

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CONTEXT-FREE RECOGNITION WITH TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformers excel on tasks that process well-formed inputs according to some grammar, such as natural language and code. However, it remains unclear how they can process grammatical syntax. In fact, under standard complexity conjectures, standard transformers cannot recognize context-free languages (CFLs), a canonical formalism to describe syntax, or even regular languages, a subclass of CFLs (Merrill et al., 2022). Merrill & Sabharwal (2025a) show that $\mathcal{O}(\log(n))$ *looping layers* (w.r.t. input length n) allows transformers to recognize regular languages, but the question of context-free recognition remained open. In this work, we show that *looped transformers* with $\mathcal{O}(\log(n))$ looping layers and $\mathcal{O}(n^6)$ padding tokens can recognize all CFLs. However, training and inference with $\mathcal{O}(n^6)$ padding tokens is potentially impractical. Fortunately, we show that, for natural subclasses such as unambiguous CFLs, the recognition problem on transformers becomes more tractable, requiring $\mathcal{O}(n^3)$ padding. We empirically validate our results and show that looping helps on languages that provably require logarithmic depth. Overall, our results shed light on the intricacy of CFL recognition by transformers: While general recognition may require an intractable amount of padding, natural constraints such as unambiguity yield efficient recognition algorithms.

1 INTRODUCTION

Transformers are proficient at many natural language (Qin et al., 2024) and coding (Jiang et al., 2024) tasks, both of which involve processing hierarchical structures. Classically, the ability to process hierarchically nested structures is closely connected to the ability to model context-free languages (CFLs). Analysis of internal representations—syntactic probing—has shown that transformers learn to encode syntactic features relevant for parsing, the task of extracting the syntactic structure of a sentence (Hewitt & Manning, 2019; Arps et al., 2022; Zhao et al., 2023). However, it is unclear what classes of syntax transformers can *provably* represent, and how CFL recognition can be implemented internally. To this end, we study whether transformers can correctly determine the grammaticality of a sentence according to a context-free grammar.

The problem of determining whether an input is grammatical can be stated as the *recognition problem for context-free grammars* (CFGs): Given a CFG \mathcal{G} , can a string w be generated by \mathcal{G} ? Several foundational *serial* parsing algorithms (Earley, 1970; Cocke, 1969; Kasami, 1965; Younger, 1967) solve this problem. However, such serial procedures cannot be naturally implemented by transformers due to their highly parallel, fixed-depth structure. Even regular languages, a strict subset of CFLs, cannot be recognized by fixed-depth transformers under the standard complexity conjecture $\text{TC}^0 \subsetneq \text{NC}^1$: Regular language recognition is complete for NC^1 (Barrington & Thérien, 1988) while fixed-depth transformers fall in TC^0 (Merrill et al., 2022; Chiang, 2025). *Looping* layers help: $\log(n)$ looping layers (where n is the input length) allow transformers to recognize regular languages (Merrill & Sabharwal, 2025a). However, the question of whether logarithmic looping enables CFL recognition remains. In this work, we address it by analyzing the difficulty of recognizing various CFL classes by transformers. We conceptualize the difficulty in terms of extra resources needed: Looping layers and appending blank *padding* tokens (Merrill & Sabharwal, 2025b).

While general CFL recognition *cannot* be implemented by fixed-depth transformers under standard complexity conjectures, our first result shows via a direct construction that it can be expressed by looping layers $\mathcal{O}(\log(n))$ times and with $\mathcal{O}(n^6)$ padding tokens. To the best of our knowledge, this constitutes the first proof of general CFL recognition by transformers. We then ask whether simpler classes of CFLs can be recognized by transformers with fewer resources. We find that the answer is

affirmative: We show that natural subclasses of CFLs can be recognized by simpler transformers. In particular, we identify *unambiguity* and *linearity* as two key properties that make CFL recognition more tractable. Unambiguous CFLs, characterized by strings having at most one possible parse, allow for recognition with reduced padding but more looping. This aligns with transformers' struggles to parse ambiguous grammars in practice (Khalighinejad et al., 2023). Furthermore, additionally imposing linearity (where each grammar rule has at most one non-terminal on its right-hand side) reduces the amount of looping and padding required for recognizing unambiguous CFLs. We empirically test when looping helps generalization and find it to increase the performance on a log-depth complete CFL, namely the language of variable-free Boolean formulas (Buss, 1987).

In summary, we leverage theory on parallel recognition of CFLs to show that logarithmically-looped transformers can recognize CFLs, characterizing the padding requirements for different relevant subclasses. These results imply that, in order to recognize CFLs, transformers require *exponentially* less depth than what would be needed to implement a serial parsing algorithm like CKY. While this comes with increased space (padding) requirements in the general case, the space can be reduced for natural CFL subclasses. These results are summarized in Tab. 1.

Language class	Padding tokens required	Looping layers required
General CFLs	$\mathcal{O}(n^6)$	$\mathcal{O}(\log(n))$
Unambiguous CFLs	$\mathcal{O}(n^3)$	$\mathcal{O}(\log^2(n))$
Unambiguous linear CFLs	$\mathcal{O}(n^2)$	$\mathcal{O}(\log(n))$

Table 1: The computational resources required by transformers to recognize different classes of context-free languages (CFLs).

2 PRELIMINARIES

An **alphabet** Σ is a finite, non-empty set of **symbols**. A **string** is a finite sequence of symbols from Σ . The **Kleene closure** Σ^* of Σ is the set of all strings over Σ , and ε denotes the empty string. A **formal language** \mathbb{L} over Σ is a subset of Σ^* , and a **language class** is a set of formal languages.

2.1 CONTEXT-FREE GRAMMARS

Definition 2.1. A **context-free grammar** (CFG) \mathcal{G} is a tuple $(\Sigma, \mathcal{N}, S, \mathcal{P})$ where: (1) Σ is an alphabet of **terminal symbols** (2) \mathcal{N} is a finite non-empty set of **nonterminal symbols** with $\mathcal{N} \cap \Sigma = \emptyset$ (3) $\mathcal{P} \subseteq \mathcal{N} \times (\mathcal{N} \cup \Sigma)^*$ is a set of **production** rules of the form $A \rightarrow \alpha$ for $A \in \mathcal{N}$ and $\alpha \in (\Sigma \cup \mathcal{N})^*$ (4) $S \in \mathcal{N}$ is a designated start non-terminal symbol. As standard, we denote terminal and nonterminal symbols by lowercase and uppercase symbols, respectively.

A sequence of non-terminals and terminals $\alpha \in (\mathcal{N} \cup \Sigma)^*$ is a **sentential form**. A CFG generates strings by repeatedly applying rules to sentential forms derived from the start symbol until it produces a sequence of terminal symbols, i.e., a **string**. We call this procedure a **derivation**, and the resulting string its **yield**. We define the relation $A \rightarrow \beta$ if $\exists p \in \mathcal{P}$ such that $p = (A \rightarrow \alpha\beta\gamma)$ where α, β, γ are sentential forms. We denote by \rightarrow^* the reflexive, transitive closure of \rightarrow .

Definition 2.2. The **language of a CFG** \mathcal{G} is the set $\mathbb{L}(\mathcal{G}) \stackrel{\text{def}}{=} \{w \in \Sigma^* \mid S \xrightarrow{*} w\}$.

Definition 2.3. A language \mathbb{L} is **context-free** if there exists a CFG \mathcal{G} such that $\mathbb{L}(\mathcal{G}) = \mathbb{L}$.

It is common practice to consider CFGs in a normal form, namely:

Definition 2.4. A CFG \mathcal{G} is in **Chomsky Normal Form (CNF)** if any $p \in \mathcal{P}$ is either of the form $A \rightarrow BC$, $A \rightarrow a$ or $S \rightarrow \varepsilon$.

Every CFG can be transformed into an equivalent one in CNF.

108
109

2.2 TRANSFORMERS

We consider the idealization of transformers from Merrill & Sabharwal (2025a;b). In short,¹ we study **average hard attention** transformers (AHATs), where the attention normalization function returns a uniform average of the values of tokens that maximize the attention score. The transformers use *multi*-pre-norm, where the layer normalization is applied before the residual connection on either the entire hidden state or on distinct subsets thereof (Merrill & Sabharwal, 2024). We further assume logarithmic-precision arithmetic, where computations are performed with $\mathcal{O}(\log(n))$ bits for an input of size n . Coupling AHATs and log-precision unlocks useful gadgets such as storing string indices, counting symbol occurrences across the string and performing equality checks of values stored in residual streams at separate positions (Merrill & Sabharwal, 2024). We assume input strings to the transformer are augmented with both a beginning-of-sequence (BOS) and end-of-sequence (EOS) token. Denote by x_{EOS}^L the contextual representation of EOS at end of the forward pass of the transformer. We apply a linear classifier to x_{EOS}^L to determine string acceptance.

121 Looped transformers scale the number of layers with input length (Merrill & Sabharwal, 2025a).

123 **Definition 2.5.** Let T be a transformer. We denote by $\langle A, B, C \rangle$ a partition of layers such that A is
124 the **initial block** of layers, B is the **looped** block of layers and C is the **final block** of layers. T is
125 $d(n)$ -looped if upon a forward pass with an input of length n , B is repeated $\mathcal{O}(d(n))$ times.

126 The amount of computation performed by self attention is definitionally quadratic in the string length.
127 One can dynamically increase this by adding *padding space* (Merrill & Sabharwal, 2025b).

128 **Definition 2.6.** Let T be a transformer. T is $w(n)$ -padded if $\mathcal{O}(w(n))$ padding tokens are appended
129 to the end of the string when computing the contextual representations of a length- n input.

131 Scaling number of layers and padding tokens in transformers is analogous to scaling time and space
132 Boolean circuits (Merrill & Sabharwal, 2025b), a classical parallel model of computation. Allowing
133 for different looping and padding budgets results in different classes of transformers. We adopt
134 naming conventions of these models from Merrill & Sabharwal (2025b). We denote by AHAT_k^d the
135 class of languages recognized by averaging hard-attention transformers with $\mathcal{O}(\log^d(n))$ looping,
136 $\mathcal{O}(n^k)$ padding and strict causal masking. We further denote with uAHAT average hard-attention
137 transformers with no masking, and with mAHAT transformers that use both masked and unmasked
138 attention heads. Conveniently, AHATs can simulate uAHATs:

139 **Lemma 2.1** (Merrill & Sabharwal 2025b Proposition 1.). $\text{uAHAT}_k^d \subseteq \text{mAHAT}_k^d \subseteq \text{AHAT}_{1+\max(k,1)}^d$ for
140 $d \geq 1$.

141

3 RECOGNIZING GENERAL CFLS WITH TRANSFORMERS

143

144 We now describe a parallel algorithm for general CFL recognition, which synthesizes ideas from
145 previous work on algorithms for parallel CFL recognition (Ruzzo, 1980; Rossmanith & Rytter, 1992;
146 Lange & Rossmanith, 1990). We then show how to implement this algorithm on AHATs, allowing us
147 to prove the following theorem:

148 **Theorem 3.1.** Given a CFL \mathbb{L} , there exists a transformer with both causally-masked and non-masked
149 attention layers, $\mathcal{O}(\log(n))$ looping layers and $\mathcal{O}(n^6)$ padding tokens that recognizes \mathbb{L} . That is,
150 $\text{CFL} \subseteq \text{mAHAT}_6^1 \subseteq \text{AHAT}_7^1$.

151

152 Our goal is to recognize a CFL represented by a grammar in CNF (Def. 2.4) with start symbol S .
153 For a string w of length n , the algorithm determines whether $w \in \mathbb{L}(\mathcal{G})$. To do this, it manipulates
154 **items**—tuples of the form $[A, i, j]$, where $A \in \mathcal{N}$ and $i, j \in [n] \stackrel{\text{def}}{=} \{1, 2, \dots, n\}$. The item $[A, i, j]$
155 is **realizable** if and only if $A \xrightarrow{*} w_i w_{i+1} \dots w_j$, i.e., if there is a sequence of rules that can be applied to
156 the non-terminal A that yields $w_i w_{i+1} \dots w_j$.

157 We further define **slashed** items of the form $[A, i, j]/[B, k, l]$, where $i \leq k \leq l \leq j$. Intuitively,
158 solving $[A, i, j]/[B, k, l]$ equates to determining whether A can derive $w_i \dots B \dots w_j$ assuming that the
159 non-terminal B already derives the substring $w_k \dots w_l$. More formally, $[A, i, j]/[B, k, l]$ is **realizable**
160 if and only if $A \xrightarrow{*} w_i w_{i+1} \dots w_{k-1} B w_{l+1} \dots w_j$.

161

¹We refer to App. A for more details on the transformer model.

162 Naturally, $w \in \mathbb{L}(\mathcal{G})$ if and only if the item $[S, 1, n]$ is realizable, and determining realizability can
 163 be broken down recursively as follows:

164

165 **Lemma 3.1.** $[X, i, j]$ is realizable if and only if one of the following conditions is met:

166

- **Base case:** $j = i$ and $X \rightarrow w_i$ is a rule in the grammar for some w_i .
- **Recursive case 1:** There exist a rule $X \rightarrow YZ$ and an index k such that $[Y, i, k - 1]$ and $[Z, k, j]$ are realizable items. There are $\mathcal{O}(|\mathcal{P}|n)$ ways to choose a rule and an index for $\mathcal{O}(|\mathcal{N}|n^2)$ possible input items $[X, i, j]$.
- **Recursive case 2:** There exists a $[Y, k, l]$ such that $[X, i, j]/[Y, k, l]$ and $[Y, k, l]$ are both realizable. There are $\mathcal{O}(|\mathcal{N}|n^2)$ possible items of the form $[Y, k, l]$ for $\mathcal{O}(|\mathcal{N}|n^2)$ possible input items $[X, i, j]$.

173

174

175

176 *Proof.* The proof follows from our definitions. In the base case, if $j = i$, then X needs to derive
 177 exactly the symbol w_i in one step without producing non-terminals (assuming a CFG with no useless
 178 non-terminals). In the recursive case, if $[X, i, j]$ is realizable then there exists some associated parse
 179 tree where $X \xrightarrow{*} w_i \dots w_j$. Such a tree can be split by selecting a split vertex which induces recursive
 180 subproblems. If the chosen split vertex is the root X , there exists a rule $X \rightarrow YZ$ such that Y and Z
 181 derive disjoint, consecutive substrings of w . If the chosen split vertex is a non-root $Y \in \mathcal{N}$, then Y
 182 derives some substring $w_k \dots w_l$, and X derives w where $w_k \dots w_l$ has been replaced by Y . ■

183

184

185 **Lemma 3.2.** $[X, i, j]/[Y, k, l]$ is realizable if and only if one of the following conditions is met:

186

- **Base case:** $k = i, l = j - 1$ and there is a rule $X \rightarrow YZ$ in the grammar such that $Z \rightarrow w_j$.
 187 (and symmetric case)
- **Recursive case 1:** There exist a rule $X \rightarrow AB$ and an index p such that $[A, i, p - 1]/[Y, k, l]$ and $[B, p, j]$ are realizable items (and symmetric case). There are $\mathcal{O}(|\mathcal{P}|n)$ ways to choose a rule and an index for $\mathcal{O}(|\mathcal{N}|^2 n^4)$ possible input slashed items $[X, i, j]/[Y, k, l]$.
- **Recursive case 2:** There exists a $[Z, p, q]$ such that $[X, i, j]/[Z, p, q]$ and $[Z, p, q]/[Y, k, l]$ are both realizable. There are $\mathcal{O}(|\mathcal{N}|n^2)$ possible items of the form $[z, p, q]$ for $\mathcal{O}(|\mathcal{N}|^2 n^4)$ possible input slashed items $[X, i, j]/[Y, k, l]$.

194

195

196

197 *Proof.* The proof follows the same structure as the proof of Lem. 3.1. In the base case, X needs
 198 to derive in one step the non-terminal Y and some non-terminal Z such that Z derives in one step
 199 a symbol at the boundary of $w_i \dots w_j$ (either w_i or w_j). In the recursive case, if $[X, i, j]/[Y, k, l]$ is
 200 realizable then there exists a parse tree associated with it where $X \xrightarrow{*} w_i \dots w_{k-1} Y w_{l+1} \dots w_j$. Such
 201 a tree can be split by selecting a split vertex which induces recursive subproblems. If the chosen
 202 split vertex is the root X , there exists a rule $X \rightarrow AB$ such that A derives some sentential form
 203 $w_i \dots w_{k-1} Y w_{l+1} \dots p$ and B derives the string $w_{p+1} \dots w_j$ for some index $p \in [n]$. If the chosen split
 204 vertex is a non-root $Z \in \mathcal{N}$, then Z derives the sentential form $w_p \dots w_{k-1} Y w_{l+1} \dots w_q$ and X derives
 205 the sentential form $w_i \dots w_{p-1} Z w_{q+1} \dots w_j$ for some indices $p, q \in [n]$. ■

206

207

208

209 **Parallel algorithms for CFL recognition.** Lemmata 3.1 and 3.2 state that an item is realizable
 210 if it can be decomposed into realizable subproblems. Rather than enumerating all the possible
 211 decompositions sequentially, we will leverage parallelism to simultaneously compute the realizability
 212 of all the induced subproblems. The term *guessing* has been coined (Ruzzo, 1980) to denote the
 213 ability of a parallel model of computation to attend to a valid computation path given an unbounded
 214 set of possible computations. By analogy, we can *guess* which of the correct decompositions of an
 215 item is correct by leveraging parallelism, and then recursively verify the induced subproblems in
 216 parallel. This suggests natural parallel algorithms for checking realizability, which we present in
 217 Algs. 1 and 2.

216 **Algorithm 1** Determining if the item $[X, i, j]$ is realizable.

```

218 1. def SOLVE( $[X, i, j]$ ):
219 2.   if  $i = j$  :
220 3.     return  $X \rightarrow w_i \in \mathcal{P}$ 
221 4.   guess an integer  $x \in \{1, 2\}$ 
222 5.   if  $x = 1$  :
223 6.     guess a rule  $X \rightarrow YZ \in \mathcal{P}$  and  $k \in [n]$ 
224 7.     return SOLVE( $[Y, i, k - 1]$ )  $\wedge$  SOLVE( $[Z, k, j]$ )
225 8.   else
226 9.     guess an item  $[Y, k, l]$ 
227 10.    return SOLVE( $[X, i, j]/[Y, k, l]$ )  $\wedge$  SOLVE( $[Y, k, l]$ )
228
229
230
```

230 **Algorithm 2** Determining if the item $[X, i, j]/[Y, k, l]$ is realizable.

```

231 1. def SOLVE( $[X, i, j]/[Y, k, l]$ ):
232 2.   if  $k = i \wedge l = j - 1$  :
233 3.     return  $\exists Y, Z \in \mathcal{N}$  such that  $X \rightarrow YZ \in \mathcal{P} \wedge Z \rightarrow w_j \in \mathcal{P}$ 
234 4.   guess an integer  $x \in \{1, 2\}$ 
235 5.   if  $x = 1$  :
236 6.     guess a rule  $X \rightarrow AB \in \mathcal{P}$  and  $p \in [n]$ 
237 7.     return SOLVE( $[A, i, p - 1]/[Y, k, l]$ )  $\wedge$  SOLVE( $[B, p, j]$ )
238 8.   else
239 9.     guess an item  $[Z, p, q]$ 
240 10.    return SOLVE( $[X, i, j]/[Z, p, q]$ )  $\wedge$  SOLVE( $[Z, p, q]/[Y, k, l]$ )
241
242
243
```

244 Intuitively, the recursive function SOLVE defined in Algs. 1 and 2 computes the realizability of items.

245 **Theorem 3.2** (Correctness). *Given a CFG \mathcal{G} in CNF and $w \in \Sigma^*$ of length n , $\text{SOLVE}([S, 1, n]) = 1$ if and only if $w \in \mathbb{L}(\mathcal{G})$.*

246 *Proof.* By definition, $w \in \mathbb{L}(\mathcal{G})$ if and only if $[S, 1, n]$ is realizable. By Lemmata 3.1 and 3.2, the item $[S, 1, n]$ is realizable if and only if there exists a decomposition of $[S, 1, n]$ that respects Lemmata 3.1 and 3.2. SOLVE recursively guesses such decompositions, guaranteeing that we will compute a valid decomposition if it exists. \blacksquare

247 We now analyze the resources required to compute $\text{SOLVE}[S, 1, n]$, which is equivalent to testing
248 membership of the input string w in the given grammar \mathcal{G} . The recursive procedure induced by
249 SOLVE is based on a balanced decomposition of problems into subproblems of roughly equal size,
250 which intuitively leads to a $\log(n)$ -time procedure. Formally, we have the following well-known
251 theorem for decomposing trees:

252 **Theorem 3.3** (Jordan 1869). *Given a tree with n vertices, there exists a vertex whose removal
253 partitions the tree into two trees with each at most $n/2$ vertices.*

254 We rely on Thm. 3.3 to prove that Alg. 1 runs in a logarithmic number of recursive steps:

255 **Theorem 3.4.** *We can compute $\text{SOLVE}([S, 1, n])$ in $\log(n) + \mathcal{O}(1)$ recursive steps $\forall w \in \Sigma^*$ with
256 $|w| = n$.*

257 *Proof.* By Thm. 3.3, for any realizable item, there exists a balanced decomposition of the corresponding
258 parse tree into two trees of roughly equal size which can be represented by two items (the split is
259 at the root) or a slashed item and an item (the split is not at the root). Assuming we can process all
260 possible tree decompositions in parallel, we will necessarily guess the balanced one where subtrees
261 have at most $2n/2 + 1$ vertices (a full binary tree with n leaves does not have more than $2n$ vertices).
262 After i recursive steps, the current subtrees have at most $\frac{n}{2^{i-1}} + \mathcal{O}(1)$ vertices. Therefore, we will
263 solve all base cases after at most $\log(n) + \mathcal{O}(1)$ steps. \blacksquare

270 **Space complexity.** The bottleneck resides in solving an item $[X, i, j]/[Y, k, l]$, which occupies
 271 $\mathcal{O}(n^4)$ space, and guessing an item $[Z, p, q]$ that could decompose this problem, which itself occupies
 272 $\mathcal{O}(n^2)$ space, leading to a total space complexity of $\mathcal{O}(n^6)$.
 273

274 Combining both insights on time- and space-complexity, we can prove the following theorem:
 275

276 **Theorem 3.1.** *Given a CFL \mathbb{L} , there exists a transformer with both causally-masked and non-masked
 277 attention layers, $\mathcal{O}(\log(n))$ looping layers and $\mathcal{O}(n^6)$ padding tokens that recognizes \mathbb{L} . That is,
 278 $\text{CFL} \subseteq \text{mAHAT}_6^1 \subseteq \text{AHAT}_7^1$.*

279 *Proof intuition.* The construction implements Algs. 1 and 2 on a transformer. Intuitively, each item
 280 and possible decomposition is associated with a padding token. There are $\mathcal{O}(n^6)$ ways to enumerate
 281 items and a possible decomposition. We assume a three-value logic system, where each item is
 282 associated with a value in $\{0, 1, \perp\}$ to denote that the item is unrealizable (0), realizable (1) or not
 283 known yet to be realizable (\perp^2). Each padding token allocates space for this value. Intuitively,
 284 we will develop a construction such that padding tokens compute the information of whether their
 285 associated item is realizable w.r.t. the given decomposition. Initially, all padding tokens store \perp . In
 286 the initial block of layers, padding tokens associated with a base case item of the form $[A, i, i]$ can
 287 attend to symbol representations via an equality-check to verify whether the base case is valid, i.e.,
 288 $A \rightarrow w_i \in \mathcal{P}$. In the inductive step, padding tokens attend to the padding tokens associated with
 289 the decomposition via an equality-check. A feedforward network then either adds 1 to the residual
 290 stream if both sub-items are realizable, 0 if any of them is non-realizable, or \perp if realizability can
 291 not be determined at the current iteration. It takes $\log(n)$ looping layers to populate the values of all
 292 items in their respective padding tokens due to Thm. 3.3. Finally, we can check whether there exists a
 293 padding token associated with $[S, 1, n]$ that holds the value 1. Applying Lem. 2.1 yields inclusion in
 294 AHAT_7^1 . The detailed proof is in App. B.1. ■
 295

296 4 UNAMBIGUITY REDUCES PADDING REQUIREMENTS FOR RECOGNITION

297 §3 shows that $\log(n)$ -depth mAHATs with $\mathcal{O}(n^6)$ padding can recognize all CFLs. The large amount
 298 of padding is undesirable, but somewhat necessary—intuitively, an algorithm for recognizing an
 299 arbitrary CFL requires a large amount of padding because the grammar can be highly ambiguous.
 300 Guessing how to decompose an arbitrary item requires a substantial amount of space. Accordingly,
 301 we next study *unambiguous* CFLs and show that they require less padding by proving the following
 302 theorem.
 303

304 **Theorem 4.1.** *Let UCFL be the classes of unambiguous CFLs. Then $\text{UCFL} \subseteq \text{mAHAT}_3^2 \subseteq \text{AHAT}_4^2$.*

305 A CFL is **unambiguous** if there is at most one possible derivation (i.e, parse tree) for any string.
 306 Unambiguity is a natural CFL feature of general interest. Transformers struggle to parse ambiguous
 307 grammars (Khalighinejad et al., 2023) and struggle to process syntactically ambiguous natural
 308 language sentences (Liu et al., 2023). Moreover, modern parsers for programming languages such as
 309 LR parsers rely on deterministic (therefore unambiguous) CFLs to process inputs in linear time.
 310

311 This section first introduces an unambiguous CFG recognition algorithm with a tractable space
 312 complexity in $\log^2(n)$ -time. We then translate this algorithm into AHATs with a tractable amount of
 313 padding.
 314

315 4.1 A PATH SYSTEM FRAMEWORK FOR UNAMBIGUOUS CFL RECOGNITION

316 We formulate recognition of unambiguous CFLs as a **path system** problem. A path system consists
 317 of initial vertices that are associated with either the value 1 or 0, and a relation \mathcal{R} that formalizes
 318 how to connect the vertices. By associating base case items of the form $[A, i, i]$ to initial vertices,
 319 general items of the form $[A, i, j]$ to arbitrary vertices, and connecting vertices depending on the
 320 rules of the given grammar, we can compute the realizability of an item by finding a path between its
 321 associated vertices and a base node. We now present Chytíl et al. (1991)’s path system framework for
 322 recognizing unambiguous CNF CFGs and express it in AHATs.
 323

²We write \perp for ease of notation. Concretely, \perp can be encoded as any integer that is neither 0 nor 1.

We denote by \mathcal{V} a set of vertices, each associated with a tuple $[A, i, j]$. We denote by $\mathcal{T} \subseteq \mathcal{V}$ the **initial** set of vertices of the form $[A, i, i]$ such that $A \rightarrow w_i \in \mathcal{P}$. $\mathcal{R}(x, y, z): \mathcal{V}^3 \rightarrow \{0, 1\}$ is a function that relates how to connect the vertices, where $\mathcal{R}(x, y, z) = 1$ if and only if z is associated with some tuple $[A, i, j]$, x is associated with some tuple $[B, i, k]$, and y is associated with some tuple $[C, k, j]$ such that $A \rightarrow BC \in \mathcal{P}$. We denote by $\mathcal{C}(\mathbf{w}) \subseteq \mathcal{V}$ the smallest set containing \mathcal{T} such that if $x, y \in \mathcal{C}(\mathbf{w})$ and $\mathcal{R}(x, y, z) = 1$ then $z \in \mathcal{C}(\mathbf{w})$, i.e., $\mathcal{C}(\mathbf{w})$ is the closure of \mathcal{T} with respect to \mathcal{R} . One can intuitively think of $\mathcal{C}(\mathbf{w})$ as the set of realizable elements, and the recognition problem is thus equivalent to determining whether the vertex associated with $[S, 1, n]$ is in the set $\mathcal{C}(\mathbf{w})$.

Let us now describe how to compute $\mathcal{C}(\mathbf{w})$. Let $\mathcal{X} \subseteq \mathcal{V}$ be a set of **marked** vertices. A **dependency graph** with respect to \mathcal{X} , denoted $\text{DG}(\mathcal{X})$, is the directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where:

$$\mathcal{E} = \{(z, x) \mid z \notin \mathcal{X}, \mathcal{R}(x, y, z) = 1 \text{ or } \mathcal{R}(y, x, z) = 1 \text{ for some } y \in \mathcal{X}\} \quad (1)$$

Intuitively, assuming $\mathcal{X} \subseteq \mathcal{C}(\mathbf{w})$, the edge (z, x) can be interpreted as follows: $x \in \mathcal{C}(\mathbf{w})$ implies that $z \in \mathcal{C}(\mathbf{w})$. Precisely, (z, x) being an edge signals that there is some vertex y associated with a realizable item such that $\mathcal{R}(x, y, z) = 1$ or $\mathcal{R}(y, x, z) = 1$. Therefore, if x is also associated with a realizable item (i.e., is in the closure $\mathcal{C}(\mathbf{w})$), then z is a realizable item. The algorithm iteratively expands the known set of vertices to be associated with realizable items by computing the set of vertices that have a directed path to a marked node. We denote by $\text{REACH}(\mathcal{D})$ the vertices of the dependency graph \mathcal{G} that have a directed path to a marked vertex in \mathcal{D} . Chytíl et al. (1991)'s procedure to compute $\mathcal{C}(\mathbf{w})$ is described in Alg. 3.

Algorithm 3 Algorithm for computing $\mathcal{C}(\mathbf{w})$

```

1. def COMPUTE CLOSURE( $\mathbf{w}, \mathcal{G}$ ):
2.   initialize  $\mathcal{V} \leftarrow \{[A, i, j]\}$ 
3.   initialize  $\mathcal{T} \leftarrow \{[A, i, i] \mid A \rightarrow w_i \in \mathcal{P}\}$ 
4.    $\mathcal{X} \leftarrow \mathcal{T}$ 
5.   for  $\_$  in range  $\log(n)$  :
6.      $\mathcal{D} \leftarrow \text{DG}(\mathcal{X})$ 
7.      $\mathcal{X} \leftarrow \text{REACH}(\mathcal{D})$ 
8.   return  $\mathcal{X}$ 

```

formula, where leaf vertices are assigned 1 if they correspond to realizable items and non-leaf vertices are assigned the \vee operator. We rely on the following lemma to perform this procedure:

Lemma 4.1. *Let ψ be a variable-free Boolean formula. Assume ψ is represented in a transformer's residual stream as follows, where we consider the binary tree induced by ψ . For each leaf, there is a padding token that encodes its value (1 or 0). For each function node, there is a padding token that encodes its type (\wedge or \vee) and pointers to its input arguments. Then, we can compute the value of each subformula in $\mathcal{O}(\log(n))$ time on an input of length n .*

Proof intuition. Given the appropriate pointers, we implement Rytter (1985)'s parallel pebble game algorithm for evaluating Boolean formulas with $\mathcal{O}(\log(n))$ steps on transformers. Each vertex v allocates space in its residual stream for 1) a **VALUE** corresponding to the evaluation of v 's associated formula 2) a pointer to some descendant vertex **PTR** of v 3) a conditional function **COND F** : $\{0, 1\} \rightarrow \{0, 1\}$ based on the current vertex type (\wedge or \vee). The intuition of **PTR** is that if we know **PTR.VALUE**, we can evaluate the current node's value via the conditional function **COND F (PTR.VALUE)**. The procedure operates in parallel at each vertex by iterating three steps $\mathcal{O}(\log(n))$ times: activate, square, and pebble. Rytter (1985) shows that this algorithm correctly evaluates each subformula in $\mathcal{O}(\log(n))$ steps. The detailed proof is in App. B.2. ■

We can now show how to simulate Alg. 3's procedure on transformers for unambiguous CFLs with $\mathcal{O}(\log(n)^2)$ looping layers and $\mathcal{O}(n^3)$ padding tokens.

Theorem 4.1. *Let UCFL be the classes of unambiguous CFLs. Then $\text{UCFL} \subseteq \text{mAHAT}_3^2 \subseteq \text{AHAT}_4^2$.*

378 *Proof intuition.* We implement Alg. 3 on mAHATs . Each item $[A, i, j]$ (of which there are $\mathcal{O}(n^2)$)
 379 is assigned a padding token. For each item $[A, i, j]$, there are $\mathcal{O}(n)$ ways to decompose it using a
 380 split index $k \in [n]$. For every potential edge between vertices associated with $[A, i, j]$ and some
 381 $[B, i, k]$ (or $[B, k, j]$), we assign a padding token. As in Thm. 3.1, we assume a three-valued logic
 382 system where padding tokens for vertices are at any step assigned an element in $\{0, 1, \perp\}$, denoting
 383 non-realizability (0), realizability (1) or not yet known to be realizable (\perp). Initially, all padding
 384 tokens store \perp .

385 Initially, padding tokens for vertices can check whether they are associated with base case items of
 386 the form $[A, i, i]$. These padding tokens can add to their residual stream 1 (item is realizable) or 0
 387 (item is non-realizable) depending on if $A \rightarrow w_i \in \mathcal{P}$.

388 In the iterative case, each padding token for an edge associated with items $[A, i, j], [B, i, k]$ can first
 389 check whether there exists a rule $A \rightarrow BC$ and if so, add to the residual stream $[C, k+1, j]$. Crucially,
 390 there are finitely such items (proportional to $|\mathcal{N}|$ as the splitting index k is fixed). Padding token for
 391 edges can attend to padding tokens associated with $[C, k+1, j]$ and check whether any of them stores
 392 1, denoting realizability. In that case, the padding token associated with $[A, i, j], [B, i, k]$ signals that
 393 the edge $([A, i, j], [B, i, k])$ is now in the graph (following how we define edges in Eq. (1)). Padding
 394 tokens for vertices associated with items $[A, i, j]$ can therefore attend to padding tokens for edges
 395 associated with $[A, i, j], [B, i, k]$, which yields the dependency graph.

396 Crucially, due to unambiguity, for each vertex v , the subgraph induced by vertices reachable from v
 397 becomes a tree rooted at v . We then show how to binarize this tree. Reachability queries on a binary
 398 tree can be reduced to the evaluation of the induced Boolean formula (Chytil et al., 1991). We invoke
 399 Lem. 4.1 to evaluate Boolean formulas in $\log(n)$ steps. The detailed proof is in App. B.2. ■

401 4.2 UNAMBIGUOUS LINEAR CFLS REQUIRE LESS TIME AND SPACE

402 Finally, we show how **linearity** further reduces the resources needed by transformers to recognize
 403 unambiguous CFLs. A **linear** CFL is one recognized by a CFG where each rule is the form $A \rightarrow aB$,
 404 $A \rightarrow Ba$, or $A \rightarrow a$. While restricted, linear CFLs capture a wide range of features of context-
 405 freeness. For example, *balanced counting* can be modeled by the linear CFL $\mathbb{L} = \{a^n b^n \mid n \geq 0\}$,
 406 and *symmetry* can be modeled by the linear CFL $\mathbb{L} = \{ww^R \mid w \in \Sigma^*\}$.

407 We consider unambiguous linear³ CFLs (ULCFLs) and show they can be recognized by log-depth
 408 transformers with quadratic padding.

409 **Theorem 4.2.** $\text{ULCFL} \subseteq \text{mAHAT}_2^1 \subseteq \text{AHAT}_3^1$.

410
 411 *Proof.* We implement Alg. 3 on AHATs and show how linearity reduces the computational require-
 412 ments w.r.t. Thm. 4.1. We define \mathcal{V} and \mathcal{T} as in §4.1. Assuming linearity, there is an edge from v_1 to
 413 v_2 if and only if v_1 takes the form $[A, i, j]$, v_2 takes the form $[B, i+1, j]$ such that $A \rightarrow w_i B \in \mathcal{P}$
 414 (or the symmetric case). We first remark that we now have a *constant* number of outgoing edges
 415 for each node. Due to linearity, rules that spawn non-terminals are of the form $A \rightarrow wB$ or $A \rightarrow Bw$,
 416 and solving an item $[A, i, j]$ therefore reduces to solving items that aim to derive either $w_{i+1} \dots w_j$ or
 417 $w_i \dots w_{j-1}$. There are finitely many such items given $[A, i, j]$ as the indices are fixed. Therefore, the
 418 procedure can be implemented with $\mathcal{O}(n^2)$ padding tokens.

419 Moreover, because every production rule now necessarily spawns a terminal symbol, the full depen-
 420 dency graph can be constructed via $\text{DG}(\mathcal{T})$. If $A \rightarrow wB$ is a production rule used in the derivation
 421 of a string, then $[w, i, i] \in \mathcal{T}$ for some i , and $\mathcal{R}([w, i, i], [B, i+1, j], [A, i, j]) = 1$. Crucially, any
 422 production rule applied in the derivation of a string that reduces some item $[A, i, j]$ to another item
 423 $[B, i+1, j]$ leads to an edge between their associated items in the *initial* dependency graph $\text{DG}(\mathcal{T})$.
 424 Therefore, we can compute the realizability of all items with a single call to REACH on the initial
 425 dependency graph $\text{DG}(\mathcal{T})$, and $\log(n)$ looping layers then suffice to perform Alg. 3. ■

426
 427
 428
 429
 430
 431 ³There is a subtlety here: A CFL can be induced by both a non-linear unambiguous grammar and by a differ-
 432 ent linear, ambiguous grammar. Here we consider grammars that are *simultaneously* linear and unambiguous.

432

5 EXPERIMENTS

433
434 We conduct experiments to elicit the impact of looping when recognizing formal languages, and
435 provide more details on our experimental setup in App. C. We train transformer classifiers on CFLs
436 of varying degrees of complexity:
437

- **Boolean formula value problem (BFVP):** The set of variable-free Boolean formulas that evaluate to 1. This CFL is known to be complete for NC^1 (Buss, 1987), i.e., requires logarithmic time w.r.t. input length. We consider formulas in the standard *infix* notation (e.g., $1 \vee 0$ is in infix notation) as well as *postfix* notation (e.g., $1 0 \vee$ is in postfix notation). Parallel algorithms for BFVP typically rely on postfix notation (Buss, 1987; Buss et al., 1992).
- **Palindrome:** The language $\mathbb{L} = \{ww^R \mid w \in \Sigma^*\}$ for some alphabet Σ . We focus on a binary alphabet. This language is linear unambiguous and non-deterministic. Prior work has shown that fixed-depth transformers with hard attention can recognize this language (Hao et al., 2022).
- **Marked Palindrome:** This language simplifies Palindrome by extending strings with a marker between w and w^R , which delimits at which index we reverse the string. In other words, $\mathbb{L} = \{w\#w^R \mid w \in \Sigma^*\}$ where $\# \notin \Sigma$. This language is linear deterministic.
- **Dyck:** The language of nested strings of parentheses of k types, which we denote by $D(k)$. We consider $D(1)$ and $D(2)$. This language is non-linear and deterministic. Fixed-depth transformers can recognize $D(k)$ for any k (Weiss et al., 2021).

451 These languages vary in complexity, allowing us to test transformers’ ability to learn CFL recogni-
452 tion constructions for languages of different difficulties. In particular, while Palindrome and $D(k)$
453 languages can in principle be recognized by constant-depth transformers, BFVP requires growing
454 depth (i.e., log-depth), assuming $TC^0 \neq NC^1$. This suggests that the performance of log-depth vs.
455 constant-depth transformers on BFVP is a good measure of whether transformers can utilize the
456 extra expressivity of log-depth when it is required. Our results are presented in Tab. 2.
457458 Table 2: Mean accuracy (\pm standard deviation) by language and transformer type across seeds.
459

460 Language	461 Test accuracy on in-distribution strings		462 Test accuracy on out-of-distribution strings	
	463 Fixed-depth	464 $\log(n)$ looping	465 Fixed-depth	466 $\log(n)$ looping
467 BFVP	0.97 \pm 0.01	0.98 \pm 0.00	0.88 \pm 0.01	0.91 \pm 0.01
468 BFVP (postfix)	0.95 \pm 0.01	0.98 \pm 0.00	0.87 \pm 0.01	0.91 \pm 0.01
469 Palindrome	0.94 \pm 0.01	0.93 \pm 0.01	0.79 \pm 0.03	0.72 \pm 0.03
470 Marked palindrome	0.97 \pm 0.01	0.98 \pm 0.01	0.59 \pm 0.19	0.66 \pm 0.18
471 D(1)	0.98 \pm 0.00	0.98 \pm 0.00	0.94 \pm 0.02	0.93 \pm 0.01
472 D(2)	0.98 \pm 0.02	0.99 \pm 0.00	0.83 \pm 0.08	0.90 \pm 0.08

473 **Results.** Despite our theoretical analysis, the difference in performance between looped- and non-
474 looped transformers is not stark, which can be explained by the fact that most of the languages we test
475 transformers on have fixed-depth solutions. We conjecture looping should not offer a substantial gain
476 in performance for problems where fixed-depth solutions suffice. Moreover, we remark that for both
477 variants of BFVP, looping leads to slight improvements in in-distribution (1-3%) and generalization
478 (3-4%) accuracy. This result is consistent with the fact that BFVP is known to require log-depth.
479 For Palindrome and $D(1)$, looping does not improve accuracy, which is supported by the fact that
480 these languages already have fixed-size solutions (Hao et al., 2022; Weiss et al., 2021). For $D(2)$ and
481 Marked Palindrome, looping seems to improve generalization even though these languages also have
482 constant-depth transformer constructions.483

6 DISCUSSION AND CONCLUSION

484 We show that transformers with log-depth can recognize general CFLs if they can use padding
485 tokens (Merrill & Sabharwal, 2025b). In addition, we characterize unambiguity and linearity as CFL
486 features that can reduce the amount of padding needed by transformers for recognition. These results
487 reveal one way that transformers with limited depth can recognize CFLs and predict ambiguity in
488 language could be a hurdle for transformers to process, as suggested in previous empirical work

(Khalighinejad et al., 2023; Liu et al., 2023). Although it is not possible to improve our log-depth recognition algorithm to fixed depth unless $\text{TC}^0 = \text{NC}^1$, our padding bounds are not known to be tight. Therefore, future work could find more padding-efficient transformer constructions for recognizing general CFLs, or subclasses thereof. Additionally, it would be interesting to consider the psycholinguistic implications of our results for comparing how humans and LMs process language and syntax. It is believed that CFLs are too weak to model natural language (Shieber, 1988), and that mildly context-sensitive formalisms such as tree-adjoining grammars (TAGs) are a better prospect to model natural language (Joshi, 1985; Bordihn, 2004). Future work could therefore focus on analyzing transformers' ability to recognize languages induced by TAGs (TALs). Finally, because expressivity results cannot fully predict the empirical abilities of transformers, recent learnability results (Hahn & Rofin, 2024) are painting a more complete picture of the abilities and limitations of transformers. We therefore encourage future work to investigate theoretically the conditions under which a transformer can learn to process syntax on out-of-distribution inputs.

REFERENCES

Anonymous. Empirically testing expressivity bounds for neural network architectures. 2025.

David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure in neural language models, 2022. URL <https://arxiv.org/abs/2204.06201>.

David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of $\text{nc}1$. *J. ACM*, 35(4):941–952, October 1988. ISSN 0004-5411. doi: 10.1145/48014.63138. URL <https://doi.org/10.1145/48014.63138>.

Henning Bordihn. *Mildly Context-Sensitive Grammars*, pp. 163–173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-39886-8. doi: 10.1007/978-3-540-39886-8_8. URL https://doi.org/10.1007/978-3-540-39886-8_8.

S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evaluation. *SIAM Journal on Computing*, 21(4):755–780, 1992. doi: 10.1137/0221046. URL <https://doi.org/10.1137/0221046>.

S. R. Buss. The boolean formula value problem is in alogtime. In *Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing*, STOC '87, pp. 123–131, New York, NY, USA, 1987. Association for Computing Machinery. ISBN 0897912217. doi: 10.1145/28395.28409. URL <https://doi.org/10.1145/28395.28409>.

David Chiang. Transformers in uniform tc^0 , 2025. URL <https://arxiv.org/abs/2409.13629>.

Michal Chtyil, Maxime Crochemore, Burkhard Monien, and Wojciech Rytter. On the parallel recognition of unambiguous context-free languages. *Theoretical Computer Science*, 81(2):311–316, 1991. ISSN 0304-3975. doi: [https://doi.org/10.1016/0304-3975\(91\)90199-C](https://doi.org/10.1016/0304-3975(91)90199-C). URL <https://www.sciencedirect.com/science/article/pii/030439759190199C>.

John Cocke. *Programming languages and their compilers: Preliminary notes*. New York University, USA, 1969. ISBN B0007F4UOA.

Jay Earley. An efficient context-free parsing algorithm. *Commun. ACM*, 13(2):94–102, February 1970. ISSN 0001-0782. doi: 10.1145/362007.362035. URL <https://doi.org/10.1145/362007.362035>.

Saul Gorn. *Explicit Definitions and Linguistic Dominoes*, pp. 77–115. 1967. doi: 10.3138/9781487591458.006. URL <https://utppublishing.com/doi/abs/10.3138/9781487591458.006>.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14973–15008, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.800. URL <https://aclanthology.org/2024.acl-long.800/>.

540 Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
 541 transformers: Perspectives from circuit complexity, 2022. URL <https://arxiv.org/abs/2204.06618>.

542

543 John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
 544 sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019*
 545 *Conference of the North American Chapter of the Association for Computational Linguistics: Human*
 546 *Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4129–4138, Minneapolis,
 547 Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
 548 URL <https://aclanthology.org/N19-1419/>.

549

550 Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
 551 models for code generation, 2024. URL <https://arxiv.org/abs/2406.00515>.

552

553 Camille Jordan. Sur les assemblages de lignes. *Journal für die reine und angewandte Mathematik*,
 554 70:185–190, 1869. URL <http://eudml.org/doc/148084>.

555

556 Aravind K. Joshi. *Tree adjoining grammars: How much context-sensitivity is required to provide*
 557 *reasonable structural descriptions?*, pp. 206–250. Studies in Natural Language Processing.
 558 Cambridge University Press, 1985.

559

560 Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free languages.
 561 1965. URL <https://api.semanticscholar.org/CorpusID:61491815>.

562

563 Ghazal Khalighinejad, Ollie Liu, and Sam Wiseman. Approximating CKY with transform-
 564 ers. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for*
 565 *Computational Linguistics: EMNLP 2023*, pp. 14016–14030, Singapore, December 2023. As-
 566 sociation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.934. URL
 567 <https://aclanthology.org/2023.findings-emnlp.934/>.

568

569 Klaus-Jörn Lange and Peter Rossmanith. Characterizing unambiguous augmented pushdown au-
 570 tomata by circuits. In Branislav Rovan (ed.), *Mathematical Foundations of Computer Science 1990*,
 571 pp. 399–406, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. ISBN 978-3-540-47185-1.

572

573 Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha
 574 Swayamdipta, Noah A. Smith, and Yejin Choi. We’re afraid language models aren’t model-
 575 ing ambiguity, 2023. URL <https://arxiv.org/abs/2304.14399>.

576

577 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL <https://arxiv.org/abs/1711.05101>.

578

579 William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In
 580 *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 581 NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

582

583 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought,
 584 2024. URL <https://arxiv.org/abs/2310.07923>.

585

586 William Merrill and Ashish Sabharwal. A little depth goes a long way: The expressive power of
 587 log-depth transformers, 2025a. URL <https://arxiv.org/abs/2503.03961>.

588

589 William Merrill and Ashish Sabharwal. Exact expressive power of transformers with padding, 2025b.
 590 URL <https://arxiv.org/abs/2505.18948>.

591

592 William Merrill, Ashish Sabharwal, and Noah A. Smith. Saturated transformers are constant-depth
 593 threshold circuits. *Transactions of the Association for Computational Linguistics*, 10:843–856,
 594 2022. doi: 10.1162/tacl_a_00493. URL <https://aclanthology.org/2022.tacl-1.49/>.

595

596 Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li, Wanxiang
 597 Che, and Philip S. Yu. Large language models meet nlp: A survey, 2024. URL <https://arxiv.org/abs/2405.12819>.

594 Peter Rossmanith and Wojciech Rytter. Observations on log (n) time parallel recognition of
 595 unambiguous cfl's. *Information Processing Letters*, 44(5):267–272, 1992. ISSN 0020-0190.
 596 doi: [https://doi.org/10.1016/0020-0190\(92\)90212-E](https://doi.org/10.1016/0020-0190(92)90212-E). URL <https://www.sciencedirect.com/science/article/pii/002001909290212E>.

598 Walter L. Ruzzo. Tree-size bounded alternation. *Journal of Computer and System Sciences*, 21(2):
 599 218–235, 1980. ISSN 0022-0000. doi: [https://doi.org/10.1016/0022-0000\(80\)90036-7](https://doi.org/10.1016/0022-0000(80)90036-7). URL <https://www.sciencedirect.com/science/article/pii/0022000080900367>.

601 Wojciech Rytter. The complexity of two-way pushdown automata and recursive programs. In
 602 Alberto Apostolico and Zvi Galil (eds.), *Combinatorial Algorithms on Words*, pp. 341–356, Berlin,
 603 Heidelberg, 1985. Springer Berlin Heidelberg. URL https://link.springer.com/chapter/10.1007/978-3-642-82456-2_24.

605 Stuart M. Shieber. *Evidence Against the Context-Freeness of Natural Language*, pp. 79–89. Springer
 606 Netherlands, Dordrecht, 1988. ISBN 978-94-009-2727-8. doi: 10.1007/978-94-009-2727-8_4.
 608 URL https://doi.org/10.1007/978-94-009-2727-8_4.

609 Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits, 2023.
 610 URL <https://arxiv.org/abs/2308.03212>.

611 Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers, 2021. URL <https://arxiv.org/abs/2106.06981>.

614 Andy Yang, Christopher Watson, Anton Xue, Satwik Bhattacharya, Jose Llarena, William Merrill,
 615 Emile Dos Santos Ferreira, Anej Svetec, and David Chiang. The transformer cookbook, 2025. URL
 616 <https://arxiv.org/abs/2510.00368>.

617 Daniel H. Younger. Recognition and parsing of context-free languages in time n^3 . *Information and Control*, 10(2):189–208, 1967. ISSN 0019-9958. doi: [https://doi.org/10.1016/S0019-9958\(67\)80007-X](https://doi.org/10.1016/S0019-9958(67)80007-X). URL <https://www.sciencedirect.com/science/article/pii/S001999586780007X>.

621 Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
 622 predicting the masked word? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings
 623 of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 16513–16542,
 624 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 625 emnlp-main.1029. URL <https://aclanthology.org/2023.emnlp-main.1029/>.

627

A EXTENDED BACKGROUND

A.1 TRANSFORMER MODELS

We introduce in this section our idealization of the transformer architecture.

A.1.1 FIXED-SIZE TRANSFORMERS

An L -layer **transformer** of **constant width**⁴ D is a mapping $\mathsf{T}: \Sigma^* \rightarrow (\mathbb{R}^D)^*$:

$$\mathsf{T} \stackrel{\text{def}}{=} \mathcal{L}^{(L)} \circ \dots \circ \mathcal{L}^{(1)} \circ \text{embed} \quad (2)$$

The **input encoding function** $\text{embed}: \Sigma^* \rightarrow (\mathbb{R}^D)^*$ applies an injective position-wise embedding function to each symbol in the input string w . We use **BOS** and **EOS** symbols, distinct symbols that are placed at the beginning and end of every input string, respectively.

$\mathcal{L}^{(\ell)}$ for $\ell \in [L]$ denotes a **transformer layer**—a mapping $\mathcal{L}^{(\ell)}: (\mathbb{R}^D)^* \rightarrow (\mathbb{R}^D)^*$ that updates the symbol representations. The components of a transformer layer are the **layer normalization** LN , the **attention layer** $f_{\text{att}}^{(\ell)}$ and the **feedforward network** $\mathbf{F}^{(\ell)}$. Concretely:

$$\mathcal{L}^{(\ell)} \stackrel{\text{def}}{=} \mathbf{F}^{(\ell)} \circ f_{\text{att}}^{(\ell)} \circ \text{LN}^{(\ell)} \quad (3)$$

⁴To guarantee the transformer width is constant while the number of layers grows with input length, we recall transformer layers can reset intermediate values in looping layers (Merrill & Sabharwal, 2025a).

648 We recall layer-normalization maps a vector $\mathbf{x} \in \mathbb{R}^n$ of some dimension n to $\frac{\mathbf{x}'}{\|\mathbf{x}'\|}$ where $\mathbf{x}' \stackrel{\text{def}}{=} \mathbf{x} - \frac{\sum_{x_i \in \mathbf{x}} x_i}{n}$. We assume **multi-pre-norm** (Merrill & Sabharwal, 2024). In standard pre-norm, we apply a layer-normalization to the entire hidden state of each symbol. In multi-pre-norm, we allow each sublayer to take k different projections of its input apply layer-norm to each and concatenate. Crucially, multi-pre-norm allows us to partition the hidden state and normalize disjoint subsets of thereof, which we will rely on in our proofs.

655 $\mathbf{F}^{(\ell)} : (\mathbb{R}^D)^* \rightarrow (\mathbb{R}^D)^*$ is a position-wise function that applies the same feedforward network to
656 every symbol of the sequence. It is parametrized by weight matrices of the form $\mathbf{W} \in \mathbb{R}^{m \times D}$ and
657 $\mathbf{U} \in \mathbb{R}^{D \times m}$. A feedforward network $\mathbf{F}^{(\ell)}$ can nest functions of the form $U\text{ReLU}(\mathbf{W}\mathbf{z})$ where
658 $\mathbf{z} \in \mathbb{R}^D$ is an intermediate value.

659 The **attention mechanism** is defined by the function $\mathbf{f}_{\text{att}}^{(\ell)} : (\mathbb{R}^D)^* \rightarrow (\mathbb{R}^D)^*$. We denote by $\mathbf{k}_i^{(\ell)}$,
660 $\mathbf{q}_i^{(\ell)}$, $\mathbf{v}_i^{(\ell)}$ the key, query and value vectors, respectively, for symbol i at layer ℓ . $\mathbf{f}_{\text{att}}^{(\ell)}$ is defined as
661 follows:

$$\mathbf{f}_{\text{att}}^{(\ell)}((x_1, \dots, x_T)) \stackrel{\text{def}}{=} (y_1, \dots, y_T) \quad (4a)$$

$$y_i \stackrel{\text{def}}{=} x_i + \sum_{i' \in m(i)} s_{i'} \mathbf{v}_{i'}^{(\ell)} \quad (4b)$$

$$s = \text{proj}(\{\text{score}(\mathbf{k}_{i'}^{(\ell)}, \mathbf{q}_i^{(\ell)})\}) \quad (4c)$$

662 $m(i)$ is a set that defines the **masking** used by the transformer. For instance, $m(i) = \{i' \mid i' < i\}$
663 refers to strict causal masking and $m(i) = [|w|]$ refers to no masking. **score** is a scoring function
664 that maps two vectors of the same size to a scalar. Typically, the dot-product score is used with
665 $\text{score}(x_1, x_2) \stackrel{\text{def}}{=} \langle x_1, x_2 \rangle$.

666 Throughout layers, the hidden state y_i of a symbol at position i continuously evolves as it cumulatively
667 adds up the outputs of the attention mechanism. We call this cumulative sum y_i over layers the
668 **residual stream** at i .

669 proj is a projection function that normalizes the scores into weights for the symbol values. Following
670 previous work, we assume an **averaging hard attention** transformer (AHAT), which concentrates the
671 attention weights on the symbols that maximize the attention score (Merrill et al., 2022; Strobl, 2023).
672 Formally, we have $\text{proj} = \text{hardmax}$:

673 **Definition A.1.** *Averaging hard attention* is computed with the hardmax projection function:

$$\text{hardmax}(\mathbf{x})_d \stackrel{\text{def}}{=} \begin{cases} \frac{1}{m} & \text{if } d \in \text{argmax}(\mathbf{x}) \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

674 for $d \in [D]$, where $\mathbf{x} \in \mathbb{R}^D$ and $m \stackrel{\text{def}}{=} |\text{argmax}(\mathbf{x})|$ is the cardinality of the argmax set.

675 **Recognition.** A transformer is a vector-valued function. To link this to language recognition, we
676 use the representations computed by a transformer for binary classification of strings. We denote
677 by $\mathbf{x}_{\text{EOS}}^L$ the hidden state of EOS at the end of the forward pass of \mathbf{T} . Typically, string recognition is
678 based on $\mathbf{x}_{\text{EOS}}^L$ as EOS is the only symbol that is able to access information about every single symbol
679 throughout all (assuming causal masking). This allows us to define a transformer’s language based
680 on a linear classifier:

$$\mathbb{L}(\mathbf{T}) \stackrel{\text{def}}{=} \{\mathbf{w} \in \Sigma^* \mid \boldsymbol{\theta}^\top \mathbf{x}_{\text{EOS}}^L > 0\}. \quad (6)$$

681 **Precision.** Following previous work (Merrill & Sabharwal, 2025b; 2024; 2023), we assume log-
682 precision transformers, i.e., we allow the transformer to manipulate values that can be represented
683 with $\mathcal{O}(\log(n))$ bits for an input of length n . It is a minimally extended idealization that enables the
684 transformer to store indices and perform sums over an unbounded number of symbols, two crucial
685 capabilities for our constructions.

686 A.1.2 LAYER-NORM HASH

687 We will often use the **layer-norm hash** building block (Merrill & Sabharwal, 2024). It is particularly
688 useful for equality checks between values across different symbols, especially with a potentially
689 unbounded number of queries and keys.

702 **Definition A.2** (Merrill & Sabharwal, 2024). *Given a scalar $z \in \mathbb{R}$, its **layer-norm hash** is $\phi(z) \stackrel{\text{def}}{=} \langle z, 1, -z, -1 \rangle / \sqrt{z^2 + 1}$.*

705 Layer-norm hash is scale invariant, and $\phi(q) \cdot \phi(k) = 1$ if and only if $q = k$. In other words, the
 706 inner product of scalars q and k , even if computed at different positions i and j , respectively, allows
 707 us to check for the equality of q and k . Layer-norm hash therefore allows us to perform equality
 708 checks over elements of residual streams at different positions.

710 B TRANSFORMER CONSTRUCTIONS PROOFS

712 In our constructions, we leverage padding tokens to associate them with distinct objects. For example,
 713 when computing the realizability of items in Alg. 1 and Alg. 2 on AHATs, we will associate each item
 714 with a padding token. To this extent, we introduce a novel theoretical gadget implementable by AHATs
 715 that enables a padding token at some position i to compute the encoding of its associated items from
 716 the unique position i . We formalize this statement in the following lemma:

717 **Lemma B.1** (Converting a padding token position into a binary representation). *Let T be a $\mathcal{O}(\mathcal{P}(n))$ -
 718 padded transformer. Let $\mathcal{S} = \mathcal{S}_1 \times \mathcal{S}_1 \dots \mathcal{S}_m$ be some set such that its elements can be represented
 719 with $\mathcal{O}(\log(\mathcal{P}(n)))$ bits. Then, in a constant number of layers, each padding token can add to their
 720 residual stream the encoding of a distinct element of \mathcal{S} .*

721 *Proof.* Firstly, a padding token at position i can add to the residual stream $\phi(i)$ with one causally-
 722 masked attention layer by uniformly attending over the strict left context and setting as value
 723 $1[i = 0]$ (Merrill & Sabharwal, 2024).

725 Each padding token is distinguished by its unique position. We will rely on this fact to unpack bits of
 726 the binary representation of $\phi(i)$ to store the encoding of a *distinct* element of \mathcal{S} .

727 Recall AHATs can compute Euclidean divisions and modulo at some position i for integers smaller
 728 than i in a constant number of layers (Merrill & Sabharwal, 2025a). We leverage this theoretical
 729 gadget to partition the binary representation of $\phi(i)$ into an element of $\mathcal{S} = \mathcal{S}_1 \times \mathcal{S}_1 \dots \mathcal{S}_m$. As an
 730 example, suppose $\mathcal{S}_1 = [n]$, and s_1 is some index in \mathcal{S}_1 . s_1 can then be written with $\log(n)$ bits. We
 731 can extract s_1 from $\phi(i)$ by considering the binary representation of the latter and extracting the first
 732 $\log(n)$ bits or equivalently, computing $\phi(i) \bmod n$. To add to the residual stream the next element
 733 $s_2 \in \mathcal{S}_2$, we can clear out the first $\log(n)$ bits of $\phi(i)$ by dividing $\phi(i)$ by n . This example illustrates
 734 how we can extract from $\phi(i)$ an element of \mathcal{S} : we iteratively 1) mask the first $\log(|\mathcal{S}_i|)$ bits from the
 735 least significant bit to extract an element of \mathcal{S}_i and 2) shift the binary representation of $\phi(i)$ towards
 736 the least significant bit to then extract the following element in \mathcal{S}_{i+1} . ■

737 B.1 GENERAL CFL RECOGNITION ON TRANSFORMERS

739 **Theorem 3.1.** *Given a CFL \mathbb{L} , there exists a transformer with both causally-masked and non-masked
 740 attention layers, $\mathcal{O}(\log(n))$ looping layers and $\mathcal{O}(n^6)$ padding tokens that recognizes \mathbb{L} . That is,
 741 CFL $\subseteq \text{mAHAT}_6^1 \subseteq \text{AHAT}_7^1$.*

743 *Proof.* We store padding tokens for each possible item (of the form $[\mathbf{X}, i, j]$ or $[\mathbf{X}, i, j]/[\mathbf{Y}, k, l]$) and
 744 each possible way to decompose that item. There are $\mathcal{O}(n^6)$ such tokens: In the worst case, we are
 745 solving an item $[\mathbf{X}, i, j]/[\mathbf{Y}, k, l]$ and are guessing an item $[\mathbf{Z}, p, q]$ that decomposes that problem.
 746 Intuitively, if a padding token aims to solve the item $[\mathbf{X}, i, j]$ and holds as decomposition $[\mathbf{Y}, k, l]$, we
 747 attend to the padding tokens which solve $[\mathbf{X}, i, j]/[\mathbf{Y}, k, l]$ and $[\mathbf{Y}, k, l]$. Due to Thm. 3.3, if $[\mathbf{S}, 1, n]$
 748 is realizable then there exists a padding token with associated item $[\mathbf{S}, 1, n]$ such that it will store 1
 749 (denoting realizability) in its residual stream after $\mathcal{O}(\log(n))$ steps.

750 We firstly detail how each padding token can add to their residual stream the encodings of their
 751 associated item and subsequent decomposition. A padding token at position i can add to their residual
 752 stream $\phi(i)$ with one causally-masked attention layer by attending to their strict left context (Merrill &
 753 Sabharwal, 2024). We define the set $\mathcal{S} = \mathcal{S}_1 \times \dots \mathcal{S}_m$ as the set of all possible item / decomposition
 754 combinations. For instance, $([\mathbf{X}, i, j], [\mathbf{Y}, k, l])$ is an element of this set, where we will decompose
 755 $[\mathbf{X}, i, j]$ into $[\mathbf{X}, i, j]/[\mathbf{Y}, k, l]$ and $[\mathbf{Y}, k, l]$. \mathcal{S}_1 could contain a set of non-terminals in \mathcal{N} , \mathcal{S}_2 could
 756 contain a set of indices in $[n]$, so on and so forth. Finally, we leverage Lem. B.1 to add the encodings

756 of these elements in the residual stream. For each padding token we can therefore store its associated
 757 item and decomposition.

758 We will now detail how to compute the realizability of items associated with these padding tokens.
 759 We consider items of the form $[X, i, j]$, solving items of the form $[X, i, j]/[Y, k, l]$ follows the same
 760 idea.
 761

762 Padding tokens allocate space for an element of $\{0, 1, \perp\}$, which describes whether the associated
 763 item is non-realizable (0), realizable (1), or not known yet to be realizable (\perp). Padding tokens
 764 initially all store \perp .

765
 766 **Base case:** Items of the form $[X, i, j]$ are a base case item if $i = j$. A feedforward network can for
 767 each padding token associated with some $[X, i, j]$ check that $i = j$ by adding $i - j$ to the residual
 768 stream. With an attention layer, we can then retrieve and add to the residual stream the encoding of
 769 the symbol w_i for a given base case item $[X, i, i]$ as follows. A symbol representation at position i
 770 can add to its residual stream $\phi(i)$ by uniformly attending with a causally-masked attention layer to
 771 all symbol representations in the strict left context (Merrill & Sabharwal, 2024). A padding token
 772 associated with $[X, i, i]$ also stores $\phi(i)$. Therefore, via an equality-check via dot product, padding
 773 tokens can attend to relevant symbol representations by setting as value the one-hot encoding of the
 774 symbol $\llbracket w_i \rrbracket$. Finally, a feedforward network can add to the residual stream 1 if $X \rightarrow w_i$ is a valid
 775 rule and otherwise 0: A mapping between two finite sets $\mathcal{N} \times \Sigma \rightarrow \{0, 1\}$ can be computed by a
 776 feedforward network.
 777

778 **Induction step:** Recall a padding token stores 1) an item to solve (for instance, $[X, i, j]$) and 2) a
 779 set of objects that enable us to decompose that item (for instance, $[Y, k, l]$). Given $[X, i, j]$, $[Y, k, l]$,
 780 a feedforward network adds the encodings of $[X, i, j]/[Y, k, l]$ and $[Y, k, l]$ to the residual stream.
 781 Otherwise, if a padding token is associated with $[X, i, j]$, $X \rightarrow YZ$ and k , we add $[Y, i, k - 1]$ and
 782 $[Z, k, j]$ to the residual stream via a feedforward network. In the latter case, a feedforward network
 783 can also ensure the rule $X \rightarrow YZ$ is in the grammar, and store 0 in the residual stream (denoting
 784 non-realizability) if the rule is not in the grammar.

785 Finally, with one attention layer and a feedforward network, we can attend to all padding tokens that
 786 aim to solve the first subproblem ($[X, i, j]/[Y, k, l]$) and copy the integer in the allocated cell for
 787 realizability. We also perform the same procedure for the second subproblem to solve.

788 We compute the realizability of the current item via an extension of standard Boolean logic (Tab. 3)
 789 to handle the case where padding tokens have not yet computed the realizability of their associated
 790 item. We do not elicit the standard rules of propositional logic for brevity. Crucially, a feedforward
 791

P	Q	$P \wedge Q$	$P \vee Q$
1	\perp	\perp	1
\perp	1	\perp	1
0	\perp	0	\perp
\perp	0	0	\perp
\perp	\perp	\perp	\perp

799 Table 3: Truth table for a three-valued logic
 800 that handles propositions with unknown truth value.
 801

802 network can compute this mapping as it is between two finite sets.
 803

804 After at most $\log(n)$ steps, some padding token aiming to solve an item $[A, i, j]$ will necessarily store
 805 1 if and only if $[A, i, j]$ is realizable: There exists some balanced decomposition represented by two
 806 padding tokens that we can attend to and store the realizability of their associated items.
 807

808 **Recognition step:** The EOS token can uniformly attend to all padding tokens that encode the item
 809 $[S, 1, n]$ (we can add $S, 1$ and n to the residual stream beforehand) item and ensure one of them holds
 1, denoting realizability. \blacksquare
 810

810 B.2 UNAMBIGUOUS CFL RECOGNITION ON TRANSFORMERS
811

812 **Lemma 4.1.** *Let ψ be a variable-free Boolean formula. Assume ψ is represented in a transformer’s
813 residual stream as follows, where we consider the binary tree induced by ψ . For each leaf, there is a
814 padding token that encodes its value (1 or 0). For each function node, there is a padding token that
815 encodes its type (\wedge or \vee) and pointers to its input arguments. Then, we can compute the value of
816 each subformula in $\mathcal{O}(\log(n))$ time on an input of length n .*

817 *Proof.* We will implement Rytter (1985)’s parallel pebble game algorithm for evaluating Boolean
818 formulas in $\mathcal{O}(\log(n))$ steps. We first formalize different objects we associate with a node. Recall
819 every vertex v in the binary tree induced by ψ is represented by some padding token which stores
820 pointers to its input arguments. For the padding token associated with vertex v , we allocate space for
821 the following objects:

- 823 • VALUE is the result of evaluating the formula associated with v .
- 825 • PTR is a pointer to a vertex in the computation tree. Initially, all padding tokens store a
826 pointer to themselves. Intuitively, if the value of PTR is known, we can compute the value of
827 the formula associated with v .
- 828 • CONDf : $\{0, 1\} \rightarrow \{0, 1\}$ is a conditional function that relates PTR ’s value to v ’s value with
829 $v.\text{VALUE} = \text{CONDf}(\text{PTR}.\text{VALUE})$.

831 The parallel pebbling game consists of three steps which are repeated $\mathcal{O}(\log(n))$ times: activate,
832 square and pebble. We introduce each operation and detail how to perform them on AHATs.

834 **activate**: Recall that v ’s padding token stores pointers to its input arguments v_1 and v_2 . If the
835 value of v_1 is known, PTR is set to v_2 (and vice-versa). v ’s padding token can attend to v_1 ’s and v_2 ’s
836 padding tokens via an equality-check and copy $v_1.\text{VALUE}$ and $v_2.\text{VALUE}$. Suppose that v_1 ’s value
837 is known (the symmetric argument with v_2 is the same). We will detail how to define v ’s CONDf
838 depending on v_1 ’s value and v ’s function type. For instance, if v ’s function type is \wedge and v_1 is known
839 to evaluate to 1, we know v ’s value is exactly $\text{PTR}.\text{VALUE}$, and therefore we define the conditional
840 function as $\text{CONDf}(x) = x \forall x \in \{0, 1\}$. We detail all the distinct cases in the following table.

v ’s function type	$v_1.\text{VALUE}$	conditional function type
\vee	1	$\text{CONDf}(x) = 1 \forall x \in \{0, 1\}$
\vee	0	$\text{CONDf}(x) = x \forall x \in \{0, 1\}$
\wedge	1	$\text{CONDf}(x) = x \forall x \in \{0, 1\}$
\wedge	0	$\text{CONDf}(x) = 0 \forall x \in \{0, 1\}$

848 Table 4: Defining v ’s relation to PTR ’s value depending on $v_1.\text{VALUE}$ and v ’s function type.
849

850 Feedforward networks are able to compute conditional functions (Yang et al., 2025). Therefore, a
851 feedforward network can add to v ’s residual stream a pointer to PTR , 0 or 1 depending on the cases
852 presented in App. B.2.

853 **square**: We then compute the one-step closure of ACTIVATE. Let $v.\text{PTR} = v'$ and $v'.\text{PTR} = v''$. We
854 first update $v.\text{PTR}$ with $v'.\text{PTR} = v''$ by having v ’s padding token attend to v' ’s padding token and
855 copy $v'.\text{PTR}$. Furthermore, by copying v' ’s CONDf via another attention layer, a feedforward network
856 can compose the conditional functions of v and v' .

857 **pebble**: Finally, we evaluate $v.\text{VALUE}$ at the current iteration by setting $v.\text{VALUE} = \text{CONDf}(v.\text{PTR}.\text{VALUE})$ via another feedforward network.

859 We refer to Rytter (1985) for the original presentation of this algorithm and the proof of the $\mathcal{O}(\log(n))$
860 time bound. ■

863 **Theorem 4.1.** *Let UCFL be the classes of unambiguous CFLs. Then $\text{UCFL} \subseteq \text{mAHAT}_3^2 \subseteq \text{AHAT}_4^2$.*

864 *Proof.* Each item $[A, i, j]$ is associated with a padding token. Each potential edge between vertices
 865 representing items $[A, i, j], [B, i, k]$ is associated with a padding token. There are $\mathcal{O}(n^3)$ such padding
 866 tokens. We leverage Lem. B.1 to enable padding tokens to add to their residual stream the encodings
 867 of their associated items from $\phi(i)$, the layer-norm hash of their position i .

868 Each padding token for vertices allocates space to store an element in $\{0, 1, \perp\}$ to denote that the
 869 associated item is either non-realizable (0), realizable (1) or not known yet to be realizable (\perp). We
 870 will implement Alg. 3’s algorithm on AHATs to compute whether items are part of the closure $\mathcal{C}(\mathbf{w})$
 871 (i.e, are realizable) or not.

874 **Initial items:** A padding token for some vertex can check whether its associated item is of the form
 875 $[A, i, i]$ via a feedforward network that checks that the indices are the same. For all such padding
 876 tokens, another feedforward network adds 1 to the residual stream if and only if $A \rightarrow w_i \in \mathcal{P}$ to
 877 signal the realizability of that item (and otherwise adds 0). We can perform this procedure exactly as
 878 in the base case of App. B.1.

881 **Creating the dependency graph:** Padding tokens for edges store items of the form $[A, i, j], [B, i, k]$.
 882 There are finitely many $[C, k+1, j]$ such that $A \rightarrow BC \in \mathcal{P}$ (proportionally many in $|\mathcal{N}|$), which
 883 can be added to the residual stream via a feedforward network. According to Eq. (1), we set an edge
 884 between vertices associated with $[A, i, j]$ and $[B, i, k]$ if and only if there is an item $[C, k+1, j]$ such
 885 that $[C, k+1, j]$ is realizable (i.e. the corresponding padding token stores 1 in its residual stream) and
 886 $A \rightarrow BC \in \mathcal{P}$. The padding token for the edge associated with $[A, i, j], [B, i, k]$ can check whether
 887 any of the items of the form $[C, k+1, j]$ are realizable and satisfies $A \rightarrow BC \in \mathcal{P}$ via an equality-
 888 check with an attention layer (to check the realizability of the items) and a feedforward-network (to
 889 check whether $A \rightarrow BC \in \mathcal{P}$). If such an item exists, the padding token associated with $[A, i, j]$ and
 890 $[B, i, k]$ signals that there is an edge between them in the dependency graph.

891 **Binarization:** Due to unambiguity, there is at most one path between any pair of vertices in the
 892 dependency graph. If there are multiple paths from a vertex $[A, i, j]$ to another vertex $[B, k, l]$, there
 893 are then different derivations that can reduce $[A, i, j]$ to $[B, k, l]$, which contradicts the unambiguity
 894 condition. Evaluating reachability queries on a tree reduces to solving the Boolean formula induced
 895 by this tree where leaf vertices are assigned 1 or 0 depending on if they are associated with realizable
 896 items and non-leaf vertices are assigned the \vee operator.

897 However, to efficiently evaluate this Boolean expression, we require a *binary* tree where each vertex
 898 has at most two children. For every block of looping layers, we consider the binarization of the
 899 dependency graph as follows.

900 The binarization assumes we have $\mathcal{O}(n^3)$ additional padding tokens appended to the input, i.e., $\mathcal{O}(n)$
 901 extra padding tokens for every vertex for item. Note that asymptotically, appending $\mathcal{O}(n^3)$ padding
 902 tokens does not impact our claim on the resource bounds required. Effectively, for some item $[A, i, j]$,
 903 we have a n -arity tree and need to use $\mathcal{O}(n)$ extra vertices to create a binary tree by replacing edges
 904 with these intermediate vertices. We will create a right-branching binary tree. We denote by h_0 the
 905 root node, by v_1, v_2, \dots, v_n the leaf vertices, and by h_1, h_2, \dots, h_{n-2} the extra intermediary vertices.
 906 We build the right-branching binary tree as follows. The root vertex has edges to v_1 and h_1 , and
 907 now h_1 recursively needs to span v_2, v_3, \dots, v_n . h_1 then has edges to v_2 and h_2 , so on and so forth.
 908 More generally, for $i < n - 2$, we instantiate the edges (h_i, v_{i+1}) and (h_i, h_{i+1}) . For $i = n - 2$,
 909 we instantiate the edges (h_{n-2}, v_{n-1}) and (h_{n-2}, v_n) . The resulting tree is a binary right-branching
 910 tree.

911 We build the corresponding binary tree on the transformer as follows. We identify and encode the
 912 vertices of the tree using **Gorn addresses** (Gorn, 1967). A Gorn address is a bitstring such that
 913 a vertex at depth h in the tree is associated with a bitstring with h bits. The addresses are defined
 914 recursively. The root vertex is associated with the empty bitstring ε . An arbitrary vertex at tree depth
 915 h associated with the bitstring $b_1 b_2 \dots b_h$ characterizes the Gorn addresses of its two children with
 916 $b_1 b_2 \dots b_h 0$ and $b_1 b_2 \dots b_h 1$. For instance, Fig. 1 shows a right-branching tree with the corresponding
 917 Gorn addresses.

Figure 1: Right-branching binary tree with Gorn addresses as vertex labels.

Due to Lem. B.1, these padding tokens can compute their distinct Gorn address. We can assume that the padding tokens are partitioned such that the padding tokens associated with the leaves of the tree are the ones that correspond to the edges of the form $([A, i, j], [B, i, k])$. Then, the novel padding tokens not associated with items can compute the pointers to their descendants in the binary tree as follows. To compute the Gorn address of the first descendant, we shift towards the left the binary representation of the integer by multiplying it by 2 via a feedforward network. We obtain the Gorn address of the second descendant by adding 1 to the integer representation of the Gorn address of the first descendant.

Solving reachability queries: Reachability queries over binary trees now reduce to evaluating the Boolean formula associated with the binary tree. Leaf vertices associated with realizable items are assigned 1. A non-leaf vertex has a path to such a leaf if evaluating the induced Boolean expression where non-leaf compute \vee over their children yields 1. We can therefore invoke Lem. 4.1 to evaluate this Boolean formula.

Recognition step: The EOS token can attend to the padding token for vertex associated with $[S, 1, n]$ and check whether it is realizable, i.e., store 1 in its residual stream. ■

C EXPERIMENTAL SETUP

Data. We used Anonymous (2025)'s length-constrained sampling algorithm for CFLs to generate datasets. For D(1), D(2), Palindrome and Marked Palindrome, negative samples were either sampled at random from Σ^* or were perturbations from positive strings. For BFVP, the negative strings were sampled Boolean formulas that evaluate to 0 as we preferred to focus on a transformer's ability to correctly evaluate a Boolean formula rather than determining if the formula is well-formed. The ability to process hierarchically nested structures is already captured by the language D(k). The training set consists of 1 million samples with string length at most 40. The test set has 2000 samples with string length at most 80. Testing the model on strings longer than those seen in training enabled the evaluation of its ability to *generalize* out-of-distribution.

Models and Training Procedure. We trained causally masked looped transformers with no positional embeddings. We used the PYTORCH implementation of a transformer encoder layer with pre-norm. Following our definition of the transformer in §2.2, we instantiated our models with an initial block of 2 transformer layers, a looping block (which is repeated $\log(n)$ times or once at inference) of 2 transformer layers and a final block of 2 transformer layers. A binary classifier (2 layer feedforward network) was then applied to the final contextual representation of EOS. Our transformers have 1.2 million parameter budget. We used the ADAMW optimizer (Loshchilov & Hutter, 2019) and binary cross-entropy loss, considering runs across 5 different seeds. The batch size was set to 64 and the learning rate to 0.0001.