later decoder layers to speed
up inference by avoiding the computation cost of some layers, named as fast-inference approach.
Our algorithm can make a significant communication overhead saving of around %90 possible.
The developed algorithm is experimented with one of the state-of-the-art LMMs. Precisely, LLaVa
architecture is adapted to our problem formulation, and the efficiency of the compression is assessed
through multiple metrics with precision, recall, and BERTScore Zhang et al. [2020]. Our empirical
results showcase that even a large compression ratio does not lead to a significant semantic loss.

The paper is organized as follows. Section 2 introduces the problem statement. A compression
algorithm is proposed in Section 3 with the simulation results in Section 4. The paper ends with the
concluding remarks 5.

2 Problem Statement

LMMs typically employ a separate encoder for each input modality and therefore are composed
of several transformer encoders and a transformer decoder that combines the multi-modal encoder
outputs with the input prompt, e.g., Grattafiori et al. [2024], Liu et al. [2023]. The generic structure
of LMMs resembles the canonical Wyner-Ziv problem, where the input sources, e.g., image and
speech, are decoded with the help of side information, e.g., text. However, the existing LMMs are
not designed according to the Wyner-Ziv theorem. This can lead to extra communication overhead
for split inference. Despite the growing popularity of LMMs being leveraged in various research
applications across multiple scopes, managing and optimizing inference in terms of communication
and computation constraints remains an open problem, as it depends on many factors that can change
dynamically and is an actively studied research problem.

A key factor for distributed inference that affects compression ratio and distortion (or more generally,
performance) is how to combine the encoded inputs while decoding. Several techniques are observed
in the design of LMMs to incorporate multiple inputs in the decoder. We classify and name them
as “information-theoretic/best performance approach" and “fast-inference approach". The former
integrates the input at the front of the transformer decoder without being processed by the transformer
layers and avoids any information loss due to data processing inequality from the information theory
perspective. The main cost of this method is the increased complexity of inference. The fast-inference
approach aims to speed up inference with less processing by integrating the inputs at later layers of a
transformer decoder. An interesting research problem that we study in this paper is the impact of the
LMM structure on the compression rate at a given distortion for distributed inference.
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(a) Information-theoretic (best performance) approach

(b) Fast-inference approach

Figure 1: Different combining methods of the source and side information at the transformer decoder
for LMM coding.

To take a step in this exciting research direction, we consider a single transformer encoder and decoder,
each having its unique input type, as shown in Figure 1. The main problem is to accomplish the
downstream task by filtering irrelevant features while preserving the relevant semantics to minimize
the overhead. Within the context of LMMs, in Figure 1, the first input R can be regarded as an image
of the transformer encoder and run on device A, which transmits its output to device B. The second
input S can be a text prompt for the decoder and combined with the encoder output (e.g., a sequence
of image tokens) on device B. Note that R and S are correlated sources with the alphabet R and S,
and a joint pmf p(r, s) over R×S , and generate a stationary and ergodic random process {(Ri, Si)}
with (Ri, Si) ∼ p(ri, si). The alphabets R and S refer to the vocabulary files of the associated
transformer encoder and decoder, respectively.

3 Semantic Compression Of LMMs

We propose a low-complexity algorithm based on randomly but hierarchically dropping some elements
of the encoder output relying on the side information at the decoder. The dropped elements are
indicated by the indices to the decoder to control the decoding complexity at the expense of some
additional overhead. The hierarchy is utilized to minimize the overhead. Specifically, a hierarchical
algorithm, named “prune if not remove (PINR) by indexing", is proposed to reduce the overall
communication overhead of the encoder output in the presence of side information.

The main idea behind the proposed algorithm lies in first removing some of the tokens completely
and then pruning some of the symbols of the unremoved tokens. The details are given in Algorithm 1.
Specifically, in the first step, %f tokens are randomly selected and dropped. To facilitate the decoding
process, e.g., avoiding iterative or any other complex operations, the index of each removed token
is transmitted. Although this creates additional overhead, it is shown that its impact is negligible.
In the second step, %g of the remaining tokens are chosen for pruning, and %h symbols of each
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selected token for pruning are dropped. Again, for decoding simplicity, the index for the pruned
token and the corresponding indices of the dropped symbols are also transmitted. This hierarchical
policy considerably decreases the overhead of the index transmission.

Algorithm 1 Prune if not remove (PINR) by indexing
Require: Denote a token by T
Require: Set the number of tokens to Nt

Require: Set the number of symbols per token to Ns such that n = NtNs

Require: 0 ≤ f, g, h ≤ 1
Ensure:

1: if perfect reconstruction in the inner problem then
2: input = Xn, output = Xñ

3: else if imperfect reconstruction in the inner problem then
4: input = Xn, output = X̂ñ

5: end if
First (remove) step: token granularity

6: Randomly select %f tokens and constitute the set A such that |A| = fNt

7: The set IA = {I1, ..., IfNt
} shows the indices of the tokens of A = {TI1 , ..., TIfNt

}, where
Ik ∈ {1, ..., Nt} for k = {1, ..., fNt}.

8: Remove the entire token in the set IA.
9: Transmit IA to the other device over the air, yielding an overhead of |A| log2(Nt) bits

10: The remaining (unselected) tokens constitute the set B such that |B| = (1− f)Nt.
11: The set IB = {Ĩ1, ..., Ĩ(1−f)Nt

} shows the indices of the tokens of B = {TĨ1
, ..., TĨ(1−f)Nt

},

where Ĩk̃ ∈ {1, ..., Nt} for k̃ = {1, ..., (1− f)Nt}.
Second (prune) step: symbol granularity

12: Randomly select %g tokens in the set B and constitute the pruning set Bp such that |Bp| =
g(1− f)Nt

13: The set IBp
= {Î1, ..., Îg(1−f)Nt

} shows the indices of the pruned tokens of Bp =

{TÎ1
, ..., TÎg(1−f)Nt

}, where Îk̂ ∈ {1, ..., Nt} for k̂ = {1, ..., g(1− f)Nt}.
14: Transmit IBp to the other device over the air, yielding an overhead of |Bp| log2(Nt) bits
15: for T ∈ Bp do
16: Randomly prune %h of Ns symbols per token
17: The set I(T )

s = {I(T )
s1 , ..., I

(T )
shNs

} shows the indices of the pruned symbols per token T .
18: Transmit I(T )

s to the other device over the air, yielding an overhead of hNs log2(Ns) bits
19: end for

The basic principle of the decoding algorithm is to acquire the (original or reconstructed) input
source with the zeroized elements. This is obtained in two steps as follows. First, place the zeros
to the corresponding locations according to the transmitted indices IA, IBp

, and I
(T )
s for a given

n. Then, the received tensor is placed to the remaining entities within the n-dimensional vector
in order. After taking the encoded signal, it is combined with the side information either with the
information-theoretic or fast-inference approach, and the transformer decoder runs by following the
regular prefill and decode stages.

The communication overhead reduction comes from removing %f tokens and pruning %h of the
total symbols of %g of the selected unremoved tokens. Let Nt denote the number of tokens and
Ns be the number of elements or symbols per token. Then, the token removal saves fNtNs

symbols, and the pruning results in a saving of hg(1 − f)NtNs symbols, where 0 ≤ f, g, h ≤ 1.
Considering Nb bits are utilized per symbol, the reduction becomes (f + hg(1− f))NtNsNb bits.
On the other hand, the transmission of the indices leads to an extra fNt log2(Nt) bits due to the
removed tokens, g(1 − f)Nt log2(Nt) bits to indicate the pruned tokens, and hNs log2(Ns) bits
due to the pruning of symbols for each token, leading to g(1 − f)NthNs log2(Ns). This yields
fNt log2(Nt) + g(1− f)Nt log2(Nt) + g(1− f)NthNs log2(Ns) bits. However, this is much less
than the savings. For the sake of convenience, these calculations are simply visualized in Table 1,
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including the minimum required bandwidth1 to serve the bits after the overhead saving under different
SNRs. Since the total number of bits without comprehension is NtNsNb, the reduction varies from
%88 to %22 according to the selected example values of f, g, h when Nt = 512, Ns = 1024, and
Nb = 32. It is apparent that any compression ratio can be synthesized by properly adjusting the
values of f, g, h.

Overhead w/o
compression
(bits)

Overhead saving
w/ compression
(bits)

Ratio
(%)

Min BW
@0dB
(MHz)

Min BW
@20dB
(MHz)

{f, g, h} = 0.2 16,777,216 3.7229e+06 0.2219 13.05 1.96
{f, g, h} = 0.4 16,777,216 7.8152e+06 0.4658 8.96 1.34
{f, g, h} = 0.6 16,777,216 1.1723e+07 0.6988 5.05 0.75
{f, g, h} = 0.8 16,777,216 1.4894e+07 0.8877 1.88 0.28

Table 1: Overhead reduction ratios for some values of f, g, h when Nt = 512, Ns = 1024, and
Nb = 32.

4 Results and Discussions

In this section, the performance of the proposed LMM compression algorithm is assessed over
the Wyner-Ziv coding, both for the best performance and the fast-inference approach, for varying
compression ratios. In our experiments, we use the LLaVa model of Liu et al. [2023] as the running
example of LMM framework to validate the proposed compression algorithm without loss of any
generality. The architecture of LLaVa relies on connecting a vision encoder, named CLIP studied by
Radford et al. [2021], to a language model, named Vicuna in Chiang et al. [2023] via a projection
matrix. In pattern recognition, relevance is typically quantified by precision and recall. The application
of these metrics to generative models has been studied to measure the quality of the generated sample
by Sajjadi et al. [2018], which formulates precision and recall to the relative probability densities
of two distributions. In addition to precision and recall metrics, we use semantic similarity in our
evaluations, quantified by the BERTScore, which correlates well with human judgment as stated in
Zhang et al. [2020].

Figure 2 illustrates the performance of the compression algorithm under the transmission of a good
channel (infinite SNR) for the two combining approaches, which are the best performance and
fast-inference methods, in terms of precision, recall, and f1 score (or BERTScore). The results are
normalized by taking the uncompressed signal as the reference. The important observations of Figure
2 are as follows. The first one is that even a slight compression of %30 leads to a non-negligible
loss. Secondly, and on the bright side, compressing further from %30 to %90 does not degrade the
performance much. Combining these two results, we argue that it could be a good promise to sacrifice
some performance with quite a significant compression, improving the communication overhead
considerably, e.g., %90. Finally, the best performance and the fast-inference combination show the
same pattern, such that the latter provides computational complexity reduction at the expense of some
additional performance loss. Specifically, one can argue that the fast-inference approach degrades the
performance up to some point, depending on the compression. Notice that there is a negative bias
toward the fast-inference method since the LLaVa model is trained according to the best performance
case. That is, the multimodal architectures trained according to both cases at the beginning will result
in more fair results, although there is no such publicly available model/checkpoint yet.

Next, the same experiment setup is repeated for bad channels and to emulate this scenario, the CLIP
encoder output is transmitted at 0dB SNR (which is equivalent to a hypothetical low throughput
channel according to the channel capacity formula). This case helps understand the robustness
of LLaVa as well. To disentangle the impact of performance loss due to the channel conditions
and compression, the compressed results are compared with 2 references: (i). the CLIP output is
uncompressed and transmitted at 0dB SNR (labeled as “ref = 0dB SNR" in Figure 3); and (ii). the
CLIP output is uncompressed and transmitted at infinite SNR (labeled as “ref = no noise" in Figure
3). More precisely, the former provides the real performance, and the latter is an auxiliary condition.

1Due to practical conditions, a larger bandwidth may be needed depending on many factors, e.g., modulation
and coding scheme, signaling overhead, etc.
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Figure 2: Transmission of the visual encoder output under compression for good channels.

As presented in Figure 3, in terms of the best performance combining technique, for (i), the poor
channel conditions slightly decrease the KPIs for the wide range of compression ratios compared to
Figure 2. Thus, the compressed source is robust to varying channel conditions. On the other hand,
there is still nearly %8 performance drop while going from no compression to %90 compression. For
(ii), the precision, recall, and f1 scores are mostly preserved under medium to high compression ratios
with a loss of around %1, i.e., compression brings almost negligible loss for bad channels. That is,
the noise dominates the compression in the comparison of the noiseless-no compression case with the
noisy-compressed case. Interestingly, as compared to the best performance case, the fast-inference
approach becomes more robust to the poor quality channels.
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Figure 3: Transmission of the visual encoder output under compression for bad channels.

5 Conclusions

This paper provides a novel formulation of LMMs as a distributed coding framework by highlighting
the connections to semantic communication. Specifically, LMMs that combine lossless access of text
prompt with lossy compression of input-specific sources are a natural candidate for the constructive
application of the Wyner-Ziv problem. Motivated by the large room for compression coming from
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the availability of side information, a compression algorithm is developed at the semantic level, and
the results are extensively quantified with the recently emerged LLaVa model.

A Supplementary Results

To have a deeper understanding than the evaluated metrics, we also directly observe the generated text
outputs of LLaVa since the best judgment can be made by the end users and the metrics may fluctuate
depending on many factors, e.g., BERT architecture. To this end, we use the canonical example given
in the original paper Liu et al. [2023]. Precisely, a nature view is provided with an input prompt to test
image understanding, as given by Figure 4. Table 2 shows the response of LLaVa when the original
CLIP output is transmitted without any compression and noise, and the %90 compressed CLIP output
is transmitted to the model without noise for the best performance information combining. Notice
that the compression results in no semantic loss. The semantically relevant parts of the responses are
preserved. This concludes that despite a quite aggressive compression ratio, the semantic information
is kept, promising a significant savings in communication overhead. The same experiment is repeated
with a different image in Figure 5, whose outcome is given by Table 3.

Figure 4: An example image view accompanied by a prompt to test image understanding.

Figure 5: An example plane accompanied by a prompt to describe the scene.
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Without compression
(original)

With compression

When visiting this loca-
tion, which features a
pier extending over a
large body of water, there
are a few things to be
cautious about. First, be
mindful of the weather
conditions, as the pier
may be affected by strong
winds or storms, which
could make it unsafe to
walk on. Second, be
aware of the water depth
and any potential hazards,
such as submerged rocks
or debris, that could pose
a risk to your safety. Ad-
ditionally, be cautious of
the tides and currents, as
they can change rapidly
and may pose a danger to
swimmers or boaters. Fi-
nally, be respectful of the
environment and other
visitors, and follow any
posted rules or guidelines
to ensure a safe and en-
joyable experience for ev-
eryone.

When visiting this location,
which features a pier with
a wooden dock extending
out over a body of water,
there are a few things to
be cautious about. First,
be mindful of the weather
conditions, as the pier may
be affected by strong winds,
storms, or other adverse
weather events. Second, be
aware of the water depth
and any potential hazards,
such as submerged rocks or
debris, that could pose a
risk to your safety. Addi-
tionally, be cautious of the
tides and currents, as they
can change rapidly and may
pose a danger to swimmers
or boaters. Finally, be re-
spectful of the environment
and other visitors, maintain-
ing a safe distance from the
edge of the pier and avoid-
ing any activities that could
disturb the natural surround-
ings or other people.

Table 2: LLaVa responses for the original and compressed encoded image in Figure 4.

Without compression
(original)

With compression

The image features a
small white and black
airplane flying over a
city, with its landing gear
down. The airplane is
positioned in the mid-
dle of the scene, and
its wings are visible as
it soars above the urban
landscape. The cityscape
below consists of numer-
ous buildings, showcas-
ing the busy atmosphere
of the area. The air-
plane’s presence in the
sky adds a sense of mo-
tion and excitement to the
scene.

The image features a small
propeller airplane flying
low over a city, possibly
during the day. The air-
plane is positioned in the
middle of the scene, with
its wings visible. The
cityscape below includes
buildings and streets, creat-
ing a contrast between the
airplane and the urban envi-
ronment. The airplane ap-
pears to be a small twin-
engine plane, possibly a
Cessna, as it flies over the
city.

Table 3: LLaVa responses for the original and compressed encoded image in Figure 5.
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