
Parsimonious Learning-Augmented Approximations for Dense Instances of
NP-hard Problems

Evripidis Bampis * 1 Bruno Escoffier * 1 2 Michalis Xefteris * 1

Abstract
The classical work of (Arora et al., 1999) provides
a scheme that gives, for any ϵ > 0, a polynomial
time 1− ϵ approximation algorithm for dense in-
stances of a family of NP-hard problems, such
as MAX-CUT and MAX-k-SAT. In this paper we
extend and speed up this scheme using a logarith-
mic number of one-bit predictions. We propose
a learning augmented framework which aims at
finding fast algorithms which guarantees approx-
imation consistency, smoothness and robustness
with respect to the prediction error. We provide
such algorithms, which moreover use predictions
parsimoniously, for dense instances of various
optimization problems.

1. Introduction
In an era marked by the widespread adoption of Machine
Learning technology, ML predictors, capable of learning to
predict the unknown based on (past) data, are employed to
solve numerous problems daily. Due to an effort to exploit
this development, there has been a trend in recent years that
tries to use ML predictions in order to overcome known
worst-case computational limitations. The goal is to pro-
vide algorithms that use a possibly erroneous predictor to
enhance their performance when the prediction is accurate,
while still providing worst case performance guarantees.

The formal framework for these learning-augmented al-
gorithms (or algorithms with predictions) has been pre-
sented by Lykouris and Vassilvitskii in their seminal pa-
per (Lykouris & Vassilvitskii, 2021), in which they studied
the caching problem. In this framework, no assumption is
made about the quality of the predictor and the objective is
to design learning-augmented algorithms that are consistent,

*Equal contribution 1Sorbonne Université, CNRS, LIP6,
F-75005 Paris, France 2Institut Universitaire de France,
Paris, France. Correspondence to: Michalis Xefteris
<michail.xefteris@lip6.fr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

i.e., whose performance is close to the best possible perfor-
mance that can be achieved when the prediction is perfect,
smooth, meaning that the quality of the solution produced
degrades smoothly with the error made in the prediction,
and robust. The robustness requires that the performance of
the algorithm remains close to the one of the best worst-case
algorithm even when the prediction is bad (see Section 2 for
formal definitions).

This vein of work has produced various results for on-
line algorithms, i.e., algorithms that are not aware of the
whole (future) input of the problem, including schedul-
ing (Mitzenmacher, 2020; Purohit et al., 2018), metrical
task systems (Antoniadis et al., 2020), online facility loca-
tion (Jiang et al., 2022) and online routing problems (Bampis
et al., 2022; 2023). More related to our work, in (Lattanzi
et al., 2023) they use predictions to speed up the Bellman-
Ford algorithm for the shortest path problem. Furthermore,
in (Dinitz et al., 2021) they design a faster algorithm for
computing matchings utilizing warm-start predicted solu-
tions, and in (Lu et al., 2021; Bai & Coester, 2023) they
speed up sorting using predictions. For clustering, Ergund
et al. present an algorithm that given a prediction with er-
ror rate upper bounded by α achieves an approximation
of 1 + O(α) in almost optimal running time (Ergun et al.,
2022).

All the aforementioned works use the predictor without any
limitations. Recently, a new line of work, which uses a
small number of predictions to design learning-augmented
algorithms, has emerged. Im et al. proposed an algorithm
that uses a bounded number of predictions to solve the on-
line caching problem (Im et al., 2022). In (Antoniadis et al.,
2023) they solved the paging problem utilizing a minimum
amount of predictions. Similar works that present algo-
rithms which take into account the amount of predictions
used, penalizing each prediction request by some cost or
given a finite budget are the works of (Drygala et al., 2023)
and (Benomar & Perchet, 2023), respectively. In this paper,
we follow this line of work and use a logarithmic number of
one-bit predictions to solve dense instances for a family of
problems that includes MAX-CUT and MAX-k-SAT.

Simultaneously and independently of our work, MAXCUT
with predictions was studied in two separate papers. Cohen-

1



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

Addad et al. studied the approximability of MAXCUT with
predictions considering two different models (Cohen-Addad
et al., 2024). In their first model, they get a prediction for
each vertex that is correct with probability 1/2+ϵ and give a
polynomial-time (0.878 + Ω̃(ϵ4))-approximation algorithm.
In their second model, they get a correct prediction for
each vertex with probability ϵ and design a (0.858 + Ω(ϵ))-
approximation algorithm. Ghoshal et al. (Ghoshal et al.,
2024) studied MAXCUT and MAX2-LIN in the two afore-
mentioned models as well (Ghoshal et al., 2024).

Approximation algorithms Approximation algorithms
are one standard way of dealing with NP-hard problems
as they usually run in polynomial time. An algorithm is
an α-approximation for an optimization problem iff for
every instance of the problem it can find a solution within
a factor of α of the optimum solution. If the problem is a
maximization problem, α ≤ 1 and the approximate solution
is at least α times the optimum.

A PTAS (Polynomial Time Approximation Scheme) takes
an instance of an optimization problem and a user-defined
parameter ϵ > 0 and outputs a solution that is within a factor
1− ϵ of being optimal (or 1+ ϵ for minimization problems).
The running time of a PTAS is required to be polynomial
in the problem size for every fixed ϵ > 0, but can be even
super-exponential with respect to 1/ϵ. However, hardness
results have shown that unless P = NP , problems such as
vertex cover, MAX-3-SAT, MAX-CUT and metric TSP do
not have a PTAS (Arora et al., 1998; Papadimitriou & Yan-
nakakis, 1988). Moreover, k-DENSEST SUBGRAPH does
not admit a PTAS under a complexity assumption (Khot,
2006).

Despite the discouraging results, many approximation algo-
rithms for MAX-SNP problems1 like MAX-CUT, MAX-
k-SAT have been presented, by exploiting the structure
of various classes of instances. One particularly signifi-
cant line of research is the study of the approximability of
dense instances2 of those problems, which was initiated by
Arora, Karger and Karpinski (Arora et al., 1999) and de la
Vega (Fernandez de la Vega, 1996). This line of work has
produced several results in approximating dense instances
of NP-hard problems (Fernandez de la Vega & Karpinski,
2000; Bazgan et al., 2003; Imamura & Iwama, 2005; Cardi-
nal et al., 2012). More specifically, in (Arora et al., 1999)
a framework was presented which shows that a family of
problems, including MAX-CUT and MAX-k-SAT, admits
a PTAS on dense instances. They actually gave additive
approximations for the problems, which can be made into a
multiplicative 1− ϵ approximation due to the denseness of

1A formal definition of MAX-SNP problems is given in (Pa-
padimitriou & Yannakakis, 1988).

2For example, a dense instance of MAX-k-SAT is an instance
where the number of clauses is Ω(nk).

each problem. The framework was later extended and gener-
alized to solve almost-sparse instances of the same problems
by using subexponential time (Fotakis et al., 2016).

1.1. Our contribution

The first goal of this paper is to utilize the additional power
given by a small (logarithmic) number of binary predictions
to design a learning-augmented algorithm that significantly
improves the running time of the PTAS of (Arora et al.,
1999) for dense instances of the following problems3:

• MAX-CUT: Given an undirected graph G = (V,E),
partition the vertices of the graph into two complemen-
tary sets so as to maximize the number of edges with
exactly one vertex in each set.

• MAX-DICUT: The directed version of MAX-CUT.
Given a directed graph G = (V,E), find a subset
T ⊆ V of vertices to maximize the total number of
edges (u, v) with u ∈ T and v ∈ T .

• MAX-HYPERCUT(d): A natural generalization of
MAX-CUT to hypergraphs of dimension d. In MAX-
HYPERCUT an edge is considered cut if it has at least
one endpoint on each side.

• k-DENSEST SUBGRAPH: Given an undirected graph
G, find a subset C of k vertices so that the induced
subgraph G[C] has a maximum number of edges.

• MAX-k-SAT: Given an instance with n variables that
consists of m boolean clauses f1, . . . , fm, each clause
being a disjunction of at most k literals, we seek a truth
assignment to the variables that maximizes the number
of satisfied clauses.

We consider in this work a new learning augmented frame-
work (see Section 2 for precise definitions), called Learning
Augmented Approximation (LAA), where we want to get
approximation ratios close to 1 − ϵ, smoothly decreasing
with the error made in the predictions, while having a small
(polynomial here, with no dependency on ϵ) time complexity.
We are particularly focusing on parsimonious predictions,
using typically a logarithmic number of prediction bits.

Let us start with MAX-CUT for a smoother exposition (Sec-
tion 3). For dense MAX-CUT, the PTAS of Arora, Karger
and Karpinski (Arora et al., 1999) gives for any user-defined
ϵ > 0, an 1− ϵ randomized approximation that runs in time
nO(1/ϵ2). Since the work of (Arora et al., 1999), there has
been faster PTAS, like the one in (Mathieu & Schudy, 2008),

3Note that computing an optimal solution for all these problems
remains NP-hard even for dense instances (Arora et al., 1999).
Moreover, they have no FPTAS unless P = NP (deterministic),
or NP ⊆ BPP (randomized).

2



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

but all with an exponential dependence on 1/ϵ in the run-
ning time. In this work, we use predictions to improve the
running time for MAX-CUT to a low-degree polynomial
with no dependency on ϵ while getting an approximation
ratio 1− ϵ− f(error), for a linear function f with respect
to the prediction error (Theorem 3.3).

More precisely, given ϵ > 0, we sample a set S of
O(log n/ϵ3) vertices and get a binary prediction âi ∈ {0, 1}
for the placement of each vertex i (side of the cut) of the
sample at an optimal solution a = (a1, . . . , an). The pre-
diction error is just the sum of the absolute differences
|âi − ai| of the variables in the sample S. Dealing with
the LAA framework, we design an algorithm LAA-CUT
which approximates MAX-CUT as follows, where TLP

denotes the time to solve an LP with n variables and O(n)
constraints.

Theorem 1.1. Let G a δ-dense graph. Then, for any ϵ > 0
with |S| = Θ(lnn/(ϵ3δ4)), LAA-CUT runs in time O(n ·
TLP ) and, with respect to the approximation ratio, is with
high probability (1− ϵ)-consistent,

(
1− ϵ− 8 error

δ|S|
)
-smooth

and 0.878-robust, where error is the prediction error.

Note that the density condition is necessary to achieve a
consistency of 1 − ϵ. Indeed, otherwise, using exhaustive
search we would get a PTAS for all MaxCut instances while
this problem is APX-hard.

In Section 4, we generalize the approach applied to MAX-
CUT. Retracing the steps in (Arora et al., 1999) we express
each problem as a maximization problem of a low degree
polynomial with bounded coefficients and n binary vari-
ables. Then, we recursively decompose the polynomial
problem into lower-degree polynomials estimating the co-
efficients by using predictions on a sample of variables. In
the end, we get an integer linear program, for which we
obtain a fractional solution in polynomial time. Using ran-
domized rounding we obtain an integer solution for the
original problem. The running time of our algorithm with
predictions is much shorter than the running time of the
PTAS (Theorem 4.2). The algorithm we get can be seen
as an additive approximation (depending on the prediction
error), but translates into a multiplicative one when applied
to dense instances of the problems studied (Section 5). As
for MaxCut, the density condition is necessary for the result
to hold.

Using the same approach as for MAX-CUT, we obtain
an algorithm corresponding to the LAA framework (The-
orem 4.3), which can be applied to all our problems (and
possibly many more). Here again, we emphasize the fact
that we use the predictions parsimoniously, which is highly
desirable as a predictor is typically a machine learned model
that can be computationally expensive.

While we acknowledge that there might not be a readily

available oracle setting for the specific problems under study,
we propose considering a scenario similar to the pricing pol-
icy implemented by OpenAI for ChatGPT. OpenAI charges
customers based on the number of tokens (words) in both
the input and output4. Similarly, one could consider a pric-
ing policy for machine learning models in a private company
that tackle computational problems. Employing predictions
parsimoniously in that case would result in cost savings, as
it would require O(log n) instead of O(n) tokens.

Let us also note that our work can be easily extended to the
multiple predictions setting (Anand et al., 2022). Instead of
receiving only one prediction for the values of S, we receive
k different predictions from different predictors. Running
our algorithm k times (with the same S) and outputting the
best solution, we get an approximation with respect to the
best predictor, i.e., the one with the lowest prediction error.
The time overhead is just a multiplicative k.

2. Notation and Preliminaries
We start by giving a definition of density for each problem
studied in this work.

Definition 2.1. An undirected graph G(V,E) with n ver-
tices is δ-dense when δ = 2|E|

n(n−1) . For a directed graph

G(V,E), δ = |E|
n(n−1) . A dimension-d hypergraph is δ-

dense if it has at least δnd edges. Similarly, a k-SAT for-
mula is δ-dense when it has at least δnk clauses.

In the paper, we assume that δ, d, k are constants. As ex-
plained in the introduction, we deal with optimizing polyno-
mials. The following definition will be particularly useful
in the next sections.

Definition 2.2. A Polynomial Integer Program (PIP) is of
the form

max p(x1, . . . , xn)

s.t. li ≤ pi(x) ≤ ui i = 1, . . . ,m

xi ∈ {0, 1} ∀i ≤ n,

where p, p1, . . . , pn are polynomials. The PIP could have
minimization instead of maximization. If all p, pi have
degree at most d, we call this program a degree-d PIP.

Let us now define a class of PIPs that are easier to approxi-
mate. Note that solving PIPs is NP-hard in general.

Definition 2.3. A degree-d polynomial is c-smooth (or it
has smoothness c) if the absolute value of each coefficient
of each degree i monomial is at most c · nd−i.

A c-smooth degree-d PIP is a PIP in which the objective
function and the constraints are c-smooth polynomials with
degree at most d.

4https://openai.com/pricing

3

https://openai.com/pricing


Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

We assume that c, d are constants.

Prediction Model Let I be an instance of an optimization
problem and S a subset of the variables of the problem sam-
pled uniformly at random. Then, we are given predictions
on the values of the variables in S at an optimal solution
for the instance I (i.e., a prediction value for each distinct
variable of S).

In order to measure the quality of the predictions, we define
the prediction error.

Definition 2.4. (Prediction error) Let S ⊆ {1, 2, . . . , n} be
a multiset and fix an optimal solution a = (a1, . . . , an) ∈
{0, 1}n for an optimization problem. Given a prediction
âj ∈ {0, 1} for every distinct aj , ∀j ∈ S

(
at most |S| pre-

dictions in total
)

we define the prediction error as follows

error =
∑
j∈S

|âj − aj | =
∑
j∈S

errorj ,

where errorj = |âj − aj |,∀j ∈ S.

The error is the absolute error, and error
|S| is the relative pre-

diction error. In our algorithms, for ease of explanation we
sample S uniformly at random with replacement. Through-
out the paper we omit the fact that our predictions may use
only a subset of S (distinct elements of S).

Learning-augmented approximation framework.
Learning-augmented algorithms have three main properties
that we adjust in the context of this work. In the Learning
Augmented Approximation (LAA) framework, we say that
a (randomized) algorithm is:

• α-consistent, if it is an α-approximation with high
probability when error = 0,

• β-robust, if it is a β-approximation with high probabil-
ity regardless of the value of error, and

• γ-smooth for a continuous function γ(error), if it is a
γ(error)-approximation with high probability.

Note that the smoothness of a polynomial has no connection
with the smoothness of a learning-augmented algorithm. In
the paper, the distinction between the two notions will be
made clear due to the context of each sentence.

Notation In the following, we use a ± b as a shorthand
for the interval [a− b, a+ b], for a, b ≥ 0. Moreover, with
[l, u] ± a, where l < u and a ≥ 0, we denote the interval
[l − a, u + a]. Finally, we often use |OPT | to denote the
value of the optimal solution of an optimization problem.

3. MAX-CUT
In this section, we introduce our approach and apply it to
MAX-CUT in a graph G(V,E) that is δ-dense. First, we
show how to speed up the PTAS of (Arora et al., 1999) using
a limited number of predictions (Section 3.1- 3.5), leading
to algorithm LA-PTAS-CUT. Then, we use this algorithm
to construct the algorithm LAA-CUT (Section 3.6).

3.1. Overview of Algorithm LA-PTAS-CUT

First, let us write MAX-CUT as follows:

max p(x) =
n∑

i=1

xi ·
∑

j∈N(i)

(1− xj)

s.t. xi ∈ {0, 1} ∀i

where N(i) denotes the set of neighbors of vertex i. The
vector x ∈ {0.1}n characterizes a cut: xi = 1 (resp. xi = 0)
indicates that vertex i is placed on the right (resp. left)
side of the cut. The objective function p(x) is an n-variate
degree-2 2-smooth polynomial.

The above formulation is a quadratic integer program and
cannot be approximated efficiently. Our goal is to turn it
into a linear program. For that reason, we set ri(x) =∑

j∈N(i) xj and rewrite the MAX-CUT problem in the fol-
lowing way:

max p(x) =
n∑

i=1

xi ·
(
|N(i)| − ri(x)

)
(1)

s.t. xi ∈ {0, 1} ∀i.

We first define the algorithm LA-PTAS-CUT which will
approximate these ri(x)’s, that are linear functions, by using
sampling on the vertices of G and a prediction on the values
of the sample at the optimal solution. The main idea (Arora
et al., 1999) is that if we have a good estimation of the value
of each ρi = ri(a) at the optimal solution a, then we can
approximately solve (1). Let us write the Integer Linear
Program using our estimates êi for ri(x) (which will be
obtained using the predictions):

max p(x) =
n∑

i=1

xi ·
(
|N(i)| − êi

)
(IP)

s.t.
∑

j∈N(i)

xj ≥ êi − f(error, ϵ, δ) · n ∀i ∈ V

∑
j∈N(i)

xj ≤ êi + f(error, ϵ, δ) · n ∀i ∈ V

xi ∈ {0, 1} ∀i.

The estimated values êi and the values f(error, ϵ, δ) are
computed such that the optimal solution a is a feasible
solution to the above (IP). Note that we can replace the

4



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

right-hand-side of the first n constraints by max{0, êi −
f(error, ϵ, δ) · n} (as

∑
j∈N(i) xj ≥ 0) and the one of

next n constraints by min{|N(i)|, êi + f(error, ϵ, δ) · n}
(as

∑
j∈N(i) xj ≤ |N(i)|). Let (LP) denote the Linear Pro-

gramming relaxation of (IP), i.e., setting each xi ∈ [0, 1].

Our learning-augmented algorithm LA-PTAS-CUT approx-
imates the optimal solution of MAX-CUT executing the
following steps:

• We sample a set of vertices S and get a prediction on
the value of each xi,∀i ∈ S at the optimal solution
a = (a1, . . . , an). Using these values we then estimate
the values of ri(a),∀i ∈ {1, . . . , n} at the optimal
solution a (Section 3.2).

• For each possible value of the integer variable error,
we perform the following two steps and output the best
solution.

1. We replace each function ri by the correspond-
ing estimate êi of ri(a), formulate (IP) and show
that an optimal solution for this (IP) is a good
approximation for MAX-CUT (Section 3.3).

2. Then, we find an optimal fractional solution y to
(LP) and obtain an integral solution z by applying
(naive) randomized rounding to y (Section 3.4).

3.2. Estimating Coefficients via Sampling and
Predictions

We take a random sample S ⊆ V of O(log n) vertices.
Assume for now that we know the values aj at the optimal
cut for all sampled vertices j. Using the Sampling lemma
for MAX-CUT from (Fotakis et al., 2016)5 with these values
aj we can compute an estimate ei =

∑
j∈S∩N(i) aj · n/|S|

of each ρi = ri(a) =
∑

j∈N(i) aj for every vertex i such
that ei ≈ ρi with high probability. Let us now state the
Sampling lemma for MAX-CUT of (Fotakis et al., 2016)
and show how to get the estimates ei for ρi if we know the
values aj’s at the optimal solution.

Lemma 3.1. Sampling lemma (Fotakis et al., 2016) Let a be
a binary vector and G(V,E) be a δ-dense graph. For ϵ > 0,
we let g = Θ(1/ϵ3) and S be a multiset of |S| = g lnn/δ
vertices chosen uniformly at random with replacement from
V . For any vertex i, if ei = (n/|S|)

∑
j∈N(i)∩S aj and

ρi =
∑

j∈N(i) aj , with probability at least 1− 2/n3,

(1− ϵ)ei − ϵδn ≤ ρi ≤ (1 + ϵ)ei + ϵδn

Using Lemma 3.1 we get that with probability at least 1−
5We use the sampling lemma of Fotakis et. al. for a more

straightforward analysis.

2/n3,

ei − ϵ · ei − ϵδn ≤ ρi ≤ ei + ϵ · ei + ϵδn

=⇒ ei − (ϵ+ ϵδ)n ≤ ρi ≤ ei + (ϵ+ ϵδ)n

=⇒ ei − 2ϵn ≤ ρi ≤ ei + 2ϵn, (2)

since δ ≤ 1 and assuming wlog that |ei| ≤ n (since |ρi| ≤
n). Taking the union bound over all vertices, we have that (2)
holds for all vertices i ∈ V simultaneously with probability
at least 1− 2/n2.

Of course, the problem is that we do not know the values
aj ,∀j ∈ S. In (Arora et al., 1999) they try all possible
(2O(logn) = nO(1), as |S| = g lnn/δ = O(lnn) for fixed
ϵ, δ) placements of the vertices in the sample, so they guess
all aj correctly. Here, we get a prediction âj for each aj .
Using these predicted values we compute an estimate êi =∑

j∈S∩N(i) âj · n/|S| for each ρi. It is easy to see that∑
j∈S∩N(i)

âj ∈
∑

j∈S∩N(i)

aj ± error

=⇒
n
∑

j∈S∩N(i) âj

|S|
∈

n
∑

j∈S∩N(i) aj

|S|
± n

|S|
error

=⇒ êi ∈ ei ±
n

|S|
error

=⇒ ei −
n

|S|
error ≤ êi ≤ ei +

n

|S|
error

=⇒ êi −
n

|S|
error ≤ ei ≤ êi +

n

|S|
error. (3)

Using (2) and(3) we get that for all vertices i ∈ V with
probability at least 1− 2/n2,

êi −
(
2ϵ+

error
|S|

)
n ≤ ρi ≤ êi +

(
2ϵ+

error
|S|

)
n. (4)

3.3. Formulating the Integer Linear Program

Now we can use the estimates êi for the coefficients ρi of
the quadratic integer program of MAX-CUT and write the
following Integer Linear Program (IP):

max
∑
i

xi ·
(
|N(i)| − êi

)
(IP)

s.t.
∑

j∈N(i)

xj ≥ êi −
(
2ϵ+

error
|S|

)
n ∀i ∈ V

∑
j∈N(i)

xj ≤ êi +

(
2ϵ+

error
|S|

)
n ∀i ∈ V

xi ∈ {0, 1} ∀i ∈ V .

Note again that we can replace the right-hand side of the
first n constraints by max{0, êi−

(
2ϵ+ error

|S|
)
n} and the one

of the next n constraints by min{|N(i)|, êi+
(
2ϵ+ error

|S|
)
n}.

5



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

With probability at least 1 − 2/n2, the previous Integer
Linear Program (IP) is feasible, since the optimal solution
a satisfies it. The only problem is that we do not know
the value of the error. To overcome this issue, we try all
possible values and guess it. Note that error ≤ |S|, so
the runtime overhead is at most |S| ≤ n (actually, even
|S| ≤ g lnn/δ). From now on we assume that we know the
true value of the error.

Let z be an optimal solution to this (IP). We show that z is
a good approximation for the optimal solution a of MAX-
CUT. We have that∑

i∈V

zi
∑

j∈N(i)

(1− zj) =
∑
i∈V

zi
(
|N(i)| −

∑
j∈N(i)

zj
)

≥
∑
i∈V

zi

(
|N(i)| −

(
êi +

(
2ϵ+

error
|S|

)
n
))

by the constraints of (IP),

≥
∑
i∈V

zi(|N(i)| − êi)−
(
2ϵ+

error
|S|

)
n2

≥
∑
i∈V

ai(|N(i)| − êi)−
(
2ϵ+

error
|S|

)
n2

since z is an integer optimal solution of (IP),

≥
∑
i∈V

ai

(
|N(i)| − ρi −

(
2ϵ+

error
|S|

)
n

)
−
(
2ϵ+

error
|S|

)
n2, from (4),

≥
∑
i∈V

ai
(
|N(i)| − ρi

)
− 2

(
2ϵ+

error
|S|

)
n2

= a− 2

(
2ϵ+

error
|S|

)
n2

= |OPT | − 2

(
2ϵ+

error
|S|

)
n2. (5)

Thus, with probability at least 1− 2/n2, the integer optimal
solution of (IP) is close to the optimum of MAX-CUT.

3.4. Randomized Rounding

Now we relax the integrality constraints, allowing xi ∈
[0, 1] and get the Linear Programming relaxation of (IP).
We can solve (LP) via linear programming and obtain a
fractional optimal solution y ∈ [0, 1]n. Then, we use ran-
domized rounding to convert the fractional solution to an
integral one with approximately the same cut value. To
achieve that we will use the following lemma, which is due
to Raghavan and Thomson (Raghavan & Thomson, 1985)
and Arora et al. (Arora et al., 1999).

Lemma 3.2. Randomized Rounding (Raghavan & Thomson,
1985; Arora et al., 1999) If c and f are positive integers and

0 < ϵ < 1, then the following is true for any integers n > 0.
Let y = (yi) be a vector of n variables, 0 ≤ yi ≤ 1, that
satisfies a certain linear constraint aT y = b, where each
|ai| ≤ c. Construct a vector z = (zi) randomly by setting
zi = 1 with probability yi and 0 with probability 1 − yi.
Then, with probability at least 1− n−f , we have that

aT z ∈ b± c
√
fn lnn.

Since each ri(x) is a linear function with 0/1 coefficients,
it follows from the Randomized Rounding lemma and the
union bound that with probability at least 1− n−f+1 holds
(for every vertex simultaneously) that

ri(z) ∈ ri(y)±O(
√
n lnn) ∀i ∈ V. (6)

Additionally, since each |N(i)| − ri(y) is at most n, we can
use again the Randomized Rounding lemma to get that with
probability at least 1− n−f

∑
i∈V

zi
(
|N(i)| − ri(y)

)
∈
∑
i∈V

yi
(
|N(i)| − ri(y)

)
±O(n3/2 lnn). (7)

Both inequalities hold simultaneously with probability at
least 1− n−f+1 − n−f ≈ 1− n−f+1.

So, when (5), (6) and (7) hold we get:∑
i∈V

zi
(
|N(i)| −

∑
j∈N(i)

zj
)
=

∑
i∈V

zi
(
|N(i)| − ri(z)

)
≥

∑
i∈V

zi
(
|N(i)| − ri(y)−O(

√
n lnn)

)
, from (6),

≥
∑
i∈V

zi
(
|N(i)| − ri(y)

)
−O(n3/2 lnn)

≥
∑
i∈V

yi
(
|N(i)| − ri(y)

)
−O(n3/2 lnn) from (7),

≥ |OPT | − 2

(
2ϵ+

error
|S|

)
n2 − o(1)n2.

The last inequality is due to (5) and the fact that the frac-
tional optimal solution y cannot be worse than the integer
optimal solution z.

Finally, all estimations are good with probability at least 1−
2/n2 and the randomized rounding works with probability
at least ≈ 1 − 1/n−f+1. Thus, our learning augmented
approximation scheme works with probability≈ 1−2/n2−
1/nf−1.

3.5. Analysis of LA-PTAS-CUT

To conclude, we state and prove the formal theorem for
LA-PTAS-CUT.

6



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

Theorem 3.3. Let G a δ-dense graph. Then, for any ϵ > 0
with |S| = Θ(lnn/(ϵ3δ4)), LA-PTAS-CUT runs in time
O(n · TLP ) and is an

(
1 − ϵ − 8 error

δ|S|
)
-approximation for

MAX-CUT with probability at least 1− 3/n2, where error
is the prediction error.

Proof. For any ϵ > 0, using LA-PTAS-CUT with f = 3,
ϵ′ = ϵδ/16, g = 1/ϵ′3 and sample size |S| = g lnn/δ =
Θ
(
lnn/ϵ3δ4

)
, we get a cut z that with probability at least

≈ 1− 3/n2 satisfies:

p(z) ≥ |OPT | − 2

(
2ϵ′ +

error
|S|

)
n2

= |OPT | −
(
16ϵ′/δ +

8error
δ|S|

)
δn2/2

= |OPT | −
(
ϵ+

8error
δ|S|

)
δn2/4

≥
(
1− ϵ− 8

error
δ|S|

)
· |OPT |,

as |OPT | is at least |E|/2 = δn(n− 1)/2 ≥ δn2/4,
∀n ≥ 2.

Therefore, the approximation ratio of the algorithm is
(
1−

ϵ− 8 error
δ|S|

)
with high probability.

Regarding its running time, it is easy to see that it only
requires to solve a linear program with n variables and
O(n) constraints for each possible value of the error (i.e.,
|S| ≤ n rounds). So, it runs in time O(n · TLP ), where
TLP is the time to solve an LP with n variables and O(n)
constraints. There are many algorithms that solve linear
programs (Vaidya, 1989; Cohen et al., 2019; Lee & Sidford,
2015). The state of the art does it in time O∗(nw), where w
is the matrix multiplication exponent (the current value is
w ≈ 2.38) (Jiang et al., 2020).

3.6. LAA Framework

We now describe the algorithm LAA-CUT that combines
LA-PTAS-CUT (for consistency and smoothness) and a
known polytime constant-approximation algorithm (for ro-
bustness).

Consistency & Smoothness. For any ϵ > 0, using LA-
PTAS-CUT with predictions on a sample of size |S| =
Θ
(
lnn/ϵ3δ4

)
we have an algorithm with approximation

ratio of
(
1 − ϵ − 8 error

δ|S|
)

(Theorem 3.3). The algorithm is
randomized and gives with probability at least 1 − 3/n2

the aforementioned approximation ratio that depends on ϵ,
which is user-defined, the density of the graph δ and the
error of our prediction (consistency and smoothness of the
approximation ratio). The algorithm runs in O(n · TLP ).

Note that the original algorithm in (Arora et al., 1999)6

runs in time dominated by the exhaustive search which
takes time O(21/(ϵδ)

2 logn) = n1/(ϵδ)2 , which depends on
ϵ, δ. For example, for ϵ = 1 − 0.878 = 0.122 (to obtain
the approximation ratio of the algorithm by Goemans and
Williamson (Goemans & Williamson, 1995)) the running
time is O(n67)!

Additionally, we would like to mention that if the (partial)
prediction corresponds to a (global) prediction with approx-
imation ratio α, then our algorithm has approximation ratio
at least α − ϵ with high probability. This is a direct con-
sequence of our proof. The relative (partial) error is an
unbiased estimator of the relative (global) error.

Robustness. In case the error of our predictions is too
large, we would like to be able to ensure an approximation
guarantee for the value of the cut (robustness of the approx-
imation ratio). We can do that by running in parallel the
celebrated algorithm of Goemans and Williamson (Goemans
& Williamson, 1995) which achieves an approximation ratio
of ≈ 0.878. The algorithm can run in time Õ(n2) using the
Arora-Kale algorithm (Arora & Kale, 2007; Trevisan, 2012).
Of course, the algorithm is randomized and we should de-
mand that both algorithms (LA-PTAS-CUT and that of
Goemans and Williamson) succeed simultaneously. Note
that the algorithm can also be derandomized (Mahajan &
Hariharan, 1995).

Therefore, the approximation ratio of our learning-
augmented scheme is max{1 − ϵ − 8 error

δ|S| , 0.878} (with
probability at least 1− 3/n2) for a δ-dense graph and runs
in time O(n · TLP ). Note that for different values of the
parameter ϵ > 0, the prediction error is not the same due to
the change of the sampling size. Consequently, we restate
the theorem for LAA-CUT.

Theorem 1.1. Let G a δ-dense graph. Then, for any ϵ > 0
with |S| = Θ(lnn/(ϵ3δ4)), LAA-CUT runs in time O(n ·
TLP ) and, with respect to the approximation ratio, is with
high probability (1− ϵ)-consistent,

(
1− ϵ− 8 error

δ|S|
)
-smooth

and 0.878-robust, where error is the prediction error.

Proof. The proof becomes now trivial. Here, we just clarify
the success probability of the algorithm. The algorithm
of Goemans and Williamson succeeds with probability at
least τ , for some constant τ > 0. LA-PTAS-CUT as well,
so we just have to run both algorithms a constant number
of times independently to get a success with probability at
least 1 − η, for arbitrarily small η. We can also boost the
success probability to 1− 1/Ω(n) by running the algorithm
a logarithmic number of times independently.

6Even the best PTAS for MAX-CUT runs in time that depends
exponentially on 1/ϵ.

7



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

4. Smooth Polynomial Integer Programs
In this section, we extend the approach applied to MAX-
CUT to approximately optimize c-smooth polynomials of
degree d over all binary vectors x ∈ {0, 1}n, as done
in (Arora et al., 1999). We exploit the fact that smooth poly-
nomial integer programs can be recursively decomposed
into lower degree PIPs to eventually obtain a linear pro-
gram. We can assume wlog that instead of solving the
optimization problem, we can deal with the feasibility prob-
lem of a smooth polynomial integer program, i.e., given a
feasible PIP find an integer solution that is approximately
feasible. Our general learning-augmented algorithm LA-
PTAS follows the same steps as the version for MAX-CUT
generalizing our approach7. Next, we will use LA-PTAS
to get our algorithm for PIPs.

We only briefly sketch here the general approach to build
LA-PTAS. Details of the construction and proofs are de-
ferred to the appendix. As shown in (Arora et al., 1999),
each absolute value of a c-smooth polynomial of degree
d is bounded by 2cend (where ln e = 1). Thus, the op-
timal value of a PIP is not too large and we can reduce
the optimization of a PIP p(x) to the feasibility version
of the problem using binary search. Specifically, it is
sufficient to find if the problem p(x) ≥ M for M > 0
has a feasible solution. The parameter M > 0 can be
computed by using binary search in (0, 2cend] taking at
most O(log(2cend)) = O(log(cnd)) runs of the algo-
rithm. Throughout the section we denote by N the set
N = {1, . . . , n}.

Furthermore, another key idea to generalize our results is
the following decomposition lemma of a degree-d c-smooth
polynomial.

Lemma 4.1. (Arora et al., 1999) A c-smooth polynomial p
of degree d on x = (x1, . . . , xn) can be written uniquely as

p(x) = t+
∑
i

xipi(xi, . . . , xn)

where t is a constant and each pi is a c-smooth polynomial
of degree d− 1 and depends only on variables with index i
or greater.

Assume that we would like to optimize p(x) of degree
d. We transform the optimization problem into a feasi-
bility one using binary search as discussed previously. We
now have the feasibility problem p(x) ≥ M for a known
M > 0. Using the decomposition lemma we can write
p(x) as p(x) = t +

∑
xipi(x). Computing an estimate êi

of the value of pi(a) at the optimal solution a, we replace
the degree d constraint p(x) ≥ M with t +

∑
xiêi ≥ M

and a family of constraints on the values pi(x). Then, we

7In this section, we focus on maximization problems. The
minimization version can be handled similarly.

recursively expand these degree d − 1 constraints, contin-
uing until all constraints are linear. We can compute the
estimations êi of pi(a) by writing pi(x) =

∑
xjpij(x). We

then recursively estimate the values pij(a), and use sam-
pling and the predicted values âk, k ∈ S to estimate p based
on the values of pij . Thus we end up with an Integer Linear
Program (see Appendix A.1).

Then, we relax the integral constraints and solve the Linear
Programming relaxation of (d-IP). Finally, we use random-
ized rounding to get an integral solution. The details and
proofs of each step can be found in Appendices A.2 (Es-
timating Polynomials via Sampling and Predictions), A.3
(Transforming degree d constraints into linear constraints)
and A.4 (Randomized Rounding for Smooth Polynomials).
We finally obtain the following result (see Appendix A.5 for
the proof). In the following, T ′

LP denotes the time to solve
an LP with n variables and poly(n) constraints.
Theorem 4.2. Given a feasible c-smooth degree-d PIP with
n variables, its objective function p and m = poly(n) con-
straints, LA-PTAS finds a binary solution z with probability
at least 1/2 such that

p(z1, . . . , zn) ≥ |OPT | −
(
ϵ+ 4ced(d− 1)

error
|S|

)
nd

given predictions on the values of the distinct variables
of S at the optimal solution (optimum of PIP) that is cho-
sen uniformly at random (with replacement), where |S| =
Θ( c

4fd7

ϵ3 lnn), where f > 0 is such that nf = Θ(m · nd).
The running time of the algorithm is O

(
n ln(cnd) · T ′

LP

)
.

LAA Framework Let us now describe our algorithm
LAA-GENERAL that relies on LA-PTAS, whose ratio de-
pends on the error while guaranteeing a fixed (polynomial)
running time.

Consistency & Smoothness. For any ϵ > 0, we use
LA-PTAS with |S| = Θ( c

4fd7

ϵ3 lnn) and get an algo-
rithm that with high probability outputs a value of at least
|OPT | −

(
ϵ + 4ced(d − 1) error

|S|
)
nd (Theorem 4.2). As

we will see in Section 5, this additive approximation leads
to a multiplicative one when the instance is dense for the
problems we consider. Therefore, we achieve the desired
consistency and smoothness in the approximation ratio.The
running time of LA-PTAS is O

(
n ln(cnd) · T ′

LP

)
, with no

dependency on ϵ (compared to exponential dependency in
1/ϵ in the PTAS’s). Furthermore, note again that our algo-
rithm is guaranteed to have approximation ratio at least as
good as the approximation quality of the (global) prediction
(minus ϵ).

Robustness. When the error of our predictions is too large,
we can ensure an approximation guarantee for the solu-
tion value (robustness of the approximation ratio). We can
achieve that by running in parallel a constant approximation

8



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

algorithm for the given problem (if it exists in the literature).
The running time, here, depends on the approximation al-
gorithm that is used for the problem in question. If the
algorithm is randomized, we take the joint probability that
both algorithms succeed simultaneously.

Theorem 4.3. We are given a feasible c-smooth degree-d
PIP with n variables, its objective function p and m =
poly(n) constraints. Let also ALG be an algorithm for
the PIP that runs in time TALG and produces a solu-
tion with cost at least α|OPT |. For any ϵ > 0 with
|S| = Θ

(
c4fd7

ϵ3 lnn
)
, where f > 0 is such that nf =

Θ(mnd), LAA-GENERAL runs in timemax{O
(
n ln(cnd) ·

T ′
LP

)
, TALG

}
and outputs with high probability a solution

with cost at least

max

{
|OPT | −

(
ϵ+ 4ced(d− 1)

error
|S|

)
nd, α|OPT |

}
,

where error is the prediction error.

5. Applications
In this section, we explain how to apply the algorithm of
Section 4. We give the example of MAX-k-SAT, while
problems MAX-DICUT, MAX-HYPERCUT(d) and k-
DENSEST SUBGRAPH are deferred to Appendix B. Note
also that the algorithm can be applied to the more general
MAX-k-CSP, as shown in (Arora et al., 1999).

MAX-k-SAT A standard arithmetization technique
(see (Arora et al., 1999)) can be used to reduce any instance
of MAX-k-SAT with n variables to solving a degree-k poly-
nomial p(x) such that the optimal truth assignment for MAX-
k-SAT corresponds to an a ∈ {0, 1}n that maximizes p(x).
Moreover, the value of the optimal MAX-k-SAT solution is
equal to p(a).

Let us now assume that the number of clauses is m ≥ δnk.
The number of clauses of size exactly k is m − O(nk−1)
and a random assignment satisfies each one of them with
probability 1 − 2−k. Thus it follows that the maximum
number of clauses that can be made true is

|OPT | ≥ (1− 2−k)(m−O(nk−1)).

Therefore, we use LA-PTAS with ϵ′ = O(ϵ/2k) and get the
desired accuracy for MAX-k-SAT. For robustness, we can
use the poly-time randomized 0.797 approximation (Avidor
et al., 2006) to robustify, as done by LAA-GENERAL.

Acknowledgement
This work was partially funded by the grant ANR-19-CE48-
0016 from the French National Research Agency (ANR).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning by further exploring its interactions
with Theoretical Computer Science. There are many poten-
tial societal consequences of our work, none which we feel
must be specifically highlighted here.

References
Alon, N., de la Vega, W., Kannan, R., and Karpinski, M.

Random sampling and approximation of max-csps. Jour-
nal of Computer and System Sciences, 67(2):212–243,
2003. Special Issue on STOC 2002.

Anand, K., Ge, R., Kumar, A., and Panigrahi, D. Online
algorithms with multiple predictions. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 582–598. PMLR, 17–23
Jul 2022.

Andersson, G. and Engebretsen, L. Better approximation
algorithms for set splitting and not-all-equal sat. Informa-
tion Processing Letters, 65(6):305–311, 1998.

Antoniadis, A., Coester, C., Elias, M., Polak, A., and Simon,
B. Online metric algorithms with untrusted predictions.
In III, H. D. and Singh, A. (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
345–355. PMLR, 13–18 Jul 2020.

Antoniadis, A., Boyar, J., Elias, M., Favrholdt, L. M.,
Hoeksma, R., Larsen, K. S., Polak, A., and Simon, B.
Paging with succinct predictions. In Krause, A., Brun-
skill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett,
J. (eds.), Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 952–968. PMLR, 2023.

Arora, S. and Kale, S. A combinatorial, primal-dual ap-
proach to semidefinite programs. In Proceedings of the
Thirty-Ninth Annual ACM Symposium on Theory of Com-
puting, STOC ’07, pp. 227–236, New York, NY, USA,
2007. Association for Computing Machinery.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy,
M. Proof verification and the hardness of approximation
problems. J. ACM, 45(3):501–555, may 1998.

Arora, S., Karger, D., and Karpinski, M. Polynomial time
approximation schemes for dense instances of NP-hard
problems. Journal of Computer and System Sciences, 58
(1):193–210, 1999.

9



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

Asahiro, Y., Iwama, K., Tamaki, H., and Tokuyama, T.
Greedily finding a dense subgraph. In Karlsson, R. and
Lingas, A. (eds.), Algorithm Theory - SWAT 1996, Pro-
ceedings, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), pp. 136–148. Springer
Verlag, 1996.

Avidor, A., Berkovitch, I., and Zwick, U. Improved ap-
proximation algorithms for max nae-sat and max sat. In
Erlebach, T. and Persinao, G. (eds.), Approximation and
Online Algorithms, pp. 27–40, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

Bai, X. and Coester, C. Sorting with predictions. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Bampis, E., Escoffier, B., and Xefteris, M. Canadian trav-
eller problem with predictions. In Chalermsook, P. and
Laekhanukit, B. (eds.), Approximation and Online Algo-
rithms, pp. 116–133, Cham, 2022. Springer International
Publishing.

Bampis, E., Escoffier, B., Gouleakis, T., Hahn, N., Lakis, K.,
Shahkarami, G., and Xefteris, M. Learning-Augmented
Online TSP on Rings, Trees, Flowers and (Almost) Ev-
erywhere Else. In Gørtz, I. L., Farach-Colton, M.,
Puglisi, S. J., and Herman, G. (eds.), 31st Annual Eu-
ropean Symposium on Algorithms (ESA 2023), volume
274 of LIPIcs, pp. 12:1–12:17, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Bazgan, C., Fernandez de La Vega, W., and Karpinski, M.
Polynomial time approximation schemes for dense in-
stances of minimum constraint satisfaction. Random
Structures and Algorithms, 23(1), 2003.

Benomar, Z. and Perchet, V. Advice querying under bud-
get constraint for online algorithms. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023.

Cardinal, J., Karpinski, M., Schmied, R., and Viehmann,
C. Approximating vertex cover in dense hypergraphs.
Journal of Discrete Algorithms, 13:67–77, 2012. Best Pa-
pers from the 3rd International Conference on Similarity
Search and Applications (SISAP 2010).

Cohen, M. B., Lee, Y. T., and Song, Z. Solving linear
programs in the current matrix multiplication time. In
Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, pp. 938–942,
New York, NY, USA, 2019. Association for Computing
Machinery.

Cohen-Addad, V., d’Orsi, T., Gupta, A., Lee, E., and Pan-
igrahi, D. Max-cut with ϵ-accurate predictions. CoRR,
abs/2402.18263, 2024.

Dinitz, M., Im, S., Lavastida, T., Moseley, B., and Vas-
silvitskii, S. Faster matchings via learned duals. In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, 2021.

Drygala, M., Nagarajan, S. G., and Svensson, O. Online
algorithms with costly predictions. In Ruiz, F., Dy, J.,
and van de Meent, J.-W. (eds.), Proceedings of The 26th
International Conference on Artificial Intelligence and
Statistics, volume 206 of Proceedings of Machine Learn-
ing Research, pp. 8078–8101. PMLR, 25–27 Apr 2023.

Ergun, J. C., Feng, Z., Silwal, S., Woodruff, D., and Zhou, S.
Learning-augmented k-means clustering. In International
Conference on Learning Representations, 2022.

Feige, U. and Goemans, M. Approximating the value of
two power proof systems, with applications to max 2sat
and max dicut. In Proceedings Third Israel Symposium
on the Theory of Computing and Systems, pp. 182–189,
1995.

Feige, U. and Langberg, M. Approximation algorithms
for maximization problems arising in graph partitioning.
Journal of Algorithms, 41(2):174–211, 2001.

Fernandez de la Vega, W. Max-cut has a randomized ap-
proximation scheme in dense graphs. Random Structures
& Algorithms, 8(3):187–198, 1996.

Fernandez de la Vega, W. and Karpinski, M. Polynomial
time approximation of dense weighted instances of max-
cut. Random Structures & Algorithms, 16(4):314–332,
2000.

Fotakis, D., Lampis, M., and Paschos, V. T. Sub-exponential
Approximation Schemes for CSPs: From Dense to Al-
most Sparse. In Ollinger, N. and Vollmer, H. (eds.),
33rd Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2016), volume 47 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 37:1–37:14,
Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

Ghoshal, S., Makarychev, K., and Makarychev, Y. Con-
straint satisfaction problems with advice. CoRR,
abs/2403.02212, 2024.

Goemans, M. X. and Williamson, D. P. Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. ACM, 42
(6):1115–1145, nov 1995.

10



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

Im, S., Kumar, R., Petety, A., and Purohit, M. Parsimonious
learning-augmented caching. In Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., and Sabato, S.
(eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 9588–9601. PMLR, 17–
23 Jul 2022.

Imamura, T. and Iwama, K. Approximating vertex cover
on dense graphs. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
’05, pp. 582–589, USA, 2005. Society for Industrial and
Applied Mathematics.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H.
Faster dynamic matrix inverse for faster lps. CoRR,
abs/2004.07470, 2020.

Jiang, S. H.-C., Liu, E., Lyu, Y., Tang, Z. G., and Zhang, Y.
Online facility location with predictions. In International
Conference on Learning Representations, 2022.

Khot, S. Ruling out ptas for graph min-bisection, dense
k-subgraph, and bipartite clique. SIAM Journal on Com-
puting, 36(4):1025–1071, 2006.

Lattanzi, S., Svensson, O., and Vassilvitskii, S. Speeding
up Bellman ford via minimum violation permutations.
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
18584–18598. PMLR, 23–29 Jul 2023.

Lee, Y. T. and Sidford, A. Efficient inverse maintenance and
faster algorithms for linear programming. In 2015 IEEE
56th Annual Symposium on Foundations of Computer
Science, pp. 230–249, 2015.

Lu, P., Ren, X., Sun, E., and Zhang, Y. Generalized sorting
with predictions. In Symposium on Simplicity in Algo-
rithms (SOSA), pp. 111–117, 2021.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. J. ACM, 68(4), jul 2021.

Mahajan, S. and Hariharan, R. Derandomizing semidefi-
nite programming based approximation algorithms. Pro-
ceedings of IEEE 36th Annual Foundations of Computer
Science, pp. 162–169, 1995.

Mathieu, C. and Schudy, W. Yet another algorithm for dense
max cut: go greedy. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, pp. 176–182, USA, 2008. Society for Indus-
trial and Applied Mathematics.

Mitzenmacher, M. Scheduling with Predictions and the
Price of Misprediction. In Vidick, T. (ed.), 11th Innova-
tions in Theoretical Computer Science Conference (ITCS
2020), volume 151 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 14:1–14:18, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

Papadimitriou, C. and Yannakakis, M. Optimization, ap-
proximation, and complexity classes. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, pp. 229–234, New York, NY, USA,
1988. Association for Computing Machinery.

Purohit, M., Svitkina, Z., and Kumar, R. Improving on-
line algorithms via ml predictions. In Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Raghavan, P. and Thomson, C. D. Randomized rounding: A
technique for provably good algorithms and algorithmic
proofs. Combinatorica, 7:365–374, 1985.

Trevisan, L. Max cut and the smallest eigenvalue. SIAM
Journal on Computing, 41(6):1769–1786, 2012.

Vaidya, P. Speeding-up linear programming using fast ma-
trix multiplication. In 30th Annual Symposium on Foun-
dations of Computer Science, pp. 332–337, 1989.

11



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

A. Missing material of Section 4
A.1. Integer Linear Program

∑
j∈N

xj êj ≥M (d-IP)

ti1 +
∑
j∈N

xj êi1j ∈ êi1 ± f(error, ϵ, δ)nd−1 ∀i1 ∈ N

ti1i2 +
∑
j∈N

xj êi1i2j ∈ êi1i2 ± f(error, ϵ, δ)nd−2

∀(i1, i2) ∈ N ×N

. . .

ti1...id−ℓ
+

∑
j∈N

xj êi1...id−ℓj ∈ êi1...id−ℓ
± f(error, ϵ, δ)nd−ℓ

∀(i1, . . . , id−ℓ) ∈ Nd−ℓ

. . .

ti1...id−1
+

∑
j∈N

xj êi1...id−1j ∈ êi1...id−1
± f(error, ϵ, δ)n

∀(i1, . . . , id−1) ∈ Nd−1

xj ∈ {0, 1} ∀j ∈ N.

A.2. Estimating Polynomials via Sampling and
Predictions

We show how to estimate the coefficients pi(a) at an optimal
solution that are smooth polynomials of degree at most d−1
using sampling and predictions. This step is required to be
able to replace the constraint on p(x) by linear constraints.
We describe an algorithm EVALUATE, adaptation of the one
in (Arora et al., 1999), which can approximate the value
of a c-smooth degree-d polynomial p(x1, . . . , xn) on any
unknown binary vector a = (a1, . . . , an) given a partial
prediction about a. So, we take a sample S from {1, . . . , n},
uniformly at random and with replacement. The sample
size is O(log n). Next, we get a predicted value âj for each
value aj ,∀j ∈ S at the optimal solution a (note that the
number of predicted values is at most |S|). Showing that
ESTIMATE (Algorithm 1) provides us with good estimates
for the coefficients pi(a) becomes easier using the following
General Sampling lemma of (Fotakis et al., 2016).
Lemma A.1. General Sampling lemma (Fotakis et al., 2016)
Let a in{0, 1}n and let (ρj)j∈N be any sequence such that
for some integer d ≥ 0 and some constant β ≥ 1, |ρj | ≤
(d+ 1)βnd, ∀j ∈ N . For all integers f ≥ 1 and ϵ > 0, let
g = Θ(fdβ/ϵ3) and S a multiset of |S| = g lnn indices
chosen uniformly at random with replacement from N . If
(n/|S|)

∑
j∈S ρjaj , ρ =

∑
j∈N ρjaj and ρ̄ =

∑
j∈N |ρj |,

with probability at least 1− 4/nf+1,

ρ− ϵρ̄− ϵnd+1 ≤ (n/|S|)
∑
j∈S

ρjaj ≤ ρ+ ϵρ̄+ ϵnd+1.

Algorithm 1 EVALUATE(p, S, {âi : i ∈ S})
Require: polynomial p of degree at most d,

set of variables indices S,
predictions âi for i ∈ S.

Ensure: Estimate for p(a1, . . . , an).
if deg(p) = 0 then

return p
else

p(x1, . . . , xn) = t+
∑

xipi(x1, . . . , xn)
for i ∈ S do
êi ← EVALUATE(pi, S, {âi : i ∈ S})

end for
return t+ (n/|S|)

∑
i∈S âiêi

end if

Let us now show the following lemma about EVALUATE
with set S and the predictions.

Lemma A.2. Let p be a c-smooth degree-d polynomial in
n variables xi and a = (a1, . . . , an) ∈ {0, 1}n. Let f ≥ 1
be an integer, ϵ > 0, β ≥ max{1, 2ce}, and S be a set of
O(g lnn) indices chosen randomly and with replacement
with g = Θ(fdβ/ϵ3). Also, let âj ,∀j ∈ S be a prediction
on the values of aj ,∀j ∈ S. Then, with probability at least
1− 4/nf+1−d, set S is such that EVALUATE(p, S, {âi : i ∈
S}) returns a value in

p(a1, . . . , an)±
(
(2ce+ 1)dϵ+ 2ced

error
|S|

)
nd. (8)

Proof. The proof is by induction on the degree d. For the
case d = 0 we have by definition that error = 0 and EVAL-
UATE returns a value that is exactly p(a) = t.

For the inductive step let ρi = pi(a1, . . . , an). So,

p(a) = t+

n∑
i=1

aiρi.

Note that each pi has degree at most d− 1.

First, we apply the General Sampling lemma (Lemma A.1)
for p(a) with d′ = d − 1, β ≥ max{1, 2ce}, g =
Θ(fdβ/ϵ3) and |S| = g lnn. As each pi is a c-smooth
degree-(d− 1) polynomial we have that |ρi| ≤ 2cend−1 ≤
(d′ + 1)βnd′

. Then, we have with probability at least
1− 4/nf+1 that

(n/|S|)
∑
i∈S

aiρi ∈
∑
i∈N

aiρi ± (ϵ
∑
i∈N

|ρi|+ ϵnd).

Using again |ρi| ≤ 2cend−1 we get:

(n/|S|)
∑
i∈S

aiρi ∈
∑
i∈N

aiρi ± ϵ(2ce+ 1)nd. (9)

12



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

Given the predictions (âj ∈ {0, 1},∀j ∈ S we have that
errorj = |âj−aj |,∀j ∈ S. Note that error =

∑
i∈S errori.

Using âj ∈ aj ± errorj ,∀j ∈ S, we have that

n

|S|
∑
i∈S

âiρi ∈
n

|S|
∑
i∈S

aiρi ±
n

|S|
∑
i∈S

erroriρi

⊆ n

|S|
∑
i∈S

aiρi ±
n

|S|
2cend−1

∑
i∈S

errori

=
n

|S|
∑
i∈S

aiρi ±
2ce

|S|
error · nd. (10)

Let êi = EVALUATE(pi, S, { ˆai : i ∈ S). By the inductive
hypothesis, EVALUATE outputs estimates êi such that

ρi ∈ êi ±
(
(2ce+ 1)(d− 1)ϵnd−1 + 2ce(d− 1)

error
|S|

nd−1

)
or equivalently

êi ∈ ρi ±
(
(2ce+ 1)(d− 1)ϵnd−1 + 2ce(d− 1)

error
|S|

nd−1

)
(11)

with probability at least 1−4/nf+1−(d−1) = 1−4/nf+2−d.
Taking the union bound all n, values ρi are (simultaneously)
estimated to within this bound with probability at least

1− n · 4/nf+2−d = 1− 4/nf+1−d.

So, together with (9) we get with probability at least 1 −
4/nf+1−d − 4/nf+1 ≈ 1− 4/nf+1−d the following:

t+
n

|S|
∑
i∈S

âiêi

∈ t+
n

|S|
∑
i∈S

âi
(
ρi ± (2ce+ 1)(d− 1)ϵnd−1

+2ce(d− 1)
error
|S|

nd−1
)

by (11)

⊆ t+
n

|S|
∑
i∈S

âiρi ± (2ce+ 1)(d− 1)ϵnd

+2ce(d− 1)
error
|S|

nd

due to
∑
i∈S

âi ≤ |S| ≤ n

⊆ t+
n

|S|
∑
i∈S

aiρi ± 2ce
error
|S|

nd

±(2ce+ 1)(d− 1)ϵnd + 2ce(d− 1)
error
|S|

nd

by (10)

So, we get that

t+
n

|S|
∑
i∈S

âiêi

⊆ t+
n

|S|
∑
i∈S

aiρi

±(2ce+ 1)(d− 1)ϵnd + 2ced
error
|S|

nd

⊆ t+
∑
i∈N

aiρi ± (2ce+ 1)ϵnd

±(2ce+ 1)(d− 1)ϵnd + 2ced
error
|S|

nd

by (9)

⊆ t+
∑
i∈N

aiρi ± (2ce+ 1)dϵ · nd + 2ced
error
|S|
· nd.

A.3. Transforming degree d constraints into linear
constraints

First, let us observe that the previous proof for EVALUATE
shows implicitly that EVALUATE estimates the values of all
polynomials arising from the decomposition of a polynomial
p with the described accuracy with probability at least 1−
4/nf+1−d. Specifically, it estimates every polynomial of
degree d′ to within

(
(2ce+ 1)d′ϵ+ 2ced′ error

|S|
)
nd′

.

Algorithm 2 LINEARIZE
(
L ≤ p(x) ≤ U, S,

{âi : i ∈ S}, ϵ
)

Require: constraint involving polynomial p of degree d,
set of variables indices S,
predictions âi for i ∈ S
parameter ϵ > 0.

Ensure: A set of linear constraints.
if p is linear then

output the input constraint L ≤ p(x) ≤ U
else

Out← ∅
p(x1, . . . , xn) = t+

∑
xipi(xi, . . . , xn)

for i ∈ {1, 2, . . . , n} do
êi ← EVALUATE(pi, S, {âi : i ∈ S})
li ← êi−

(
(2ce+1)(d−1)ϵ+2ce(d−1) error

|S|
)
nd−1

ui ← êi+
(
(2ce+1)(d−1)ϵ+2ce(d−1) error

|S|
)
nd−1

Out←Out∪ LINEARIZE
(
li ≤ pi(xi, . . . , xn) ≤ ui,

S, {âi : i ∈ S}, ϵ
)

end for
output Out ∪{
t+

∑
xiêi ≥ L−

(
(2ce+ 1)dϵ+ 2ced error

|S|
)
nd,

t+
∑

xiêi ≤ U +
(
(2ce+ 1)dϵ+ 2ced error

|S|
)
nd}

end if

We now use a modified version of algorithm LINEARIZE

13



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

(see Algorithm 2) given in (Arora et al., 1999) to transform
any polynomial constraint into a family of linear constraints.
LINEARIZE is a recursive algorithm that uses EVALUATE to
output linear constraints. It is easy to see that LINEARIZE
outputs a set of at most 2nd−1 linear constraints such that
the optimal solution a satisfies all constraints and a is a
feasible solution to (d-IP), as long as EVALUATE estimates
all polynomials with the required accuracy. This happens
since the decompositions of the polynomials are unique
and common between the two algorithms. Thus, by the
observation stated previously, we have that with probability
at least 1 − 4d/nf+1−d the linear constraints output by
EVALUATE are jointly feasible. Let us now see why (using
induction on the degree d). It is obviously true for d = 1.
Assume it is for d − 1 ≥ 1. Then for a polynomial p of
degree d, LINEARIZE outputs at most n sets of constraints
associated to polynomial of degree d − 1, and two “new”
constraints associated to p. By union bound (and recursive
argument), they are simultaneously satisfied with probability
at least 1 − n4(d − 1)/nf+1−(d−1) − 4/nf+1−d = 1 −
4d/nf+1−d.

Next, we show (as in (Arora et al., 1999)) that any feasible
solution to the linear system output by EVALUATE is also
an approximate solution to the input constraint (degree d
polynomial constraint).

Lemma A.3. Every feasible solution (yi) ∈ [0, 1]n to the
set of linear constraints output by LINEARIZE satisfies (with-
out any assumption on the success of the sampling for set
S):

p(y) ∈ [L,U ]±
(
(4ce+2)d(d−1)ϵ+4ced(d−1)error

|S|

)
nd.

Proof. We show the lemma by induction on degree d. The
base case d = 1 is trivial. For the inductive step we have
that d ≥ 2 and that y is feasible for all constraints output by
LINEARIZE. By the inductive hypothesis we get for each i:

pi(y) ∈ [li, ui]

±
(
(4ce+ 2)(d− 1)(d− 2)ϵ+ 4ce(d− 1)(d− 2)

error
|S|

)
nd−1.

So, it follows by substituting li, ui that

pi(y) ∈ êi

±
(
(2ce+ 1)(d− 1)ϵ+ 2ce(d− 1)

error
|S|

)
nd−1

±
(
(4ce+ 2)(d− 1)(d− 2)ϵ+ 4ce(d− 1)(d− 2)

error
|S|

)
nd−1

⊆ êi ±
(
(2ce+ 1)(d− 1)(2d− 3)ϵ

+2ce(d− 1)(2d− 3)
error
|S|

)
nd−1. (12)

Thus,

p(y) = t+
∑

yipi(yi, . . . , yn)

⊆ t+
∑

yi ·
(
êi ±

(
(2ce+ 1)(d− 1)(2d− 3)ϵ

+2ce(d− 1)(2d− 3)
error
|S|

)
nd−1

)
by (12)

⊆ t+
∑

yiêi

±
(
(2ce+ 1)(d− 1)(2d− 3)ϵ

+2ce(d− 1)(2d− 3)
error
|S|

)
nd

⊆ [L,U ]±
(
(2ce+ 1)dϵ+ 2ced

error
|S|

)
nd

±
(
(2ce+ 1)(d− 1)(2d− 3)ϵ

+2ce(d− 1)(2d− 3)
error
|S|

)
nd,

from the fact that y is feasible for the constraint
which was output by LINEARIZE before recursion,

⊆ [L,U ]±
(
(2ce+ 1)ϵ(2d2 − 4d+ 3)

+2ce(2d2 − 4d+ 3)
error
|S|

)
nd

⊆ [L,U ]±
(
2(2ce+ 1)d(d− 1)ϵ+ 4ced(d− 1)

error
|S|

)
nd.

The last inequality holds, since d ≥ 2 > 3/2.

A.4. Randomized Rounding for Smooth Polynomials

Finally, we have to round our fractional solution to get an
integral one. Using a lemma from (Arora et al., 1999),
which shows that the randomized rounding outputs an in-
teger value which is close to the fractional one for every
c-smooth degree-d polynomial, we conclude the last step of
LA-PTAS. We restate the lemma for completeness.

Lemma A.4. Randomized rounding for degree-d polyno-
mials (Arora et al., 1999) Let p be a c-smooth degree-d
polynomial. Let y ∈ [0, 1]n be such that p(y1, . . . , yn) = b.
Performing randomized rounding on yi to yield a 0, 1 vector
(zi) we get that with probability at least 1− nd−f we have
that

p(z1, . . . , zn) ∈ [b± gdnd−1/2
√
lnn], (13)

where g = 2ce
√
f .

14



Parsimonious Learning-Augmented Approximations for Dense Instances of NP-hard Problems

A.5. Proof of Theorem 4.2

Proof. We have a feasible c-smooth degree-d PIP with m =
poly(n) constraints each one of which has degree at most d.
Let a = (a1, . . . , an) ∈ {0, 1}n be a feasible solution. Here,
we focus on the maximization problem (the minimization
one is similar) of a polynomial p(x), where x ∈ {0, 1}n.

Assume that we have found the optimal value |OPT | > 0
of p using binary search in time O(log cnd). Then we write
the maximization problem of p as a feasibility one with
p(x) ≥ |OPT |, which is of course feasible.

Let f > 0 be such that nf = 2m(n+4d)nd/n = Θ(m·nd).
We let ϵ′ = ϵ

(4ce+2)d(d−1) , g = Θ(cfd/ϵ′3) and |S| =
g lnn. Then, we take a random sample S of variables with
replacement and we are given a prediction âi on the values
ai for each i ∈ S. We use LINEARIZE with error parame-
ter ϵ′ and replace each degree d′ constraint with O(nd′−1)
linear constraints. Therefore, we construct a linear integer
system with O(m · nd−1) constraints. This new system is
feasible with probability at least 1− 4md/nf+1−d, since a
is an optimal solution to the PIP.

Let us now relax the integrality constraint of each variable
and solve the linear system with n variables and O(m·nd−1)
constraints in time T ′

LP . From Lemma A.3 for the fractional
solution y we get that the following holds:

p(y) ≥ |OPT |−
(
(4ce+2)d(d−1)ϵ′+4ced(d−1)error

|S|

)
nd.

Next, we use randomized rounding to get an integer
solution z that increases the additive loss by at most
O(nd−1/2

√
lnn) = o(nd). The rounding from Lemma A.4

works simultaneously for all m constraints with probability
at least 1−m/nf−d.

Consequently, our randomized learning-augmented ap-
proximation scheme works with probability at least 1 −
m/nf−d − 4md/nf+1−d > 1/2 and outputs a solution
such that

|LA-PTAS| ≥ |OPT | −
(
ϵ+ 4ced(d− 1)

error
|S|

)
nd,

where |S| = Θ( 128c
4e4fd7

ϵ3 lnn) = Θ( c
4fd7

ϵ3 lnn).

For the running time, we have to also guess the value of
the error which takes at most n. So, in total the general
algorithm LA-PTAS runs in time O

(
n ln(cnd) ·T ′

LP

)
.

B. Missing material from Section 5
MAX-DICUT Let us write MAX-DICUT of a directed
graph G = (V,E) as an 1-smooth degree-2 polynomial

integer program as follows:

max
∑

(i,j)∈E

(1− xi)xj

s.t. xi ∈ {0, 1} ∀i.

In a directed graph with density δ, the value of the maximum
cut is at least δn2/4. Using LA-PTAS and Theorem 4.2
with ϵ′ = δϵ/4 we find a cut of value at least

|OPT |
(
1− ϵ− 32e

error
δ|S|

)
,

where |S| = O(lnn/(ϵ3δ3)) and the running time is
O(lnn ·T ′

LP ). For the robustness of LAA-GENERAL, there
is a polynomial time randomized approximation algorithm
that achieves a ratio of 0.859 (Feige & Goemans, 1995). The
rest of the steps to construct our two learning-augmented
schemes for MAX-DICUT follow trivially.

MAX-HYPERCUT(d) We can formulate the problem
as a smooth degree-d PIP. Given an edge (set of vertices) S′,
we use the term 1−

∏
i∈S′ xi −

∏
i∈S′(1− xi), which is 1

if S′ is cut and 0 otherwise. Moreover, for the robustness
of LAA-GENERAL we can use the randomized poly-time
algorithm with approximation ratio of 0.72 (Andersson &
Engebretsen, 1998).

k-DENSEST SUBGRAPH Let k ≥ γn. If the graph is δ-
dense, using an averaging argument we have that the optimal
solution contains at least γ2δn2/2 edges. The problem is
equivalent to maximizing the following degree-2 1-smooth
PIP:

max p(x) =
∑

{i,j}∈E

xixj

s.t.
n∑

i=1

xi = k

xi ∈ {0, 1}.

We use the general algorithm LA-PTAS with ϵ′ = ϵγ2δ/2
and noticing that our solution z satisfies

∑n
i=1 xi ∈

[k ± g
√
n lnn] (Lemma A.4). Moving in or out at most

O(
√
n lnn) vertices, as g = O(1), reduces the number of

edges included in the subgraph by at most n
√
n lnn =

o(n2).

There is no known constant approximation poly-time al-
gorithm for the problem. There is a deterministic greedy
algorithm that achieves a ratio of O(k/n) (Asahiro et al.,
1996), which is equal to O(γ) in our case (we assume in
this work that γ is a constant). In (Feige & Langberg, 2001),
they give a randomized algorithm with approximation ratio
at least k/n ≥ γ. Finally, we can also use the original PTAS
of (Arora et al., 1999) or (Alon et al., 2003) for a not too
small ϵ > 0.

15


