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ABSTRACT

Transformers excel on tasks that process well-formed inputs according to some
grammar, such as natural language and code. However, it remains unclear how they
can process grammatical syntax. In fact, under standard complexity conjectures,
standard transformers cannot recognize context-free languages (CFLs), a canonical
formalism to describe syntax, or even regular languages, a subclass of CFLs
(Merrill et al., 2022). Merrill & Sabharwal (2025a) show that O(log(n)) looping
layers (w.r.t. input length n) allows transformers to recognize regular languages,
but the question of context-free recognition remained open. In this work, we show
that looped transformers withO(log(n)) looping layers andO(n6) padding tokens
can recognize all CFLs. However, training and inference with O(n6) padding
tokens is potentially impractical. Fortunately, we show that, for natural subclasses
such as unambiguous CFLs, the recognition problem on transformers becomes
more tractable, requiring O(n3) padding. We empirically validate our results and
show that looping helps on languages that provably require logarithmic depth.
Overall, our results shed light on the intricacy of CFL recognition by transformers:
While general recognition may require an intractable amount of padding, natural
constraints such as unambiguity yield efficient recognition algorithms.

1 INTRODUCTION

Transformers are proficient at many natural language (Qin et al., 2024) and coding (Jiang et al., 2024)
tasks, both of which involve processing hierarchical structures. Classically, the ability to process
hierarchically nested structures is closely connected to the ability to model context-free languages
(CFLs). Analysis of internal representations—syntactic probing—has shown that transformers learn
to encode syntactic features relevant for parsing, the task of extracting the syntactic structure of a
sentence (Hewitt & Manning, 2019; Arps et al., 2022; Zhao et al., 2023). However, it is unclear what
classes of syntax transformers can provably represent, and how CFL recognition can be implemented
internally. To this end, we study whether transformers can correctly determine the grammaticality of
a sentence according to a context-free grammar.

The problem of determining whether an input is grammatical can be stated as the recognition
problem for context-free grammars (CFGs): Given a CFG G, can a string w be generated by G?
Several foundational serial parsing algorithms (Earley, 1970; Cocke, 1969; Kasami, 1965; Younger,
1967) solve this problem. However, such serial procedures cannot be naturally implemented by
transformers due to their highly parallel, fixed-depth structure. Even regular languages, a strict subset
of CFLs, cannot be recognized by fixed-depth transformers under the standard complexity conjecture
TC0 ⊊ NC1: Regular language recognition is complete for NC1 (Barrington & Thérien, 1988)
while fixed-depth transformers fall in TC0 (Merrill et al., 2022; Chiang, 2025). Looping layers help:
log(n) looping layers (where n is the input length) allow transformers to recognize regular languages
(Merrill & Sabharwal, 2025a). However, the question of whether logarithmic looping enables CFL
recognition remains. In this work, we address it by analyzing the difficulty of recognizing various
CFL classes by transformers. We conceptualize the difficulty in terms of extra resources needed:
Looping layers and appending blank padding tokens (Merrill & Sabharwal, 2025b).

While general CFL recognition cannot be implemented by fixed-depth transformers under standard
complexity conjectures, our first result shows via a direct construction that it can be expressed by
looping layers O(log(n)) times and with O(n6) padding tokens. To the best of our knowledge, this
constitutes the first proof of general CFL recognition by transformers. We then ask whether simpler
classes of CFLs can be recognized by transformers with fewer resources. We find that the answer is
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affirmative: We show that natural subclasses of CFLs can be recognized by simpler transformers. In
particular, we identify unambiguity and linearity as two key properties that make CFL recognition
more tractable. Unambiguous CFLs, characterized by strings having at most one possible parse, allow
for recognition with reduced padding but more looping. This aligns with transformers’ struggles
to parse ambiguous grammars in practice (Khalighinejad et al., 2023). Furthermore, additionally
imposing linearity (where each grammar rule has at most one non-terminal on its right-hand side)
reduces the amount of looping and padding required for recognizing unambiguous CFLs. We
empirically test when looping helps generalization and find it to increase the performance on a
log-depth complete CFL, namely the language of variable-free Boolean formulas (Buss, 1987).

In summary, we leverage theory on parallel recognition of CFLs to show that logarithmically-looped
transformers can recognize CFLs, characterizing the padding requirements for different relevant
subclasses. These results imply that, in order to recognize CFLs, transformers require exponentially
less depth than what would be needed to implement a serial parsing algorithm like CKY. While this
comes with increased space (padding) requirements in the general case, the space can be reduced for
natural CFL subclasses. These results are summarized in Tab. 1.

Language class Padding tokens required Looping layers required

General CFLs O(n6) O(log(n))

Unambiguous CFLs O(n3) O(log2(n))

Unambiguous linear CFLs O(n2) O(log(n))

Table 1: The computational resources required by transformers to recognize different classes of
context-free languages (CFLs).

2 PRELIMINARIES

An alphabet Σ is a finite, non-empty set of symbols. A string is a finite sequence of symbols from
Σ. The Kleene closure Σ∗ of Σ is the set of all strings over Σ, and ε denotes the empty string. A
formal language L over Σ is a subset of Σ∗, and a language class is a set of formal languages.

2.1 CONTEXT-FREE GRAMMARS

Definition 2.1. A context-free grammar (CFG) G is a tuple (Σ,N ,S,P) where: (1) Σ is an alpha-
bet of terminal symbols (2) N is a finite non-empty set of nonterminal symbols with N ∩ Σ = ∅
(3)P ⊆ N×(N ∪ Σ)∗ is a set of production rules of the form A→ α for A ∈ N and α ∈ (Σ ∪N )∗

(4) S ∈ N is a designated start non-terminal symbol. As standard, we denote terminal and nontermi-
nal symbols by lowercase and uppercase symbols, respectively.

A sequence of non-terminals and terminals α ∈ (N ∪ Σ)∗ is a sentential form. A CFG generates
strings by repeatedly applying rules to sentential forms derived from the start symbol until it produces
a sequence of terminal symbols, i.e., a string. We call this procedure a derivation, and the resulting
string its yield. We define the relation A→ β if ∃p ∈ P such that p = (A→ αβγ) where α,β,γ

are sentential forms. We denote by ∗→ the reflexive, transitive closure of→.

Definition 2.2. The language of a CFG G is the set L(G) def
= {w ∈ Σ∗ | S ∗→w}.

Definition 2.3. A language L is context-free if there exists a CFG G such that L(G) = L.

It is common practice to consider CFGs in a normal form, namely:

Definition 2.4. A CFG G is in Chomsky Normal Form (CNF) if any p ∈ P is either of the form
A→ BC, A→ a or S→ ε.

Every CFG can be transformed into an equivalent one in CNF.
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2.2 TRANSFORMERS

We consider the idealization of transformers from Merrill & Sabharwal (2025a;b). In short,1 we study
average hard attention transformers (AHATs), where the attention normalization function returns
a uniform average of the values of tokens that maximize the attention score. The transformers use
multi-pre-norm, where the layer normalization is applied before the residual connection on either the
entire hidden state or on distinct subsets thereof (Merrill & Sabharwal, 2024). We further assume
logarithmic-precision arithmetic, where computations are performed with O(log(n)) bits for an
input of size n. Coupling AHATs and log-precision unlocks useful gadgets such as storing string
indices, counting symbol occurrences across the string and performing equality checks of values
stored in residual streams at separate positions (Merrill & Sabharwal, 2024). We assume input strings
to the transformer are augmented with both a beginning-of-sequence (BOS) and end-of-sequence
(EOS) token. Denote by xL

EOS the contextual representation of EOS at end of the forward pass of the
transformer. We apply a linear classifier to xL

EOS to determine string acceptance.

Looped transformers scale the number of layers with input length (Merrill & Sabharwal, 2025a).
Definition 2.5. Let T be a transformer. We denote by ⟨A,B,C⟩ a partition of layers such that A is
the initial block of layers, B is the looped block of layers and C is the final block of layers. T is
d(n)-looped if upon a forward pass with an input of length n, B is repeated O(d(n)) times.

The amount of computation performed by self attention is definitionally quadratic in the string length.
One can dynamically increase this by adding padding space (Merrill & Sabharwal, 2025b).
Definition 2.6. Let T be a transformer. T is w(n)-padded if O(w(n)) padding tokens are appended
to the end of the string when computing the contextual representations of a length-n input.

Scaling number of layers and padding tokens in transformers is analogous to scaling time and space
Boolean circuits (Merrill & Sabharwal, 2025b), a classical parallel model of computation. Allowing
for different looping and padding budgets results in different classes of transformers. We adopt
naming conventions of these models from Merrill & Sabharwal (2025b). We denote by AHATdk the
class of languages recognized by averaging hard-attention transformers with O(logd(n)) looping,
O(nk) padding and strict causal masking. We further denote with uAHAT average hard-attention
transformers with no masking, and with mAHAT transformers that use both masked and unmasked
attention heads. Conveniently, AHATs can simulate uAHATs:
Lemma 2.1 (Merrill & Sabharwal 2025b Proposition 1.). uAHATdk ⊆ mAHATdk ⊆ AHATd1+max(k,1) for
d ≥ 1.

3 RECOGNIZING GENERAL CFLS WITH TRANSFORMERS

We now describe a parallel algorithm for general CFL recognition, which synthesizes ideas from
previous work on algorithms for parallel CFL recognition (Ruzzo, 1980; Rossmanith & Rytter, 1992;
Lange & Rossmanith, 1990). We then show how to implement this algorithm on AHATs, allowing us
to prove the following theorem:
Theorem 3.1. Given a CFL L, there exists a transformer with both causally-masked and non-masked
attention layers, O(log(n)) looping layers and O(n6) padding tokens that recognizes L. That is,
CFL ⊆ mAHAT16 ⊆ AHAT17.

Our goal is to recognize a CFL represented by a grammar in CNF (Def. 2.4) with start symbol S.
For a string w of length n, the algorithm determines whether w ∈ L(G). To do this, it manipulates
items—tuples of the form [A, i, j], where A ∈ N and i, j ∈ [n]

def
= {1, 2, . . . , n}. The item [A, i, j]

is realizable if and only if A ∗→wiwi+1 . . . wj , i.e., if there is a sequence of rules that can be applied to
the non-terminal A that yields wiwi+1 . . . wj .

We further define slashed items of the form [A, i, j]/[B, k, l], where i ≤ k ≤ l ≤ j. Intuitively,
solving [A, i, j]/[B, k, l] equates to determining whether A can derive wi . . .B . . . wj assuming that the
non-terminal B already derives the substring wk . . . wl. More formally, [A, i, j]/[B, k, l] is realizable
if and only if A ∗→wiwi+1 . . . wk−1Bwl+1 . . . wj .

1We refer to App. A for more details on the transformer model.
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Naturally, w ∈ L(G) if and only if the item [S, 1, n] is realizable, and determining realizability can
be broken down recursively as follows:

Lemma 3.1. [X, i, j] is realizable if and only if one of the following conditions is met:

• Base case: j = i and X→ wi is a rule in the grammar for some wi.
• Recursive case 1: There exist a rule X→ YZ and an index k such that [Y, i, k − 1] and
[Z, k, j] are realizable items. There are O(|P|n) ways to choose a rule and an index for
O(|N |n2) possible input items [X, i, j].

• Recursive case 2: There exists a [Y, k, l] such that [X, i, j]/[Y, k, l] and [Y, k, l] are both
realizable. There are O(|N |n2) possible items of the form [Y, k, l] for O(|N |n2) possible
input items [X, i, j].

Proof. The proof follows from our definitions. In the base case, if j = i, then X needs to derive
exactly the symbol wi in one step without producing non-terminals (assuming a CFG with no useless
non-terminals). In the recursive case, if [X, i, j] is realizable then there exists some associated parse
tree where X

∗→wi . . . wj . Such a tree can be split by selecting a split vertex which induces recursive
subproblems. If the chosen split vertex is the root X, there exists a rule X→ YZ such that Y and Z
derive disjoint, consecutive substrings of w. If the chosen split vertex is a non-root Y ∈ N , then Y
derives some substring wk . . . wl, and X derives w where wk . . . wl has been replaced by Y. ■

Lemma 3.2. [X, i, j]/[Y, k, l] is realizable if and only if one of the following conditions is met:

• Base case: k = i, l = j − 1 and there is a rule X→ YZ in the grammar such that Z→ wj .
(and symmetric case)

• Recursive case 1: There exist a rule X→ AB and an index p such that [A, i, p−1]/[Y, k, l]
and [B, p, j] are realizable items (and symmetric case). There are O(|P|n) ways to choose
a rule and an index for O(|N |2n4) possible input slashed items [X, i, j]/[Y, k, l].

• Recursive case 2: There exists a [Z, p, q] such that [X, i, j]/[Z, p, q] and [Z, p, q]/[Y, k, l]
are both realizable. There are O(|N |n2) possible items of the form [z, p, q] for O(|N |2n4)
possible input slashed items [X, i, j]/[Y, k, l].

Proof. The proof follows the same structure as the proof of Lem. 3.1. In the base case, X needs
to derive in one step the non-terminal Y and some non-terminal Z such that Z derives in one step
a symbol at the boundary of wi . . . wj (either wi or wj). In the recursive case, if [X, i, j]/[Y, k, l] is
realizable then there exists a parse tree associated with it where X

∗→wi . . . wk−1Ywl+1 . . . wj . Such
a tree can be split by selecting a split vertex which induces recursive subproblems. If the chosen
split vertex is the root X, there exists a rule X→ AB such that A derives some sentential form
wi . . . wk−1Ywl+1 . . . p and B derives the string wp+1 . . . wj for some index p ∈ [n]. If the chosen split
vertex is a non-root Z ∈ N , then Z derives the sentential form wp . . . wk−1Ywl+1 . . . wq and X derives
the sentential form wi . . . wp−1Zwq+1 . . . wj for some indices p, q ∈ [n]. ■

Parallel algorithms for CFL recognition. Lemmata 3.1 and 3.2 state that an item is realizable
if it can be decomposed into realizable subproblems. Rather than enumerating all the possible
decompositions sequentially, we will leverage parallelism to simultaneously compute the realizability
of all the induced subproblems. The term guessing has been coined (Ruzzo, 1980) to denote the
ability of a parallel model of computation to attend to a valid computation path given an unbounded
set of possible computations. By analogy, we can guess which of the correct decompositions of an
item is correct by leveraging parallelism, and then recursively verify the induced subproblems in
parallel. This suggests natural parallel algorithms for checking realizability, which we present in
Algs. 1 and 2.
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Algorithm 1 Determining if the item [X, i, j] is realizable.

1. def SOLVE([X, i, j]):
2. if i = j :
3. return X→ wi ∈ P
4. guess an integer x ∈ {1, 2}
5. if x = 1 :
6. guess a rule X→ YZ ∈ P and k ∈ [n]
7. return SOLVE([Y, i, k − 1]) ∧ SOLVE([Z, k, j])
8. else
9. guess an item [Y, k, l]

10. return SOLVE([X, i, j]/[Y, k, l]) ∧ SOLVE([Y, k, l])

Algorithm 2 Determining if the item [X, i, j]/[Y, k, l] is realizable.

1. def SOLVE([X, i, j]/[Y, k, l]):
2. if k = i ∧ l = j − 1 :
3. return ∃ Y,Z ∈ N such that X→ YZ ∈ P ∧ Z→ wj ∈ P
4. guess an integer x ∈ {1, 2}
5. if x = 1 :
6. guess a rule X→ AB ∈ P and p ∈ [n]
7. return SOLVE([A, i, p− 1]/[Y, k, l]) ∧ SOLVE([B, p, j])
8. else
9. guess an item [Z, p, q]

10. return SOLVE([X, i, j]/[Z, p, q]) ∧ SOLVE([Z, p, q]/[Y, k, l])

Intuitively, the recursive function SOLVE defined in Algs. 1 and 2 computes the realizability of items.

Theorem 3.2 (Correctness). Given a CFG G in CNF and w ∈ Σ∗ of length n, SOLVE([S, 1, n]) = 1
if and only if w ∈ L(G).

Proof. By definition, w ∈ L(G) if and only if [S, 1, n] is realizable. By Lemmata 3.1 and 3.2,
the item [S, 1, n] is realizable if and only if there exists a decomposition of [S, 1, n] that respects
Lemmata 3.1 and 3.2. SOLVE recursively guesses such decompositions, guaranteeing that we will
compute a valid decomposition if it exists. ■

We now analyze the resources required to compute SOLVE[S, 1, n], which is equivalent to testing
membership of the input string w in the given grammar G. The recursive procedure induced by
SOLVE is based on a balanced decomposition of problems into subproblems of roughly equal size,
which intuitively leads to a log(n)-time procedure. Formally, we have the following well-known
theorem for decomposing trees:

Theorem 3.3 (Jordan 1869). Given a tree with n vertices, there exists a vertex whose removal
partitions the tree into two trees with each at most n/2 vertices.

We rely on Thm. 3.3 to prove that Alg. 1 runs in a logarithmic number of recursive steps:

Theorem 3.4. We can compute SOLVE([S, 1, n]) in log(n) +O(1) recursive steps ∀w ∈ Σ∗ with
|w| = n.

Proof. By Thm. 3.3, for any realizable item, there exists a balanced decomposition of the correspond-
ing parse tree into two trees of roughly equal size which can be represented by two items (the split is
at the root) or a slashed item and an item (the split is not at the root). Assuming we can process all
possible tree decompositions in parallel, we will necessarily guess the balanced one where subtrees
have at most 2n/2 + 1 vertices (a full binary tree with n leaves does not have more than 2n vertices).
After i recursive steps, the current subtrees have at most n

2i−1 +O(1) vertices. Therefore, we will
solve all base cases after at most log(n) +O(1) steps. ■
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Space complexity. The bottleneck resides in solving an item [X, i, j]/[Y, k, l], which occupies
O(n4) space, and guessing an item [Z, p, q] that could decompose this problem, which itself occupies
O(n2) space, leading to a total space complexity of O(n6).
Combining both insights on time- and space-complexity, we can prove the following theorem:

Theorem 3.1. Given a CFL L, there exists a transformer with both causally-masked and non-masked
attention layers, O(log(n)) looping layers and O(n6) padding tokens that recognizes L. That is,
CFL ⊆ mAHAT16 ⊆ AHAT17.

Proof intuition. The construction implements Algs. 1 and 2 on a transformer. Intuitively, each item
and possible decomposition is associated with a padding token. There are O(n6) ways to enumerate
items and a possible decomposition. We assume a three-value logic system, where each item is
associated with a value in {0, 1,⊥} to denote that the item is unrealizable (0), realizable (1) or not
known yet to be realizable (⊥2). Each padding token allocates space for this value. Intuitively,
we will develop a construction such that padding tokens compute the information of whether their
associated item is realizable w.r.t. the given decomposition. Initially, all padding tokens store ⊥. In
the initial block of layers, padding tokens associated with a base case item of the form [A, i, i] can
attend to symbol representations via an equality-check to verify whether the base case is valid, i.e.,
A→ wi ∈ P . In the inductive step, padding tokens attend to the padding tokens associated with
the decomposition via an equality-check. A feedforward network then either adds 1 to the residual
stream if both sub-items are realizable, 0 if any of them is non-realizable, or ⊥ if realizability can
not be determined at the current iteration. It takes log(n) looping layers to populate the values of all
items in their respective padding tokens due to Thm. 3.3. Finally, we can check whether there exists a
padding token associated with [S, 1, n] that holds the value 1. Applying Lem. 2.1 yields inclusion in
AHAT17. The detailed proof is in App. B.1. ■

4 UNAMBIGUITY REDUCES PADDING REQUIREMENTS FOR RECOGNITION

§3 shows that log(n)-depth mAHATs with O(n6) padding can recognize all CFLs. The large amount
of padding is undesirable, but somewhat necessary—intuitively, an algorithm for recognizing an
arbitrary CFL requires a large amount of padding because the grammar can be highly ambiguous.
Guessing how to decompose an arbitrary item requires a substantial amount of space. Accordingly,
we next study unambiguous CFLs and show that they require less padding by proving the following
theorem.

Theorem 4.1. Let UCFL be the classes of unambiguous CFLs. Then UCFL ⊆ mAHAT23 ⊆ AHAT24.

A CFL is unambiguous if there is at most one possible derivation (i.e, parse tree) for any string.
Unambiguity is a natural CFL feature of general interest. Transformers struggle to parse ambiguous
grammars (Khalighinejad et al., 2023) and struggle to process syntactically ambiguous natural
language sentences (Liu et al., 2023). Moreover, modern parsers for programming languages such as
LR parsers rely on deterministic (therefore unambiguous) CFLs to process inputs in linear time.

This section first introduces an unambiguous CFG recognition algorithm with a tractable space
complexity in log2(n)-time. We then translate this algorithm into AHATs with a tractable amount of
padding.

4.1 A PATH SYSTEM FRAMEWORK FOR UNAMBIGUOUS CFL RECOGNITION

We formulate recognition of unambiguous CFLs as a path system problem. A path system consists
of initial vertices that are associated with either the value 1 or 0, and a relation R that formalizes
how to connect the vertices. By associating base case items of the form [A, i, i] to initial vertices,
general items of the form [A, i, j] to arbitrary vertices, and connecting vertices depending on the
rules of the given grammar, we can compute the realizability of an item by finding a path between its
associated vertices and a base node. We now present Chytil et al. (1991)’s path system framework for
recognizing unambiguous CNF CFGs and express it in AHATs.

2We write ⊥ for ease of notation. Concretely, ⊥ can be encoded as any integer that is neither 0 nor 1.
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We denote by V a set of vertices, each associated with a tuple [A, i, j]. We denote by T ⊆ V the
initial set of vertices of the form [A, i, i] such that A→ wi ∈ P . R(x, y, z) : V3 → {0, 1} is a
function that relates how to connect the vertices, whereR(x, y, z) = 1 if and only if z is associated
with some tuple [A, i, j], x is associated with some tuple [B, i, k], and y is associated with some tuple
[C, k, j] such that A→ BC ∈ P . We denote by C(w) ⊆ V the smallest set containing T such that
if x, y ∈ C(w) andR(x, y, z) = 1 then z ∈ C(w), i.e., C(w) is the closure of T with respect toR.
One can intuitively think of C(w) as the set of realizable elements, and the recognition problem is
thus equivalent to determining whether the vertex associated with [S, 1, n] is in the set C(w).

Let us now describe how to compute C(w). Let X ⊆ V be a set of marked vertices. A dependency
graph with respect to X , denoted DG(X ), is the directed graph G = (V, E) where:

E = {(z, x) | z /∈ X ,R(x, y, z) = 1 orR(y, x, z) = 1 for some y ∈ X} (1)

Intuitively, assuming X ⊆ C(w), the edge (z, x) can be interpreted as follows: x ∈ C(w) im-
plies that z ∈ C(w). Precisely, (z, x) being an edge signals that there is some vertex y as-
sociated with a realizable item such that R(x, y, z) = 1 or R(y, x, z) = 1. Therefore, if
x is also associated with a realizable item (i.e, is in the closure C(w)), then z is a realizable
item. The algorithm iteratively expands the known set of vertices to be associated with realiz-
able items by computing the set of vertices that have a directed path to a marked node. We
denote by REACH(D) the vertices of the dependency graph G that have a directed path to a
marked vertex in D. Chytil et al. (1991)’s procedure to compute C(w) is described in Alg. 3.

Algorithm 3 Algorithm for computing C(w)

1. def COMPUTE CLOSURE(w,G):
2. initialize V ← {[A, i, j]}
3. initialize T ← {[A, i, i] | A→ wi ∈ P}
4. X ← T
5. for _ in range log(n) :
6. D ← DG(X )
7. X ← REACH(D)
8. return X

The bottleneck in Alg. 3 is computing REACH(D),
i.e., reachability queries on a directed, acyclic
graph (DAG). Assuming unambiguity, we have
the following powerful insight: There is at most
one path between any pair of vertices in the DAG.
By contradiction, if there are multiple paths from a
vertex [A, i, j] to another vertex [B, k, l] there are
then different derivations that can reduce [A, i, j]
to [B, k, l], which contradicts the unambiguity con-
dition. Therefore, for each vertex v, the subgraph
induced by vertices reachable from v becomes a
tree rooted at v. Reachability queries on a tree
reduce to evaluating the corresponding Boolean

formula, where leaf vertices are assigned 1 if they correspond to realizable items and non-leaf vertices
are assigned the ∨ operator. We rely on the following lemma to perform this procedure:

Lemma 4.1. Let ψ be a variable-free Boolean formula. Assume ψ is represented in a transformer’s
residual stream as follows, where we consider the binary tree induced by ψ. For each leaf, there is a
padding token that encodes its value (1 or 0). For each function node, there is a padding token that
encodes its type (∧ or ∨) and pointers to its input arguments. Then, we can compute the value of
each subformula in O(log(n)) time on an input of length n.

Proof intuition. Given the appropriate pointers, we implement Rytter (1985)’s parallel pebble game
algorithm for evaluating Boolean formulas with O(log(n)) steps on transformers. Each vertex
v allocates space in its residual stream for 1) a VALUE corresponding to the evaluation of v’s
associated formula 2) a pointer to some descendant vertex PTR of v 3) a conditional function
CONDF : {0, 1} → {0, 1} based on the current vertex type (∧ or ∨). The intuition of PTR is that
if we know PTR.VALUE, we can evaluate the current node’s value via the conditional function
CONDF(PTR.VALUE). The procedure operates in parallel at each vertex by iterating three steps
O(log(n)) times: activate, square, and pebble. Rytter (1985) shows that this algorithm correctly
evaluates each subformula in O(log(n)) steps. The detailed proof is in App. B.2.

■

We can now show how to simulate Alg. 3’s procedure on transformers for unambiguous CFLs with
O(log(n)2) looping layers and O(n3) padding tokens.

Theorem 4.1. Let UCFL be the classes of unambiguous CFLs. Then UCFL ⊆ mAHAT23 ⊆ AHAT24.
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Proof intuition. We implement Alg. 3 on mAHATs. Each item [A, i, j] (of which there are O(n2))
is assigned a padding token. For each item [A, i, j], there are O(n) ways to decompose it using a
split index k ∈ [n]. For every potential edge between vertices associated with [A, i, j] and some
[B, i, k] (or [B, k, j]), we assign a padding token. As in Thm. 3.1, we assume a three-valued logic
system where padding tokens for vertices are at any step assigned an element in {0, 1,⊥}, denoting
non-realizability (0), realizability (1) or not yet known to be realizable (⊥). Initially, all padding
tokens store ⊥.

Initially, padding tokens for vertices can check whether they are associated with base case items of
the form [A, i, i]. These padding tokens can add to their residual stream 1 (item is realizable) or 0
(item is non-realizable) depending on if A→ wi ∈ P .

In the iterative case, each padding token for an edge associated with items [A, i, j], [B, i, k] can first
check whether there exists a rule A→ BC and if so, add to the residual stream [C, k+1, j]. Crucially,
there are finitely such items (proportional to |N | as the splitting index k is fixed). Padding token for
edges can attend to padding tokens associated with [C, k+1, j] and check whether any of them stores
1, denoting realizability. In that case, the padding token associated with [A, i, j], [B, i, k] signals that
the edge ([A, i, j], [B, i, k]) is now in the graph (following how we define edges in Eq. (1)). Padding
tokens for vertices associated with items [A, i, j] can therefore attend to padding tokens for edges
associated with [A, i, j], [B, i, k], which yields the dependency graph.

Crucially, due to unambiguity, for each vertex v, the subgraph induced by vertices reachable from v
becomes a tree rooted at v. We then show how to binarize this tree. Reachability queries on a binary
tree can be reduced to the evaluation of the induced Boolean formula (Chytil et al., 1991). We invoke
Lem. 4.1 to evaluate Boolean formulas in log(n) steps. The detailed proof is in App. B.2. ■

4.2 UNAMBIGUOUS LINEAR CFLS REQUIRE LESS TIME AND SPACE

Finally, we show how linearity further reduces the resources needed by transformers to recognize
unambiguous CFLs. A linear CFL is one recognized by a CFG where each rule is the form A→ aB,
A→ Ba, or A→ a. While restricted, linear CFLs capture a wide range of features of context-
freeness. For example, balanced counting can be modeled by the linear CFL L = {anbn | n ≥ 0},
and symmetry can be modeled by the linear CFL L = {wwR | w ∈ Σ∗}.
We consider unambiguous linear3 CFLs (ULCFLs) and show they can be recognized by log-depth
transformers with quadratic padding.

Theorem 4.2. ULCFL ⊆ mAHAT12 ⊆ AHAT13.

Proof. We implement Alg. 3 on AHATs and show how linearity reduces the computational require-
ments w.r.t. Thm. 4.1. We define V and T as in §4.1. Assuming linearity, there is an edge from v1 to
v2 if and only if v1 takes the form [A, i, j], v2 takes the form [B, i+ 1, j] such that A→ wiB ∈ P
(or the symmetric case). We first remark that we now have a constant number of outgoing edges
for each node. Due to linearity, rules that spawn non-terminals are of the form A→ wB or A→ Bw,
and solving an item [A, i, j] therefore reduces to solving items that aim to derive either wi+1 . . . wj or
wi . . . wj−1. There are finitely many such items given [A, i, j] as the indices are fixed. Therefore, the
procedure can be implemented with O(n2) padding tokens.

Moreover, because every production rule now necessarily spawns a terminal symbol, the full depen-
dency graph can be constructed via DG(T ). If A→ wB is a production rule used in the derivation
of a string, then [w, i, i] ∈ T for some i, and R([w, i, i], [B, i + 1, j], [A, i, j]) = 1. Crucially, any
production rule applied in the derivation of a string that reduces some item [A, i, j] to another item
[B, i+ 1, j] leads to an edge between their associated items in the initial dependency graph DG(T ).
Therefore, we can compute the realizability of all items with a single call to REACH on the initial
dependency graph DG(T ), and log(n) looping layers then suffice to perform Alg. 3. ■

3There is a subtlety here: A CFL can be induced by both a non-linear unambiguous grammar and by a differ-
ent linear, ambiguous grammar. Here we consider grammars that are simultaneously linear and unambiguous.
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5 EXPERIMENTS

We conduct experiments to elicit the impact of looping when recognizing formal languages, and
provide more details on our experimental setup in App. C. We train transformer classifiers on CFLs
of varying degrees of complexity:

• Boolean formula value problem (BFVP): The set of variable-free Boolean formulas that
evaluate to 1. This CFL is known to be complete for NC1 (Buss, 1987), i.e., requires logarithmic
time w.r.t. input length. We consider formulas in the standard infix notation (e.g., 1 ∨ 0 is in infix
notation) as well as postfix notation (e.g., 1 0 ∨ is in postfix notation). Parallel algorithms for
BFVP typically rely on postfix notation (Buss, 1987; Buss et al., 1992).

• Palindrome: The language L = {wwR | w ∈ Σ∗} for some alphabet Σ. We focus on a binary
alphabet. This language is linear unambiguous and non-deterministic. Prior work has shown that
fixed-depth transformers with hard attention can recognize this language (Hao et al., 2022).

• Marked Palindrome: This language simplifies Palindrome by extending strings with a marker
between w and wR, which delimits at which index we reverse the string. In other words,
L = {w#wR | w ∈ Σ∗} where # /∈ Σ. This language is linear deterministic.

• Dyck: The language of nested strings of parentheses of k types, which we denote by D(k). We
consider D(1) and D(2). This language is non-linear and deterministic. Fixed-depth transformers
can recognize D(k) for any k (Weiss et al., 2021).

These languages vary in complexity, allowing us to test transformers’ ability to learn CFL recogni-
tion constructions for languages of different difficulties. In particular, while Palindrome and D(k)
languages can in principle be recognized by constant-depth transformers, BFVP requires growing
depth (i.e., log-depth), assuming TC0 ̸= NC1. This suggests that the performance of log-depth vs.
constant-depth transformers on BFVP is a good measure of whether transformers can utilize the
extra expressivity of log-depth when it is required. Our results are presented in Tab. 2.

Table 2: Mean accuracy (± standard deviation) by language and transformer type across seeds.

Test accuracy on in-distribution strings Test accuracy on out-of-distribution strings

Language Fixed-depth log(n) looping Fixed-depth log(n) looping

BFVP 0.97 ± 0.01 0.98 ± 0.00 0.88 ± 0.01 0.91 ± 0.01
BFVP (postfix) 0.95 ± 0.01 0.98 ± 0.00 0.87 ± 0.01 0.91 ± 0.01
Palindrome 0.94 ± 0.01 0.93 ± 0.01 0.79 ± 0.03 0.72 ± 0.03
Marked palindrome 0.97 ± 0.01 0.98 ± 0.01 0.59 ± 0.19 0.66 ± 0.18
D(1) 0.98 ± 0.00 0.98 ± 0.00 0.94 ± 0.02 0.93 ± 0.01
D(2) 0.98 ± 0.02 0.99 ± 0.00 0.83 ± 0.08 0.90 ± 0.08

Results. Despite our theoretical analysis, the difference in performance between looped- and non-
looped transformers is not stark, which can be explained by the fact that most of the languages we test
transformers on have fixed-depth solutions. We conjecture looping should not offer a substantial gain
in performance for problems where fixed-depth solutions suffice. Moreover, we remark that for both
variants of BFVP, looping leads to slight improvements in in-distribution (1-3%) and generalization
(3-4%) accuracy. This result is consistent with the fact that BFVP is known to require log-depth.
For Palindrome and D(1), looping does not improve accuracy, which is supported by the fact that
these languages already have fixed-size solutions (Hao et al., 2022; Weiss et al., 2021). For D(2) and
Marked Palindrome, looping seems to improve generalization even though these languages also have
constant-depth transformer constructions.

6 DISCUSSION AND CONCLUSION

We show that transformers with log-depth can recognize general CFLs if they can use padding
tokens (Merrill & Sabharwal, 2025b). In addition, we characterize unambiguity and linearity as CFL
features that can reduce the amount of padding needed by transformers for recognition. These results
reveal one way that transformers with limited depth can recognize CFLs and predict ambiguity in
language could be a hurdle for transformers to process, as suggested in previous empirical work
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(Khalighinejad et al., 2023; Liu et al., 2023). Although it is not possible to improve our log-depth
recognition algorithm to fixed depth unless TC0 = NC1, our padding bounds are not known to
be tight. Therefore, future work could find more padding-efficient transformer constructions for
recognizing general CFLs, or subclasses thereof. Additionally, it would be interesting to consider the
psycholinguistic implications of our results for comparing how humans and LMs process language
and syntax. It is believed that CFLs are too weak to model natural language (Shieber, 1988), and that
mildly context-sensitive formalisms such as tree-adjoining grammars (TAGs) are a better prospect to
model natural language (Joshi, 1985; Bordihn, 2004). Future work could therefore focus on analyzing
transformers’ ability to recognize languages induced by TAGs (TALs). Finally, because expressivity
results cannot fully predict the empirical abilities of transformers, recent learnability results (Hahn &
Rofin, 2024) are painting a more complete picture of the abilities and limitations of transformers. We
therefore encourage future work to investigate theoretically the conditions under which a transformer
can learn to process syntax on out-of-distribution inputs.
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A EXTENDED BACKGROUND

A.1 TRANSFORMER MODELS

We introduce in this section our idealization of the transformer architecture.

A.1.1 FIXED-SIZE TRANSFORMERS

An L-layer transformer of constant width 4 D is a mapping T : Σ∗ →
(
RD

)∗
:

T def
= L(L) ◦ · · · ◦ L(1) ◦ embed (2)

The input encoding function embed : Σ∗ →
(
RD

)∗
applies an injective position-wise embedding

function to each symbol in the input string w. We use BOS and EOS symbols, distinct symbols that
are placed at the beginning and end of every input string, respectively.

L(ℓ) for ℓ ∈ [L] denotes a transformer layer—a mapping L(ℓ) :
(
RD

)∗ → (
RD

)∗
that updates the

symbol representations. The components of a transformer layer are the layer normalization LN, the
attention layer fatt

(ℓ) and the feedforward network F(ℓ). Concretely:

L(ℓ) def
= F(ℓ) ◦ fatt

(ℓ) ◦ LN(ℓ) (3)
4To guarantee the transformer width is constant while the number of layers grows with input length, we recall

transformer layers can reset intermediate values in looping layers (Merrill & Sabharwal, 2025a).
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We recall layer-normalization maps a vector x ∈ Rn of some dimension n to x′

∥x′∥ where x′ def
=

x−
∑

xi∈x xi

n . We assume multi-pre-norm (Merrill & Sabharwal, 2024). In standard pre-norm, we
apply a layer-normalization to the entire hidden state of each symbol. In multi-pre-norm, we allow
each sublayer to take k different projections of its input apply layer-norm to each and concatenate.
Crucially, multi-pre-norm allows us to partition the hidden state and normalize disjoint subsets of
thereof, which we will rely on in our proofs.

F(ℓ) :
(
RD

)∗ → (
RD

)∗
is a position-wise function that applies the same feedforward network to

every symbol of the sequence. It is parametrized by weight matrices of the form W ∈ Rm×D and
U ∈ RD×m. A feedforward network F(ℓ) can nest functions of the form UReLU(Wz) where
z ∈ RD is an intermediate value.

The attention mechanism is defined by the function fatt
(ℓ) :

(
RD

)∗ → (
RD

)∗
. We denote by k

(ℓ)
i ,

q
(ℓ)
i , v(ℓ)

i the key, query and value vectors, respectively, for symbol i at layer ℓ. fatt
(ℓ) is defined as

follows:
fatt

(ℓ)((x1, · · · , xT ))
def
= (y1, · · · , yT ) (4a)

yi
def
= xi +

∑
i′∈m(i)

si′v
(ℓ)
i′ (4b)

s = proj({score(k(ℓ)
i′ , q

(ℓ)
i )}) (4c)

m(i) is a set that defines the masking used by the transformer. For instance, m(i) = {i′ | i′ < i}
refers to strict causal masking and m(i) = [|w|] refers to no masking. score is a scoring function
that maps two vectors of the same size to a scalar. Typically, the dot-product score is used with
score(x1, x2)

def
= ⟨x1, x2⟩.

Throughout layers, the hidden state yi of a symbol at position i continuously evolves as it cumulatively
adds up the outputs of the attention mechanism. We call this cumulative sum yi over layers the
residual stream at i.

proj is a projection function that normalizes the scores into weights for the symbol values. Following
previous work, we assume an averaging hard attention transformer (AHAT), which concentrates the
attention weights on the symbols that maximize the attention score (Merrill et al., 2022; Strobl, 2023).
Formally, we have proj = hardmax:
Definition A.1. Averaging hard attention is computed with the hardmax projection function:

hardmax (x)d
def
=

{
1
m if d ∈ argmax (x)

0 otherwise
(5)

for d ∈ [D], where x ∈ RD and m def
= | argmax (x) | is the cardinality of the argmax set.

Recognition. A transformer is a vector-valued function. To link this to language recognition, we
use the representations computed by a transformer for binary classification of strings. We denote
by xL

EOS the hidden state of EOS at the end of the forward pass of T. Typically, string recognition is
based on xL

EOS as EOS is the only symbol that is able to access information about every single symbol
throughout all (assuming causal masking). This allows us to define a transformer’s language based
on a linear classifier:

L(T) def
= {w ∈ Σ∗ | θ⊤xL

EOS > 0}. (6)

Precision. Following previous work (Merrill & Sabharwal, 2025b; 2024; 2023), we assume log-
precision transformers, i.e., we allow the transformer to manipulate values that can be represented
with O(log(n)) bits for an input of length n. It is a minimally extended idealization that enables the
transformer to store indices and perform sums over an unbounded number of symbols, two crucial
capabilities for our constructions.

A.1.2 LAYER-NORM HASH

We will often use the layer-norm hash building block (Merrill & Sabharwal, 2024). It is particularly
useful for equality checks between values across different symbols, especially with a potentially
unbounded number of queries and keys.
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Definition A.2 (Merrill & Sabharwal, 2024). Given a scalar z ∈ R, its layer-norm hash is ϕ(z) def
=

⟨z, 1,−z,−1⟩/
√
z2 + 1.

Layer-norm hash is scale invariant, and ϕ(q) · ϕ(k) = 1 if and only if q = k. In other words, the
inner product of scalars q and k, even if computed at different positions i and j, respectively, allows
us to check for the equality of q and k. Layer-norm hash therefore allows us to perform equality
checks over elements of residual streams at different positions.

B TRANSFORMER CONSTRUCTIONS PROOFS

In our constructions, we leverage padding tokens to associate them with distinct objects. For example,
when computing the realizability of items in Alg. 1 and Alg. 2 on AHATs, we will associate each item
with a padding token. To this extent, we introduce a novel theoretical gadget implementable by AHATs
that enables a padding token at some position i to compute the encoding of its associated items from
the unique position i. We formalize this statement in the following lemma:
Lemma B.1 (Converting a padding token position into a binary representation). Let T be aO(P(n))-
padded transformer. Let S = S1 × S1 . . .Sm be some set such that its elements can be represented
with O(log(P(n))) bits. Then, in a constant number of layers, each padding token can add to their
residual stream the encoding of a distinct element of S.

Proof. Firstly, a padding token at position i can add to the residual stream ϕ(i) with one causally-
masked attention layer by uniformly attending over the strict left context and setting as value
1[i = 0](Merrill & Sabharwal, 2024).

Each padding token is distinguished by its unique position. We will rely on this fact to unpack bits of
the binary representation of ϕ(i) to store the encoding of a distinct element of S.

Recall AHATs can compute Euclidean divisions and modulo at some position i for integers smaller
than i in a constant number of layers (Merrill & Sabharwal, 2025a). We leverage this theoretical
gadget to partition the binary representation of ϕ(i) into an element of S = S1 × S1 . . .Sm. As an
example, suppose S1 = [n], and s1 is some index in S1. s1 can then be written with log(n) bits. We
can extract s1 from ϕ(i) by considering the binary representation of the latter and extracting the first
log(n) bits or equivalently, computing ϕ(i) MOD n. To add to the residual stream the next element
s2 ∈ S2, we can clear out the first log(n) bits of ϕ(i) by dividing ϕ(i) by n. This example illustrates
how we can extract from ϕ(i) an element of S: we iteratively 1) mask the first log(|Si|) bits from the
least significant bit to extract an element of Si and 2) shift the binary representation of ϕ(i) towards
the least significant bit to then extract the following element in Si+1. ■

B.1 GENERAL CFL RECOGNITION ON TRANSFORMERS

Theorem 3.1. Given a CFL L, there exists a transformer with both causally-masked and non-masked
attention layers, O(log(n)) looping layers and O(n6) padding tokens that recognizes L. That is,
CFL ⊆ mAHAT16 ⊆ AHAT17.

Proof. We store padding tokens for each possible item (of the form [X, i, j] or [X, i, j]/[Y, k, l]) and
each possible way to decompose that item. There are O(n6) such tokens: In the worst case, we are
solving an item [X, i, j]/[Y, k, l] and are guessing an item [Z, p, q] that decomposes that problem.
Intuitively, if a padding token aims to solve the item [X, i, j] and holds as decomposition [Y, k, l], we
attend to the padding tokens which solve [X, i, j]/[Y, k, l] and [Y, k, l]. Due to Thm. 3.3, if [S, 1, n]
is realizable then there exists a padding token with associated item [S, 1, n] such that it will store 1
(denoting realizability) in its residual stream after O(log(n)) steps.

We firstly detail how each padding token can add to their residual stream the encodings of their
associated item and subsequent decomposition. A padding token at position i can add to their residual
stream ϕ(i) with one causally-masked attention layer by attending to their strict left context (Merrill &
Sabharwal, 2024). We define the set S = S1 × . . .Sm as the set of all possible item / decomposition
combinations. For instance, ([X, i, j], [Y, k, l]) is an element of this set, where we will decompose
[X, i, j] into [X, i, j]/[Y, k, l] and [Y, k, l]. S1 could contain a set of non-terminals in N , S2 could
contain a set of indices in [n], so on and so forth. Finally, we leverage Lem. B.1 to add the encodings
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of these elements in the residual stream. For each padding token we can therefore store its associated
item and decomposition.

We will now detail how to compute the realizability of items associated with these padding tokens.
We consider items of the form [X, i, j], solving items of the form [X, i, j]/[Y, k, l] follows the same
idea.

Padding tokens allocate space for an element of {0, 1,⊥}, which describes whether the associated
item is non-realizable (0), realizable (1), or not known yet to be realizable (⊥). Padding tokens
initially all store ⊥.

Base case: Items of the form [X, i, j] are a base case item if i = j. A feedforward network can for
each padding token associated with some [X, i, j] check that i = j by adding i− j to the residual
stream. With an attention layer, we can then retrieve and add to the residual stream the encoding of
the symbol wi for a given base case item [X, i, i] as follows. A symbol representation at position i
can add to its residual stream ϕ(i) by uniformly attending with a causally-masked attention layer to
all symbol representations in the strict left context (Merrill & Sabharwal, 2024). A padding token
associated with [X, i, i] also stores ϕ(i). Therefore, via an equality-check via dot product, padding
tokens can attend to relevant symbol representations by setting as value the one-hot encoding of the
symbol JwiK. Finally, a feedforward network can add to the residual stream 1 if X→ wi is a valid
rule and otherwise 0: A mapping between two finite sets N × Σ → {0, 1} can be computed by a
feedforward network.

Induction step: Recall a padding token stores 1) an item to solve (for instance, [X, i, j]) and 2) a
set of objects that enable us to decompose that item (for instance, [Y, k, l]). Given [X, i, j], [Y, k, l],
a feedforward network adds the encodings of [X, i, j]/[Y, k, l] and [Y, k, l] to the residual stream.
Otherwise, if a padding token is associated with [X, i, j], X→ YZ and k, we add [Y, i, k − 1] and
[Z, k, j] to the residual stream via a feedforward network. In the latter case, a feedforward network
can also ensure the rule X→ YZ is in the grammar, and store 0 in the residual stream (denoting
non-realizability) if the rule is not in the grammar.

Finally, with one attention layer and a feedforward network, we can attend to all padding tokens that
aim to solve the first subproblem ([X, i, j]/[Y, k, l]) and copy the integer in the allocated cell for
realizability. We also perform the same procedure for the second subproblem to solve.

We compute the realizability of the current item via an extension of standard Boolean logic (Tab. 3)
to handle the case where padding tokens have not yet computed the realizability of their associated
item. We do not elicit the standard rules of propositional logic for brevity. Crucially, a feedforward

P Q P ∧Q P ∨Q
1 ⊥ ⊥ 1
⊥ 1 ⊥ 1
0 ⊥ 0 ⊥
⊥ 0 0 ⊥
⊥ ⊥ ⊥ ⊥

Table 3: Truth table for a three-valued logic
that handles propositions with unknown truth value.

network can compute this mapping as it is between two finite sets.

After at most log(n) steps, some padding token aiming to solve an item [A, i, j] will necessarily store
1 if and only if [A, i, j] is realizable: There exists some balanced decomposition represented by two
padding tokens that we can attend to and store the realizability of their associated items.

Recognition step: The EOS token can uniformly attend to all padding tokens that encode the item
[S, 1, n] (we can add S, 1 and n to the residual stream beforehand) item and ensure one of them holds
1, denoting realizability. ■
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B.2 UNAMBIGUOUS CFL RECOGNITION ON TRANSFORMERS

Lemma 4.1. Let ψ be a variable-free Boolean formula. Assume ψ is represented in a transformer’s
residual stream as follows, where we consider the binary tree induced by ψ. For each leaf, there is a
padding token that encodes its value (1 or 0). For each function node, there is a padding token that
encodes its type (∧ or ∨) and pointers to its input arguments. Then, we can compute the value of
each subformula in O(log(n)) time on an input of length n.

Proof. We will implement Rytter (1985)’s parallel pebble game algorithm for evaluating Boolean
formulas in O(log(n)) steps. We first formalize different objects we associate with a node. Recall
every vertex v in the binary tree induced by ψ is represented by some padding token which stores
pointers to its input arguments. For the padding token associated with vertex v, we allocate space for
the following objects:

• VALUE is the result of evaluating the formula associated with v.

• PTR is a pointer to a vertex in the computation tree. Initially, all padding tokens store a
pointer to themselves. Intuitively, if the value of PTR is known, we can compute the value of
the formula associated with v.

• CONDF : {0, 1} → {0, 1} is a conditional function that relates PTR’s value to v’s value with
v.VALUE = CONDF(PTR.VALUE).

The parallel pebbling game consists of three steps which are repeated O(log(n)) times: activate,
square and pebble. We introduce each operation and detail how to perform them on AHATs.

activate: Recall that v’s padding token stores pointers to its input arguments v1 and v2. If the
value of v1 is known, PTR is set to v2 (and vice-versa). v’s padding token can attend to v1’s and v2’s
padding tokens via an equality-check and copy v1.VALUE and v2.VALUE. Suppose that v1’s value
is known (the symmetric argument with v2 is the same). We will detail how to define v’s CONDF
depending on v1’s value and v’s function type. For instance, if v’s function type is ∧ and v1 is known
to evaluate to 1, we know v’s value is exactly PTR.VALUE, and therefore we define the conditional
function as CONDF(x) = x ∀x ∈ {0, 1}. We detail all the distinct cases in the following table.

v’s function type v1.VALUE conditional function type
∨ 1 CONDF(x) = 1 ∀x ∈ {0, 1}
∨ 0 CONDF(x) = x ∀x ∈ {0, 1}
∧ 1 CONDF(x) = x ∀x ∈ {0, 1}
∧ 0 CONDF(x) = 0 ∀x ∈ {0, 1}

Table 4: Defining v’s relation to PTR’s value depending on v1.VALUE and v’s function type.

Feedforward networks are able to compute conditional functions (Yang et al., 2025). Therefore, a
feedforward network can add to v’s residual stream a pointer to PTR, 0 or 1 depending on the cases
presented in App. B.2.

square: We then compute the one-step closure of ACTIVATE. Let v.PTR = v′ and v′.PTR = v′′. We
first update v.PTR with v′.PTR = v′′ by having v’s padding token attend to v′’s padding token and
copy v′ .PTR. Furthermore, by copying v′’s CONDF via another attention layer, a feedforward network
can compose the conditional functions of v and v′.

pebble: Finally, we evaluate v.VALUE at the current iteration by setting v.VALUE
=CONDF(v.PTR.VALUE) via another feedforward network.

We refer to Rytter (1985) for the original presentation of this algorithm and the proof of theO(log(n))
time bound. ■

Theorem 4.1. Let UCFL be the classes of unambiguous CFLs. Then UCFL ⊆ mAHAT23 ⊆ AHAT24.
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Proof. Each item [A, i, j] is associated with a padding token. Each potential edge between vertices
representing items [A, i, j], [B, i, k] is associated with a padding token. There areO(n3) such padding
tokens. We leverage Lem. B.1 to enable padding tokens to add to their residual stream the encodings
of their associated items from ϕ(i), the layer-norm hash of their position i.

Each padding token for vertices allocates space to store an element in {0, 1,⊥} to denote that the
associated item is either non-realizable (0), realizable (1) or not known yet to be realizable (⊥). We
will implement Alg. 3’s algorithm on AHATs to compute whether items are part of the closure C(w)
(i.e, are realizable) or not.

Initial items: A padding token for some vertex can check whether its associated item is of the form
[A, i, i] via a feedforward network that checks that the indices are the same. For all such padding
tokens, another feedforward network adds 1 to the residual stream if and only if A→ wi ∈ P to
signal the realizability of that item (and otherwise adds 0). We can perform this procedure exactly as
in the base case of App. B.1.

Creating the dependency graph: Padding tokens for edges store items of the form [A, i, j], [B, i, k].
There are finitely many [C, k + 1, j] such that A→ BC ∈ P (proportionally many in |N |), which
can be added to the residual stream via a feedforward network. According to Eq. (1), we set an edge
between vertices associated with [A, i, j] and [B, i, k] if and only if there is an item [C, k+ 1, j] such
that [C, k+1, j] is realizable (i.e, the corresponding padding token stores 1 in its residual stream) and
A→ BC ∈ P . The padding token for the edge associated with [A, i, j], [B, i, k] can check whether
any of the items of the form [C, k + 1, j] are realizable and satisfies A→ BC ∈ P via an equality-
check with an attention layer (to check the realizability of the items) and a feedforward-network (to
check whether A→ BC ∈ P). If such an item exists, the padding token associated with [A, i, j] and
[B, i, k] signals that there is an edge between them in the dependency graph.

Binarization: Due to unambiguity, there is at most one path between any pair of vertices in the
dependency graph. If there are multiple paths from a vertex [A, i, j] to another vertex [B, k, l], there
are then different derivations that can reduce [A, i, j] to [B, k, l], which contradicts the unambiguity
condition. Evaluating reachability queries on a tree reduces to solving the Boolean formula induced
by this tree where leaf vertices are assigned 1 or 0 depending on if they are associated with realizable
items and non-leaf vertices are assigned the ∨ operator.

However, to efficiently evaluate this Boolean expression, we require a binary tree where each vertex
has at most two children. For every block of looping layers, we consider the binarization of the
dependency graph as follows.

The binarization assumes we have O(n3) additional padding tokens appended to the input, i.e., O(n)
extra padding tokens for every vertex for item. Note that asymptotically, appending O(n3) padding
tokens does not impact our claim on the resource bounds required. Effectively, for some item [A, i, j],
we have a n-arity tree and need to use O(n) extra vertices to create a binary tree by replacing edges
with these intermediate vertices. We will create a right-branching binary tree. We denote by h0 the
root node, by v1, v2, . . . vn the leaf vertices, and by h1, h2, . . . hn−2 the extra intermediary vertices.
We build the right-branching binary tree as follows. The root vertex has edges to v1 and h1, and
now h1 recursively needs to span v2, v3 . . . vn. h1 then has edges to v2 and h2, so on and so forth.
More generally, for i < n − 2, we instantiate the edges (hi, vi+1) and (hi, hi+1). For i = n − 2,
we instantiate the edges (hn−2, vn−1) and (hn−2, vn). The resulting tree is a binary right-branching
tree.

We build the corresponding binary tree on the transformer as follows. We identify and encode the
vertices of the tree using Gorn addresses (Gorn, 1967). A Gorn address is a bitstring such that
a vertex a depth h in the tree is associated with a bitstring with h bits. The addresses are defined
recursively. The root vertex is associated with the empty bitstring ε. An arbitrary vertex at tree depth
h associated with the bitstring b1b2 . . . bh characterizes the Gorn addresses of its two children with
b1b2 . . . bh0 and b1b2 . . . bh1. For instance, Fig. 1 shows a right-branching tree with the corresponding
Gorn addresses.
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ε

0 1

10 11

110 111

Figure 1: Right-branching binary tree with Gorn addresses as vertex labels.

Due to Lem. B.1, these padding tokens can compute their distinct Gorn address. We can assume that
the padding tokens are partitioned such that the padding tokens associated with the leaves of the tree
are the ones that correspond to the edges of the form ([A, i, j], [B, i, k]). Then, the novel padding
tokens not associated with items can compute the pointers to their descendants in the binary tree as
follows. To compute the Gorn address of the first descendant, we shift towards the left the binary
representation of the integer by multiplying it by 2 via a feedforward network. We obtain the Gorn
address of the second descendant by adding 1 to the integer representation of the Gorn address of the
first descendant.

Solving reachability queries: Reachability queries over binary trees now reduce to evaluating the
Boolean formula associated with the binary tree. Leaf vertices associated with realizable items are
assigned 1. A non-leaf vertex has a path to such a leaf if evaluating the induced Boolean expression
where non-leaf compute ∨ over their children yields 1. We can therefore invoke Lem. 4.1 to evaluate
this Boolean formula.

Recognition step: The EOS token can attend to the padding token for vertex associated with [S, 1, n]
and check whether it is realizable, i.e., store 1 in its residual stream.

■

C EXPERIMENTAL SETUP

Data. We used Anonymous (2025)’s length-constrained sampling algorithm for CFLs to generate
datasets. For D(1), D(2), Palindrome and Marked Palindrome, negative samples were either sampled
at random from Σ∗ or were perturbations from positive strings. For BFVP, the negative strings were
sampled Boolean formulas that evaluate to 0 as we preferred to focus on a transformer’s ability to
correctly evaluate a Boolean formula rather than determining if the formula is well-formed. The
ability to process hierarchically nested structures is already captured by the language D(k). The
training set consists of 1 million samples with string length at most 40. The test set has 2000 samples
with string length at most 80. Testing the model on strings longer than those seen in training enabled
the evaluation of its ability to generalize out-of-distribution.

Models and Training Procedure. We trained causally masked looped transformers with no po-
sitional embeddings. We used the PYTORCH implementation of a transformer encoder layer with
pre-norm. Following our definition of the transformer in §2.2, we instantiated our models with
an initial block of 2 transformer layers, a looping block (which is repeated log(n) times or once
at inference) of 2 transformer layers and a final block of 2 transformer layers. A binary classifier
(2 layer feedforward network) was then applied to the final contextual representation of EOS. Our
transformers have 1.2 million parameter budget. We used the ADAMW optimizer (Loshchilov &
Hutter, 2019) and binary cross-entropy loss, considering runs across 5 different seeds. The batch size
was set to 64 and the learning rate to 0.0001.
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