Under review as a conference paper at ICLR 2026

CONTEXT-FREE RECOGNITION WITH TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers excel on tasks that process well-formed inputs according to some
grammar, such as natural language and code. However, it remains unclear how
they can process grammatical syntax internally. In fact, under standard complex-
ity conjectures, standard transformers cannot recognize context-free languages
(CFLs), a canonical formalism to describe syntax, or even regular languages, a
subclass of CFLs. Merrill & Sabharwal| (2025a) show that O(log(n)) looping lay-
ers (w.r.t. input length n) allows transformers to recognize regular languages, but
the question of context-free recognition remained open. In this work, we show that
looped transformers with O(log(n)) looping layers and O(n°) padding tokens can
recognize all CFLs. However, training and inference with O(n®) padding tokens
is potentially impractical. Fortunately, we show that, for natural subclasses such
as unambiguous CFLs, the recognition problem on transformers becomes more
tractable, requiring O(n?) padding. We empirically validate our results and show
that looping helps on languages that require logarithmic depth. Overall, our results
shed light on the intricacy of CFL recognition by transformers: while general
recognition may require an intractable amount of padding, natural constraints such
as unambiguity yield efficient recognition algorithms.

1 INTRODUCTION

Transformers are proficient at many natural language (Qin et al.} 2024) and coding (Jiang et al.,|2024)
tasks, both of which involve processing hierarchical structures. Analysis of internal representations
has shown that transformers learn to encode syntactic features related to parsing, the task of extracting
the syntactic structure of a sentence, during pre-training (Hewitt & Manning, 2019} |Arps et al.,
2022; Zhao et al,2023). Classically, the ability to process hierarchically nested structures is closely
connected to the ability to model context-free languages (CFLs). However, it is unclear what
classes of syntax transformers can provably represent, and how CFL recognition can be implemented
internally. To this end, we study whether transformers can correctly determine the grammaticality of
a sentence according to a context-free grammar.

The problem of determining whether an input is grammatical can be stated as the recognition
problem for context-free grammars (CFGs): Given a CFG g, can a string w be generated by G?
Several foundational serial parsing algorithms (Earley, [1970; |Cocke, |1969; Kasami, |I965] |Younger,
1967) solve this problem. However, such serial procedures cannot be naturally implemented by
transformers, due to their highly parallel, fixed-depth structure. Even regular languages, a strict subset
of CFLs, cannot be recognized by fixed-depth transformers under the standard complexity conjecture
TCY C NC!: Regular language recognition is complete for NC' (Barrington & Thérien, 1988) while
fixed-depth transformers fall in TCO (Merrill et al.,[2022; Strobl, 2023; Chiang, [2025)). Looping layers
helps: log(n) looping layers (where n is the input length) allow transformers to recognize regular
languages Merrill & Sabharwal| (2025a). However, the question of whether logarithmic looping
enables CFL recognition remains.

In this work, we address this question by analyzing the difficulty of the recognition problem for
various classes of CFLs on transformers. We conceptualize the difficulty in terms of extra resources
needed: looping layers and dynamically appending blank padding tokens (Merrill & Sabharwal,
2025b)). Precisely, while general CFL recognition cannot be implemented by fixed-depth transformers
under standard complexity conjectures, we show in §3|via a direct construction that it can be expressed
by looping layers O(log(n)) times and with O(n°) padding tokens.

Under review as a conference paper at ICLR 2026

To the best of our knowledge, this constitutes the first proof of CFL recognition by transformers.
Moreover, we ask whether there are simpler classes of CFLs that can be recognized by transformers
with reduced padding requirements. Indeed, we show in §4]that natural subclasses of CFLs can be
recognized by simpler transformers. We identify unambiguity and linearity as two key properties
that make CFL recognition more tractable. Unambiguous CFLs, characterized by strings having at
most one possible parse, allow for recognition with reduced padding but more looping. This aligns
with transformers’ struggles to parse ambiguous grammars in practice (Khalighinejad et al., |2023]).
Furthermore, imposing linearity (where each grammar rule has at most one non-terminal on its right-
hand side) reduces the amount of looping and padding required for recognizing unambiguous CFL.
We empirically test in §5| when looping helps generalization and find it to increase the performance
on a log-depth complete CFL, namely the language of variable-free Boolean formulas (Buss}|1987).

In summary, we leverage theory on parallel recognition of CFLs to show that transformers can
recognize CFLs with logarithmic depth, characterizing the padding requirements for different relevant
subclasses. These results imply that, in order to recognize CFLs, transformers require significantly
less depth than that which would be needed to implement a serial parsing algorithm like CKY. While
this comes with increased space (padding) requirements in the general case, the space can be reduced
for natural CFL subclasses. These results are summarized in Tab. 1l

Language class Padding tokens required ~ Looping layers required
General CFLs n® log(n)
Unambiguous CFLs n® log?(n)
Unambiguous linear CFLs n? log(n)

Table 1: Main results: The amount of computational resources required by transformers to recognize
different classes of context-free languages (CFLs).

2 PRELIMINARIES

An alphabet X is a finite, non-empty set of symbols. A string is a finite sequence of symbols
from ¥. The Kleene closure ¥* of ¥ is the set of all strings over ¥, and € denotes the empty
string. A formal language L over X is a subset of ¥*, and a language class is a set of formal

languages. We treat a language recognizer as a function R: ¥* — {0,1} whose language is
def

LR) ={w € X* | R(w) = 1}.
2.1 CONTEXT-FREE GRAMMARS

Definition 2.1. A context-free grammar (CFG) G is a tuple (X, N,S,P) where: (1) ¥ is an
alphabet of terminal symbols (2) N is a finite non-empty set of nonterminal symbols with N N'Y = ()
(3) P C N x (N UX)* is a set of production rules of the form A — o for A € N and o € (N'U a)*
(4) S € N is a designated start non-terminal symbol As standard, we denote terminal and nonterminal
symbols by lowercase and uppercase symbols, respectively.

We call a sequence of non-terminals and terminals o € (A U X)* a sentential form. A context-free
grammar generates strings by repeatedly applying rules to sentential forms derived from the start
symbol until it produces a sequence of terminal symbols, i.e a string. We call this procedure a
derivation, and the resulting string its yield. We define the relation A — g if dp € P such that

p = (A — afy) where «, 3, v are sentential forms. We denote by = the reflexive, transitive closure
of —.
def

Definition 2.2. The language of a grammar G is the set L(G) = {w € ¥* | SSw}.
Definition 2.3. A language L is context-free if there exists a CFG G such that L(G) = L.

It is common practice to consider CFGs in a normal form, namely:

Definition 2.4. A CFG G is in Chomsky Normal Form (CNF) if any p € P is either of the form
A—-BCA—=aorS—e

Every CFG can be transformed into an equivalent one in CNF.

Under review as a conference paper at ICLR 2026

2.2 TRANSFORMERS

We consider transformers as defined in|Merrill & Sabharwal (2025a;b)). We assume average-hard
attention (AHATSs), where attention returns a uniform average of the values of tokens that maximize
the attention score. We further assume masked pre-norm, where the layer normalization is applied
before the residual connection. We assume log-precision, where symbol representations contain
values that can be represented with O(log(n)) bits for an input of size n. Coupling AHATs and log-
precision unlocks useful features such as storing string indices and performing counts across a string
(Merrill & Sabharwal, [2023)). We assume input strings to the transformer are augmented with both a
beginning-of-sequence and end-of-sequence token. Denote by xZ . the contextual representation of
EOS at end of the forward pass of the transformer. We apply a linear classifier to 2% to determine
string acceptance.

Looped transformers scale the number of layers with input length (Merrill & Sabharwall 2025a).
Definition 2.5. Let T be a transformer. We denote by (A, B, C) a partition of layers such that A is
the initial block of layers, B is the looped block of layers and C is the final block of layers. T is
d(n)-looped if upon a forward pass with an input of length n, B is repeated O(d(n)) times.

The amount of computation performed by self attention is definitionally quadratic in the string length.
One can dynamically increase this by adding padding space (Merrill & Sabharwall, 2025b)).
Definition 2.6. Let T be a transformer. T is w(n)-padded if O(w(n)) padding tokens are appended
to the end of the string when computing the contextual representations of a length-n input.

Dynamically scaling number of layers and padding tokens in transformers is analogous to scaling time
and space in classical models of computation such as Boolean circuits (Merrill & Sabharwal, [2025b)).
Allowing for different looping and padding budgets results in different classes of transformers. We
adopt naming conventions of these models from |[Merrill & Sabharwal (2025b). We denote by AHAT%
the class of languages recognized by averaging hard-attention transformers with (’)(logd(n))-looping,
O(n*)-padding and strict causal masking. We further use the notation UAHAT to refer to refer to
average hard-attention transformers with strict causal masking with no masking, and mAHATﬁ when
induction heads may or may not employ strict causal masking.

We have the following convenient result on simulating non-masked attention layers with causally
masked attention layers by adding a linear amount of padding.
Lemma 2.1 (Merrill & Sabharwal|2025b). UAHAT]. C mAHAT{ C AHATY, | ford > 1

14+max

We refer to App. [A]for more details on the looped and padded transformer model.

3 RECOGNIZING GENERAL CFLS WITH TRANSFORMERS

We now introduce our parallel algorithm for general CFL recognition, which synthesizes ideas from
previous work on algorithms for parallel CFL recognition (Ruzzol [1980; Rossmanith & Rytter, |1992;
Lange & Rossmanith, |[1990). We then show how to implement this algorithm on AHATS.

Our goal is to recognize a CFL represented by a grammar in CNF (Def.[2.4). For a string w of length
n, we will determine whether the grammar can generate the string. To do this, we will work with
tuples of the form [A, 7, j] which we call items, where A € A and i, j € [n]. Given a string w, the
item [A, 4, j] is realizable if and only if A=>w;w; 1 ... w;. In other words, there is a sequence of
rules that can be applied to the non-terminal A that yields w;w;11 ... w;.

We further define slashed items of the form [A, i, j]/[B, k, []. Intuitively, solving [A, 4, j]/[B, k,]
equates to determining whether A can derive w;...B ... w; assuming that the non-terminal B
already derives the substring wy, . . . w;. More formally, [A, i, j]/[B, k, [] is realizable if and only if

*
A:>wiwi+1 A wk,lelH,“j.

Naturally, w € L(G) if and only if the item [S, 1, n] is realizable, and determining realizability can
be broken down recursively as follows:

Lemma 3.1. [X, 4, j] is realizable if and only if one of the following conditions is met:

* Base case: j =i and X — w; is a rule in the grammar.

Under review as a conference paper at ICLR 2026

* Recursive case 1: There exist a rule X — YZ and an index k such that [Y i,k — 1] and
[X, k, j] are realizable items. There are O(|P|N) such guesses for O(|N'|N?) possible
given items.

* Recursive case 2: There exists a [Y, k, 1] such that [X, i,]/[Y, k,1] and [Y, k,] are both
realizable. There are O(|N'|N?) such guesses for O(|N'|N?) possible given items.

Proof. The proof follows from our definitions. In the base case where ;7 = ¢, X needs to derive
exactly the symbol w; in one-step without producing non-terminals (assuming a trim CFG with no
useless non-terminals). In the recursive case, there exists otherwise a binary rule X — YZ such that
Y and Z derive disjoint, consecutive substrings of w. This statement is equivalent to stating there
there exists a non-terminal Y such that Y derives some substring wy, . . . w;, and X derives w where
wy, ... wy has been replaced by Y. |

Lemma 3.2. [X,14,]/[Y, k,l] is realizable if and only if one of the following conditions is met:

* Base case: k = 1,1 = j — 1 and there is a rule X — YZ in the grammar such that 7 — w;.
(and symmetric case)

* Recursive case 1: There exist a rule X — AB and an index p such that [A,i,p—1]/[Y, k,]]
and [B, p, j| are realizable items (and symmetric case). There are O(|P|N) such guesses
for O(IN'|>N*) possible given items.

* Recursive case 2: There exists a [Z,p, q| such that [X, i, j]/Z,p, q] and [Z,p,q]/[Y, k,]]
are both realizable. There are O(|IN'|N?) such guesses for O(|N'|>N*) possible given
items.

Proof. The proof follows the same structure as the proof of Lem. [3.1] |

Lem.[3.T]and Lem. [3.2]state that an item is realizable if there exists some decomposition into realizable
subproblems. Assuming some parallel model of computation, we can guess in parallel which of
these decompositions is the correct one and then recursively verify the subproblems in parallel. This
suggests natural parallel algorithms for checking realizability of items and slashed items, which we
present in Alg. [I|and Alg.[2}

Algorithm 1 Solving an item [X, 4, j]

1 def f([X,14,k]):

o ifi=j:

3 return X — w; € P

+. Guess an integer in z = {1, 2}

s ifx=1:

6 Guessarule X - YZcPandk € N

» return f([Y, 43,k — 1)) A f([Z, k, j])

5. else

9 Guess an item [Y, k, [

10. return f([X,,5]/[Y, k1) A F([Y,E,1])

Algorithm 2 Solving an item [X, 4, j]/[Y, k,]

def £([X, i, 4]/ [Y, k. 1))

o ifk=iAl=j—1:

. return 3 X — YZ € PsuchthatZ — w; € P

+. Guess an integer in z = {1, 2}

s ifx=1:

6. Guessarule X - ABe€ Pandp € N

7 return f([A,d,p = 1]/[Y, k1) A f([B,p, j])

5. else

9. Guess an item [Z, p, ¢

o return f([X,4,51/[Z,p,q]) A f([Z,p,q]/[Y, k,1])

Under review as a conference paper at ICLR 2026

Intuitively, the recursive function f defined in Alg.[I} Alg.[2]computes the realizability of items.

Theorem 3.1 (Correctness). Given a CFG G in CNF and w € ¥* of length n, f([S,1,n]) = 1 if
and only if w € L(G).

Proof. By definition, w € L(G) if and only if [S, 1, n] is realizable. By Lem.[3.1and Lem. [3.2] the
item [S, 1, n] is realizable if and only if there exists a decomposition of [S, 1, n] that respects the
Lemmata[3.1]and [3.2] Our algorithm recursively guesses such decompositions, guaranteeing that we
will compute a valid decomposition if it exists.]

We now analyze the resources required to compute the recursive function f induced by Alg.[l|and
Alg. |2l Our algorithm is based on a balanced decomposition of problems into subproblems of roughly
equal size, which intuitively leads to a log(n)-time procedure. Formally, we have the following
well-known theorem for decomposing trees:

Theorem 3.2 (Jordan||1869). Given a tree with n vertices, there exists a vertex whose removal
partitions the tree into two trees with each at most n/2 vertices.

We rely on Thm. [3.2]to prove that Alg. [T]runs in a logarithmic number of recursive steps:

Corollary 3.1. We can compute f([S, 1,n]) inlog(n)+O(1) recursive steps Yw € X* with |w| = n.

Proof. By Thm.[3.2] for any item there exists a balanced decomposition of the corresponding parse
tree into two trees of roughly equal size, which can be represented by two items (the split is at the
root) or a slashed item and an item (the split is not at the root). Assuming we can in parallel attend
to all possible decompositions, we will necessarily guess the balanced one where subtrees have at
most /2 4 1 vertices. After i recursive steps, the current subtrees have at most 3> + O(1) nodes.
Therefore, we will solve all base cases after at most log(n) + O(1) steps. []

In terms of space complexity, the bottleneck resides in solving an item [X, 4, j]/[Y, k,{] which
occupies space O(n*), and guessing a possible [Z, p, g] which could decompose this problem, which
itself occupies space O(n?), leading to a total space complexity of O(n%). Combining both insights
on time- and space-complexity, we can prove the following theorem:

Theorem 3.3. Given a CFL L, there exists a transformer with both causally-masked and non-masked
attention layers, O(log(n)) looping layers and O(n®) padding tokens that recognizes L. That is,
CFL C mAHAT} C AHATL.

Proof intuition. The construction will implement Alg.[T]and Alg.[2]on a transformer. Intuitively, we
store padding tokens for all possible item / decomposition combinations, of which there are O(n°)
possibilities. We assume some ternary logic where padding tokens allocate space for an integer
in {0,1, L}, denoting that the item is non-realizable, realizable or not known yet to be realizable,
respectively. All padding tokens initially store L. In the initial block of layers, padding tokens
associated with a base case item of the form [A, i,] can attend symbol representations to verify
whether the base case is valid. In the inductive step, i.e for each looped block, padding tokens
attend to the padding tokens associated with the decomposition and add 1 to the residual stream if
they are both realizable, O if any of them is non-realizable, or L if we have not computed yet the
realizability of these items. It takes log(n) looping layers to populate the values of all items in their
respective padding tokens due to Thm. Finally, we can check whether there exists a padding
token associated with [S, 1, n| that holds the value 1. Applying Lem. yields inclusion in AHAT?.
The detailed proof is in App.[B.T] u

While we firstly prove that mAHATs with log(n)-depth can recognize all CFLs, we still require O(n®)
padding tokens to do so which is intractable in practice. To this extent, we will see in the next section
that for more restricted classes of CFLs, algorithms for recognition can leverage some grammar
constraints such that a tractable number of padding tokens suffices. We unify insights from previous
work to contrast the resources required to process different classes of CFLs.

Under review as a conference paper at ICLR 2026

4 UNAMBIGUITY REDUCES PADDING REQUIREMENTS FOR RECOGNITION

Intuitively, a general algorithm for recognizing an arbitrary CFL requires a large amount of padding
because an arbitrary grammar can be highly ambiguous. Guessing how to decompose an arbitrary
item requires a substantial amount of space. In this section, we show that unambiguous CFLs enable
recognition with less padding.

A CFL is unambiguous if there is at most one possible derivation (i.e, parse tree) for any string.
Unambiguity is a natural CFL feature of general interest. It has been shown that transformers struggle
to parse ambiguous grammars in contrast to unambiguous grammars (Khalighinejad et al.| [2023]),
while modern LMs struggle to process syntactically ambiguous natural language sentences (Liu
et al.| [2023). Moreover, modern parsers for programming languages such as LR parsers rely on
deterministic (therefore unambiguous) CFLs to process inputs in linear time.

We will now present an algorithm for recognizing unambiguous grammars with a tractable space

complexity but in 1og2(n)—time. Crucially, we are also able to implement this algorithm on AHATS
with a tractable number of padding tokens.

4.1 A PATH SYSTEM FRAMEWORK FOR UNAMBIGUOUS CFL RECOGNITION

We now formulate recognition of unambiguous CFLs as a path system problem. Informally, a path
system consists of initial nodes that are associated with either the value 1 or 0, and a relation R that
characterizes how to connect nodes with edges. By associating base items of the form [A, i,] to
base nodes, general items of the form [A, i, j] to arbitrary nodes, and connecting nodes depending
on the rules of the given grammar, computing the realizability of an item reduces to finding a path
between its associated nodes and a base node. To this extent, we now present |Chytil et al.|(1991)’s
path system framework for recognizing unambiguous grammars and transpose it to AHATs. This
subsection assumes the grammars are in CNF.

We denote by V a set of nodes, each associated with a tuple [A, 7, j]. We denote by T C V the
initial set of vertices of the form [A, 4, 4] such that A — w; € P. R(x,y, z) is a relation on V where
R(z,y,z) = 1 if and only if z is associated with some tuple [A, i, j], is associated with some
tuple [B, 7, k] and y is associated with some tuple [C, &, j] such that A — BC € P. We denote by
C(w) C V the smallest set containing 7 such that if z, y € C(w) and R(z,y,2) = 1 then z € C(w),
i.e C(w) is the closure of T with respect to the relation R. Naturally, an intuitive way to think about
C(w) is that it contains exactly the set of realizable elements, and the recognition problem is thus
equivalent to determining whether the node associated with [S, 1, nlis in the set C(w).

To compute C(w), we will refer to some graph-specific structures introduced in|Chytil et al.{(1991).
We first define dependency graphs. Let X C V a set of vertices that are marked, we denote by
DG(X) the directed graph G = (V, £) with respect to X' where:

E={(z,2) | z2¢ X,R(z,y,2) =1 or R(y,x, 2) = 1 for some y € X'} (D

Intuitively, assuming X C C(w), the edge (z, z) can be interpreted as follows: x € C(w) implies
that z € C(w). In fact, (z,x) being an edge signals that there is some vertex y associated with a
realizable item such that R(z,y, z) = 1. Thus, if = also is associated with a realizable item (i.e, is in
the closure C(w)), then z is a realizable item. The algorithm thus iteratively expands the known set
of vertices to be associated with realizable items by computing the set of vertices that have a directed
path to a marked node. We denote by REACH(G) the nodes of the dependency graph G that have a
directed path to a marked node in G.

Chytil et al.| (1991)’s procedure to compute C(w) is describe in Alg.

The bottleneck in Alg. |3|is computing REACH(D), i.e reachability queries on a directed, acyclic
graph (DAG). Assuming unambiguity, we have the following powerful insight: There is at most
one path between any pair of nodes in our DAG. If there are multiple paths from a node [A, i, j] to
another node [B, k,] there are then different derivations that can reduce [A, i, j] to [B, k, {], which
contradicts the unambiguity condition. Therefore, for each node v the subgraph induced by nodes
reachable from v becomes a tree rooted at v. Reachability queries on a tree reduce to evaluating the
corresponding Boolean formula, where leaf nodes are assigned 1 if they correspond to realizable
items and non-leaf nodes are assigned the V operator. We rely on the following lemma to perform
this procedure:

Under review as a conference paper at ICLR 2026

Algorithm 3 Algorithm for computing the closure C(w)

1. We are given w and a grammar G

2. Initialize V and T as defined previously
s def C(w):

o X=T

5. for i in range log(n) :

6. D =DG(X)

7. X =REACH(D)

s return X

Lemma 4.1. Let ¢ be a Boolean formula. Assume ¢ is represented in a transformer’s residual stream
as follows. For each leaf, there is a token that encodes its true/false value. For each function node,
there is a token that encodes its type and one or two input arguments. Then, we can compute the
value of each subformula (at its corresponding node) in O(log(n)) time.

Proof intuition. Given the appropriate pointers, We implement (Rytter, [1985)’s parallel pebble game
algorithm for evaluating Boolean formulas with O(log(n)) steps on transformers. The procedure
operates in parallel at each node by iterating three steps O(log(n)) times: activate, square, and pebble.
At each node where one child already has a value, activate sets ptr to the other child and sets a
“conditional function” condf: {0,1} — {0, 1} based on the node type and child’s value. Square then
operates at activated nodes, setting condf = ptr.condf. Pebble operates at activated nodes, checking
whether ptr.value is defined, and, if so, setting value = condf(ptr.value). Rytter(1985) show
that this algorithm correctly evaluates each subformula within O(log(n)) steps.]

We can now show how to simulate Alg. B['s procedure on transformers for unambiguous CFLs with
O(log(n)?) looping layers and O(n?) padding tokens.

Theorem 4.1. Let UCFL be the classes of unambiguous CFLs. Then UCFL C mAHAT% - AHATE.

Proof intuition. We will implement Alg. on MAHATSs. Each item [A, 4, j] (of which there are O(n?))
is assigned a padding token. For each item [A, i, j], there are O(n) ways to decompose it using
a split index k € [n]. For every potential edge between nodes associated with [A, 4, j] and some
[B, 14, k] (or [B,k,j]), we assign a padding token. We refer to the proof of Thm. on how a
padding token can compute and store their associated objects (non-terminals, string indices). As in
Thm. we use a ternary logic where padding tokens for nodes are at any step assigned an element
in {0, 1, L}, denoting realizability, non-realizability or undefined (we do not know yet whether the
item is realizable or not). Initially, all padding tokens store L.

Initially, padding tokens for nodes can check whether they are associated with base case items of the
form [A, 7, 7]. These padding tokens can then store 1 (item is realizable) or O (item is non-realizable)
depending on whether A — w; € P.

In the iterative case, each padding token for an edge associated with items [A, i, j], [B, 4, k] can first
check whether there exists a rule A — BC and if so, add to the residual stream [C, k+ 1, j]. Crucially,
there a finitely such many items (proportional to |A/| as the splitting index k is fixed). Padding token
for edges can attend to padding tokens associated with [C, k + 1, j] and check whether any of them
stores 1 denoting realizability. In that case, the padding token for that edge signals that the edge is
now in the graph (following how we define edges in Eq. (I))). Padding tokens for nodes associated
with items [A, 4, j] can therefore attend to padding tokens for edges associated with [A, 4, j], [B, i, k],
which yields the dependency graph.

Crucially, due to unambiguity, for each node v the subgraph induced by nodes reachable from v
becomes a tree rooted at v. We then show how to binarize this tree. Reachability queries on a binary
tree can be reduced to efficient evaluating Boolean formulas (Chytil et al.| [1991). We invoke Lem. @
to evaluate Boolean formulas in log(n) steps. The detailed proof is in App. |

A notable example of an unambiguous CFL is the Boolean formula value problem (BFVP), the set
of variable-free Boolean formulas that evaluate to 1. It is a canonical NC'-complete language, i.e is

Under review as a conference paper at ICLR 2026

known to require log-depth for recognition (Buss, |1987). Assuming formulas in postfix notation (e.g.,
01— A 0V), Lem. d.T|enables us to solve BFVP without any padding on log-depth AHATS:

Lemma 4.2. Let ¢ be a variable-free Boolean formula written in postfix notation. Then, taking ¢ as
input, a causally-masked AHAT can evaluate ¢ after O(log(n)) steps.

Proof. Each symbol representation can compute its position in the string by uniformly attending
to the strict left context. For each symbol representation A or V at some position i, we store the
indices of the two previous symbol representations ¢ — 1 and ¢ — 2 via a feedforward network. For
symbol representations — for a position ¢, we add to the residual stream ¢ — 1. Symbol representations
denoting 1 or O (representing leaf nodes in the binary tree) can add to the residual stream O or 1. We
can therefore invoke Lem. to solve this Boolean formula in log(n) steps. Strict causal-masking
suffices due to postfix notation, as symbol representations associated with a binary (unary) operator
need to attend to the symbol representations in the left context.]

Dyck, the language of all correctly balanced strings of parentheses, is another canonical unambiguous
CFL. This language is often used to model hierarchy and unbounded nesting in natural language.
As shown in prior work, Dyck can in fact be recognized by constant-depth circuits and transformers
(Hayakawa & Sato, [2024} [Mix Barrington & Corbett, [1989; |Hu et al., 2025; Weiss et al., 2021).

4.2 UNAMBIGUOUS LINEAR CFLS REQUIRE LESS TIME AND SPACE

Finally, we show how another constraint we can impose on CFLs, namely linearity, further reduces the
resources needed by transformers to recognize unambiguous CFLs. A linear CFL is characterized
by a CFG where each rule in the grammar is the form A — aB, A — Ba or A — a. We assume
grammars take this form in this subsection. While restricted, linear CFLs can already capture a wide
range of features of context-freeness: Balanced counting can be modeled by the following linear CFL
L = {a"b" | n > 0}, and symmetry can be modeled by the linear CFL L = {ww! | w € X*}.

We consider unambiguous linearﬂ CFLs (ULCFLs), and use linearity to prove the following.
Theorem 4.2. ULCFL C mAHATS C AHATS.

5 EXPERIMENTS

In contrast to prior empirical work that corroborates claims on the expressive power of transformers on
sequence-to-sequence tasks (Delétang et al.,[2023; Bhattamishra et al.,[2020), we train transformers
to recognize context-free languages of varying degrees of complexity:

* Boolean formula value problem (BFVP): The set of variable-free Boolean formulas
that evaluate to 1. This CFL is known to be complete for NC! (Bussl |1987), i.e requires
logarithmic time w.r.t. input length. We also consider the postfix notation version of the
problem, where for example 1 V 0 rewrites as 1 0 V. Parallel algorithms for BFVP typically
rely on postfix notation (Buss} (1987} Buss et al.| |1992).

* Palindrome: The language defined as L = {ww?|w € ¥*} for some alphabet ¥. In our
case, we arbitrarily select an alphabet of size 2. This language is linear unambiguous and
non-deterministic. Prior work has shown that fixed-depth transformers with hard attention
can recognize this language (Hao et al. 2022).

e Marked Palindrome: This language simplifies Palindrome by extending strings with a
marker between w and w?™, which delimits at which index we reverse the string. In other
words, L = {w#w?|w € X*} where # ¢ ¥. This language is linear deterministic.

* Dyck: The language of all correctly balanced strings of parentheses of k types, which we
denote by D(k). In our case, we consider D(1) and D(2). This language is non-linear and
deterministic. Fixed-depth transformers can recognize D(k) for any k (Hayakawa & Sato,
2024; Weiss et al.| 2021)).

IThere is a subtlety here: A CFL can be induced by both a non-linear unambiguous grammar and by a
different linear, ambiguous grammar. Here we consider grammars that are simultaneously linear and unambiguous

Under review as a conference paper at ICLR 2026

These languages vary in complexity, allowing us test transformers’ ability to learn context-free
recognition constructions for languages of different difficulties. In particular, while Palindrome and
D(k) languages can in principle be represented with a constant-depth transformer solution, BFVP
requires more than constant depth (i.e., log-depth), assuming TC? # NC!. Thus, the performance
of log-depth vs. constant-depth transformers on BFVP in particular is a good measure of whether
transformers can learn to utilize the extra expressivity of log-depth when it is required.

Data. We use|Anonymous| (2025)’s length-constrained sampling algorithm for CFLs to generate
strings for our datasets. For D(1), D(2), Palindrome and Marked Palindrome, negative samples
are either random or adversarial. For BFVP, we sample negative strings as well-formed Boolean
formulas that evaluate to 0. For BFVP we prefer to focus on a transformer’s ability to correctly
evaluate a Boolean formula rather than determining if an input string is a well-formed formula, which
is already emcompassed by D(k). Our test set contains strings over longer lengths than strings in our
training set to evaluate the transformer’s ability to generalize on out-of-distribution strings.

Models and Training Procedure. We train causally masked looped transformers with no positional
embeddings. Our transformers has 1.2 million parameter budget. We use the ADAMW optimizer
(Loshchilov & Hutter, 2019) and binary cross-entropy loss, considering runs across 5 different seeds.

Table 2: Mean accuracy (+ standard deviation) by language and transformer type across seeds.

Test accuracy on in-distribution strings | Test accuracy on out-of-distribution strings

Language Fixed-depth log(n) looping | Fixed-depth log(n) looping
BFVP 0.97 £0.01 0.98 + 0.00 0.88 £ 0.01 0.91 £0.01
BFVP (postfix) 0.95 £ 0.01 0.98 £ 0.00 0.87 £ 0.01 0.91 £ 0.01
Palindrome 0.94 £ 0.01 0.93 £ 0.01 0.79 £ 0.03 0.72 £ 0.03
Marked palindrome 0.97 &£ 0.01 0.98 £ 0.01 0.59 £0.19 0.66 £ 0.18
D(1) 0.98 £+ 0.00 0.98 + 0.00 0.94 +0.02 0.93 £0.01
D(2) 0.98 £ 0.02 0.99 £ 0.00 0.83 £ 0.08 0.90 £ 0.08

Results. By a small margin, looping improves accuracy on both the infix and postfix version of
BFVP. The failure of fixed-depth transformers is consistent with the fact that fixed-depth transformers
cannot solve BFVP assuming TC? # NC!, and the benefit of log-depth is generally in-line with
our results that log-depth enables recognition of CFLs. In contrast, for Palindrome and D(1),
looping does not improve accuracy, which is supported by the fact that these languages already have
fixed-size solutions (Hao et al.| 2022; [Hayakawa & Sato}, |2024)) and thus recognition does not need
log-depth. For I)(2) and Marked Palindrome, looping seems to improve generalization even though
these languages also have log-depth transformer constructions. Interestingly, looping seems to help
generalization on D(2). Moreover, it is perhaps surprising that fixed-depth transformers already
generalize so well on BEFVP.

6 DISCUSSION AND CONCLUSION

We show that transformers with log-depth can recognize general CFLs if they can use padding tokens
(Merrill & Sabharwal,2025b). In addition, we characterize unambiguity and linearity as CFL features
that can reduce the amount of padding needed by transformers for recognition. These results reveal
one way that transformers with limited depth can recognize CFLs and predict ambiguity in language
could be a hurdle for transformers to process, as suggested in previous empirical work (Khalighinejad
et al., [2023} ILiu et al., 2023). While it is not possible to improve our log-depth recognition algorithm
to fixed depth unless TC” = NC!, our padding bounds are not known to be tight. Therefore, future
work could find more padding-efficient transformer constructions for recognizing general CFLs, or
subclasses thereof. Additionally, it would be interesting to consider the psycholinguistic implications
of our results for comparing how humans and LMs process language and syntax. It is believed that
CFLs are too weak to model natural language (Shieber, |1988), and that mildly context-sensitive
formalisms such as tree-adjoining grammars (TAGs) are a better prospect to model natural language
(Joshil |1985}; [Bordihn| [2004). Future work could therefore focus on analyzing transformers’ ability to
recognize languages induced by TAGs (TALs).

Under review as a conference paper at ICLR 2026

REFERENCES

Anonymous. Empirically testing expressivity bounds for neural network architectures. 2025.

David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure
in neural language models, 2022. URL https://arxiv.org/abs/2204.06201.

David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of ncl. J.
ACM, 35(4):941-952, October 1988. ISSN 0004-5411. doi: 10.1145/48014.63138. URL https:
//doi.org/10.1145/48014.63138.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages, 2020. URL https://arxiv.org/abs/2009.11264.

Henning Bordihn. Mildly Context-Sensitive Grammars, pp. 163—173. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004. ISBN 978-3-540-39886-8. doi: 10.1007/978-3-540-39886-8_8. URL
https://doi.org/10.1007/978-3-540-39886-8_8.

S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula
evaluation. SIAM Journal on Computing, 21(4):755-780, 1992. doi: 10.1137/0221046. URL
https://doi.org/10.1137/0221046.

S. R. Buss. The boolean formula value problem is in alogtime. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing, STOC ’87, pp. 123-131, New York, NY, USA,
1987. Association for Computing Machinery. ISBN 0897912217. doi: 10.1145/28395.284009.
URL https://doi.org/10.1145/28395.28409.

David Chiang. Transformers in uniform tc®, 2025. URL https://arxiv.org/abs/2409.13629.

Michal Chytil, Maxime Crochemore, Burkhard Monien, and Wojciech Rytter. On the parallel
recognition of unambiguous context-free languages. Theoretical Computer Science, 81(2):311—
316, 1991. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(91)90199-C. URL https:
//www.sciencedirect.com/science/article/pii/030439759190199C.

John Cocke. Programming languages and their compilers: Preliminary notes. New York University,
USA, 1969. ISBN BOO07F4UOA.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
the chomsky hierarchy, 2023. URL https://arxiv.org/abs/2207.02098.

Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94-102, February
1970. ISSN 0001-0782. doi: 10.1145/362007.362035. URL https://doi.org/10.1145/362007,
362035,

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity, 2022. URL https://arxiv.org/abs/2204,
06618.

Daichi Hayakawa and Issei Sato. Theoretical analysis of hierarchical language recognition and
generation by transformers without positional encoding, 2024. URL https://arxiv.org/abs/
2410.12413.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4129-4138, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
URL https://aclanthology.org/N19-1419/.

Michael Y. Hu, Jackson Petty, Chuan Shi, William Merrill, and Tal Linzen. Between circuits and
chomsky: Pre-pretraining on formal languages imparts linguistic biases, 2025. URL https:
//arxiv.org/abs/2502.19249.

10

https://arxiv.org/abs/2204.06201
https://doi.org/10.1145/48014.63138
https://doi.org/10.1145/48014.63138
https://arxiv.org/abs/2009.11264
https://doi.org/10.1007/978-3-540-39886-8_8
https://doi.org/10.1137/0221046
https://doi.org/10.1145/28395.28409
https://arxiv.org/abs/2409.13629
https://www.sciencedirect.com/science/article/pii/030439759190199C
https://www.sciencedirect.com/science/article/pii/030439759190199C
https://arxiv.org/abs/2207.02098
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://arxiv.org/abs/2204.06618
https://arxiv.org/abs/2204.06618
https://arxiv.org/abs/2410.12413
https://arxiv.org/abs/2410.12413
https://aclanthology.org/N19-1419/
https://arxiv.org/abs/2502.19249
https://arxiv.org/abs/2502.19249

Under review as a conference paper at ICLR 2026

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL |https://arxiv.org/abs/2406.00515,

Camille Jordan. Sur les assemblages de lignes. Journal fiir die reine und angewandte Mathematik,
70:185-190, 1869. URL http://eudml.org/doc/148084.

Aravind K. Joshi. Tree adjoining grammars: How much context-sensitivity is required to provide
reasonable structural descriptions?, pp. 206-250. Studies in Natural Language Processing.
Cambridge University Press, 1985.

Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free languages.
1965. URL https://api.semanticscholar.org/CorpusID:61491815.

Ghazal Khalighinejad, Ollie Liu, and Sam Wiseman. Approximating CKY with transform-
ers. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 14016-14030, Singapore, December 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.934. URL
https://aclanthology.org/2023.findings-emnlp.934/.

Klaus-Jorn Lange and Peter Rossmanith. Characterizing unambiguous augmented pushdown au-
tomata by circuits. In Branislav Rovan (ed.), Mathematical Foundations of Computer Science 1990,
pp- 399-406, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. ISBN 978-3-540-47185-1.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha
Swayamdipta, Noah A. Smith, and Yejin Choi. We’re afraid language models aren’t model-
ing ambiguity, 2023. URL https://arxiv.org/abs/2304.14399,

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS °23, Red Hook, NY, USA, 2023. Curran Associates Inc.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought,
2024. URL https://arxiv.org/abs/2310.07923.

William Merrill and Ashish Sabharwal. A little depth goes a long way: The expressive power of
log-depth transformers, 2025a. URL https://arxiv.org/abs/2503.03961.

William Merrill and Ashish Sabharwal. Exact expressive power of transformers with padding, 2025b.
URL https://arxiv.org/abs/2505.18948.

William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843—-856,
2022. doi: 10.1162/tacl_a_00493. URL https://aclanthology.org/2022.tacl-1.49/.

David A. Mix Barrington and James Corbett. On the relative complexity of some languages in ncl.
Information Processing Letters, 32(5):251-256, 1989. ISSN 0020-0190. doi: https://doi.org/
10.1016/0020-0190(89)90052-5. URL https://www.sciencedirect.com/science/article/
pii/0020019089900525.

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li, Wanxiang
Che, and Philip S. Yu. Large language models meet nlp: A survey, 2024. URL https://arxiv,
org/abs/2405.12819.

Peter Rossmanith and Wojciech Rytter. Observations on log (n) time parallel recognition of
unambiguous cfl’s. Information Processing Letters, 44(5):267-272, 1992. ISSN 0020-0190.
doi: https://doi.org/10.1016/0020-0190(92)90212-E. URL https://www.sciencedirect.com/
science/article/pii/002001909290212E.

Walter L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences, 21(2):
218-235, 1980. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(80)90036-7. URL
https://www.sciencedirect.com/science/article/pii/0022000080900367.

11

https://arxiv.org/abs/2406.00515
http://eudml.org/doc/148084
https://api.semanticscholar.org/CorpusID:61491815
https://aclanthology.org/2023.findings-emnlp.934/
https://arxiv.org/abs/2304.14399
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2310.07923
https://arxiv.org/abs/2503.03961
https://arxiv.org/abs/2505.18948
https://aclanthology.org/2022.tacl-1.49/
https://www.sciencedirect.com/science/article/pii/0020019089900525
https://www.sciencedirect.com/science/article/pii/0020019089900525
https://arxiv.org/abs/2405.12819
https://arxiv.org/abs/2405.12819
https://www.sciencedirect.com/science/article/pii/002001909290212E
https://www.sciencedirect.com/science/article/pii/002001909290212E
https://www.sciencedirect.com/science/article/pii/0022000080900367

Under review as a conference paper at ICLR 2026

Wojciech Rytter. The complexity of two-way pushdown automata and recursive programs. In
Alberto Apostolico and Zvi Galil (eds.), Combinatorial Algorithms on Words, pp. 341-356, Berlin,
Heidelberg, 1985. Springer Berlin Heidelberg. URL https://1link.springer.com/chapter/
10.1007/978-3-642-82456-2_24.

Stuart M. Shieber. Evidence Against the Context-Freeness of Natural Language, pp. 79-89. Springer
Netherlands, Dordrecht, 1988. ISBN 978-94-009-2727-8. doi: 10.1007/978-94-009-2727-8_4.
URL https://doi.org/10.1007/978-94-009-2727-8_4.

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits, 2023.
URL https://arxiv.org/abs/2308.03212.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers, 2021. URL https:
//arxiv.org/abs/2106.06981.

Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Infor-
mation and Control, 10(2):189-208, 1967. ISSN 0019-9958. doi: https://doi.org/10.1016/
S0019-9958(67)80007-X. URL https://www.sciencedirect.com/science/article/pii/
S5001999586780007X.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 16513-16542,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.1029. URL https://aclanthology.org/2023.emnlp-main.1029/.

A EXTENDED BACKGROUND

A.1 TRANSFORMER MODELS

We introduce in this section our idealization of the transformer architecture and the underlying
assumptions we make.

A.1.1 FIXED-SIZE TRANSFORMERS

An L-layer transformer of width D is a mapping T: £* — (RP) .

TE 20 6. 0 £D) o enbed &

The input encoding function embed: ¥* — (R”) " applies an injective position-wise embedding
function to each symbol in the input string w. We assume the existence of BOS and EOS symbols,
distinct symbols that are placed at the beginning and end of every input string, respectively.

L® for ¢ € [L] denotes a transformer layer—a mapping £ : (RP)+ - (RP)+ that updates the
hidden states of the symbols. The components of a transformer layer are the layer normalization LN,

the attention layer fatt(e) and feedforward network F(©). Concretely:
£O &) fatt(f) o LN® 3)

’
€T

We recall layer-normalization maps a vector © € R™ of some dimension n to % where 2/ =

[EH]
T — Z’%m We assume projected pre-norm as in [Merrill & Sabharwal (2024). In standard

pre-norm, we apply a layer-normalization to the entire hidden state of each symbol, while projected
pre-norm applies layer-normalization to different parts of the vector individually. This will allow us
to store bounded mappings of specific elements in the hidden state.

F) . (RD) R (RD) Tisa position-wise function that applies the same feedforward network to
every symbol of the sequence. It is parametrized by weight matrices of the form W € RP*™ and

U € R™*R” A feedforward network F() can nest functions of the form UReLU(W z;) where z;
is an intermediate value.

12

https://link.springer.com/chapter/10.1007/978-3-642-82456-2_24
https://link.springer.com/chapter/10.1007/978-3-642-82456-2_24
https://doi.org/10.1007/978-94-009-2727-8_4
https://arxiv.org/abs/2308.03212
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2106.06981
https://www.sciencedirect.com/science/article/pii/S001999586780007X
https://www.sciencedirect.com/science/article/pii/S001999586780007X
https://aclanthology.org/2023.emnlp-main.1029/

Under review as a conference paper at ICLR 2026

The attention mechanism is defined by the function fat*): (RP) t (RP) . We denote by k?’,

qge), UZ@) the key, query and value vectors respectively for symbol at layer £. fatt(e) is defined as

follows:

oD ((@1, -+ 20)) & (1, yr) (4a)
yi Lot Y spvl) (4b)
i’em(i)
: 0 (¢
s = proj({score(kY, ¢}) (4¢)
m(4) is a set that defines the masking used by the transformer. For instance, m(i) = {4’ | i < i}
refers to strict causal masking and m(i) = [|w|] refers to no masking. score is a scoring function

that maps two vectors of the same size to a scalar. Typically, the dot-product score is used with
score(zy, x2) = (X1, T2).

proj is a projection function that normalizes the scores into weights for the symbol values.

Throughout layers, the hidden state y; of a symbol at position ¢ continuously evolves as it camulatively
adds up the outputs of the attention mechanism. We call this cumulative sum y; over layers the
residual stream at ;.

Following previous work, we assume an averaging hard attention transformer (AHAT) which causes
the probability mass to be concentrated on the symbols that maximize the attention score. It is a
slightly idealized version of the standard soft-attention that has enabled theoretical analyses on the
expressive power of AHATs (Merrill et al., 2022} [Strobl, 2023)).

Formally, we assume proj = hardmax, where:
Definition A.1. Averaging hard attention is computed with the hardmax projection function:

1 .
o (L ifd e argmax (x
hardmax (w)d = {(1)7I otherwise “

Q)
for d € [D), where x € RP and m £ | argmax () | is the cardinality of the argmax set.

Recognition. A transformer is a (R”) *_valued function. To link this to language recognition, we
use the representations computed by a transformer for binary classification of strings. We denote by
x L the hidden state of EOS at the end of the forward pass of T. Typically, string recognition is based
on the final EOS representation &% as EOS is the only symbol that is able to access information
about every single symbol throughout all (assuming causal masking). This allows us to define a

transformer’s language. This is usually defined based on a linear classifier:

def

LM E{wex* |0zl >0} (6)

Precision. Following previous work (Merrill & Sabharwal, [2025b;2024;2023)), we assume log-
precision transformers, i.e we allow the transformer to manipulate values that can be represented
with O(log(n)) bits for an input of length n. It is a minimally extended idealization that enables
the transformer to store indices (and thus access) and perform sums over an unbounded number of
symbol: two crucial capabilities for our constructions.

A.1.2 LOOPING AND PADDING

Looped transformers dynamically scale the number of layers with respect to the length of the input.
‘We formalize this notion based on|Merrill & Sabharwal| (2025a)).

Definition A.2. Let T be a transformer. We denote by (A, B, C) a partition of layers such that A
is the initial block of layers, B is the looped block of layers and C is the final block of layers. T is
d(n)-looped if upon a forward pass with an input of length n, B is repeated O(d(n)) times.

The number of computations performed by self attention is inherently quadratic in the length of the
string. One can dynamically increase this scaling the padding space (Merrill & Sabharwall [2025b).

Definition A.3. Ler T be a transformer. T is w(n)-padded if O(w(n)) padding tokens are appended
to the end of the string when computing the contextual representations of a length-n input.

13

Under review as a conference paper at ICLR 2026

We assume EOS is still placed at the end of the padding tokens in padded transformers.

We call universal transformers the set of standard transformers that may be extended with looping
and/or padding. Crucially, dynamically scaling number of layers and padding tokens in transformers
is analogous to scaling time and space in classical models of computation such as Boolean circuits
(Merrill & Sabharwal, [2025b)).

Allowing for different looping and padding budgets results in different classes of transformers. We
adopt naming conventions of these models from |[Merrill & Sabharwal (2025b). We denote by AHAT%
the class of languages recognized by averaging hard-attention transformers with (’)(logd(n))—looping,
O(n*)-padding and strict causal masking. We further use the notation UAHAT to refer to refer to
average hard-attention transformers with strict causal masking with no masking, and mAHATﬁ when
induction heads may or may not employ strict causal masking.

We have the following convenient result on simulating non-masked attention layers with causally
masked attention layers by adding a linear amount of padding.

Lemma A.1 (Merrill & Sabharwal (2025b)). UAHAT{ C mAHAT{ C AHATE) o)

A.1.3 MEMORY MANAGEMENT

A desirable feature we will require for many of the proofs in this paper is the ability to correctly add,
retrieve, reset or remove specific values from the residual stream. However, growing the number
of layers with the input length raises the risk of earlier outputs interfering with later computations
(Merrill & Sabharwall, 2025a). This introduces the need for some notion of memory management.

Recall the residual stream is a vector of D values with log-precision. We define as cell as an index
1 € of the residual stream, i.e a placeholder for some value. In our proofs, as the hidden dimension D
of a residual stream is fixed, we may freely allocate new cells in the initial and final block of layers as
they have a fixed number of layers. However, we may not allocate new cells in layers of the looping
block as we assume a fixed-size for the residual streams.

To this extent, we can as per |Merrill & Sabharwal|(2025a)) easily clear out stored values in cells and
replace them with new ones when needed.

A.1.4 LAYER-NORM HASH

We will often use layer-norm hash building block (Merrill & Sabharwal, [2024). It is particularly
useful for equality checks between values across different symbols, especially with a potentially
unbounded number of queries and keys.

def

Definition A.4 (Merrill & Sabharwal, [2024). Given a scalar z € R, its layer-norm hash is $(z) =
(z,1,—z,—1)/V/22 + 1.

Crucially, layer-norm hash is scale invariant, and ¢(q)¢(k) = 1 if and only if ¢ = k. In other words,
the inner product of scalars ¢ and k, even if computed at different positions ¢ and j, respectively,
allows us to check for the equality of ¢ and k. Layer-norm hash thus allows us to perform equality
checks over elements of residual streams at different positions.

With some abuse of notation, we allow for layer-norm hash to operate on vectors by applying the
hash to every element of that vector. We thus for instance may write ¢([A]).

Using the layer-norm hash, we will rely in our proofs on several building blocks known to be
implementable by AHATSs such as performing equality-checks, division and modulo, counting over
several positions in the left context (Merrill & Sabharwall 2024} 2025ajb)).

B TRANSFORMER CONSTRUCTIONS PROOFS

B.1 GENERAL CFL RECOGNITION ON TRANSFORMERS
Theorem 3.3. Given a CFL L, there exists a transformer with both causally-masked and non-masked

attention layers, O(log(n)) looping layers and O(n®) padding tokens that recognizes L. That is,
CFL C mAHAT} C AHAT.

14

Under review as a conference paper at ICLR 2026

Proof. We store padding tokens for each possible item (of the form [X, ¢, j] or [X, 7, j]/[Y, k,{]) and
each possible way to decompose that item. There are O(n%) such tokens: In the worst case, we are
solving an item [X, 7, j|/[Y, k,] and are guessing an item [Z, p, ¢] that decomposes that problem.
Intuitively, if a padding token aims to solve the item [X, 4, j] and holds as decomposition [Y, k, [], we
attend to the padding tokens which solve [X, ¢, j]/[Y, k,{] and [Y, k,{]. Due to Thm. if [S, 1,n]
is realizable then there exists a padding token with associated item [S, 1, n] such that its value will be
computed after O(log(n)) steps.

Storing items and their decomposition in padding tokens: We first detail how, without positional
embeddings, each padding token can store a unique item / decomposition combination.

We have O(n®) padding tokens, each associated with 1) an item to solve (for instance, [A, 4, j]) and
2) a tentative way to decompose this item (for instance, [B, 4, k] and [C, k, j]). Each padding token
is distinguished by their unique position, which can be computed in one causally-masked attention
layer by uniformly attending over the strict left context (Merrill & Sabharwall 2024)). .

We now sketch the intuition behind how each padding token can unpack from this position the
corresponding item and decomposition.

AHATs can compute Euclidean divisions and modulo at some position ¢ for integers smaller than ¢
(Merrill & Sabharwal, 2025a). Furthermore, each padding token can add to their residual stream ¢(n)
by uniformly attending only to symbol representations on the strict left and setting

To this extent, for all padding tokens at some position i, we will unpack the O(log(n%)) =
O(61log(n)) bits in ¢(7) into 1) the corresponding item to solve 2) its potential decomposition.
A string index j € [n] requires log(n) bits to store, while an element of a finite set (for instance,
a non-terminal €) requires a constant number of bits (for instance, log(|A]) bits). We can first
establish arbitrarily which bits of the integer correspond to which elements of the item and decom-
position (non-terminals, string indices). We can then iteratively 1) mask the first bits from the least
significant bit (LSB), and then extract an index or a non-terminal (by performing modulo on %) 2)
shift the binary representation of ¢ towards the LSB to (by performing division on ¢) to then extract
the following number. Shifting (masking) log(n) bits is done by dividing (taking modulo) the integer
representation by n, which is stored in the residual stream.

Thus, we have a way for padding tokens to store the encoding of the item they are solving (for instance,
[X,14,7]/[Y,k,1]) and the encoding of objects that decompose that item (for instance, [Z, p, q]).

We will now detail how to compute the realizability of items associated with these padding tokens.
We consider items of the form [X, 4, j], solving items of the form [X, 4, j]/[Y, k,[] is the exact same
idea.

Padding tokens allocate space for an element of {0, 1, L}, which describes whether the associated
item is realizable, not realizable, or not known yet to be realizable. Padding tokens initially all store
1.

Base case: Items that form a base case are of type [X, 7, i]. A feedforward network can for each
padding token first check that both indices are the same (i.e ¢ = j). With an attention layer, we
can then retrieve and add to the residual stream the symbol w; for a given base case item [X, i, 4]
as follows. Every symbol representation can add to its residual stream its position in the string by
uniformly attending with a causally-masked attention layer to all symbol representations in the past
and counting them. An equality check via dot product between a padding token’s stored index and
the position of the symbol’s representation enables such padding tokens to attend to relevant symbols
of the string. Setting as value the one-hot encoding of the symbol [w;], we can add to the residual
stream the relevant symbol w;. Finally, a feedforward network can add to the residual stream 1 if
X — w; is a valid rule and otherwise 0: A mapping between two finite sets N x 3 — {0, 1} can be
computed by a feedforward network.

Induction step: Recall a padding token stores 1) an item to solve (for instance, [X, 4, j]) and 2) a
set of objects that enable us to decompose that item (for instance, [Y, k, {]). Given [X, i, j], [Y, k,],
a feedforward network adds the encodings of [X, ¢, j]/[Y, k,{] and [Y, k, [] to the residual stream via
a feedforward network. Otherwise, if a padding token is associated with [X, %, j], X — YZ and k, we
add [Y, i,k — 1] and [Z, k, j] to the residual stream via a feedforward network. In the latter case, a

15

Under review as a conference paper at ICLR 2026

feedforward network can also ensure the rule X — YZ is in the grammar, and store 2 in the residual
stream (denoting non-realizability) if the rule is not in the grammar.

Finally, with one attention layer and a feedforward network, we can attend to all padding tokens that
aim to solve the first subproblem ([X, 7, j]/[Y, k,]) and copy the integer in the allocated cell for
realizability. We also perform the same procedure for the second subproblem to solve.

We compute the realizability of the current item via an extension of standard Boolean logic to handle
the case where padding tokens have not yet computed the realizability of their associated item. We
do not elicit the standard rules of propositional logic for brevity.

PIQIPAQ
T L
11| L
olL| o
1lo| o
1L L

Table 3: Truth table for ternary logic
that handles items that have not been solved yet

Crucially, a feedforward network can compute this mapping as it is between two finite sets.

After at most log(n) steps (Jordan, [1869), some padding token aiming to solve an item [A, 4, j] will
necessarily store 1 if and only if [A, 7, j] is realizable: There exists some balanced decomposition
represented by two padding tokens that we can attend to and store the realizability of their associated
items.

Recognition step: The EOS token can uniformly attend to all padding tokens that encode the item
[S,1,7n] (we can add S, 1 and n to the residual stream beforehand) item and ensure one of them holds
1, denoting realizability.]

B.2 UNAMBIGUOUS CFL RECOGNITION ON TRANSFORMERS

Lemma 4.1. Let ¢ be a Boolean formula. Assume ¢ is represented in a transformer’s residual stream
as follows. For each leaf, there is a token that encodes its true/false value. For each function node,
there is a token that encodes its type and one or two input arguments. Then, we can compute the
value of each subformula (at its corresponding node) in O(log(n)) time.

Proof. We are given a Boolean formula represented in padding tokens as follows: Padding tokens
associated with non-leaf nodes have pointers to two children nodes (by storing the encoding of their
associated padding tokens), padding tokens associated with leaf nodes are already assigned either
1 or 0. Each padding token for a non-leaf node also internally stores an integer representation of
either A or V. We can then implement Rytter| (1985)’s parallel pebble game algorithm for evaluating
Boolean formulas in O(log(n)) steps (assuming there are n leaves).

The parallel pebbling game consists of three steps which are repeated O(log(n)) times: ACTIVATE,
SQUARE and PEBBLE. We introduce each operation and detail how to perform them on AHATSs.

ACTIVATE takes a non-leaf node and adds a pointer to its left son if and only if its right son is
associated with a realizable item (and vice-versa). On AHATSs, if a padding token p; stores the
encodings of padding tokens p» and p3 according to the dependency graph, p; can attend to p, and
ps with two different separate layers via equality check can store their realizability. If ps is realizable,
p1 stores a pointer to ps and vice-versa.

SQUARE computes the one-step closure of ACTIVATE: if the node v; points to the node vo, and ve
points to the node v3, SQUARE assigns v3 to v; (instead of v2). In an attention layer, if a padding
token p; stores the encoding of a padding token ps and ps stores the encoding of a padding token ps,
the po can set as value the encoding of ps, and p; can attend to p, via equality check, and then copy
the encoding of ps.

16

Under review as a conference paper at ICLR 2026

PEBBLE sets the current node to realizable if the node it points to is itself realizable. A padding token
p1 storing a pointer to po can thus attend to it via equality-check and copy its realizability.

The binary dependency graph has O(n + m) nodes (because we added m extra nodes to make the
graph binary). Equivalently, we require O(n + m) padding tokens. As we populate nodes of the tree
from the leaves to the root in parallel, it takes O(log(n + m)) looping layers to populate the tree
(Chytil et al., 1991} Rytter, |1985). [|

Theorem 4.1. Let UCFL be the classes of unambiguous CFLs. Then UCFL C mAHAT% - AHATi.

Proof. Each item [A, 1, j] is associated with a padding token. Each potential edge between nodes
representing items [A, 4, j],[B, i, k] is associated with a padding token. There are O(n®) such
padding tokens. The procedure for padding tokens to compute and store these objects is the same
as in App. We unpack the bits of the position of the padding token. We can also then apply a
feedforward network to obtain the associated objects.

Each padding token for nodes allocates space to store an element in {0, 1, L} that describes whether
1) the item is realizable 2) the item is not realizable 3) we have not computed realizability yet. Alg.[3s
algorithm computes whether items are part of the closure C(w) (i.e, are realizable) or not.

Initial items: A padding token for node can check whether its associated item is of the form
[A, 1, 1] via a feedforward network that checks the indices are the same. For all such padding tokens,
another feedforward network adds 1 to the residual stream if and only if A — w; € P to signal the
realizability of that item. It otherwise signals the item is not realizable by adding 0 to the residual
stream. We can do exactly as in the base case of App.

Creating the dependency graph: Padding tokens for edges store items of the form [A, i, 5], [B, ¢, k].
There are finitely many [C, k + 1, j] such that A — BC € P (proportionally many in |[N|), which
can be added to the residual stream via a feedforward network. According to Eq. (I), there is an
edge between nodes associated with [A, 4, j] and [B, i, k] if and only if there is a [C, k + 1, j] such
that [C, k + 1, j] is realizable (i.e, corresponding padding token stores 1 in residual stream) and
A — BC € P. The padding token for edge associated with [A, i, j], [B, 4, k] can attend to such
padding tokens and check whether any of them stores 1. If so, the padding token signals that the edge
between nodes for [A, 7, j], [B and i, k] exists.

Binarization: Due to unambiguity, there is at most one path between any pair of nodes in the
dependency graph. If there are multiple paths from a node [A, 4, j] to another node [B, k, [] there
are then different derivations that can reduce [A, 4, j] to [B, k, [], which contradicts the unambiguity
condition. Evaluating reachability queries on a tree reduces to solving the Boolean formula induced
by this tree where leaf nodes are assigned 1 or O depending on if they are associated with realizable
items and non-leaf nodes are assigned the V operator.

However, to efficiently evaluate this Boolean expression, we require a binary tree where each node has
at most two children. For every block of looping layers, we consider a binarization of the dependency
graph as follows.

The binarization assumes we have O(n?) additional padding tokens appended to the input, i.e O(n?)
extra padding tokens for every node.). Note that asymptotically, appending O(n?) padding tokens
does not impact our claim on the resource bounds required. Effectively, we are given a n-arity
tree and use O(n) extra nodes to create a binary tree by replacing edges with these intermediate
nodes. Denote by r the root nodes, by v1, vo, ... v, the leaf nodes, and by hq, ho, . .. h, the extra
intermediary nodes. We will create a right-branching binary tree as follows. The root node has edges
to v; and hy, and now h; recursively needs to span va, v ... v,. h; then has edges to v2 and hg, so
on and so forth. The resulting tree is a binary, right-branching tree.

We can implement this procedure with padding tokens as follows. For a padding token associated with
an item [A, 4, j], there are O(n) additional padding tokens. As described in App. we unpack the
bits of the position of the padding token and can also apply a feedforward network to obtain padding
tokens that store [A, 7, j] and an index in [n] (denoting the ordering of the additional padding tokens).
We assume some ordering on the current n children of [A, i, j], where each associated padding token
also stores an index in [n]. The padding token for the node associated with [A, 7, j] attends to its first

17

Under review as a conference paper at ICLR 2026

child and the first additional padding token. The first additional padding token attends to the second
child and the second additional padding token. We can implement this procedure with an attention
layer.

Solving reachability queries: Reachability queries over binary trees now reduce to evaluating the
Boolean formula associated with the binary tree. Leaf nodes associated with realizable items are
assigned 1. A non-leaf node has a path to such a leaf if evaluating the induced Boolean expression
where non-leaf compute V over their children yields 1. We can therefore invoke Lem. .1]to evaluate
this Boolean formula.

Recognition step: The EOS token can attend to to the padding token for node associated with
[S, 1, n] and check whether it is realizable, i.e store 1 in its residual stream.

[|
Theorem 4.1. Let UCFL be the classes of unambiguous CFLs. Then UCFL C mAHAT% C AHATi.

Proof. We define V as in §4.1] Now assuming linearity, there is an edge from v; to v if and only if
vy takes the form [A, i, j], vo takes the form [B, 4+ 1, j] such that A — w;B € P (or symmetric case
where A — Bw, € P). We first remark that we now have a constant number of outgoing edges for
each node. Due to linearity, non-terminal rules are of the form A — wB or A — Bw, and solving an
item [A, ¢, j] therefore reduces to solving items that aim to derive either w;41 ... w; or w; ... w;_1.
There are finitely many items.

Moreover, in contrast to Alg. [3] we may solely consider the dependency graph DG(7") and invoke
a single time Lem. [.T] on it. The intuition comes from the fact that any production rule used in
a derivation always spawns a terminal in the string. If A — wB is a production rule used in the
derivation of a string, then [w,4,4] € T for for some 4, and R([w, 4], [B,7 + 1, 7], [A,,7]) = L.
Crucially, any production rule applied in the derivation of a string that reduces some item [A, 7, j] to
another item [B, ¢ + 1, j] leads to an edge between their associated items in the inifial dependency
graph DG(T). []

18

	Introduction
	Preliminaries
	Context-free grammars
	Transformers

	Recognizing general CFLs with transformers
	Unambiguity reduces padding requirements for recognition
	A path system framework for unambiguous CFL recognition
	Unambiguous linear CFLs require less time and space

	Experiments
	Discussion and conclusion
	Extended background
	Transformer models
	Fixed-size transformers
	Looping and Padding
	Memory management
	Layer-norm hash

	Transformer constructions proofs
	General CFL recognition on transformers
	Unambiguous CFL recognition on transformers

