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ABSTRACT

In contrast to their remarkable performance on general knowledge QA, the true
abilities of Large Language Models (LLMs) in tasks demanding deep, specialized
reasoning, such as in protein biology, have yet to be thoroughly investigated. Cur-
rent benchmarks suffer from critical deficiencies, such as data contamination due
to outdated test sets, insufficient focus on essential protein-specific tasks, and a
neglect of multimodal assessments. To resolve these issues, we introduce Live-
ProteinBench, a contamination-free, multimodal benchmark of 12 tasks for eval-
uating LLM performance on protein property and function prediction. Its central
innovation lies in a test set composed exclusively of proteins validated after the
start of 2025, guaranteeing that the data is novel to all tested models. We bench-
marked a suite of prominent general-purpose LLMs and specialized biological
LLMs using both unimodal and multimodal input schemes. Our results show that:
1) General-purpose proprietary large models demonstrate superior zero-shot per-
formance when encountering new protein data, outperforming their open-source
and domain-specific counterparts by over 20% accuracy. 2) The effective use of
multi-view structural information remains a significant challenge, as the inclu-
sion of structural images often fails to provide a consistent benefit and can even
degrade performance. This highlights the limitations of current models in effec-
tively fusing information across different modalities. 3) Models’ performance
scales more directly with the computational cost during inference than with its
parameter count, underscoring the critical role of Chain-of-Thought reasoning ca-
pabilities for protein-specific tasks. LiveProteinBench delineates the current per-
formance frontiers for LLMs in bioinformatics and presents new challenges for
the development of future multimodal foundation models for biology.

1 INTRODUCTION

Large Language Models (LLMs) have recently become a new paradigm for advancing protein re-
search Madani et al. (2023); Xiao et al. (2025b). However, genuinely unlocking the secrets of life
requires these models to move beyond merely processing sequence information and to demonstrate
multiple advanced capabilities. These include the ability to precisely follow complex instructions
from researchers He et al. (2024b), the capacity to reason by deeply integrating vast biological
knowledge Xu et al. (2025), and the multimodal understanding Bhattacharya et al. (2024) to inte-
grate information from both sequence and structure. In this context, numerous models have been
developed in both academic and industrial settings, ranging from specialized models Guo et al.
(2023); Lv et al. (2025) tailored for particular tasks to powerful general-purpose models Yang et al.
(2025); Comanici et al. (2025) with cross-domain applications. With this proliferation of models,
establishing a comprehensive and reliable benchmark to fairly and systematically evaluate their true
capabilities on biological tasks has become an urgent priority.

Although some preliminary evaluation efforts have been made in academia, existing methods for
fairly and reliably assessing the true capabilities of AI models generally face three core challenges.
Firstly, there is a disconnect between general-purpose benchmarks and the requirements of spe-
cialized domains. Current mainstream benchmarks for LLMs Wang et al. (2024); Li et al. (2024)
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Figure 1: Overview of the LiveProteinBench Design and Model Evaluation Performance. (A) Il-
lustration of the “Live Data” design principle. The red-shaded area represents the data range used
by previous benchmarks, and the green-shaded area represents the data range used by LiveProtein-
Bench. (B) Radar chart of the performance of leading large language models across the 12 core
tasks. Each axis corresponds to a specific task, with performance scaling proportionally to the dis-
tance from the center.

primarily assess general knowledge and universal capabilities, but they severely lack an in-depth
examination of core biological problems like protein sequence analysis and structure-function re-
lationships. Therefore, they cannot be used to conduct a detailed evaluation of a model’s true per-
formance in the highly specialized field of protein science. Secondly, evaluations specialized for
proteins are often susceptible to data leakage. The opaque nature of a large model’s pre-training
data, which usually contains immense volumes of text from the web and scientific papers, creates
a high probability that test set protein sequences were part of the model’s training data Feng et al.
(2024); He et al. (2024a). This risk is intensified by the fact that many current protein benchmarks
are derived from outdated sources or lack transparency in their creation. This makes it difficult for an
evaluation to discern between a model’s ability to generalize through reasoning and its capacity for
simple memorization, thereby fundamentally compromising the effectiveness of the assessment Yu
et al. (2025). Thirdly, existing benchmarks pay insufficient attention to inherent structural informa-
tion. The three-dimensional structure of a protein has a profound impact on its function. However,
existing evaluation efforts Shen et al. (2024); Jiang et al. (2025) generally neglect to assess a model’s
ability to integrate and understand a protein’s specific structural information. Whether large general-
purpose models can effectively integrate abstract sequence data with concrete structural information,
as specialized models are designed to do, remains a key open question that urgently requires rigorous
validation.

To address this crucial gap, we present LiveProteinBench, a new framework for the precise evalua-
tion of protein comprehension in LLMs. It is defined by three core features that directly counteract
the challenges outlined above: expert-level task design, reliable and contamination-free data sourc-
ing, and the examination of essential multimodal capabilities. Our work incorporates the following
designs to meet these objectives: First, at the level of task definition, LiveProteinBench comprises
12 professional, progressively structured tasks that cover everything from basic sequence attribute
prediction to high-level functions and localizations. The philosophy behind these tasks is to probe
a model’s ability to reason, analyze, and make predictions from protein data, enabling a systematic
assessment of the model’s professional skill and breadth when tackling practical biological ques-
tions. Second, at the data source level, we ensure the benchmark’s integrity through a “Live Data”
construction methodology. All evaluation data consists of records generated after January 1, 2025,
from authoritative and continuously updated databases such as UniProt. This time point postdates
the knowledge cut-off for most leading large models. This strict temporal partitioning strategy
eradicates the possibility of data contamination from the outset, ensuring a fair evaluation that gen-
uinely measures a model’s capacity for generalization and reasoning. Finally, regarding the testing
protocol, in addition to providing standardized prompts and evaluation scripts to guarantee repro-
ducibility, we have introduced 3D protein structure as a new input modality. As general-purpose
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multimodal models typically only accept images, we convert structures into six-view projection im-
ages. This allows us to assess a key capability of these large models—their ability to fuse multimodal
biological information—by comparing their performance with and without the structural input.

To summarise, the main contributions of this work are as follows:

• We developed LiveProteinBench, the first contamination-free, multi-task, and multimodal
benchmark for protein science. Its 12 core tasks and strict temporal data split provide a
reliable benchmark for holistically assessing the real-world capabilities of large models.

• We conducted extensive evaluation on over 10 prominent Large Language Models, span-
ning both general-purpose and domain-specific architectures. Our findings reveal that lead-
ing general-purpose models exhibit significant zero-shot reasoning potential on complex
biological tasks.

• We systematically investigated the multimodal capabilities of models for protein under-
standing. Our results uncover a critical challenge: for current models, supplementing
sequence data with structural information may degrade performance, indicating a major
bottleneck in effective multimodal information fusion.

• Our analysis offers a new perspective on scaling laws in bioinformatics. We demonstrate
that for specialized protein tasks, a model’s success is more strongly correlated with its
“Chain-of-Thought” reasoning ability than with its parameter count, suggesting that future
advancements may depend more on algorithmic and reasoning improvements.

2 RELATED WORK

2.1 GENERAL-PURPOSE AND PROTEIN-SPECIFIC LARGE LANGUAGE MODELS

Recent years have seen rapid advancements in the development of Large Language Models (LLMs).
One line of research is led by models such as the GPT-4 Achiam et al. (2023), Gemini Team et al.
(2023), Llama Dubey et al. (2024), and Qwen Bai et al. (2023) series, which are at the forefront of
technology due to their powerful Generality. Pre-trained on massive, diverse datasets, these models
exhibit outstanding performance in instruction following, logical reasoning, and multimodal com-
prehension. As general-purpose problem-solving engines, their application in specialized fields like
protein science is focused on transferring this general intelligence to specific scientific discovery
tasks. Consequently, a key challenge is to determine whether their generalist training is sufficient to
confer deep, specialized proficiency in areas like protein biology. To address the domain knowledge
gap of general-purpose models, a second research direction is the development of specialized mod-
els for protein science, defined by their core trait of Specialization. These models generally employ
two strategies to deepen their understanding of the language of life. The first strategy is continued
pre-training or instruction fine-tuning on domain-specific data like protein sequences, structures, and
scientific texts, as exemplified by models such as EvoLlama Liu et al. (2024b), Evolla Zhou et al.
(2025), STELLA Xiao et al. (2025a) and Prot2Text-V2 Fei et al. (2025). The second involves creat-
ing in-domain dialogue or QA models; for instance, ProteinChat Guo et al. (2023) and ProteinGPT
Xiao et al. (2024) are fine-tuned on protein-centric question-answer pairs. Additionally, other efforts
like BioMedGPT Luo et al. (2023) aim to create models capable of processing diverse multimodal
biomedical data, including proteins, genes, and literature, in a unified manner. Despite their differ-
ent design approaches, both types of models are highly dependent on existing public databases and
scientific literature for training. This creates a shared, fundamental challenge: the risk of data con-
tamination is extremely high when evaluations are performed using traditional benchmarks derived
from these same public knowledge sources. This highlights two urgent needs: first, a contamination-
free evaluation framework is essential for an unbiased assessment of any model’s true capabilities.
Second, a professional, multi-task benchmark is required to systematically probe and compare the
distinct strengths and potential limitations of both general-purpose and specialized models.

2.2 PROTEIN BENCHMARKS

Early protein evaluation benchmarks focused primarily on assessing Protein Foundation Models
(PFMs). For instance, TAPE Rao et al. (2019) set the initial standard for protein transfer learning.
Subsequently, PEER Xu et al. (2022) significantly expanded the breadth of evaluation for protein
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Figure 2: The framework of LiveProteinBench, which consists of a live data collection pipeline from
UniProt, a structure projection process for multimodal inputs, and 12 diverse tasks covering three
key categories. The evaluation data in the benchmark is strictly filtered for proteins released after
January 2025 to ensure a contamination-free assessment.

sequence understanding by providing a multi-task benchmark with 14 tasks. More recently, com-
prehensive benchmarks like PFMBench Gao et al. (2025) and ProteinBench Ye et al. (2024) further
enlarged the task sets to cover a wider range of protein functions and properties, while CARE Yang
et al. (2024) concentrated on the specific yet critical tasks of enzyme classification and retrieval.
As the capabilities of LLMs have grown, the focus of evaluation has begun to shift from traditional
PFMs to general-purpose LLMs. For example, Biology-Instructions He et al. (2024a) aims to as-
sess a model’s ability to follow complex biological experimental instructions, SciCUEval Yu et al.
(2025) provides an in-depth evaluation of the scientific capabilities of LLMs from the perspective of
contextual understanding of scientific literature, and BioLLMBench Mangul et al. (2024) presents
a comprehensive assessment of three widely-used LLMs (GPT-4, Bard, and LLaMA) across 36
distinct tasks within the domain of bioinformatics. Nevertheless, these LLM-focused benchmarks
suffer from two key limitations. First, while structural information is central to protein biology, ex-
isting LLM benchmarks have largely overlooked the evaluation of multimodal capabilities, focusing
almost exclusively on how models interpret sequence-based text. This leaves a critical gap in un-
derstanding how these models integrate diverse biological data types. Second, and more critically,
their test sets are typically drawn from historical data, creating a high risk of data contamination, as
this information may have been part of the pre-training corpora of the models being evaluated. This
makes it difficult to distinguish between genuine reasoning and mere memorization.

3 LIVEPROTEINBENCH

In this section, we introduce the composition of LiveProteinBench, covering the dataset construction
methodology and our assessment process.

4
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3.1 EVALAUTION PROTOCOL

Table 1: Task composition and distribution of the LiveProteinBench.
Class Task Number Abbreviation

Functional Annotation (FA)

Catalytic Activity 200 CA
EC Number 200 EC

Molecular Function 195 MF
Biological Process 193 BP

Pathway 200 PW

Structure&Location (SL)

Active Site 146 AS
Cofactor 186 CF

Motif Position 52 MP
Transmembrane 134 TM

Cellular Component 196 CC

Physicochemical Properties (PP) Optimal pH 54 PH
Thermal Adaptation 41 TA

3.1.1 TASK COMPOSITION.

We have carefully designed 12 tasks to comprehensively evaluate a model’s understanding of dif-
ferent protein attributes. To ensure absolute objectivity and reproducibility, the ground truth for all
tasks is programmatically extracted directly from experimentally validated annotations in the source
databases. This design eliminates any ambiguity or noise that could be introduced by manual la-
beling or text summarization, guaranteeing that our evaluation is precise and verifiable. The full
composition and distribution of these tasks are detailed in Table 1; detailed definitions are provided
in Appendix G.

Functional Annotation (FA). This class of tasks is designed to evaluate a model’s ability to com-
prehend a protein’s biological role and function. It covers a spectrum of annotations, from the
specific chemical reactions a protein catalyzes—assessed by Catalytic Activity (CA) and its formal
EC Number—to its broader involvement in cellular life. The latter is evaluated using three tasks
based on established biological frameworks: Molecular Function (MF) and Biological Process (BP)
from the Gene Ontology (GO) consortium, and the metabolic or signaling Pathway (PW) in which
the protein participates.

Structure & Location (SL). This category assesses the model’s understanding of a protein’s phys-
ical attributes and its subcellular localization. The tasks probe both local and global features. On a
local level, we evaluate the ability to identify key functional regions, including the Active Site (AS),
Cofactor (CF), and conserved Motif Positions (MP). On a global and contextual level, we test for the
identification of Transmembrane (TM) regions and the prediction of the protein’s correct Cellular
Component (CC), which is the third main branch of the Gene Ontology.

Physicochemical Properties (PP). This class focuses on the model’s capacity to predict global
properties that emerge from the protein’s entire amino acid sequence, rather than from a single site.
These properties dictate the environmental conditions under which a protein can function. The tasks
include predicting the protein’s Optimal pH (PH) for activity and its Thermal Adaptation (TA) class,
which requires a holistic understanding of the protein’s stability.

3.1.2 TASK FORMULATION AND EVALUATION METRIC

To achieve an objective, reproducible, and highly discriminative evaluation, we have uniformly
designed all tasks in a multiple-choice question (MCQ) format. In each test instance, the model
is required to select a single correct answer from a set of candidate options based on the input
protein information. To ensure that all models are evaluated under fair and consistent conditions, we
designed a standardized prompt structure. This structure is composed of two parts, a System Prompt
and a User Prompt, and the final input received by the model is a combination of these two. Given
that all tasks are designed in a single-choice question format, we adopt accuracy, which is defined
as the proportion of correctly answered questions, as the core evaluation metric.

5
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3.2 DATASET CONSTRUCTION

The construction of the LiveProteinBench dataset is guided by three core principles to ensure its
evaluation is rigorous, fair, and forward-looking: professionalism, achieved through expertly de-
signed tasks and programmatically verifiable ground truths; data non-contamination, guaranteed by
a strict “Live Data” filtering methodology; and multimodality, incorporated by supplementing each
protein sequence with 3D structural views.

Data Sourcing and Filtering. To ensure that all evaluated models have not previously seen the
test data, we established a strict temporal filtering criterion. We selected experimentally validated
proteins from UniProtuni (2025) that were first publicly released after January 1, 2025. This standard
was strictly enforced by cross-validating the creation dates of database entries with their associated
publication dates. This method fundamentally prevents data leakage and ensures the fairness of
the evaluation. Furthermore, to ensure the long-term relevance of the benchmark, we established
an automated update pipeline. This system periodically scans source databases like UniProt to
automatically identify and incorporate the latest protein entries that meet our strict criteria. This
“live” mechanism ensures our benchmark continuously stays ahead of the training data cut-offs of
future LLMs and dynamically reflects the latest advances in protein science.

Data Contribution. For multimodal evaluation, we implemented a Structure Projection Process
to generate structural images for each protein in our collected dataset. When a protein structure
was available, we retrieved it from the AlphaFold DB Varadi et al. (2024); otherwise, we used Al-
phaFold2 Jumper et al. (2021) to generate the top-ranked structure. We then employed the PyMOL
DeLano et al. (2002) rendering tool to create 2D structural snapshots from six standard orthogonal
views (front, back, left, right, top, and bottom) to provide comprehensive three-dimensional struc-
tural information.

4 EXPERIMENTS

4.1 EXPERIMENTAL MODELS

To comprehensively evaluate the application potential of current large language models in protein
science, our study includes over 10 mainstream and representative models. The selection is designed
to span the spectrum from general-purpose knowledge to domain-specific expertise and to system-
atically investigate the relationship between general capabilities and specialized knowledge. The
models are divided into two main categories:

General-Purpose LLMs. This category aims to establish a strong performance baseline and in-
cludes leading closed-source and open-source models. Closed-Source Models: We selected Ope-
nAI’s GPT series, Google’s Gemini 2.5 Pro Comanici et al. (2025) and Gemini 2.0 Flash Team et al.
(2023), and Anthropic’s Claude 3.7 Sonnet. Open-Source Models: We selected Deepseek-v3 Liu
et al. (2024a), Deepseek-r1 Guo et al. (2025), InternVL3 Zhu et al. (2025), Meta’s Llama-3.1 Dubey
et al. (2024) and Alibaba’s Qwen series (e.g., Qwen2.5-72B) Yang et al. (2025); Bai et al. (2025).

Domain-Specific Models. This category aims to evaluate models that are specialized for the protein
domain, including Evolla Zhou et al. (2025), EvoLlama Liu et al. (2024b) and BioMedGPT Luo
et al. (2023). Unlike general-purpose models, these models are typically pre-trained or fine-tuned
on corpora containing a vast amount of literature from biology, chemistry, and medicine, as well as
patents and specialized databases.

4.2 MAIN RESULTS

The overall and per-task scores on LiveProteinBench are presented in Table 2. Our results system-
atically reveal a performance hierarchy among current LLMs when processing novel protein data,
leading to several key findings:

General-Purpose Models Outperform Specialized Models. The results show that the overall per-
formance of large-scale general-purpose models (LLMs and MLLMs) is significantly superior to
that of small-scale specialized models (SLLMs). For example, in terms of average performance
across all tasks, no SLLM scored above 32%, which is lower than all general-purpose models ex-
cept for Qwen2.5-VL-32B and InternVL3-78B. This performance gap is not solely attributable to
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Table 2: Overall performance of all models on LiveProteinBench. Performance is measured by
accuracy (%). ♣ and ♡ denote sequence-only and sequence+structure input modalities, respectively.
The best and suboptimal results are labeled with bold and underlined.

Model CA BP MF EC PW AS CF MP TM CC PH TA AVG
LLMs
♣Qwen3-32B 35.00 41.45 35.38 31.00 13.00 71.23 34.41 38.46 68.66 55.61 37.04 17.07 40.23
♣Deepseek-v3 35.50 35.75 38.97 24.50 27.00 43.15 39.25 23.08 63.43 58.16 42.59 26.83 38.95
♣Deepseek-r1 45.50 37.31 46.67 22.50 8.50 64.38 32.80 38.46 49.25 55.61 42.59 12.20 38.62
♣Llama3.3-70B 36.00 32.12 40.51 21.50 27.50 36.99 41.40 23.08 54.48 59.69 46.30 19.51 37.67
♣Qwen2.5-72B 30.77 25.39 39.49 29.00 30.00 41.10 37.63 19.23 52.99 52.04 35.19 21.95 35.98
♣Qwen2.5-32B 31.00 29.02 35.38 24.00 30.50 37.67 29.03 19.23 61.94 52.04 50.00 17.07 35.28

MLLMs
♡GPT-5 79.50 68.91 75.90 24.00 30.50 84.93 57.53 61.54 75.37 73.98 46.30 17.07 60.65
♡o3 72.00 60.62 70.77 24.50 21.00 81.51 59.14 63.46 79.10 67.35 44.44 17.07 56.48
♡Gemini-2.5-pro 55.00 57.51 57.44 27.50 16.00 46.58 53.76 30.77 73.13 63.78 42.59 29.27 47.97
♡Claude-3.7-sonnet 66.50 42.49 52.82 23.00 29.00 56.85 58.06 23.08 72.39 53.57 35.19 21.95 47.58
♡Gemini-2.0-flash 40.00 32.12 44.62 24.00 29.50 33.56 39.78 28.85 72.39 58.16 29.63 36.59 39.84
♡GPT-4o 38.50 38.86 41.54 27.00 24.50 36.99 30.11 28.85 53.73 46.94 44.44 14.63 36.45
♡Qwen2.5-VL-32B 29.50 24.35 24.62 24.00 27.64 34.48 39.33 21.15 52.24 33.67 42.59 14.63 30.98
♡InternVL3-78B 30.00 25.91 26.15 24.50 19.00 24.66 33.87 21.15 32.09 22.96 27.78 19.51 26.10

SLLMs
♣BioMedGPT-R1 35.00 45.60 36.41 22.50 29.00 21.92 32.26 11.54 26.87 43.88 22.22 19.51 31.83
♡EvoLlama 25.50 25.91 22.05 27.50 14.50 24.66 29.57 23.08 20.15 27.55 27.78 21.95 24.26
♡Evolla 24.00 27.98 24.10 17.00 21.00 30.82 23.12 25.00 24.63 15.31 25.93 26.83 22.98

differences in model scale. Even when comparing models of a similar parameter size (e.g., in the
7B-13B range), general-purpose models often maintain a performance advantage, suggesting that
the robust instruction-following and reasoning capabilities acquired during their pre-training are ef-
fectively transferable to specialized domains. We observed during testing that specialized models
were more prone to failing to generate valid or correctly formatted responses, which likely con-
tributes to this performance gap. For a detailed error analysis and statistics on valid response rates,
please refer to Appendix F.

Dominance of Closed-Source Models. Within the general-purpose model category, the most sig-
nificant performance difference lies between closed-source and open-source models. The evalua-
tion results clearly show that top-tier closed-source models, particularly GPT-5, are substantially
ahead of all open-source models in performance. Even the lowest-performing closed-source model,
Gemini 2.0 Flash, achieved an average accuracy across all tasks that is comparable to that of the
best-performing open-source model, Qwen-3. This significant performance advantage is primarily
due to the larger model scales, higher-quality and more diverse training data, and more advanced
alignment techniques of these closed-source models.

Performance Disparity Across Tasks. A cross-task comparison reveals inherent differences in task
complexity and highlights commonalities in what current models can and cannot do well. Models
generally excel at tasks involving local feature identification and static property classification, such
as AS, CC, and CA. The common characteristic of these tasks is that the answer often corresponds
to a specific, localized region of the protein or a discrete categorical label, relying more on pattern
recognition. In contrast, all models face significant challenges on tasks that require holistic reason-
ing or an understanding of dynamic mechanisms, such as TA and EC. TA requires comprehending
subtle, distributed patterns across the entire sequence that determine overall stability, while EC pre-
diction demands an understanding of the dynamic process of enzyme catalysis. On the EC task, even
the best-performing model (Qwen3-32B) achieved an accuracy of only 31.00%. This suggests that
reasoning about dynamic processes and complex mechanisms is a key bottleneck for current models
and a critical direction for future development

4.3 ANALYSIS

Task Correlations. The correlation heatmap in Figure 3 (A) reveals a complex and insightful net-
work of relationships in how models perform across different biological reasoning tasks. On one
hand, we observe strong coupling between functionally and structurally related tasks; for instance,
the three branches of the Gene Ontology (MF, BP, and CC) are highly inter-correlated. A partic-
ularly interesting finding is the tight link between MP and AS, suggesting that models learn an
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Figure 3: Benchmark Analysis. (A) Pearson correlation heatmap of the 12 tasks in LiveProtein-
Bench. The green boxes highlight three major categories of related tasks. (B) Performance compar-
ison of top LLMs on data from 2020 versus our contamination-free LiveProteinBench.

effective heuristic of using conserved motifs to identify functional sites. On the other hand, some
seemingly related tasks show weaker links, such as EC and PW. This reflects their different levels of
abstraction. This distinction is most pronounced for the physicochemical tasks (PH and TA), which
are almost entirely independent of all others, clearly indicating that reasoning about global protein
properties is a unique capability, separate from functional annotation.

Temporal Validation of Data Contamination. We performed a temporal analysis to rigorously
validate our “Live Data” approach. For this validation, we curated a set of protein entries from
UniProt that were first made public in 2020, a time frame that is certain to be included in the training
data of all models. From this collection, we randomly sampled a number of questions equivalent to
that of our main experiment. We then evaluated a selection of models on the five tasks where they
exhibited the poorest performance, including EC, PW, TM, PH and TA. As illustrated in the Figure
3 (B), the results show a marked decline in performance for these models as the publication date of
the data advances toward the present. This demonstrates that LiveProteinBench measures a model’s
true generalization and reasoning abilities, rather than its memorization of old knowledge that might
be present in the training data.

Challenges in Multimodal Protein Understanding. Our research uncovers key bottlenecks in how
current multimodal models comprehend protein structural information. First, contrary to the intu-
ition that more information should yield better results, introducing a single protein structure image
fails to provide a consistent or significant performance benefit. As shown in Figure 4 (A), the effect
is inconsistent across different models: for some, like Claude-3.7-sonnet, performance even dropped
noticeably from 51.47% to 45.77%, while for others, the difference was negligible. This suggests
that the visual encoders of current models, primarily trained on natural images, struggle to interpret
highly specialized scientific images, failing to extract beneficial information and potentially intro-
ducing noise that interferes with the core sequence data. Second, fusing multi-view information
presents another major hurdle. Figure 4 (B), providing all six structural views leads to lower perfor-
mance than using any single view. This indicates that while sufficient information is present across
the different views, the model lacks the ability to effectively fuse these 2D images into a coherent
3D concept. Enabling models to understand and fuse multi-view scientific data is a critical direction
for future multimodal development.

Reasoning is the Key Performance Driver. Our analysis suggests that the scaling law in this
domain manifests more through the depth of reasoning than through raw parameter count. On one
hand, the Chain-of-Thought (CoT) process is critical. As shown in Figure 4 (C), activating CoT
mode led to significant and consistent performance gains across all models that support this feature,
with the Qwen3-32B model’s accuracy increasing by over five percentage points. This demonstrates
that an explicit “thinking” step is effective in unleashing the full potential of these models. On
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Figure 4: A Comprehensive Analysis of LLM Performance. (A) The Anomaly of Multimodal Input.
(B) The Fusion Bottleneck of Multi-view Structural Images. (C) The Key Role of Chain-of-Thought
Reasoning. (D) The Non-linear Relationship Between Model Scale and Performance.

the other hand, simply increasing parameter size yields diminishing returns. As seen in Figure 4
(D), within the Qwen3 series, the parameter count quadrupled from 8B to 32B, yet accuracy almost
stagnated. This indicates that for complex protein tasks, factors like architectural design, training
data quality, and fine-tuning strategies have surpassed parameter expansion in importance.

5 CONCLUSION

We present LiveProteinBench, a contamination-free, multi-task, and multimodal benchmark de-
signed to assess the real-world capabilities of Large Language Models (LLMs) in protein science.
This benchmark aims to solve three core challenges in existing evaluation methods: their disconnect
from the specialized domain, the prevalent risk of data contamination, and the neglect of multimodal
capabilities. The primary innovation of LiveProteinBench is its “Live Data” construction method,
where all evaluation data consists of protein records released after January 1, 2025. This date is later
than the knowledge cut-off of all mainstream large models, fundamentally eliminating the possibility
of data contamination. The framework uses 12 carefully designed, professional tasks to systemati-
cally probe a model’s skills in solving real-world biological problems. Unlike previous benchmarks
that only focus on sequence information, LiveProteinBench introduces projected images of 3D pro-
tein structures as a new input modality to assess the model’s ability to fuse multimodal biological
information. Through the extensive evaluation of over 10 mainstream general-purpose and special-
ized models, this paper presents a series of key findings that provide significant guidance for the
field.

Limitations and Future Work. The 12 tasks in LiveProteinBench primarily focus on the intrinsic
properties and functions of single proteins. Our benchmark does not currently cover system-level
tasks, such as protein-protein interactions, protein-small molecule docking, or predicting the func-
tional effects of mutations. We plan to expand the scope of LiveProteinBench in the future by in-
troducing more evaluation tasks related to systems biology and protein engineering. This will place
higher demands on the models’ reasoning abilities for more macroscopic and dynamic biological
problems.

9
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and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.
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We have made every effort to ensure that the results presented in this paper are reproducible. All
code has been submitted in the Supplementary Material to facilitate replication and verification.
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our work and further advance the field.
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized Gemini-2.5-pro as an assistive tool for lan-
guage enhancement. The primary use of these models was to improve the grammar, clarity, and
readability of the text. All scientific ideas, experimental results, and conclusions were conceived
and written by the human authors, who retain full responsibility for the final content of this paper.

B HARDWARE AND SOFTWARE ENVIRONMENT

To ensure the reproducibility of our results for the locally deployed open-source models, all eval-
uations were conducted within a unified computational environment. The evaluation server was
equipped with 8x NVIDIA H100 (80GB VRAM) GPUs, powered by AMD EPYC 9654 96-Core
Processor and 3TB of DDR4 RAM. The software stack consisted of Ubuntu 22.04 LTS, running
Python 3.10.12 with CUDA 12.2, and utilized key libraries including PyTorch (v2.4.1), Transform-
ers (v4.56.1), and Accelerate (v1.10.0).

C EXPERIMENTAL MODELS

To comprehensively evaluate the application potential of current large language models in protein
science, our study includes over 10 mainstream and representative models. As detailed in Table
3, these models are divided into three main categories to systematically investigate the relationship
between general capabilities and specialized knowledge.

General-Purpose LLMs. This category aims to establish a strong performance baseline and in-
cludes leading closed-source and open-source models.

• Closed-Source Models: We selected OpenAI’s GPT series (GPT-o3, GPT-5, GPT-4o),
Google’s Gemini series (Gemini-2.0-flash, Gemini-2.5-pro), and Anthropic’s Claude-3.7-
sonnet.

• Open-Source Models: We selected Deepseek-V3 (671B), Deepseek-R1 (671B), Qwen2.5-
72B (72B), Qwen2.5-32B (32B), Qwen3-32B (32B), Llama3.3-70B (70B), Qwen2.5-VL-
32B (32B) and InternV3-78B (78B).

Domain-Specific Models. The selected models are Evolla (10B), EvoLlama (8B), and BioMedGPT-
R1 (17B).

D ADDITIONAL RESULTS OF ANALYSIS

D.1 TEMPORAL VALIDATION OF DATA CONTAMINATION.

We compare the performance of various models under two conditions: evaluating them on a tra-
ditional dataset with data from 2020, compared to our contamination-free LiveProteinBench. As
presented in Table 4, our results offer a comprehensive overview of how data contamination influ-
ences model accuracy.

D.2 MULTIMODAL ABLATION STUDY RESULTS

We compare the performance of various models under two conditions: using both protein sequence
and structural images as input, compared to using sequence-only input. As presented in Table 5, our
results offer a comprehensive overview of how multimodal information influences model accuracy.

D.3 MODEL PERFORMANCE WITHOUT A REASONING STEP

In this section, we present the results of an ablation study on models with a toggleable reasoning
mechanism, such as the Qwen3 series and Claude 3.5 Sonnet. As shown in Table 6, we analyze
the performance difference between activating and deactivating the “thinking” mode to evaluate the
impact of the model’s reasoning process.
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Table 3: Models in LiveProteinBench.
Model Params Expertise Access Code

LLMs
Deepseek-V3 671B General tasks Open API
Deepseek-R1 671B General tasks Open API
Qwen2.5-72B 72B General tasks Open HF
Qwen2.5-32B 32B General tasks Open HF
Qwen3-32B 32B General tasks Open HF
Llama3.3-70B 70B General tasks Open HF

MLLMs
GPT-o3 Unknown General tasks Close API
GPT-5 Unknown General tasks Close API
GPT-4o Unknown General tasks Close API
Gemini-2.0-flash Unknown General tasks Close API
Gemini-2.5-pro Unknown General tasks Close API
Claude-3.7-sonnet Unknown General tasks Close API
Qwen2.5-VL-32B 32B General tasks Open HF
InternV3-78B 78B General tasks Open HF

SLLMs
Evolla 10B Protein tasks Open HF
EvoLlama 8B Protein tasks Open HF
BioMedGPT-R1 17B Protein and DNA task Open HF

Table 4: Performance comparison of top LLMs on data from 2020 versus our contamination-free
LiveProteinBench. Performance is measured by accuracy (%).

Model Time EC PW TM PH TA AVG

GPT-5 2020 65.50 48.00 95.50 81.48 51.22 66.76
2025 24.00 30.50 75.37 46.30 17.07 38.47

GPT-4o 2020 43.50 38.00 63.43 53.70 43.90 46.90
2025 27.00 24.50 53.73 44.44 14.63 32.59

Gemini-2.5-pro 2020 58.50 46.50 80.50 70.37 51.22 59.91
2025 27.50 16.00 73.13 42.59 29.27 34.97

Claude-3.7-sonnet 2020 67.50 46.50 90.29 68.52 56.10 65.02
2025 23.00 29.00 72.39 35.19 21.95 36.41

Deepseek-v3 2020 43.50 40.50 72.39 61.11 41.46 50.07
2025 24.50 27.00 63.43 42.59 26.83 35.29

Table 5: Performance of multimodal large language models with sequence-only input. Performance
is measured by accuracy (%).
Model CA BP MF EC PW AS CF MP TM CC PH TA AVG
w structure
GPT-5 79.50 68.91 75.90 24.00 30.50 84.93 57.53 61.54 75.37 73.98 46.30 17.07 60.65
GPT-o3 72.00 60.62 70.77 24.50 21.00 81.51 59.14 63.46 79.10 67.35 44.44 17.07 56.48
Gemini-2.5-pro 55.00 57.51 57.44 27.50 16.00 46.58 53.76 30.77 73.13 63.78 42.59 29.27 47.97
Claude-3.7-sonnet 66.50 42.49 52.82 23.00 29.00 56.85 58.06 23.08 72.39 53.57 35.19 21.95 47.58
Gemini-2.0-flash 40.00 32.12 44.62 24.00 29.50 33.56 39.78 28.85 72.39 58.16 29.63 36.59 39.84
GPT-4o 38.50 38.86 41.54 27.00 24.50 36.99 30.11 28.85 53.73 46.94 44.44 14.63 36.45
Qwen2.5-VL-32B 29.50 24.35 24.62 24.00 27.64 34.48 39.33 21.15 52.24 33.67 42.59 14.63 30.98
InternVL3-78B 30.00 25.91 26.15 24.50 19.00 24.66 33.87 21.15 32.09 22.96 27.78 19.51 26.10

w/o structure
GPT-5 78.00 69.95 70.26 21.00 33.00 86.99 60.22 59.62 76.12 73.47 50.00 19.51 60.49
GPT-o3 73.50 61.66 63.08 19.00 29.50 83.56 54.84 63.46 76.12 67.86 38.89 19.51 56.04
Gemini-2.5-pro 51.50 51.81 60.00 26.00 15.50 39.73 40.86 26.92 60.45 61.22 46.30 26.83 43.85
Claude-3.7-sonnet 69.00 53.89 53.33 26.00 32.00 53.42 60.75 26.92 70.90 66.33 33.33 36.59 51.47
Gemini-2.0-flash 44.00 38.34 46.67 25.00 37.00 36.30 46.24 32.69 65.67 61.73 40.74 24.39 43.07
GPT-4o 33.00 43.52 42.05 27.00 26.00 36.30 40.86 23.08 55.97 52.55 42.59 24.39 38.39
Qwen2.5-VL-32B 31.50 25.39 27.18 22.50 33.50 41.78 29.57 25.00 44.03 47.96 42.59 29.27 33.05
InternVL3-78B 28.50 19.69 22.05 22.00 18.00 24.66 25.81 19.23 25.37 28.06 22.22 17.07 23.37
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Table 6: Model performance without the reasoning step. Performance is measured by accuracy (%).
Model Mode CA BP MF EC PW AS CF MP TM CC PH TA AVG

Qwen3-8B w thinking 33.00 35.23 43.59 26.50 15.00 51.37 39.25 26.92 60.45 63.78 48.15 19.51 39.17
w/o thinking 31.50 33.68 6.92 24.50 25.50 34.25 40.86 23.08 47.01 53.06 46.30 14.63 35.39

Qwen3-14B w thinking 32.00 37.31 35.38 24.50 11.50 58.22 36.02 30.77 57.46 61.73 44.44 19.51 37.56
w/o thinking 35.50 33.68 31.28 26.00 22.50 23.97 38.17 21.15 56.72 53.57 59.26 29.27 35.39

Qwen3-32B w thinking 31.00 29.02 35.38 24.00 30.50 37.67 29.03 19.23 61.94 52.04 50.00 17.07 40.23
w/o thinking 30.00 37.82 36.41 26.00 22.50 30.14 34.41 34.62 53.73 50.00 40.74 29.27 35.11

Claude-3.7-sonnet w thinking 66.50 42.49 52.82 23.00 29.00 56.85 58.06 23.08 72.39 53.57 35.19 21.95 45.57
w/o thinking 66.16 38.34 40.00 26.50 29.65 56.85 57.53 25.00 81.34 40.82 35.19 36.59 51.47

D.4 FUSION BOTTLENECK OF MULTI-VIEW STRUCTURAL IMAGES

This section presents an ablation study on multi-view image inputs, designed to investigate the
impact of using all six protein structure views versus a single view on the model’s average accuracy.
As shown in Table 7, the experiment indicates that the model’s performance decreases when all six
views are provided as input.

Table 7: The Impact of Different Input Views on the Performance of the Qwen2.5-VL-32B. Perfor-
mance is measured by accuracy (%).
Model CA BP MF EC PW AS CF MP TM CC PH TA AVG
All 31.50 25.39 27.18 22.50 33.50 41.78 29.57 25.00 44.03 47.96 42.59 29.27 33.05
Back 30.50 23.83 26.67 24.50 28.00 30.14 32.80 21.15 41.79 51.53 48.15 24.39 31.88
Front 35.00 26.42 29.74 21.00 27.50 30.14 37.10 21.15 51.49 50.51 51.85 19.51 33.61
Bottom 29.50 29.53 33.85 24.00 29.50 33.56 34.41 26.92 44.03 51.53 44.44 21.95 33.88
Top 30.00 25.39 29.74 25.50 24.50 34.93 34.41 23.08 45.52 48.47 48.15 24.39 32.61
Left 25.50 25.39 35.38 30.00 28.00 36.30 34.95 21.15 50.75 49.49 50.00 19.51 34.17
Right 26.50 23.83 28.21 23.00 27.50 30.82 34.95 21.15 46.27 49.49 50.00 21.95 31.77

Table 8: Performance comparison of different structural input modalities.
Model CA BP MF EC PW AS CF MP TM CC PH TA AVG
projection images
GPT-5 79.50 68.91 75.90 24.00 30.50 84.93 57.53 61.54 75.37 73.98 46.30 17.07 60.65
GPT-o3 72.00 60.62 70.77 24.50 21.00 81.51 59.14 63.46 79.10 67.35 44.44 17.07 56.48
Gemini-2.5-pro 55.00 57.51 57.44 27.50 16.00 46.58 53.76 30.77 73.13 63.78 42.59 29.27 47.97
Claude-3.7-sonnet 66.50 42.49 52.82 23.00 29.00 56.85 58.06 23.08 72.39 53.57 35.19 21.95 47.58
Gemini-2.0-flash 40.00 32.12 44.62 24.00 29.50 33.56 39.78 28.85 72.39 58.16 29.63 36.59 39.84
GPT-4o 38.50 38.86 41.54 27.00 24.50 36.99 30.11 28.85 53.73 46.94 44.44 14.63 36.45
Qwen2.5-VL-32B 29.50 24.35 24.62 24.00 27.64 34.48 39.33 21.15 52.24 33.67 42.59 14.63 30.98
InternVL3-78B 30.00 25.91 26.15 24.50 19.00 24.66 33.87 21.15 32.09 22.96 27.78 19.51 26.10

3Di
GPT-5 72.00 69.43 67.69 27.00 27.50 80.82 52.69 57.69 70.15 64.29 40.74 19.51 56.48
o3 70.69 59.59 68.05 25.50 28.50 79.45 51.08 63.46 72.18 63.78 42.59 26.83 53.42
Gemini-2.5-pro 52.02 49.47 47.42 26.50 19.89 47.59 41.34 34.62 51.61 55.50 37.04 19.51 40.01
Claude-3.7-sonnet 28.50 26.94 26.15 27.50 17.00 37.67 30.11 21.15 43.28 35.71 38.89 21.95 29.44
Gemini-2.0-flash 33.50 34.20 43.08 27.50 43.50 30.14 37.63 28.85 56.72 56.12 44.44 26.83 39.45
GPT-4o 32.00 32.64 44.10 26.50 21.00 30.82 34.95 9.62 46.27 47.45 31.48 24.39 33.67
Qwen2.5-VL-32B 28.00 24.87 29.74 23.00 31.50 32.19 26.88 23.08 50.75 40.31 38.89 21.95 31.00
InternVL3-78B 27.50 2746 27.69 23.00 26.50 21.92 32.26 23.08 42.54 30.61 42.59 24.39 28.66

D.5 ANALYSIS OF DIFFERENT STRUCTURAL INPUT MODALITIES

This section presents an ablation study on alternative structural encodings, designed to investigate
the impact of using 3Di structural sequences Van Kempen et al. (2024) (a text-based 3D representa-
tion) versus 2D structural projection images on the model’s average accuracy.

As shown in Table 8, the experiment yields a counter-intuitive but insightful finding: Visual pro-
jection images generally outperform text-based 3Di sequences for leading general-purpose models.
Specifically, for top-tier models such as GPT-5, GPT-o3, and Claude-3.7-sonnet, switching from
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projection images to 3Di sequences results in a significant performance drop. For instance, GPT-5’s
average accuracy decreases from 60.65% to 56.48%, and Claude-3.7-sonnet suffers a drastic decline
from 47.58% to 29.44%. This suggests that while these models possess powerful visual encoders
capable of interpreting spatial features from 2D projections, they struggle to interpret the specialized
grammar of the 3Di alphabet, which is likely absent from their general pre-training corpora. Without
specific fine-tuning, the 3Di sequence acts as noise rather than a semantic signal.

D.6 IMPACT OF TASK-SPECIFIC ADAPTATION ON SPECIALIZED MODELS

To explicitly verify whether the zero-shot performance deficit of specialized models (SLLMs) stems
from a lack of domain knowledge or a failure in instruction alignment, we conducted task-specific
adaptation and evaluated the changes in both Accuracy (Table 9) and Pass Rate (Table 10).For each
task, we selected a single high-quality response from the 2020 dataset to serve as the one-shot
exemplar.

Table 9: Comparison of SLLMs performance before and after task-specific adaptation.
Model CA BP MF EC PW AS CF MP TM CC PH TA AVG
w/o task-specific adaptation
EvoLlama 25.50 25.91 22.05 27.50 14.50 24.66 29.57 23.08 20.15 27.55 27.78 21.95 24.26
Evolla 24.00 27.98 24.10 17.00 21.00 30.82 23.12 25.00 24.63 15.31 25.93 26.83 22.98

w task-specific adaptation
EvoLlama 33.00 32.12 24.10 27.00 19.00 25.34 35.48 19.23 22.39 50.00 31.48 34.15 30.00
Evolla 26.50 25.39 23.08 23.50 25.50 19.18 26.34 19.23 20.90 15.31 29.63 26.83 23.21

Table 10: Comparison of pass rates for SLLMs before and after task-specific adaptation.
Model CA BP MF EC PW AS CF MP TM CC PH TA
w/o task-specific adaptation
EvoLlama 40.00 85.00 73.33 45.50 71.00 63.70 80.10 80.80 46.30 58.70 63.00 46.30
Evolla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

w task-specific adaptation
EvoLlama 100.00 100.00 100.00 100.00 98.50 100.00 100.00 100.00 98.51 99.49 100.00 100.00
Evolla 35.50 9.84 16.92 14.50 10.50 4.11 11.29 7.69 21.64 1.53 11.11 7.32

The tables indicate that one-shot learninig enhances model performance. For EvoLlama, this re-
sulted in a significant boost in average accuracy (24.26% to 30.00%) and a near-perfect instruction
adherence rate across all tasks. Conversely, Evolla benefited minimally from alignment, exhibiting
only a marginal rise in accuracy (22.98% to 23.21%) while maintaining low pass rates. In sum-
mary, our findings underscore that zero-shot evaluation alone may underestimate the capabilities of
specialized models due to their varying degrees of instruction-following proficiency. While task-
specific adaptation can successfully unlock the latent knowledge of capable models like EvoLlama,
it is not a panacea for all architectures.

D.7 SUPPLEMENTARY EVALUATION ON PROTEIN INTERACTIONS

Table 11 presents the evaluation results on the newly added CPI task, contrasting them with the
average performance on the 12 core single-protein tasks, this task consists of 195 questions. The
comparison reveals a distinct system-level performance gap, highlighting the increased complexity
of modeling biological interactions versus intrinsic properties. As shown in Table 11, almost all
models exhibit a sharp decline in accuracy when tasked with predicting interactions. For instance,
Claude-3.7-sonnet suffers the most dramatic drop, with accuracy falling from 47.58% to 25.13% (∆
-22.45). Similarly, top-tier models like GPT-5 and Gemini-2.5-pro experience profound regressions
of −18.60% and −18.74%, respectively. This indicates that while these models have acquired
substantial knowledge about individual protein characteristics, they struggle to reason about the
dynamic and conditional nature of molecular recognition between proteins and small molecules.
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Table 11: Performance comparison between single-protein intrinsic properties and CPI.
Model Single-Protein Avg (12 Tasks) CPI ∆ (Gap)

Qwen3-32B 40.23 24.62 -15.61
Deepseek-v3 38.95 30.77 -8.18
Deepseek-r1 38.62 22.56 -16.06
Llama3.3-70B 37.67 23.59 -14.08
Qwen2.5-72B 35.98 31.28 -4.70
Qwen2.5-32B 35.28 29.23 -6.05
GPT-5 60.65 42.05 -18.60
o3 56.48 37.95 -18.53
Gemini-2.5-pro 47.97 29.23 -18.74
Claude-3.7-sonnet 47.58 25.13 -22.45
Gemini-2.0-flash 39.84 44.61 4.77
GPT-4o 36.45 23.59 -12.86
Qwen2.5-VL-32B 30.98 24.10 -6.88
InternVL3-78B 26.10 16.92 -9.18
BioMedGPT-R1 31.83 13.33 -18.50
EvoLlama 24.26 20.51 -3.75
Evolla 22.98 22.05 -0.93

E QUALITATIVE ANALYSIS OF STRUCTURE INPUT

To better understand the phenomenon observed in Figure 4 (A), where the addition
of structural images often interferes with model performance, we conducted a qualita-
tive analysis of model outputs. We compared the Chain-of-Thought (CoT) reasoning
processes of models under two settings: Sequence-Only versus Sequence + Structure.

Case Study 1

Task: EC
Model: Claude-3.7-sonnet
Target Protein: A0A9E7S5B9
Key Observation: The model correctly identified the functional motif from the sequence
but was misled by visual artifacts in the 2D structure projection. The addition of structural
information caused the model to choose the wrong answer.

Modality Generated Reasoning (Excerpt) Prediction

Sequence-Only ... The sequence contains key motifs typical of aldo-keto re-
ductases (AKRs), including: The presence of “GFGT” motif
near the N-terminus. The “LFITS” sequence which is part of
a conserved region in AKRs. References to “DLYL” which
appears in many AKR family proteins. The overall sequence
length (3̃00 amino acids) is consistent with AKRs. Looking
at specific clues in the sequence: “GFGTCIPDP” is a sig-
nature pattern found in aldo-keto reductases. “LDLYLIHM-
PLR” is another conserved region in AKRs. The presence
of NAD(P)H binding sites indicated by “DTASCY” ... The
specific number 1.1.1.440 represents a particular aldo-keto
reductase, and the sequence features align with this classifi-
cation.

Correct

Sequence + Structure ... From the protein images, I can see: A well-folded globu-
lar protein with mixed α-helices and β-sheets. The structure
appears to have multiple domains. The folding pattern sug-
gests an enzyme with a defined active site. The overall archi-
tecture is consistent with a kinase-like fold. ... The protein
sequence and structure are most consistent with a protein ki-
nase (2.7.11.24), specifically a MAP kinase kinase kinase
(MAPKKK).

Incorrect
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Case Study 2

Task: CC
Model: Claude-3.7-sonnet
Target Protein: Q8U3G4
Key Observation: The model correctly identified the functional motif from the sequence
but was misled by visual artifacts in the 2D structure projection. The addition of structural
information caused the model to choose the wrong answer.

Modality Generated Reasoning (Excerpt) Prediction

Sequence-Only ... Looking at the sequence, I notice several key features:
The presence of “GRGKS” motif (around position 270)
which resembles a Walker A motif (P-loop) often found in
ATP/GTP-binding proteins Terms like “DEAD” or “DEAA”
(I see “DEAA” around position 343) are often associated
with RNA helicases The sequence contains “GRGKSVSI-
GIASVGLA” which strongly suggests a nucleotide-binding
domain Mentions of “ATP” and “ADP” in the motifs sug-
gest this enzyme uses ATP hydrolysis. The protein ap-
pears to have: Nucleotide binding domains ATPase activ-
ity Helicase-like features ... Among the choices, option A
involves ATP hydrolysis and tRNA modification, which is
consistent with the sequence features I identified. The pro-
tein appears to have RNA-interacting capabilities and ATP
utilization, which would be necessary for the tRNA modifi-
cation reaction described in option A.

Correct

Sequence + Structure ... Key features I notice in the sequence and structure: The
protein is large and multi-domain, with a complex tertiary
structure. I can see multiple alpha helices and beta sheets
arranged in a pattern typical of nucleotide-binding enzymes.
The sequence contains motifs like “GRGKS” which is remi-
niscent of a P-loop/Walker A motif found in ATP-binding
proteins. Terms like “ATP”, “ADP”, “phosphate” appear
in some of the reaction options. Looking more closely at
sequence motifs: “GRGKSVSIGIASVG” appears to be a
nucleotide-binding motif “VITDNGLIKEVYAK” suggests
a catalytic domain. The presence of “VVRIATHPDA” sug-
gests a phosphorylation-related activity. The structure shows
a large multi-domain protein with distinct regions that could
accommodate nucleotide binding and substrate binding. The
rainbow coloring shows what appears to be multiple do-
mains arranged in a way consistent with kinase or phospho-
transferase activity. ... Option C describes a kinase reaction:
L-aspartate + ATP = 4-phospho-L-aspartate + ADP. This
matches well with the protein’s features: The nucleotide-
binding motifs would accommodate ATP. The structure has
domains consistent with kinase activity. The reaction is a
simple phosphoryl transfer from ATP to aspartate. This pro-
tein appears to be aspartate kinase, which catalyzes the first
step in the biosynthesis of several amino acids by phospho-
rylating aspartate.

Incorrect
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Case Study 3

Task: EC
Model: o3
Target Protein: I0AIT9
Key Observation: The sequence analysis yielded ambiguous signals regarding the protein’s
specific category, resulting in an incorrect initial prediction. However, the 2D structure pro-
jections provided decisive visual evidence of global topological features that were not ap-
parent from the sequence alone. The addition of structural information disambiguated the
conflicting signals, enabling the model to correct its reasoning and choose the right answer.

Modality Generated Reasoning (Excerpt) Prediction

Sequence-Only ... The protein sequence is 780 amino-acids long and, apart
from a few short stretches, it is predominantly hydrophilic.
There is no obvious N-terminal signal peptide or extended
hydrophobic segment that would anchor it in a membrane.
Consequently, it is most likely a soluble, cytosolic enzyme...
Option B (EC 2.4.1.391) designates a glycosyltransferase.
Many bacterial inverting or retaining glycosyltransferases
involved in polysaccharide, glycolipid or glycoprotein syn-
thesis are large, soluble proteins of 600–800 aa that lack
obvious signal peptides. Their sequences characteristically
contain several “DXH”/“H(R/K)D” and “E/D–E” acidic mo-
tifs for nucleotide-sugar binding and catalysis, which are
present multiple times in the given protein. The overall size
and motif pattern therefore fit a glycosyltransferase far better
than any of the other enzyme classes offered. Because only
option B is compatible with the length, sub-cellular localiza-
tion, and conserved sequence motifs, it is the most plausible
choice.

Incorrect

Sequence + Structure ... Size and fold. The polypeptide comprises 840 amino-acid
residues and the structure shown is a largely α/β cytosolic
dimer. It is far larger than typical β-lactamases (260 aa, op-
tion D) or endo-xylanases (200 aa, option A), and it lacks the
N-terminal signal peptide or obvious trans-membrane seg-
ments expected for most secreted glycosidases or glycosyl-
transferases (option B)... Therefore the only option consis-
tent with the sequence and structural features is EC 2.8.1.7.

Correct

F RESPONSE ERROR ANALYSIS

A significant finding in our experiments is that despite being fine-tuned with domain knowledge,
small, domain-specific models (SLLMs) generally underperform large, general-purpose models.
This section aims to analyze a key reason for this performance gap: the difference in instruction-
following ability. During our testing, we observed that SLLMs more frequently fail to generate valid
or correctly formatted answers. To quantify this issue, we introduce the “Pass Rate” as an evaluation
metric. This metric measures the proportion of answers a model can generate that strictly adhere
to the format specified in our prompt (“1. reasoning: [...]; 2. answer: [A/B/C/D]”), regardless of
whether the content of the answer is correct. This metric directly reflects the model’s ability to
understand and execute complex instructions.

As shown in Table 12, the analysis reveals a significant gap between general-purpose and specialized
models in this capability. Top-tier general-purpose models (like GPT-5 and Gemini-2.5-pro) have a
Pass Rate approaching 100%. In contrast, the performance of SLLMs is much poorer. For example,
according to our statistics, the pass rates of Evolla and BioMedGPT-R1 are close to 0%.

To provide a more detailed, qualitative view of the instruction-following failures discussed in the Er-
ror Analysis section, Table 13 presents representative examples of incorrectly formatted responses
generated by SLLMs. The responses from BioMedGPT-R1 exemplify a common failure mode
where the model adopts a conversational. Despite identifying the task, the model fails to struc-
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Table 12: Comparison of model pass rates
Model CA BP MF EC PW AS CF MP TM CC PH TA
Qwen3-32B 64.00 71.00 62.10 89.00 74.50 84.90 73.70 84.60 89.60 91.60 79.60 70.70
Deepseek-v3 100.00 100.00 100.00 100.00 99.50 100.00 99.46 100.00 100.00 98.93 100.00 100.00
Qwen2.5-32B 55.00 84.46 96.41 67.00 68.50 88.36 40.86 73.08 84.33 89.29 94.44 65.85
GPT-5 100.00 100.00 100.00 99.50 100.00 100.00 100.00 96.15 99.25 100.00 100.00 100.00
GPT-o3 100.00 100.00 100.00 99.50 100.00 100.00 99.46 100.00 99.25 100.00 100.00 100.00
Gemini-2.5-pro 95.00 94.30 93.80 93.00 94.50 71.20 100.00 84.60 69.40 89.80 98.10 90.20
Claude-3.7-sonnet 94.00 41.45 50.80 96.50 82.50 97.26 97.85 86.54 89.55 45.92 96.30 100.00
Gemini-2.5-pro 99.50 100.00 100.00 100.00 100.00 100.00 100.00 98.08 100.00 100.00 100.00 100.00
GPT-4o 98.50 76.20 70.30 98.50 96.00 91.80 96.20 94.20 95.50 74.00 90.70 80.50
Qwen2.5-VL-32B 67.50 32.10 39.00 83.50 96.50 100.00 33.33 100.00 100.00 92.30 100.00 95.10
InternVL3-78B 0.00 0.50 0.00 1.00 2.00 0.70 0.00 0.00 3.00 0.00 1.90 0.00
BioMedGPT-R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EvoLlama 40.00 85.00 73.33 45.50 71.00 63.70 80.10 80.80 46.30 58.70 63.00 46.30
Evolla 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ture its output according to the required reasoning and answer format, instead providing a narrative
followed by an incorrectly formatted final choice. The case of Evolla highlights a different type of
error: the model successfully generates a structured, step-by-step reasoning process, but it uses its
own self-devised format rather than the one specified in the prompt. These cases demonstrate that
the low Pass Rates of SLLMs are not due to a lack of response, but rather a fundamental inability
to adhere to complex formatting constraints. This underscores our conclusion that a significant per-
formance bottleneck for these specialized models is their limited instruction-following capability, a
foundational skill where larger general-purpose models excel.

G TASKS DEFINITION

Catalytic Activity This task aims at predicting the specific chemical reaction catalyzed by a given
protein. We use experimentally validated catalytic activity annotations from the UniProt database
as the ground truth labels to ensure the reliability of the evaluation. Accurately predicting catalytic
activity is fundamental to deciphering a protein’s role in complex metabolic pathways and is key to
discovering new enzymes. Furthermore, this capability has profound applicational value in synthetic
biology and industrial biocatalysis, where it is central to designing and optimizing biomanufacturing
processes.

Enzyme Commission Number This task predicts enzyme function by assigning the corresponding
EC number to a protein sequence. We employ the experimentally verified EC annotations from the
UniProt database as the gold standard. The EC number is a four-level hierarchical classification sys-
tem that provides a standardized language for enzyme function, and its accurate prediction is crucial
for systematically understanding enzymatic reactions and discovering novel enzyme activities. This
technology has wide-ranging applications in biotechnology, including the optimization of industrial
enzymes and guidance for drug development targeting specific enzyme classes.

Molecular Function This task based on the Gene Ontology (GO) framework, designed to predict
the specific activities a protein performs at the molecular level, such as “ATP binding” or “transporter
activity”. Our ground truth labels are derived from annotations in the UniProt-GOA database that are
supported by experimental evidence, ensuring the highest quality of annotation. This task directly
probes the model’s understanding of a protein’s intrinsic capabilities, independent of its cellular
location or the biological processes it participates in. Accurate MF prediction is a cornerstone of
functional genomics, essential for annotating newly discovered genes and identifying potential drug
targets.

Biological Process This task based on the Gene Ontology (GO) framework, which aims to identify
the larger-scale biological processes a protein is involved in, such as “glycolysis” or “cell signal-
ing”. Unlike MF, which focuses on a single molecular activity, BP places a protein’s function into
a broader physiological context, connecting molecular events to the overall operation of the cell.
This task evaluates a model’s higher-level understanding of the roles proteins play within complex
living systems. A deep understanding of the biological processes proteins participate in is vital for
uncovering disease pathogenesis and discovering new therapeutic strategies.
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Pathway This task requires the model to assign a given protein to its specific metabolic or signaling
pathway. We compiled validated pathway annotation information from databases such as UniProt to
serve as the ground truth. The accurate identification of a protein’s pathway is critical for systems
biology research, as it helps to elucidate complex biological regulatory networks and understand how
cellular processes are coordinately regulated. This knowledge is valuable for understanding how
drugs affect an entire cellular system by targeting a single protein and for applications in metabolic
engineering.

Active Site This task requires the model to identify key amino acid residues in a protein sequence
that are directly involved in substrate binding or catalysis. The precise prediction of active sites
is central to structural biology and computational drug design, as these residues are the primary
targets for developing inhibitors or activators. These sites are often evolutionarily conserved and
possess a unique chemical environment tailored for a specific reaction. Therefore, a model’s ability
to identify them from sequence alone is a strong indicator of its understanding of the structure-
function relationship.

Cofactor This task aims to predict the non-protein chemical components a protein must bind to per-
form its biological function. These include metal ions (e.g., zinc, magnesium) or organic molecules
(e.g., NAD+, FAD). These cofactors often act as “helper molecules” that are directly involved in
catalysis or are essential for maintaining the protein’s structural integrity. Understanding a pro-
tein’s cofactor requirements is crucial for successful enzyme engineering, nutritional science, and
the diagnosis and treatment of diseases related to cofactor metabolism deficiencies.

Motif Position This task requires the model to pinpoint the exact location of conserved, short se-
quence patterns (motifs) with specific biological significance within a protein sequence. These mo-
tifs often serve as functional “signatures”, such as the “zinc finger” motif associated with DNA
binding or specific phosphorylation sites. Because these patterns are evolutionarily conserved and
directly linked to functions like binding, catalysis, or post-translational modification, accurately
identifying their positions is an effective means of rapidly inferring the function of newly discov-
ered proteins.

Transmembrane This task is designed to determine whether a protein is embedded within a cell
membrane. Transmembrane proteins typically contain one or more hydrophobic alpha-helical seg-
ments that span the lipid bilayer, functioning as channels, transporters, or receptors. They act as the
“gatekeepers” of the cell, playing a central role in signal transduction, substance transport, and cell-
to-cell communication. Given that they constitute a large fraction of all known drug targets, their
accurate identification is of extremely high value for drug discovery and fundamental cell biology
research.

Cellular Component This task is based on the Gene Ontology (GO) framework, which aims to
determine a protein’s specific subcellular localization, such as the “nucleus”, “mitochondrion”, or
“cytoplasm”. A protein’s location is intrinsically linked to its function, as it dictates its local envi-
ronment and available potential interaction partners. For example, a protein located in the nucleus
is likely involved in DNA replication or transcription. Therefore, the accurate prediction of cellu-
lar components is fundamental to understanding the division of labor among proteins to carry out
complex operations within the cell.

Optimal pH This task requires the model to predict the environmental pH at which a protein exhibits
its maximum biological activity. The ambient pH directly influences the ionization state of amino
acid side chains, which in turn affects the protein’s three-dimensional structure and the chemical
properties of its active site. This prediction is crucial for industrial biotechnology, as it determines
an enzyme’s efficiency and stability in specific production processes. It also helps in understanding
how proteins adapt their function in cellular compartments with different acid-base environments,
such as the acidic lysosome.

Thermal Adaptation This task aims to infer the optimal growth temperature category (e.g., psy-
chrophilic, mesophilic, or thermophilic) of the organism from which a protein originates. This
capability has immense potential for discovering and engineering stable enzymes that remain active
under extreme industrial conditions, such as in high-temperature detergents or low-temperature food
processing.
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H GENERAL PROMPT

In this section, we present the general prompt used for question-answering.

System Message

You are an excellent scientist. Your should analyze the provided protein-related task carefully
and choose the correct answer form the multiple-choice options.
The current task is about {task name}, which {task description}. The inputs provided by the
user for this task include:
* Protein Sequence: The amino acid sequence of the protein.
* Protein Image: Multiple views of the protein structure.
* Multiple Choices: Options for the answer.
Please think step-by-step about this problem:
1. Analyze the protein sequence and structure carefully
2. Consider the biological context and function
3. Evaluate each multiple choice option
4. Provide your reasoning process
5. Finally, give your answer
Provide your response in following format:
1. reasoning: [Your detailed reasoning here]
2. answer: Your final answer, which should be A, B, C or D.

I EXAMPLES OF QUESTIONS AND ANSWERS

In this section, we show several representative examples of questions and answers for each task.

User Message

task name: catalytic activity
task description: is to identify the specific chemical reaction catalyzed by a given enzyme.
This involves understanding the enzyme’s function based on its amino acid sequence and
then selecting the correct transformation of substrates into products from a list of possible
reactions.
[Protein Sequence]
MAIKLIVGLANPGAEYAATRHNAGAWYVDLLAERLRAPLREEPKFFGYTSRITLEGE
DVRLLVPTTFMNLSGKAVGAMASFYRIQPDEILVAHDELDLPPGVAKFKLGGGHGG
HNGLKDIISKLGNNPNFHRLRVGIGHPGDKNKVVGFVLGKPPVSEQKLIDEAIDEA
ARCTELWFKEGLAKATSRLHTFKAQ
[Protein Image]
back.png,
front.png,
bottom.png,
top.png,
left.png,
right.png
[Multiple Choices]
A: (13S)-hydroperoxy-(9Z,11E,15Z)-octadecatrienoate = etherolenate + H2O
B: 4-nitrobenzoate + 2 NADPH + 2 H(+) = 4-hydroxylaminobenzoate + 2 NADP(+) + H2O
C: an N-acyl-L-alpha-aminoacyl-tRNA + H2O = an N-acyl-L-amino acid + a tRNA + H(+)
D: (2R)-2,3-dihydroxy-3-methylbutanoate = 3-methyl-2-oxobutanoate + H2O
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Answer

1. reasoning: - The protein is small ( 170 aa), soluble, and displays a mixed alpha/beta fold,
consistent with peptidyl-tRNA hydrolase (Pth) family proteins, which are typically 170–200
aa monomeric cytosolic enzymes.- The sequence contains hallmark Pth motifs: a catalytic
His near the N-terminus and a highly conserved HGGH-containing segment. Notably, the se-
quence includes “...KFKLGGGHGGHNGLK...”, matching the conserved GGH/HGGH mo-
tif characteristic of Pth active-site regions.- No signatures of other enzyme classes are present:
- A: Allene oxide synthase (a CYP74 P450) would be a 500 aa heme-thiolate enzyme with
a Cys heme-binding motif and often a membrane helix—absent here. - B: FMN-dependent
nitroreductases are 200+ aa with characteristic FMN/NAD(P)H-binding motifs (e.g., TG-
W/TGGXGGXG) not observed in this sequence. - D: Dihydroxy-acid dehydratase (IlvD) is a
large ( 540 aa) [4Fe–4S] enzyme with Cys-Thr-Cys motifs—absent and size is inconsistent.-
The reaction in C precisely matches Pth activity: hydrolysis of peptidyl-/N-acyl-aminoacyl-
tRNA to release the N-acyl-amino acid and free tRNA.2. answer: C“,
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Table 13: Case studies of instruction-following failures in specialized models.
Model Response

BioMedGPT-R1

Okay, I’m trying to figure out the cofactor of this protein based on the fol-
lowing information. Hmm, that looks a bit complicated, but I can try to
break it down. First, I’m thinking about the function of the provided pro-
tein. Involved in the biosynthesis of ent-copalyl diphosphate (ent-CDP) from
isopentenyl diphosphate (IPP). Catalyzes the oxidative cyclization of ger-
anyl diphosphate (GPP) to ent-copalyl diphosphate (ent-CDP). Can also act
on geranylgeranyl diphosphate (GGPP) as substrate producing ent-copalyl
diphosphate (ent-CDP). Then there’s a list of possible cofactors: A. panteth-
eine 4’-phosphate, B. Fe(2+), C. Ca(2+), D. heme. I’m trying to figure out
the cofactor of this protein based on the following information. A. panteth-
eine 4’-phosphate B. Fe(2+) C. Ca(2+) D. heme The cofactor of ent-copalyl
diphosphate synthase.

Okay, I’m trying to figure out the cofactor of this protein based on the fol-
lowing information. Hmm, that looks a bit complicated, but I can try to break
it down. First, I’m thinking about the function mentioned. Involved in the
biosynthesis of ergosterol. Catalyzes the NADPH-dependent 3-hydroxylation
of 24,25-dihydrosqualene to 24-hydroxysqualene, the first hydroxylation step
in the pathway leading to ergosterol. Then there’s the cofactor mentioned. A:
FAD; B: Mg(2+); C: heme; D: pantetheine 4’-phosphate. The answer is A.
</think >A: FAD; B: Mg(2+); C: heme; D: pantetheine 4’-phosphate.

Evolla

I’d be happy to help with the Enzyme Commission (EC) Number Prediction
task.**Step 1: Analyze the protein sequence and structure**The provided
protein sequence is a long chain of amino acids, which can be analyzed for
patterns, motifs, and functional domains. However, without the 3D structure,
it’s challenging to identify specific structural features that might aid in EC
number prediction. Since the structure is not provided as a text format, I
will focus on the sequence analysis.**Step 2: Consider the biological context
and function**The protein sequence does not contain any obvious functional
domains or motifs that are typically associated with specific EC numbers.
However, the sequence does contain a mix of hydrophobic and hydrophilic
amino acids, which suggests that the protein may be involved in a biological
process that requires interactions with other molecules.**Step 3: Evaluate
each multiple choice option**A. 1.14.15.37: This EC number corresponds to
a family of enzymes that catalyze the oxidation of a sulfur-containing com-
pound, which is not immediately apparent from the provided sequence.B.
4.4.1.11: This EC number corresponds to a family of enzymes that catalyze
the hydrolysis of a peptide bond, which is not a clear match based on the se-
quence.C. 2.4.2.14: This EC number corresponds to a family of enzymes that
catalyze the transfer of a glycosyl group, which is not a clear match based
on the sequence.D. 4.3.1.12: This EC number corresponds to a family of en-
zymes that catalyze the transfer of a phosphorus-containing group, which is
not a clear match based on the sequence.**Step 4: Provide my reasoning pro-
cess**Based on the sequence analysis, I did not find any obvious functional
domains or motifs that are typically associated with specific EC numbers.
The sequence does not contain any obvious patterns or features that would
suggest a specific EC number. Therefore, I will rely on the multiple choice
options to make an educated guess.**Step 5: Provide my answer**1. rea-
soning: The sequence analysis did not reveal any clear functional domains or
motifs that are typically associated with specific EC numbers. The multiple
choice options do not provide a clear match based on the sequence.2. answer:
I will choose option D. 4.3.1.12 as the most plausible answer, although it is
not a clear match based on the sequence.
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