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Quantum-Assisted Hierarchical Fuzzy Neural
Network for Image Classification

Shengyao Wu , Runze Li , Yanqi Song, Sujuan Qin , Qiaoyan Wen , and Fei Gao

Abstract—Deep learning is a powerful technique for data-driven
learning in the era of Big Data. However, most deep learning models
are deterministic models that ignore the uncertainty of data. Fuzzy
neural networks are proposed to tackle this type of problem. In this
article, we proposed a novel quantum assisted hierarchical fuzzy
neural network (QA-HFNN). Different from classical fuzzy neural
networks, QA-HFNN uses quantum neural networks (QNNs) to
learn fuzzy membership functions. The model is a multifeature
fusion learning algorithm with a parallel structural design that
integrates quantum and classical neural networks. The classical
network is used to capture high-dimensional neural features, the
QNNs are designed to capture fuzzy logic features of the data,
then, the two features are fused to form the final features to be
classified. The experiment is performed on a classical computer,
and the quantum circuit is built through a simulated quantum
environment. The results indicate that the accuracy of QA-HFNN
can equal to or even surpass classical methods in image classifica-
tion tasks. The quantum circuit utilizes only a single qubit which
is easy to implement. In addition, the fidelity of quantum circuit
in a quantum noise environment is assessed, demonstrating that
QA-HFNN has strong robustness. The time and computational
complexity of QNNs was analyzed, further proving the effectiveness
of the model.

Index Terms—Fuzzy member function, fuzzy neural network,
image classification, quantum neural network (QNN).

I. INTRODUCTION

IN THE era of Big Data, a diverse and vast amount of data are
generated. One concern is that the data contain unpredictable

uncertainties [1]. These uncertainties may arise from a variety
of factors, including data ambiguity, incompleteness, noise, and
redundancy. In the actual data analysis process, uncertainty may
make it difficult to capture the real patterns in the data, which
brings great challenges to data classification tasks [2].

Most of the existing learning models are deterministic al-
gorithms, which face difficulties when dealing with uncertain
data. To solve this problem, fuzzy learning has been proposed
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and applied in image processing [3], financial analysis [4], and
control systems [5]. Fuzzy systems can automatically learn fuzzy
membership functions from a large amount of training data and
derive fuzzy rules accordingly. Following the determination of
fuzzy membership functions, fuzzy logic values for the data
can be obtained. Subsequently, these fuzzy logic values are
effectively defuzzified through linear combination to form fea-
tures for the final classification task. Compared with traditional
deterministic representation, the automated learning process of
fuzzy logic representation enables it to effectively represent the
uncertainty data.

Fuzzy neural networks often integrate deep learning meth-
ods, combining deep neural networks (DNNs) and fuzzy logic
methods to solve various real-world problems. Common fuzzy
network structures include sequential [6], parallel [7], and hy-
brid [8]. In sequential structure networks, data are processed
sequentially within the fuzzy system and DNN. Parallel structure
networks employ feature fusion techniques to derive information
from both fuzzy systems and DNN. Hybrid structure networks
first convert input vectors into fuzzy values through fuzzy in-
ference, then, process them through multiple layers of DNN,
and finally, defuzzify the fuzzy values into crisp output. Fuzzy
neural networks with different structures have shown their ad-
vantages in practical tasks. However, current methodologies still
suffer to effectively represent uncertain data. Quantum neural
networks (QNNs) offer promising advantages in expressivity
over classical neural networks [9]. Therefore, QNNs have the
potential to better extract fuzzy features of data. With the help
of QNNs, the fuzzy features of uncertain data can be better
learned, thereby, enhancing the performance of fuzzy neural
networks.

In this article, we introduce a novel quantum assisted hier-
archical fuzzy neural network (QA-HFNN) which uses QNNs
to learn membership functions in fuzzy neural network. The
proposed model simultaneously extracts the high-dimensional
neural features of classical DNNs and the fuzzy features pro-
cessed by QNNs. The features extracted by the two models
are fused to produce the final data representation for data clas-
sification. We explore the possibility of learning fuzzy logic
features using QNNs. In details, learning fuzzy membership
functions using QNNs, and extracting the learned fuzzy features
using fuzzy rules. The proposed model is suitable for difficult
tasks containing data ambiguity and noise. The performance of
QA-HFNN is verified on different image datasets. Experimental
results indicate that QA-HFNN can outperform existing classical
methods in accuracy.
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Note that a study has been proposed that combines QNN,
classical networks and fuzzy logic to introduce quantum fuzzy
neural network (QFNN) [10]. The model is proposed for sen-
timent and sarcasm detection. QFNN is a multitask learning
algorithm with Sqe2Seq structure, and the model use QNN in
defuzzifier to obtain predictions. The method and objective of
QFNN are both different from our model.

We list the main contributions as follows.
1) A novel network QA-HFNN is proposed. QNNs are used

to learn fuzzy membership functions in the fuzzy neu-
ral network. Multimodal learning is applied to fuse the
fuzzy logic representation obtained by the QNNs and the
neural representation obtained by the classical network to
increase accuracy in image classification tasks.

2) Circuit structures of QNNs are designed to extract fuzzy
logic representation from data. The proposed circuit struc-
ture utilizes only a single qubit and constructed by a small
number of single-qubit rotation gates, making it easy to
implement.

3) Experiments to validate the performance of QA-HFNN
have been conducted on different image datasets. Com-
pared with existing classic methods, it achieves better
accuracy. The experiments simulated the performance of
QNNs in noisy environments, the results demonstrate the
strong robustness of QA-HFNN. The complexity of QNNs
is analyzed, further demonstrating the effectiveness of the
model.

The rest of this article is organized as follows. Section II
reviews related work, including image classification, quantum
machine learning (QML), and quantum fuzzy logic. Section III
details the main structure and algorithm process of QA-HFNN.
In Section IV, experimental setup is described, and the exper-
imental results are presented to illustrate the capability of the
model. Finally, Section V concludes this article.

II. RELATED WORK

A. Image Classification

Image classification holds great significance in computer
vision and machine learning. Early image classification ap-
proaches relied on handcrafted feature extraction algorithms,
such as, SIFT and HOG [11], and then used support vector
machines (SVMs) or k nearest neighbors (KNNs) for classi-
fication. This type of method only works well for simple images
and small-scale datasets. As image scenes become complex and
data size increases, this type of method is no longer applicable.

The emergence of convolutional neural network (CNN) has
made a major breakthrough in image classification tasks. CNN
extracts the feature representation of the image through con-
volution and pooling operations. Subsequently, a large number
of CNN-based models were proposed to improve the accuracy
of image classification. In 1998, LeCun et al. [12] proposed
LeNet. Its core idea is to gradually extract the image features
by employing convolution and pooling operations, and then,
classify the extracted features to different categories through a
fully connected layer. Krizhevsky et al. [13] proposed AlexNet
in 2012, which uses more convolutional layers and parameters,

and uses technologies including ReLU activation functions, data
enhancement and dropout, which extremely improves the perfor-
mance and generalization capabilities of the network. In 2014,
Simonyan [14] proposed VGGNet. Its core idea is to gradually
extract the features from the image by stacking multiple small-
sized convolution kernels and pooling layers, with a simple and
unified network structure. It uses a parameter sharing strategy to
decrease the parameter size and improve training efficiency and
generalization ability. In 2015, He et al. [15] proposed ResNet,
which introduced the concept of residual learning, solved the
problem of gradient disappearance and degradation in deep
network training. In 2023, Wang et al. [16] proposed Intern-
Image, whose core operator is deformable convolution. Under
the similar parameters and computational costs, experimental
results show that the classification performance of InternImage
on ImageNet is comparable or even better than state-of-the-art
CNN-based models.

In addition, image classification algorithms based on atten-
tion mechanisms have also appeared [17]. By learning the
key areas in the image, the degree of attention to important
areas is increased, thereby, improving the classification perfor-
mance. In 2021, Liu et al. [18] proposed a Swin transformer,
a method designed to handle visual tasks by using a shifted
window to calculate hierarchical transformer representations.
In 2023, Roy et al. [19] introduced a new multimodal fusion
transformer network, which uses a multihead cross-patch atten-
tion to integrate multimodal features for hyper spectral image
classification.

Despite the diversity and complexity of image classification
methods, image classification remains a research hotspot in the
field. In the Big Data era, the amount and complexity of image
data are constantly increasing, necessitating further investigation
into methods to address the challenges. However, the combi-
nation of new technologies, such as, fuzzy logic and quantum
computing, to handle tasks in this scenario has not been fully
explored.

B. Classical Fuzzy Logic

In 1965, Zadeh [20] introduced the idea of fuzzy logic,
which showed great advantages in solving practical problems.
There are many models based on classic fuzzy logic. Deng
et al. [7] constructed an FDNN which used fuzzy representa-
tion of data and neural network representation for information
derivation, and achieved good performance in scene image
classification and brain MRI segmentation tasks. In 2019,
Sarabakha et al. [21] used antecedent fuzzification to learn
the control of nonlinear systems. The proposed fuzzy neural
network is a sequence structure. In 2021, Połap [22] proposed
fuzzy consensus to solve the problem of how to make decisions
when not all the information is available. The proposed method
shows advantages for medical purposes compared to state-of-
the-art algorithms. In 2022, Zhang et al. [23] proposed using
the federated fuzzy neural network (FedFNN) learned by evolu-
tionary rules to solve nonIID and uncertain data. The proposed
evolutionary rule learning method improves the generalization
and personalization of the network, and the experimental results
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express the superiority of FedFNN. Wang et al. [24] proposed
a novel method that can extract the input image into the fuzzy
domain. Compared with existing super-resolution methods, the
method performs well in high resolution medical image recon-
struction, and reduces model parameters and analysis time. In
2023, Yazdinejad et al. [25] proposed an OFDL model. OFDL
employs NSGA-II to obtain the Pareto optimal solutions for
multiobjective optimization based on the objective functions,
thereby, optimizing fuzzy membership functions.

In general, fuzzy logic has shown its unique advantages in
industrial control, image processing, and other fields, and is
especially suitable for tasks with uncertainty in data. Quantum
fuzzy logic, which combines quantum computing and fuzzy
logic, is an emerging field, and its research on image classi-
fication tasks is still in its nascent stages.

C. Quantum Machine Learning

Quantum machine learning (QML) [26] is a promising field
that explores the advantages of quantum computing in the filed
of machine learning. QML includes quantum support vector
machines (QSVM), quantum linear regression, quantum clus-
tering and QNNs, etc. QML uses the parallel characteristics of
quantum computing to accelerate certain classical algorithms.
In addition, QNNs use the quantum properties of entanglement
and superposition to allow data to be better represented [27].

In 1995, Kak et al. [28] proposed quantum neural computing,
laying a theoretical foundation for QNNs. In 2003, Anguita
et al. [29] proposed a QSVM algorithm, which uses Grover
search to accelerate the training process of the SVM data clas-
sification algorithm. In 2012, Wiebe et al. [30] introduced a
quantum linear regression algorithm. This algorithm demon-
strates exponential acceleration to its classical counterpart when
the data matrix is sparse and has a very low condition number.
In 2014, Lloyd et al. [31] proposed a distance-based classifi-
cation algorithm, which can achieve exponential acceleration.
In 2019, Kerenidis et al. [32] proposed the q-means cluster-
ing algorithm. Compared to the classic k-means algorithm, the
q-means algorithm provides exponential speedups. However,
the above algorithm needs a large-scale quantum computer that
is tolerant to noise. In the context of noisy intermediate-scale
quantum computing, variational quantum algorithms which uses
parameterized quantum circuits (PQCs) to evaluate loss func-
tions and optimize parameters using classical optimizer [33]
have been proposed and widely studied [34]. In 2018, Mitarai
et al. [35] proposed a QML framework based on PQCs, called
quantum circuit learning (QCL), and proposed the idea of using
unitary operator gates to approximate nonlinear functions. In
2018, Lloyd [36] first proposed quantum generative adversarial
network and analyzed the potential quantum advantages from
a theoretical perspective. In 2019, Cong et al. [37] proposed
a quantum convolutional neural network (QCNN) based on
variational circuits, which constructed a convolution layer and a
pooling layer with parameterized quantum gates, and proved
it on two types of problems as follows: 1) quantum phase
identification and 2) quantum error correction. In 2020, Schuld
et al. [38] proposed a low-depth PQC as a binary classifier.
In 2022, Qu et al. [39] proposed quantum graph convolutional

neural network, which was utilized for traffic congestion pre-
diction. In 2023, Skolik et al. [40] investigated the performance
of variational quantum reinforcement learning under shot noise,
coherent, and incoherent error noise sources. They also pro-
posed methods to reduce the measurements required for training
Q-learning agent. In 2024, Song et al. [41] proposed a quantum
federated learning model for classical clients, addressing the
issue of limited quantum computing resources for classical
clients. In the same year, they proposed a computationally
resource-efficient QCNN model [42], demonstrating a signif-
icant reduction in computing resources compared to the classi-
cal CNN model, while achieving high accuracy on multiclass
classification tasks.

In summary, QML models have been involved in all aspects
of different research fields. QNNs have shown classification
advantages over classical neural networks in specific datasets.
In addition, because of the entanglement and superposition
properties, models trained with QNNs have better performance
and generalization capabilities.

D. Quantum Fuzzy Logic

Quantum fuzzy logic is a new theory that combines quantum
theory and fuzzy logic. In 2007, Menichenko et al. [43] proposed
that quantum logic can also be regarded as a kind of fuzzy logic.
This lays the theoretical foundation for quantum fuzzy logic.
In 2023, Tiwari et al. [10] proposed a quantum fuzzy logic and
applied it to multimodal sentiment and sarcasm detection. In
2024, Qu et al. [44] proposed a quantum fuzzy federated learning
algorithm named QFFL, which utilizes quantum fuzzy neural
networks on local nodes and quantum federated inference on the
global model. This approach achieved faster training speed and
higher training accuracy on the COVID-19 and MNIST datasets.
Currently, there are few studies on quantum fuzzy logic, which
is a field worthy of further exploration.

III. PROPOSED METHOD

The QA-HFNN is composed of four main network parts
as follows: 1) quantum fuzzy logic representation, 2) DNN
representation, 3) fusion layer, and 4) classifier layer. The design
of QA-HFNN is depicted in Fig. 1. The input data will be input
into the quantum fuzzy logic representation network and the
DNN to generate fuzzy logic representation and neural network
representation of the data, respectively. Then, the features of the
two parts are fused through the fusion layer. Finally, the fused
features are input to a classifier layer, which classifies the data
into different categories.

Quantum fuzzy logic representation: The input data will be
processed by membership functions, and each input variable is
assigned a membership degree for different fuzzy sets. Generally
speaking, fuzzy membership functions calculate the extent to
which an input node belongs to a specific fuzzy set. For the ith
fuzzy membership function, this is a mapping ui : R→ [0, 1].
In previous work [45], the membership function is a Gaussian
function with a mean of μ and a variance of σ2

ui(xk) = e−(xk−μi)
2/σi

2

(1)
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Fig. 1. Structure of QA-HFNN. It comprises four parts: quantum fuzzy logic representation (black), DNN representation (purple), fusion layer (yellow), and
classifier layer (green).

Fig. 2. Quantum circuit with single-qubit for quantum membership function.

xk is the kth element of the input x. This article proposes to use
the QNN as shown in Fig. 2 as the membership function.

Fuzzy sets were first proposed by Zadeh [20] in 1995. Fuzzy
sets are described as

A = {(xk, μA (xk)) |xk ∈ X} (2)

μA represents the membership function.X is the domain, repre-
senting the set of input variables. In the representation of a QNN
(usually implemented with a PMC), the quantum membership
function can be defined as

μA (xk) = fθ (xk)

=
(〈0|⊗n U † (xk,θ)MU (xk,θ) |0〉⊗n + 1

)
/2 (3)

where |0〉⊗n represents the initial state

|0〉⊗n =

[
1
0

]⊗n

(4)

⊗ denotes Kronecker product, 〈0|⊗n = |0〉⊗n†, n is the number
of qubits. U(xk,θ) is unitary matrix which represents the PQC
determined by xk and θ, θ is adjustable parameter vector. M
is an observable. Here, we choose Pauli operators P⊗n, P ∈
{σx, σy, σz, I} as observable because they have eigenvalues of

1 and −1.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
(5)

σx, σy , and σz denote the Pauli-X , Pauli-Y , and Pauli-Z
operators, respectively. fθ(xk) can be estimated by
measuring the quantum circuit multiple times. Since〈
0|U †(xk,θ)MU(xk,θ)|0

〉
is the expectation under the

observable M , then,
〈
0|U †(xk,θ)MU(xk,θ)|0

〉 ∈ [−1, 1].
Therefore, fθ(xk) ∈ [0, 1], which can be regarded as a
membership function.

Here, we choose the quantum circuit structure as shown in
Fig. 2 as U(xk,θ) which adopts the data reuploading [34]
method and consists of multiple layers of data encoding circuits
and trainable circuit blocks. Fig. 2 shows a quantum circuit with
only a single qubit, which is composed of multiple layers of
circuit blocks, each circuit block containing data encoding cir-
cuit and trainable circuit block. Among them, the data encoding
utilized the angle encoding method, that is, the Ry gate is used
to encode input data into quantum state

|xk〉 = Ry (xk) |0〉 (6)
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where

Ry (xk) =

[
cos xk

2 − sin xk

2
sin xk

2 cos xk

2

]
. (7)

It is known that any single qubit gate U , which can be
discomposed into three rotation gates

U = eiαRz (β)Ry (γ)Rz (δ) (8)

where, eiα is a global phase and Rz is the rotation gate around
the Z-axis

Rz(r) =

[
e−ir/2 0

0 eir/2

]
(9)

r denotes the rotation angle.
Since the global phase cannot change the state of a quantum

state, any single qubit state |ϕ〉 can be obtained from any initial
state |init〉 by operating the Rz, Ry, and Rz gate sequentially
with proper angles

|ϕ〉 = Rz (α)Ry (β)Rz (γ) |init〉 . (10)

Then, the single qubit quantum circuit can be expressed as

U (xk,θ) =
∏
l

(
Rz

(
θ3l
)
Ry

(
θ2l
)
Rz

(
θ1l
)
Ry (xk)

)
(11)

θ = {θ11, θ21, θ31, . . ., θ1L, θ2L, θ3L}, l indicates the layer index of
the circuit, l ∈ {1, 2, . . ., L}. The above quantum circuit only
uses a single qubit and does not use a two-qubit gate. Therefore,
it is suitable for the current scenario where quantum computing
resources are limited.

This layer maps the kth node of input to fuzzy degree

hi,k
(l) = fθ

i (xk) , ∀i (12)

in which, hi,k
(l) is the calculation result of the ith membership

function. After fuzzy membership function processing, we enter
the fuzzy rule layer, which is represented by ‘AND’ fuzzy logic,
that is hi

(l) =
∏

k hi,k
(l−1). Then, the input is converted into

fuzzy degree.
DNN representation: The neural network representation block

will obtain the neural representation. Here, we generally use a
fully connected neural network to extract neural representation
of the input. After the lth layer of fully connected neural network,
we can get

hti
(l) = wi

(l)h(l−1) + bi
(l) (13)

in which, wi
(l) and bi

(l) represent the parameters from the
(l − 1)th layer node to the lth layer ith node. Then, ReLU
activation function will be applied.

hi
(l) = ReLU

(
hti

(l)
)
=

{
hti

(l), if hti(l) > 0
0, other

(14)

hi
(l) is the output of the lth layer neural network. To improve

performance, the dropout strategy can be used in each layer
of the fully connected network to prevent model over-fitting.
It should be pointed out that for different tasks, specific neural
network structures can be selected for replacement. For example,
for image data, a CNN can be used to replace a fully connected
neural network to obtain better classification results.

Fusion layer: The feature fusion is based on the idea of
multimodal fusion [7], [46], which merging outputs of multiple
networks to capture different features of the input data to form
neural features, and finally, classifying them through the clas-
sification layer. We use the same aggregation method as in [7]
to aggregate the outputs of the neural representation module
and quantum fuzzy logic representation. The two representations
are responsible for characterizing the fuzzy features and neural
features of the input data. First, we combine the two features
and obtain

hfus = fuse (hfuz, hneu) (15)

where fuse is a fusion function.
Then, a fully connected neural network is utilized to obtain

hfuz
(l) = ReLU

(
w(l)hfuz

(l−1) + b(l)
)

(16)

in which, ReLU is activation function, w(l) and b(l) are the
parameters from the (l − 1)th layer node to the lth layer node.
After multilayer fully connected network, the output consists of
deeply fused fuzzy features and neural features.

Classifier layer: The classifier layer processes the fused fea-
tures and classifies them into corresponding categories. Assum-
ing that there are k categories of data labels in total, through the
classifier layer, for the ith input sample, a k-dimensional output
vector will be obtained. Then, a Softmax function is utilized to
derive the predicted label

ŷi = Softmax(ỹi) =
eỹi∑

k

eỹik
(17)

in which, ŷi = [ŷi1, ŷi2, . . ., ŷik]. In this article, the cross-
entropy function is chosen as loss function. Form training data,
the loss is calculated as follows:

C =
1

m

m∑
i=1

k∑
j=1

−yij log ŷij− (1− yij) log (1− ŷij) (18)

In the model training phase, the initialization of model param-
eters and parameter optimization method need to be considered.
Parameter initialization is very important in DNN learning.
A good parameter initialization strategy can help the model
converge to a better local minimum point. For the parameters
of the classifier layer, we followed the strategy from [47] for
initialization. The bias of each layer is initialized to 0, and the
weights are initialized following the rules:

wij
(l) ∼ U

[
− 1√

n(l−1)
,

1√
n(l−1)

]
(19)

in which, U represents uniform distribution, n(l−1) represents
the nodes number in the (l − 1)th layer. According to different
learning tasks, we will fine-tune the value of n(l−1) and do not
completely follow the above rules.

During the parameter optimization process, we first need to
calculate the derivative for each parameter, and then, use the
classic optimization algorithm to update the parameters. For the
QNN part, i.e., the membership function layer, the gradient can
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Fig. 3. Visualization process of the QA-HFNN model. Q denotes quantum
membership function.

be obtained using the parameter shift method

∂fθ(x)

∂θi
=

2

π

(
fθi+π

2
(x)− fθi−π

2
(x)

)
(20)

in which, θ = [θ1, θ2, . . ., θn] and θi ± π
2 = [θ1, θ2, . . .,

θi±π
2
, . . ., θn]. The classic neural network in the model

uses the backpropagation algorithm to obtain the gradient
of each parameter. Then, the parameters is updated by an
SGD algorithm. The learning rate is set to 0.01, which
will be gradually decreased by a decay strategy. The decay
multiplication factor is set to 0.1. It is proposed that there are
many nodes in the neural network layer in the model, and the
model can easily be overfitting in training phase. In order to
alleviate the phenomenon of over-fitting, we use the dropout
strategy, that is, for a certain layer of neural network, some
nodes do not participate in the gradient update according to
a certain percentage. Dropout probability is set to 40%. The
specific visualization process of using the proposed model to
process image data is shown in the Fig. 3. The steps of the entire
training are shown in Algorithm 1.

IV. EXPERIMENTS

A. Experiment Settings

1) Experiment Environment: We conducted the experiment
on the Linux platform. PyTorch is used to construct classical
neural networks, while the quantum circuit part is implemented
using the Torch Quantum Library [48].

2) Datasets: In this article, Dirty-MNIST, 15-Scene,
Japanese Female Facial Expression (JAFFE), Fasion MNIST,
and CIFAR-10 datasets are selected to evaluate the model.

Dirty-MNIST is a combination of MNIST and Ambigous-
lyMNIST, with 60 000 sample-label pairs in the training set [49].
AmbigeousMNIST comprises generated ambiguous samples

Algorithm 1: QA-HFNN Model Training Steps.

Input: training samples and labels (x, y), learning rate α,
number of categories k, hidden layer feature dimension h,
number of training epochs N .

Components:
Quantum fuzzy logic representation:
FuzMem(Inp_dim, k × Inp_dim), Inp_dim indicates
the dimension of input;

Deep neural network representation:
NeurNet(Inp_dim, h);
Fusion layer: Linear(k, h);
Classifier layer: ClassifierL(h, k).
for e = 1, . . ., N do

FuzFea = FuzMem(x)
NeurFea = NeurNet(x)
FuzRulFea = PROD(FuzFea, dim = 1)
FusFea = ADD(Linear(FuzRulFea), NeurFea)
ŷ = Softmax(ClassifierL(FusFea))
Calculate the loss function C according to ŷ and y;
Calculating gradients using the backpropagation

algorithm and updating all parameters using the SGD
algorithm

end for
Output: The well-trained model.

with varying entropy: 6000 unique samples, each having 10
labels. By default, the dataset is being normalized and Gaussian
noise is introduced to each sample with standard deviation 0.05.

The 15-Scene dataset includes 15 different natural and ur-
ban scenes [50], such as, beaches, city streets, forests, offices,
kitchens, living rooms, etc. Since it includes a variety of different
types of scenes, from natural landscapes to indoor environments,
this dataset provides greater challenges for algorithms, espe-
cially in handling the diversity and complexity of the scenes.
This dataset comprises over 4500 natural scenery images. A total
of 100 images from each category are selected as the training
set and the remaining images are selected as the testing set.

The JAFFE dataset consists of 213 expression pictures
depicting 7 different expressions of 10 Japanese women [51],
[52]. The expressions include 6 facial expressions and 1 neutral
expression. The size of each expression picture is 256×256. We
preprocess this dataset and extract the facial expression area.

The Fashion MNIST dataset consists of images from 10
distinct categories [53], each category represents a distinct type
of clothing. Each image is a grayscale image with 28×28 pixels.
The dataset contains 60 000 training samples 10 000 testing
samples.

The CIFAR-10 dataset [54] is widely used in image process-
ing. It consists of 60 000 color images, each with dimensions
of 32 × 32 pixels, divided into 50 000 images for training and
10 000 images for testing. The dataset comprises 10 categories,
with 6000 images in each category.

3) Hyperparameters: In this experiment, the hyperparame-
ters include settings in classical neural networks and QNNs. The
hyperparameter settings of QA-HFNN are shown in Table II.
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TABLE I
PERFORMANCE OF MODELS ON DIRTY-MNIST

TABLE II
HYPERPARAMETER SETTINGS IN THE MODEL

4) Evaluation Criteria: In binary classification tasks, the
metrics include accuracy, precision, recall and F1 score which
can evaluate how the model performs in different aspects.
In multiclass classification tasks, metrics like macroprecision,
macrorecall, and macro-F1 are commonly utilized [10].

B. Performance Evaluation

For the Dirty-MNIST dataset, FDNN is chosen as one of
the benchmarks. The DNN representation part of the proposed
model is set to CNN. The CNN comprises two layers of convo-
lutional and pooling layers. The convolution kernel size of the
first layer is set to 5 × 5, with a stride of 1, and it yields 10 output
channels. For the second layer, the kernel size is also 5 × 5, with
a stride of 1, and it yields 20 output channels. In addition, each
pooling layer utilizes a pooling kernel of size 2 with a stride equal
to the pooling kernel size. After the processing is completed, the
output is flattened into a 1-D vector. Subsequently, the data are
passed through a fully connected neural network, mapping it to
128-D features. The abovementioned CNN network is the DNN
representation part of FDNN or QA-HFNN. If utilized as an
independent CNN model, a classification layer must be added to
the network to map the 128-D features to 10-D features, thereby,
classifying the hidden layer features into respective categories.

In order to observe the convergence of QA-HFNN, we provide
training details depicted in Fig. 4. In the first few epochs, the
loss drops rapidly, and the training accuracy and validation
accuracy increase rapidly. At the fifth epoch, the loss dropped
to about 0.35, the training accuracy reached about 88.3%, and
the validation accuracy reached about 81.5%. As the epoch

Fig. 4. Convergence analysis of the training on Dirty-MNIST.

increases, the loss slowly decreases. Until epoch reaches 116,
where the learning rate begins to decay, the loss experiences a
significant drop. Subsequently, the loss curve gradually flattens
out, indicating that the model has converged.

The performance of QA-HFNN on the Dirty-MNIST dataset
is given in Table I. In addition to FDNN, we selected classifiers
such as, fuzzy pattern classifier, fuzzy reduction rule classifier,
fuzzy pattern tree top down classifier, multimodal evolution-
ary classifier, and fuzzy pattern classifier GA as benchmarks.
Fuzzy pattern classifier uses fuzzy aggregation functions and
fuzzy sets to represent data, fuzzy reduction rule uses min/max
membership functions to learn fuzzy representation of data,
fuzzy pattern tree top down uses the top-down method to build
fuzzy pattern trees, and multimodal evolutionary uses genetic
algorithms to learn fuzzy rules, fuzzy pattern classifier GA uses
genetic algorithms to optimize membership functions at a global
scale. These classifiers can be implemented using fylearn [55]
which is based on SciKit-Learn. Table I shows that, compared
with FDNN, QA-HFNN can achieve the performance of FDNN
and be slightly better in each metric. The QA-HFNN performs
better than other fuzzy classifiers under the accuracy metric.
The results means that QNNs can be used to learn membership
functions and achieve better performance.

The performance of QA-HFNN is also evaluated on other
datasets, i.e., 15-Scene, JAFFE, Fashion MNIST, and CIFAR-
10. DNN and FDNN are chosen as benchmarks. We first pre-
process the 15-Scene data, and we adopt the same method as
in [7]. Specifically, the dense SIFT features of each image
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TABLE III
ACCURACY COMPARISON OF PROPOSED MODEL ON OTHER DATASETS

are extracted. Then, the local features are clustered to 200
codewords. Finally, the SIFT features are allocated to 200-bit
codewords through the kernel algorithm. We choose a 3-layer
256 × 256 fully connected neural network for the hidden layer
of DNN. A ReLU function is applied to each layer of the
network, and the dropout probability is set to 40%. The DNN
in the proposed model and FDNN model adopts the same DNN
network. For the JAFFE dataset, we first preprocess the data,
convert the image to grayscale and extract regions containing
only facial expressions. Then, we performed data augmentation
on the dataset, including random horizontal flipping and random
rotation by a certain angle. As the dataset is relatively small, the
k-fold cross-validation method is used, where k = 8. For DNN,
we chose CNN with residual block. Specifically, DNN contains 6
convolutional layers and 2 residual layers. The number of output
channels of the first convolutional layer is 32, the kernel size is
5, and the stride is 2. In the second convolutional layer, kernel
size and stride is set to 3 and 1, respectively, and the number
of output channels is 64. Each two convolutional networks are
followed by a residual layer. The residual layer consists of 2
convolutional layers and a skip connection. In the first residual
layer, the number of input and output channels is 64, and the input
and output channels of the second residual layer is both 128. The
third convolutional layer has output channels of 128 with a stride
of 2 and a kernel size of 3. The subsequent convolutional layers
only adjust the number of output channels, and the number of
output channels of the last convolutional layer is 512. Finally,
the flattened features are then, fed into a fully connected neural
network. The DNN part of both FDNN and QA-HFNN adopts
the abovementioned DNN. For the Fashion MNIST dataset, we
use the same DNN as the Dirty-MNIST dataset for the DNN
part.

The performance of QA-HFNN is shown in Table III. It
illustrates that the accuracy of QA-HFNN reaches 74.2%. On the
15-Scene dataset, the proposed model achieves slightly better
performance than DNN and FDNN. On the Fashion MNIST
dataset, QA-FHNN does not show a significant improvement
compared to DNN and FDNN. For the JAFFE dataset, the
accuracy of QA-HFNN reaches 93.3%, which improves 4.2%
and 0.9% compared with DNN and FDNN, respectively. On
the CIFAR-10 dataset, the accuracy of QA-HFNN reaches
95.6%, which performs better than DNN and FDNN. The results
indicate that the proposed model can effectively extract the
uncertainty of the datasets, achieving significant classification
accuracy.

For fuzzy membership functions, this article attempts to use
QNNs to construct fuzzy membership functions. The proposed

QNN uses only single qubit. A layer of QNN contains aRy gate
encoding input data and adjustable parameter quantum gatesRz ,
Ry, Rz . It is easy to find that a one-layer QNN contains three
adjustable parameters. With increasing layers, the parameters of
this part of the network show a linear growth trend. Compared
with the Gaussian membership function, which only has two
adjustable parameters, mean and variance. As the layers of the
QNN increase, the training difficulty of the proposed model also
increases, but the advantage is that the QNN can learn more
suitable fuzzy membership function. Therefore, for different
problems, the proposed membership functions may be more
suitable for the task be learned. It is believed that the proposed
model may also perform better in classification tasks on other
image datasets.

Regarding that quantum part may be affected by quantum
noise, the quantum circuit built by the proposed fuzzy member-
ship function only utilizes single qubit, does not involve two-
qubit CNOT gates [60]. Most of the noise in quantum circuits
comes from the CNOT gate which requires a long operation
time. Therefore, the quantum part is easy to implement and less
affected by noise. A detailed discussion of quantum noise will
be addressed in the following section.

C. Robustness of Quantum Circuits

During the execution of quantum circuits, the quantum system
will be affected by environmental noise. If the quantum circuit
has weak resistance to environmental noise, it will seriously
affect the accuracy of QNN. Therefore, if environmental noise
has a small impact on the quantum circuit, then, we say that the
quantum circuit has good robustness. In this article, we mainly
analyze quantum circuits with single qubits. We will simulate
four types of quantum noise in quantum circuits, which are the
following: 1) amplitude damping (AD), 2) depolarization (DP)
noise, 3) bit flip (BF), and 4) phase flip (PF).

1) AD:

E0 =

(
1 0
0

√
1− γ

)
E1 =

(
1

√
γ

0 0

)
. (21)

2) DP:

E0 =
√

1− γ

(
1 0
0 1

)
E1 =

√
γ

3

(
0 1
1 0

)

E2 =

√
γ

3

(
1 0
0 −1

)
E3 =

√
γ

3

(
0 −i
i 0

)
. (22)
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Fig. 5. Fidelity of output quantum state of quantum circuit changes with input x and noise probability γ. (a) AD. (b) DP. (c) BF. (d) PF.

3) BF:

E0 =
√

1− γ

(
1 0
0 1

)
E1 =

√
γ

(
0 1
1 0

)
. (23)

4) PF:

E0 =
√

1− γ

(
1 0
0 1

)
E1 =

√
γ

(
1 0
0 −1

)
(24)

Amplitude damping describes the energy dissipation of quan-
tum systems. Depolarization noise describes the transformation
of a quantum state into a maximum mixed state I/2with a certain
probability. γ is the probability of noise acting on the quantum
state. Bit flip and phase flip, respectively, mean flipping the qubit
or adding a relative phase to the qubit with a certain probability.

The evolution process of noise acting on quantum systems is
described by operator-sum

ε (ρ) =
∑
k

EkρEk
† (25)

in which, {Ek} is called the Kraus operator, satisfies∑
k Ek

†Ek = I , and ε(ρ) is the evolved quantum system. We
apply a quantum noise behind each single qubit gate to complete
the simulation of noisy environment.

For quantum circuits containing noise, we use fidelity to
quantify the tolerance of quantum circuits to noise. Fidelity

represents the degree of similarity of two arbitrary quantum
states

F (ρ, σ) = Tr

(√√
ρσ

√
ρ

)2

. (26)

Here, we calculate the fidelity between the quantum state gen-
erated by the quantum circuit without quantum noise and the
quantum state affected by quantum noise. The closer the fidelity
is to 1, the better the quantum circuit’s resistance to noise.

The input x of the quantum circuit is a real number in [−1,1].
We sampled 100 input values in [−1,1] and analyzed the change
of the noise probability from 0.01 to 0.1 in each input case. The
fidelity of output quantum state of quantum circuit changes with
input and noise probability as shown in Fig. 5. Subsequently,
we averaged the fidelity of 100 inputs under the same noise
to obtain the quantum circuit fidelity. We show the quantum
circuit fidelity when the noise probability is 0.01, 0.03, 0.05,
0.07, and 0.1 in Table IV. It shows that as the noise probability
increases, the fidelity of the quantum circuit gradually decreases.
Although noise probability becomes 0.1, the fidelity remains as
high as 0.9481. Thus, it illustrates that the proposed QA-HFNN
exhibits robustness against quantum noise.
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Fig. 6. Expression for QNN in QA-HFNN.

TABLE IV
FIDELITY OF NOISY QUANTUM CIRCUIT

D. Expressibility and Entangling Capability of QNN

In order to measure whether PQCs can effectively represent
the solution space, Sim et al. [61] proposed a technique to
calculate the expressibility and entangling capability of PQCs.
This method first calculates the fidelity distribution between
the state generated by the target QNN and the Haar random
state. The Haar random state is considered to be the state with
the greatest expressive power. Then, the Kullback–Leibler (KL)
divergence between the estimated fidelity distribution and the
Haar distribution is calculated. Expressibility can be calculated
as follows:

Expr = DKL

(
P̂QNN (F ; θ) ‖ PHaar(F )

)
(27)

where F represents fidelity and θ represents the adjustable
parameters in QNN. P̂QNN is the estimated fidelity probability
distribution obtained from the quantum states in the sampled
QNN, and PHaar represents the Haar state fidelity probability
distribution. The smaller the value of the expressibility, the closer
the quantum state prepared by the QNN is to the Haar random
state, and the stronger the expressibility of the QNN.

For estimating the entangling capability, the operation of
Meyer–Wallach measurement is proposed in [61]. An estimate
of the entangling capability can be calculated by

Ent =
1

|S|
∑
θi∈S

Q (|ψθi〉) (28)

whereQ represents the Meyer–Wallach entanglement measure-
ment, S represents the parameter set of the QNN, and |ψθi〉
represents the output quantum state of the QNN with parameters
θi. If Ent is closer to 1, it means that the circuit has produced a
highly entangled quantum state.

TABLE V
EXPRESSIBILITY AND ENTANGLING CAPABILITY OF QNN

We discussed three QNN settings in QA-HFNN, correspond-
ing to QNNs with single-layer, two-layer, and three-layer circuit
blocks, respectively. The comparison of expressibility of QNNs
is shown in Fig. 6. When the QNN is single-layer, it already
has a high expressibility. The fidelity probability distribution of
the quantum state generated by the QNN basically covers the
fidelity probability distribution of the Haar state. This may be
because of theRz ,Ry , andRz gates. It can represent any unitary
operation on a single qubit. When the circuit is increased to
two layers, the expressibility increases by 52.43% compared
to single-layer. When it is increased to three layers, the ex-
pressibility of QNN has not increased significantly. QA-HFNN
uses QNNs containing three layers of circuit blocks, which has
considerable expressive capabilities.

Regarding the entangling capability, since the QNNs used in
QA-HFNN only utilizes a single qubit gate and does not contain
entanglement resources in the circuit, the entanglement capabil-
ity is 0. Even without entanglement capability, QA-HFNN still
performs well. A comparison of expressibility and entangling
capability has been given in Table V.

E. Hyperparameter Analysis

To explore the impact of hyperparameter fine-tuning on model
performance, this article analyzes hyperparameter sensitivity.
Specifically, hyperparameters such as learning rate (LR), acti-
vation function (AF), number of training epochs (TE), batch size
(BS), and the number of circuit layers (CL) are considered for
testing. In this test, we adjust only one parameter at a time while
keeping the other parameters constant and compare the average
change in model performance resulting from the hyperparameter
adjustment. A single qubit is used in the QNN, we examine the
sensitivity of the number of circuit layers. For this study, as a
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Fig. 7. Hyperparameter analysis.

QNN can exhibit good expressibility with just a single layer of
circuits, we consider the circuit layers of 1, 2, and 3.

The average change in model performance caused by each
hyperparameter adjustment is shown in Fig. 7. It is evident that
the choice of activation function has the most significant impact
on QA-HFNN, with an average change rate of 2.06% in model
performance. The second most influential hyperparameter is
the learning rate, with an average change of 0.8%. Following
is the training epoch, with an average change rate of 0.15%.
The selection of batch size also has a relatively small average
impact on model performance, which is 0.09%. The number of
circuit layers has the smallest impact on model performance,
with an average change rate of only 0.012%. Therefore, the
adjustment of hyperparameters should focus more on adjusting
the activation function and learning rate.

F. Complexity Analysis

Complexity analysis involves two aspects as follows: 1) quan-
tum circuit complexity and 2) computational complexity. For
quantum circuit complexity, we can calculate it by the number
of quantum gates used in QA-HFNN. The number of qubits
is equal to the input data dimension N , the circuit layer is l,
each circuit layer contains 4 quantum gates, the total number of
quantum gates is 4lN . Since l is constant, the quantum circuit
complexity is O(N).

Computational complexity mainly includes space complexity
and time complexity. Space complexity primarily depends on
the number of qubits used. Since we use N qubits, the space
complexity is O(N). Regarding time complexity, given that the
circuit depth of the QNNs is 4l and the circuit contains only
single-qubit rotation gates, if the execution time of a single-qubit
rotation gate is T , the total circuit execution time is 4lT . Since
both l and T are constants, the time complexity of the QNNs is
O(1).

V. CONCLUSION

This article proposed a QA-HFNN that utilizes QNNs to
learn membership functions in classical fuzzy neural network.
The proposed model aggregates the fuzzy logic representation
extracted by QNNs and the representation of classical neural

networks. We use QNNs to learn fuzzy membership functions.
After the data are processed by the fuzzy membership functions,
we use the logic rule layer to obtain fuzzy logic representations.
The fusion of fuzzy logic representation and features extracted
by DNNs can effectively represent noisy or ambiguous data.
The proposed model achieves better classification accuracy
than existing classical methods. The fidelity is tested in noisy
environments, which indicates QA-HFNN has strong robustness
against quantum noise. However, the performance of QA-HFNN
may be compromised in physical quantum computing environ-
ment due to the current quantum devices limitations. In addition,
utilizing only a single qubit to construct a QNN will inherently
restrict the network’s capacity to handle more complex or larger
datasets. In the future, more qubits are considered to construct
the QNN. Moreover, the integration of entanglement resources
is expected to further augment the model’s efficacy. As quantum
computers mature, the feasibility of QA-HFNN can be further
verified and it is hoped that more efficient and practical models
can be developed with the aid of QNNs.
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