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ABSTRACT

In precision medicine, quantitative multi-omic features, topological context, and
textual biological knowledge play vital roles in identifying disease-critical signal-
ing pathways and targets, guiding the discovery of novel therapeutics and effec-
tive treatment strategies. Existing pipelines capture only one or two of these,
thereby limiting mechanistic interpretability. Although Process Reward Mod-
els (PRMs) aim to guide reasoning in LLMs, they remain limited by coarse
step definitions, unreliable intermediate evaluation, and vulnerability to reward
hacking with added computational cost. These gaps motivate jointly integrating
quantitative multi-omic signals, topological structure with node annotations, and
literature-scale text via LLMs, using subgraph reasoning as the principle bridge
linking numeric evidence, topological knowledge and language context. To re-
solve this challenge, we propose GALAX (Graph Augmented LAnguage model
with eXplainability), an innovative framework that integrates pretrained Graph
Neural Networks (GNNs) into Large Language Models (LLMs) via reinforce-
ment learning guided by a Graph Process Reward Model (GPRM), which gener-
ates disease-relevant subgraphs in a step-wise manner initiated by an LLM and
iteratively evaluated by a pretrained GNN and schema-based rule check, enabling
process-level supervision without explicit labels. As an application, we also in-
troduced Target-QA, a benchmark combining CRISPR-identified targets, multi-
omic profiles, and biomedical graph knowledge across diverse cancer cell lines,
which enables GNN pretraining for supervising step-wise graph construction and
supports long-context reasoning over text-numeric graphs (TNGs), providing a
scalable and biologically grounded framework for explainable, reinforcement-
guided subgraph reasoning toward reliable and interpretable target and pathway
discovery in precision medicine.

1 INTRODUCTION

Identifying therapeutic targets and elucidating disease mechanisms are main challenges in preci-
sion medicine (Steyaert et al., |2023; [Topol, [2019). CRISPR-based gene editing has revolutionized
functional genomic by enabling high-throughput perturbation of gene function across diverse cel-
lular contexts (Shalem et al., |2014; |Li et al., [2023). In oncology, large-scale CRISPR screens in
cancer cell lines and patient-derived models have revealed context-specific genetic vulnerabilities,
providing a robust experimental foundation for biomarker and target discovery (Shi et al.| [2015).
Despite these advances, computationally predicting key targets from multi-omic profiles and in-
terpreting their mechanistic role in disease progression remains difficult. In particular, bridging
omic data with interpretable explanations of molecular mechanisms continues to be a critical un-
met need (Zhang et al.l [2024a)). Traditional approaches, such as differential expression analysis or
essentiality scoring, lack the capacity to model the hierarchical and cross-modal dependencies in
molecular networks, often overlooking key regulatory redundancies and pathway-level dynamics.
Recent graph-based models have shown promise in outcome prediction tasks (Ren et al., [2024)), yet
they typically lack the structured supervision necessary for accurate target prioritization and mech-
anism discovery and seldom jointly integrate quantitative multi-omic features, topological structure
with node annotations, and literature-scale text—limiting mechanistic interpretability.
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Meanwhile, Large Language Models (LLMs) have demonstrated strong capabilities in natural
language understanding and reasoning, particularly through techniques like in-context learning
(ICL) (Brown et al.; [2020) and chain-of-thought (CoT) prompting (Wei et al.l |2022)), which enable
multi-step reasoning. However, LLMs often suffer from hallucination and lack grounding in struc-
tured knowledge, especially in scientific domains. To mitigate these issues, Retrieval-Augmented
Generation (RAG) (Lewis et al.,2020) and its graph-based variants, such as RoG (Luo et al.}|2023)),
SubgraphRAG (Li et al.| 2024), GNN-RAG (Mavromatis & Karypis, 2025) and G-Retriever (He
et al., |2024), have been proposed to enhance LLM performance by incorporating external knowl-
edge graph. Despite their utility, these approaches still focus on final answer accuracy and give little
attention to the reliability of intermediate reasoning. The retrieved subgraphs are noisy, large, and
lack ground-truth mechanistic structure, making supervised retrieval unstable. Most existing models
also fail to integrate numerical omic signals, causing the loss of cell line—specific information
needed for target discovery. On the other hand, the Process Reward Model (PRM) framework has
been introduced to provide fine-grained supervision over intermediate steps in reasoning tasks (Luo
et al., [2024; Lightman et al., 2023; [Uesato et al., [2022}; |Wang et al.||2023)). PRMs provide step-wise
supervision by assigning intermediate rewards to reinforcement learning (RL) agents, forming
the foundation for Large Reasoning Models (LRMs) trained with Reinforcement Learning with
Human Feedback (RLHF) (Bai et al. [2022), Proximal Policy Optimization (PPO) (Schulman
et al.| [2017), and Group Relative Policy Optimization (GRPO) (Shao et al., 2024). For example,
StepGRPO (Zhang et al., [2025b) extends GRPO by incorporating rule-based step-wise rewards to
supervise each intermediate reasoning step, addressing the sparse reward problem and enhancing
multi-step reasoning in multimodal language models. However, PRMs face key limitations in defin-
ing fine-grained reasoning steps, verifying intermediate correctness, and hacking for model-based
rewards (Gao et al. 2023)), further complicating training.

These challenges are amplified in biomedicine: reasoning over multi-omic, gene-regulatory
text-numeric graphs (TNGs) lacks ground-truth stepwise annotations, making intermediate su-
pervision infeasible, and the combinatorial explosion of biological paths renders exhaustive plan-
ning or retrieval impractical. We propose GALAX (Graph-Augmented LAnguage model with
eXplainability), which couples LLMs with a pretrained GNN under reinforcement learning guided
by a Graph Process Reward Model (GPRM). Instead of explicit labels, GALAX uses the GNN as
a stepwise supervisor and schema-based rule term to check validity, scoring intermediate subgraphs
(partial signaling cascades) for biological plausibility and cancer relevance to provide fine-grained,
graph-based rewards. GALAX prompts an LLM to propose candidate targets from multi-omic pro-
files and partial knowledge graphs, then an RL graph generator assembles task-specific cancer sub-
networks under GPRM scoring—translating language reasoning into interpretable graph construc-
tion and yielding mechanistically grounded, patient-specific subnetworks for target prioritization.
To evaluate, we introduce Target-QA, a benchmark integrating multi-omic data, biomedical graph
knowledge, and CRISPR screening outcomes across diverse cancer cell lines. Together, GALAX
and Target-QA deliver a scalable, reinforcement-guided solution for interpretable, patient-specific
target identification and disease-mechanism discovery.

2 RELATED WORK

LLMs Augmented with Knowledge and Graph Structures Prompt tuning has emerged as a
lightweight and scalable method for adapting LLMs to downstream tasks without full finetun-
ing (Korbak et al.,[2023} Lester et al.,[2021). While effective, it operates over flat text representations
and struggles to incorporate structured domain knowledge or multi-modal signals. To address this,
Retrieval-Augmented Generation (RAG) (Lewis et al., [2020) and graph-augmented approaches
such as G-Retriever (He et al., 2024), RoG (Luo et al., [2023), SubgraphRAG (L1 et al., 2024) and
GNN-RAG (Mavromatis & Karypisl 2025) have been proposed. However, these methods depend
on accurate subgraph retrieval and still lack support for reliable reasoning. Most existing models
also fail to integrate numerical omic signals, causing the loss of cell line—specific information
needed for target discovery and leaving them poorly suited for large, patient-specific text—-numeric
graphs such as multi-omic signaling networks.

Reinforcement Learning for Step-wise Reasoning Reinforcement learning has been instrumen-
tal in aligning LLM behavior through methods like RLHF (Bai et al 2022), PPO (Schulman
et al., 2017), and GRPO (Shao et al., [2024). The Process Reward Model (PRM) (Luo et al.,
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Figure 1: Representative paradigms of patient-specific target prediction in-context LLM workflows and
comparison with our approach. (a) User-specific in-context prompts with basic query input. (b) Augmenta-
tion with retrieved knowledge relevant to the query. (¢) GALAX framework: combining user-specific prompts,
biomedical knowledge, and reinforcement-guided subgraph reasoning for explainable target prediction.

2024) enables step-wise supervision and has been adopted in Large Reasoning Models (LRMs).
However, PRMs face key challenges: fine-grained step definitions are ambiguous, intermediate
correctness is hard to validate, and model-based rewards can lead to reward hacking (Gao et al.,
2023). These challenges are particularly acute in biomedical domains, where reasoning is inher-
ently unstructured and lacks step-wise annotations, making conventional PRM pipelines impractical.

Multi-omic Data Integration in Biomedical AI From a biological standpoint, the integration
of genomic, transcriptomic, and proteomic has been essential for understanding disease mech-
anisms and therapeutic vulnerabilities (Hasin et al. |2017; |[Kristensen et al., 2014). Traditional
approaches rely on statistical fusion or dimensionality reduction (Meng et al.l 2016} [Shen et al.,
2009; Rohart et al.|, [2017; |Argelaguet et al) |2018; Nguyen & Wang| [2020), which overlook the
hierarchical and interconnected nature of molecular data. More recently, GNN-based models like
MOGONET (Wang et al,, 2021) and MoGCN (L1 et al., 2022) have demonstrated the value of
structured graph reasoning for cancer subtype classification and biomarker identification. However,
these models are primarily designed for outcome prediction and often fall short in identifying
actionable biomarkers associated with specific disease mechanisms.

GALAX addresses the limitations of existing models by introducing a RL-guided framework that
dynamically constructs biologically relevant subgraphs for each patient or cell line. This enables in-
terpretable, context-sensitive target prioritization that adapts to both multi-omic features and disease-
specific graph as the text-numeric format. To our knowledge, GALAX is the first to unify numerical
multi-omic signals, literature-scale textual information, and biological topology under a reinforce-
ment learning paradigm with biologically grounded supervision, which learns to reason through
step-wise subgraph generation, guided by an authoritative biomedical GRPM.

3 PROBLEM FORMULATION

Identifying key targets and uncovering disease mechanisms remains a major challenge in precision
medicine. To address this, we adopt the Text-Omic Signaling Graph (TOSG) (Zhang et al.| 2025a),
which integrates multi-omic features and biomedical con- El El e s

text into a unified graph structure. Built upon TOSG, our = ”"‘_"O
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where Xflo) € RM comprises of N(©) samples with M entities. These samples are paired with

binary labels for cancerous or non-cancerous cell lines, denoted as Yo ¢ {0, 1}N (0). Textual
Space: Each entity in the TOSG is associated with a name and description, represented as 7 =
{Thame> Tesc }» where |Thame| = |Taesc| = M. Topological Space: The M entities in each sample are
composed of multiple components derived from genomic, transcriptomic, and proteomic contexts.
These multi-omic features are integrated into the TOSG using an existing integration tool, BioMed-
Graphica (Zhang et al., 2024b)), resulting in a text-attributed knowledge graph G = {V, £}. The set
of vertices is defined as V = {V®™) p(9) PO P@)Y representing promoter, gene, transcript, and
protein entities, respectively. The size of each set is given by |[V®P™)| = m®™)_ |Y@)| = m(9),
VO | =m®, and [VP)| = m®), such that |V| = m®P™) +m9) +m® 4-mP) = M. Correspond-
ingly, we map the cell-specific omic features for the n-th sample, denoted as Xflo) € RM, using a

compact vector concatenation of the four entity types: X. O _ 1) o 4 (9) & () g 5 (P)

x£; ) represents the feature vector for the respective modality (e.g., x£f’ ) e RM™ corresponds to pro-

tein levels). In detail, this graph can be decomposed into two subgraphs: G(" = (V(im) g and
GPPD) — (Y®PD) (PP Here, G captures the internal signaling processes for protein translation.
As shown in Figure[2] internal propagation follows the central dogma (Crickl [1970): promoter (pur-
ple) — gene (red) — transcript ( ) — protein (blue), with V = V() and \V(i“)\ = M. Mean-
while, GPPD represents the gene regulatory network structured around protein-protein interactions
(PPI), where PP — @) In summary, the TOSG unifies numerical omic evidence, textual de-
scriptions, and topological information into a Text-Numeric Graph, defined as G = {X(©), TV, £}.

} , where

Target-QA Generation We construct the feature set X by filtering for cancer cell lines that con-
tain both comprehensive annotations and curated CRISPR-based target information, defining the
collective multi-omic evidence as set X = {X,,}»_;, where X,, € RM. Subsequently, to align
this quantitative data with the reasoning capabilities of LLMs, we systematically structure the input
context for each instance by integrating textual metadata, molecular profiles, and interaction graphs,
detailed as follows. Omics Information: To augment context with patient-specific data, we in-
corporate the top-K features for the LLM. Due to input token constraints of LLMs (Achiam et al.,
2023)) and the presence of CpG sites with methylation beta values saturated at 1, which dominate
rankings and render top-/ selection uninformative, we derive a concise multi-omic representation

X,SK) = [g;K) @ tg,K) @ p§,K>] by extracting the top K features from genomic, transcriptomic,

and proteomic modalities. Here, g,(lK)7 tglK), and pﬁlK) denote the ordered lists of selected gene,
transcript, and protein names, respectively, which correspond directly to the omic-related graph
nodes Vy(lomlc). Sample Information: Disease entity has an associated name and textual descrip-
tion with & = {Shame, Sdesc} Where |S| = m(%). Leveraging annotations from DepMap about
cell lines, we mapped the cell line and disease names in samples to form the sets C = {c,}N_;
and S’ = {s/,}N_,, respectively. Disease-related Protein Subgraph: For cell line, c,,, we use the
cell line related disease entity s/, to retrieve from BioMedGraphica’s disease-target interaction graph
GO — (YOI eI "where YPTH = {PS) PP)} includes disease and protein nodes. To pro-
vide structured graph context, we apply a subgraph retrieval strategy that extracts disease-relevant
protein entities Vflp )« V@ and their interactions &SDTI), along with h-hop protein neighbors Vﬁh)
by extracting interactions from £PP), where V{") ¢ V(®). This yields a sample-specific subgraph
gr(Lsub) _ {Vr(zsub)7 gr(LSUb)}, where V’r(lsub) — V?gp) U Véh), with the full graph set g(sub) — {gr(lsub) }712721_
Hence, each query @, = {cp, s, X 7(1K), g,(i“")} is paired with answer A,, describing top-y CRISPR
targets R, = {rp1,...,rn}, yielding instance D,, = (Q,, A,) in dataset D = {D,, }\_,, strati-
fied by TCGA (Weinstein et al., 2013) types (e.g., Druap, Psrca)-

Patient-Specific Target Prediction with Explainability GALAX is designed to generate not only
accurate but also interpretable predictions by explicitly modeling the reasoning process through
subgraph construction (see Figure [3). Given a query @), the model produces both a prioritized

target list A,, and an explanatory subgraph G :

An,gj—l = f(QnaXnaTag;eGaeL) (1)

The function f is composed of three modules (see Sectiond.2)): (1) an initial language model fiy that
performs coarse reasoning and extracts candidate entities via initial answering; (2) a reinforcement-
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Figure 3: An overview of the GALAX workflow. Given processed multi-omic profiles (genomic, transcrip-
tomic, proteomic), a subgraph is retrieved by identifying disease-associated proteins and their h-hop neighbors.
Then fisi(-) proposes initial targets, refined by a reinforcement-guided graph generator 7(-) supervised by a
pretrained graph foundation model ¢(-). The final subgraph, G', combined with the query, is passed to a
second-stage LLM fiina () for target prediction. The full pipeline enables explainable, patient-specific reason-
ing grounded in molecular biology and CRISPR evidence.

based graph generator 7(-) that incrementally constructs the explainable subgraph G! under the
guidance of a pretrained graph classifier g(-) parameterized by 6, using step-wise biological plau-
sibility rewards; and (3) a final language model fg,, that refines the prediction by reasoning over
both the initial output and the generated subgraph context. The subgraph G serves as a transparent
rationale, offering deeper insights into the disease mechanism.

4 GALAX

4.1 FOUNDATION MODELS PRETRAINING

LLM Pretraining We pretrain a large language model, denoted as ff'* with parameters 61", using
curated text corpora. The input data comprises omic entity descriptions 7, disease annotations S,
protein—protein interactions £ PPV and disease—target relationships £ P™) . As illustrated in Figure|5|
this pretraining phase equips the model with foundational knowledge of biomedical terminology and
relational structure (see Appendix|[C.I)), thereby enhancing its capacity for downstream reasoning in
biomedical tasks. Then we will continue pretraining the language model fi,; parameterized by €y,
which are detailed in Appendix [C.2]

Graph Foundation Model Pretraining We pretrain the graph encoder Gge via a two-stage
pipeline (see Figur. In stage one, a unified graph—language model prre is trained over node

attributes X'(°), textual features 7, and edge set £, with protein—protein interaction edges stochasti-
cally masked as &y, ~ Bernoulli(p), p < 1. The resulting representation is

HPe = fEOX O T E, Emask) 2)

, where HP® € RY @xMxd™ encodes contextualized entity states. In details, we generate edge
mask Enaek ~ Bernoulli(p), where p < 1 is the ratio of the masked edges for £(PPD to mask out the
signaling flows in protein-protein interactions. Then, we apply internal message propagation with

HE® = GNNE(ENCEre (X0, 7), £y 3)

, where ENCP is a cross-modal encoder to align textual and omic features and Hib° €

Cross
RN xMxd™  Tpe first-stage pretraining captures gene regulatory patterns by performing masked

global message passing over £ PPD by

HP™® = GNNpg (KD, PP, ) €5

in
In the second stage, downstream model fg is initialized with pretrained parameters 65;° and is used
to predict disease types from multi-omic inputs. The predicted class for each sample is given by:

VO = arg max Softmax [MLPG (fG(X(O), T,&; 9%“))} (5)
o€
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, where O denotes the set of disease types, and fg consists of the same architecture as ENCoss,
GNN;j;,, and GNNpp;. The model is trained to minimize the cross-entropy loss between the predicted
probability distribution by Softmax[MLPg( f5(+))] and the ground-truth label. The pretrained graph
foundation model fg serves as a structural proxy to guide step-wise reasoning in downstream tasks.

4.2 MODEL TRAINING

The pipeline of model couples initial answering, a reinforcement-guided subgraph generator, and fi-

nal answering. Given the structured prompt P,(Lmi[) from query @),,, the pretrained model fi,;; outputs
AU and a biomedical named entity recognition (NER) ¢ extracts entities R\™" and maps them to

(init)

proteins V,, , which will contribute to forming the start set V(stan) depending on situation. Node

features are embedded by pretrained graph foundation model to obtain H;, and formed Xy(fand). Sub-
graph Construction is framed as reinforcement learning problem consisting of four elements: state
G = (W, e9)y; action A = (vi, vi) adds a single edge under feasibility masks; policy
uses a message propagation (MSG) module to produce X9 = musg (G5, X ) and two masked
probability function 7sgc, Trgr to sample v?, and Vo> Teward combmes feedback from a pretrained
classifier g(-), a rollout averaging L simulated continuations, and a rule-based term Ry that penal-

izes schema violations. We accept an action e only when Rt(ot)al > 0 and update the generator with
reward-weighted cross- entropy with early stopping, the best subgraph G! is retained in € stochastic
run. For final answering, G/ is verbalized in expert mode (Fatemi et al., [2023) and appended to
Q,, to form Pflﬁnal), the model fgn, is finetuned with token-level cross-entropy against A,. What

follows is a detailed exposition of the model design and training framework.

Initial Answering With the pretrained language model fi,; based on fi, parameterized by @iy,
the input to the model is a structured prompt P,(Lm“) derived from the original query @,,, specificially
for turning g,(f“b) into a graph expert format (see Appendix for details), and it will output

Aﬁj"“). Afterwards, an NER function, ¢, is applied to extract biomedical entities from AS““

(init) - _ qS(ASmt)), where RU™) = {r nm{[), S“;), cees nméf)} And which are then mapped to
corresponding protein nodes, Vi, (init) _ {vn init, 19 ,(Lpl)mt 2" ’Uv(zzji)nit,a/}'

Process Reward Graph Generator The initial node set V5™ i

priority: if the disease-related protein set V(p ) is available, the top 17 most relevant entities are used;
if not, the top 7 entities from the initialization set V( ") are selected. If both are unavailable, 1 nodes
are randomly sampled from the omic-derived set V"™ . Formally,

is selected based on a predefined

Top-n(Vi"), it VP # 0
V’r(:tart) = { Top- 77( (1n1t))7 else lfV(lmt 7& 0 (6)
Sample-n(VS™)),  otherwise

The candidate set was generated based on V™ = Y™ pie)  plomic) apg ptat)  pleand)
And the features of X’ are precomputed using a graph encoder fp with parameters Gge, followed

by pretrained modules ENC,ss and GNNj, with parameters 9“0“ and QlGn, respectively:
. — GNN,, (ENCCmss (fE° (X, T, £500), T 68,.) , €0, 05‘;) e RNXMxd™ (7

The candidate node features X 9 are selected from the precomputed representation ;,. Then
we introduce a reinforcement-guided graph generator, denoted as 7(-), where the policy operates
over sample-specific graph states and candidate sets, enabling personalized subgraph construction.

At step ¢, the current graph state is defined as QT(Li) = {Vf,,i),&(f)} after applying the action of
constructing edge (v%., vfg[). The next graph state QSH) is formed by adding an edge between a
sampled source node v’ and target node vfgt. To compute the probabilities of selecting these nodes,

we embed the node features from G together with the candidate features X (29 as:

Xr(Ll) = WMSG(g( i) X(Cdﬂd)) (8)

n
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, where mysg consists of a message propagation (MSG) module and a feature selection mecha-

nism that extracts node embeddings corresponding to VT(f) from the propagated features. Based on
embeddings, the source and target nodes are sampled according to the generated probabilities with

Ve ~ Tsre(XD, Msre); Vi ~ mrar (X5, Mrar; vé,) 9)
, where msgrc and mgr are returned with probability implemented via MLPs and softmax by masking

Mgre and Mg, which restrict source selection to nodes in g,(f) and exclude the source when

selecting the target. Based on the probability, nodes v’ and vfgt will be selected by the sampling

function. The selected node pair then forms the updated graph state g,(f*l) for next step.

Reinforcement-Guided Reward and Training To guide the graph generation process, we define
a rollout-based reward function that combines immediate classifier feedback with future trajectory
simulation. At generation step ¢, the intermediate graph is represented as Qr(fﬂ) = {Vr(fﬂ), &(fﬂ)}

after applying the action of constructing edge (v? vfgt). We define g(-) as a pretrained graph classi-

fier that computes class probabilities by applying a GNN encoder GNNI(:’PI followed by a projection
head MLPg, formally expressed as g(-) = Softmax [MLPg (GNNSPI())} . The model is parameter-
ized by pretrained weights 05, and 65 p, and outputs a probability distribution over classes in O.

Let 0* € O denote the target class. The reward ’Rgf ) for step ¢ is defined as:

L
. . 1 1 )
R,E,Z) = Go* (QT(LZH)) - @ +A- Z Z |:go* (ROHOUtZ (gr(zZJrl)))
(=1

1

— o (10)
@

Here, g, (G) refers to the probability assigned to the target class o*, and Rollout,(-) simulates the

{-th full trajectory by continuing generation from the current partial graph using the current policy.

The hyperparameter A balances intermediate and future rollout-based feedback. To ensure reasoning

aligning with biological plausibility, we incorporate a rule-based reward term R e ( 7(; +1)) that

penalizes invalid edges according to relations from BioMedGraphica. The final reward is:

Rt(gt)a] = RS) + )\rule : Rrule(gg—i_l)) (l l)
This formulation guides the generation process toward subgraphs that are both predictive of the tar-
get class and consistent with domain-specific biological priors. And we used the greedy acceptance
where if Rgf))tal > 0, set GUTY as current state; otherwise keep the previous state. Then in each step
1, the model will be trained with loss function,

Loep = — R CE (v, msre(X ), Msre)) + CE(vy, mror( X, Mrgrivi))]  (12)

, where the generator is optimized with reward-weighted cross-entropy (CE) function. In practice,
we sample multiple candidate subgraphs under the policy parameterized by 6, across multiple runs
€, and select the optimal subgraph G .

Final Answer Generation with Prompt Tuning The optimal subgraph G! is converted into a
structured textual description via expert mode (see details in Appendix [D.I)), which will be appended

to original query @, to form final graph-augmented prompt P,(Lﬁ"al). With language model fg,, based

on pretrained fini, it generates the output sequence A,, = {an. 1, @n.2, ..., ay, v } according to:
J’
i - . final
€ (An | Qniy G) = T €otna (@ | tn,<j, PIY) (13)
j=1

To align the model output with the refined ground-truth answer A,,, which contains the top =y
CRISPR-prioritized gene targets for sample n, we finetune the model by:
N J

ACﬁnal = — Z Z IOg geﬁnal(an;j | Un,<js P’r(zﬁnal)) (14)

n=1j=1
This objective encourages the model to internalize the structured reasoning encoded in G} to gener-
ate biologically grounded answers. After generation, an NER function ¢ will extract entities from

the model’s output A,, with R, = qS(An) = {fn.1,%n2,...,7n a3} These predicted protein targets
are used for evaluating biological relevance and overlap within reference targets in A,,.
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5 EXPERIMENTS

Datasets We construct the Target-QA dataset over multiple TCGA cancer types using DepMap, in-
tegrating multi-omic features (epigenomic, genomic, transcriptomic, proteomic) and metadata from
cancer cell lines. Each QA pair consists of an input query, including multi-omic and cell line infor-
mation, and an output answer comprising the top-y (v = 100) CRISPR-prioritized targets. The final
dataset contains 363 QA pairs from cancerous cell lines after integration and preprocessing. We use
an 80/20 train-test split and repeat experiments across four randomized seeds to ensure stability and
generalization. For foundation model pretraining, we collect dataset of 336 samples with multi-omic
features from unannotated samples, including both disease and control groups (297 cancerous, 39
non-cancerous), and apply stratified sampling to address class imbalance. Full data processing and
cohort composition are described in Appendix

Experimental Setup We initialize the language model with LLaMA3-8B-Instruct (Grattafiori
et al) [2024), pretrained on biomedical terminology and curated textual descriptions involv-
ing protein—protein and disease—protein relationships from BioMedGraphica to enhance domain-
specific vocabulary and biological context understanding (see Figure [5). For graph encoding,
we use BioBERT-v1.1 (Lee et al| 2020) for text embeddings and Graph Attention Networks
(GAT) (Velickovic et al.l 2017) to learn topological features from protein interaction graphs, incor-
porating random edge masking to improve robustness (see Figure [2] global message propagation).
The pretrained GNN achieves 64.4% AUC in edge prediction, and 99.46% / 96.15% accuracy on
disease type classification (train/test). Named entities are extracted using GPT-4o0-mini via ChatGPT
API (Hurst et al., [2024).GALAX is trained using the Adam optimizer on two NVIDIA H100 GPUs
(80GB). We set the number of top omic features per modality to K =10, the maximum subgraph
rollout depth to L=>5, and the number of candidate starting nodes n=20. The reward formulation
includes both rollout- and rule-based components, each weighted equally with A=1 and Ay.=1.
The reasoning task is formulated as a binary classification problem (|O|=2), using a 1-hop (h=1)
protein neighborhood from the disease-annotated subgraph. Model outputs are evaluated using pre-
cision, recall, Fl-score, Jaccard similarity, Hit@5 and Hit@10, by comparing predicted target sets

R,, against reference labels R,,. Additional details are provided in the Appendix

Table 1: Performance of models across datasets and metrics

Overall LUAD BRCA

Model Precision 1 Recall 1 Precision 1 Recall Precision 1 Recall
M2T 0.0016 0.0011 0.0020 0.0014 0.0000 0.0000
GAT 0.0006-0.0000 0.0006-0.0000 0.00000.0000 0.0000=0.0000 0.0033=0.0000 0.00330.0000
L3 + Omics 0.0071+0.0032 0.0013+0.0002  0.0079:0.0137 0.0005:0.0008 0.0020-0.0035 0.0017+0.0029
L3 + Omics + KG 0.0125:+0.0032 0.0029-:0.0003 0.0014:x0.0025 0.0010-0.0016 0.00730.0068 0.0033:0.0029
L3-FT(Med) + Omics 0.0179+0.0045 0.0133+0.0064 0.0091+0.0018 0.0105+0.0044 0.0110+0.0086 0.0106+0.0075
L3-FT(Med) + Omics + KG  0.0158::0.0030 0.0058+0.0011 0.0081+0.0071 0.0024+0.0016 0.0149+0.0057 0.0050+0.0000
L3-FT(QA) + Omics 0.5250+0.0282 0.4959+0.0435 0.5201+0.0408 0.4905+0.0532 0.5074+0.0498 0.4856+0.0570
L3-FT(QA) + Omics + KG 0.5185+0.0240 0.49080.0402 0.5214£0.0242 0.4952+0.0432 0.4856+0.0395 0.4656+0.0436
G-Retriever + pre-GAT 0.4763-+0.0004 0.3929-£0.0063 0.4642+0.0181 0.3881:+0.0264 0.44140.0099 0.3772+0.0010
RoG 0.5248:+0.0134 0.4726+0.0445 0.5213+0.0227 0.4562:+0.0848 0.4791+0.0575 0.4311+0.0721
SubgraphRAG 0.5280+0.0044 [¢ +0.0027 0.5123£0.0105 0.4448+0.0386 0.47080.0317 0.3917+0.0376
GNN-RAG 0.5258+0.0126 0.4735+0.0190 0.5334£0.0225 0.5052+0.0170 0.4787+0.0453 0.4389+0.0584
GALAX 0.5472+0.0053  0.5332+0.0031 0.5345£0.0185 0.5157+0.0043  0.5608+0.0031 0.5533+0.0033
GALAX (Qwen2.5-7B) 0.5445+0.0114  0.5405+0.0101  0.5475+0.0019 0.5462+0.0111  0.5171+0.0474 0.5206+0.0419

Table 2: Hit@ 10 and Hit@5 for models across datasets

Overall LUAD BRCA

Model Hit@10 Hit@5 1 Hit@10 1 Hit@5 1 Hit@10 1 Hit@5 1

M2T 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000

GAT 0.0000+0.0000 0.0000-0.0000  0.0000-0.0000 0.0000+0.0000 0.0000+0.0000  0.0000-£0.0000
L3 + Omics 0.0021+0.0037 0.0032-+0.0055 0.0048:0.0082 0.0095+0.0165 0.0000=0.0000 0.0000+0.0000
L3 + Omics + KG 0.0122+0.0033 0.0085+0.0037 0.0000£0.0000 0.0000-+0.0000 0.00560.0096 0.0111+0.0192
L3-FT(Med) + Omics 0.0122+0.0072 0.0116+0.0097 0.0000+0.0000 0.0000+0.0000 0.0111=0.0192 0.0000<+0.0000
L3-FT(Med) + Omics + KG  0.0132+0.0040 0.0106-0.0048 0.0048+0.0082 0.0095+0.0165 0.0111+0.0192 0.0000-0.0000
L3-FT(QA) + Omics 0.8693+0.0157 0.8889-+0.0168 0.8667+0.0218 0.8476+0.0165 0.8389+0.0096  0.8889+0.0509
L3-FT(QA) + Omics + KG 0.8529+0.0153 0.8794-+0.0114 0.8048+0.0541 0.7905-£0.0436 0.8222+0.0347 0.8778+0.0192
G-Retriever + pre-GAT 0.8550+0.0046 0.8804:+0.0037 0.8524:+0.0165 0.8857+0.0000  0.8667+0.0000  0.8667+0.0000
RoG 0.8450+0.0350 0.8593+0.0318 0.8238£0.0218 0.8095+0.0436 0.7611+0.1110 0.7667+0.0577
SubgraphRAG 0.8476+0.0167 0.8624+0.0120 0.8238+0.0082 0.8190+0.0165 0.7333+0.1014 0.7556+0.0839
GNN-RAG 0.8323+0.0205 0.8656+0.0302 0.7571+0.0623 0.7905+0.0719 0.8222+0.0674 0.8444+0.0385
GALAX 0.8815+0.0033  0.9249+0.0048 0.8810+0.0082 0.9238+0.0436  0.8500+0.0441  0.8889+0.0839
GALAX (Qwen2.5-7B) 0.8841+0.0126  0.9079+0.0084 0.8667£0.0082 0.9048-£0.0165 0.8000+0.0764 0.8556-£0.0385

Baseline Models Traditional method, M2T (Multiomic2Target(Deng et al., [2024)), serves as a
baseline that uses only multi-omic features without graph or language modeling and performs poorly
across all metrics. And we perform ablation studies to isolate the contribution of core compo-
nents of language and graph modules in GALAX. On the language axis, a non—task-tuned LLaMA3
(L3+Omics) is weak; domain-adaptive finetuning on biomedical text (L3-FT(Med)+Omics) yields
modest gains; task-adaptive finetuning on Target-QA (L3-FT(QA)+Omics) produces the step-
change. On the graph axis, GAT incorporates graph foundation model and trained to predict the
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Figure 4: Model performance and analysis. (a) Overall performance across metrics. (b) LUAD (ACH-
000860): cancer-relevant subgraph highlighting disease-associated nodes (purple) and enrichment-supported
edges ( ). (¢) Enrichment analysis: top pathway and disease terms with p-values and gene counts.

CRISPR knockout effects, shows limited improvements. Furthermore, integrating graph modules
into language models comes with different outputs. Adding a static KG to each language foun-
dation models ([L3 / L3-FT(Med) / L3-FT(QA)]+Omics+KG) barely improve or even decrease
model performances, and graph retrieval with pretrained GAT (G-Retriever+pre-GAT) outper-
form some task-adaptive finetuned language models but not reliably due to the difficulty of ex-
tracting relevant subgraphs from millions of nodes/edges. RoG, SubgraphRAG (Li et al. [2024),
and GNN-RAG (Mavromatis & Karypis, [2025) augment the language model by retrieving optimal
paths, achieving moderate improvements over L3-FT(QA)+Omics+KG. Reinforcement-guided sub-
graph construction on top of QA-tuned language (GALAX: L3-FT(QA)+Omics+KG+RL) delivers
consistent, cross-dataset gains of roughly 2%-5% on each metric, indicating that a reinforcement-
guided subgraph generator outperforms other graph augmented models across all datasets by en-
abling process-level reasoning over biologically plausible subgraphs (shown in Tables[THZ)). Details
of baseline models are provided in Appendix [D.3]

Computational Complexity We denote the language

model complexity by O(k). The retrieved KG sub- Model . Training & Inference
graph includes M nodes, and & denotes the graph em- gggg:g:gzii KG O(Si"j)wg)
bedding cost. When augmented with KG retrieval, L3-  supgraphRAG O(k + M?2e)
FT(QA)+Omics+KG introduces an additional O(M?) per G-retriever+preGAT O(k + Me + M%)
query, yielding O(x + M?) for both training and inference. EON(;’\I RAG 82: i %i i %jg
G-retriever+preGAT embeds all M nodes and thus incurs Gy ax Ok + Me + M2z)

O(Me + M?¢). RoG and GNN-RAG follow the same cost
at retrieval, since they embed entities and relations, requir-
ing O(Me + M?¢). SubgraphRAG reduces this by retrieving only relation triplets, which costs
O(M?¢) at retrieval. And G-retreiver. RoG, GNN-RAG and SubgraphRAG all requires an O(r)
at both training and inference for language models. GALAX augments the language model with
reinforcement-guided subgraph construction, with embedding cost O(Me + M?¢). The model re-
quires an O(k) forward pass to initialize the top 1 candidates and another for final answer generation;
since 7 < M, the graph-embedding term dominates the RL reward cost. Overall, the training and
inference complexity of GALAX is therefore O(x + Me + M?e) (see Table [3).

Table 3: Complexity comparisons

Main Results Tables summarize the performance of GALAX and several competitive base-
lines on the full test dataset. GALAX outperforms all baselines on every metric, reaching an overall
precision of 0.5472 and recall of 0.5332. To further assess target prioritization quality, we report
Hit@10 and Hit@5 in Table 2] where GALAX again achieves the highest accuracy with an overall
Hit@10 of 0.8815 and Hit@5 of 0.9249. We also replaced the backbone with Qwen2.5-7B—Instruct
and observed similar performances on all metrics, indicating that GALAX maintains stable perfor-
mance under backbone changes (See Appendix [D.4] for full experiment results). We further tested
generalization by forming three holdout sets in which the selected TCGA cancer types were excluded
from training and treated as unseen during evaluation. Across all holdout sets, GALAX showed only
modest performance declines, indicating that it preserves strong accuracy and generalizes reliably
to previously unseen cancer types (Details are provided in Appendix [D.5). Beyond Target-QA, we
evaluate GALAX on the pediatric cancer dataset from PedDep (Dharia et al.| [2021)), which offers
multi-omic profiles and CRISPR-based targets for 31 tumor cell lines, using zero-shot inference due
to its small sample size. Even under this setting, GALAX surpasses all baselines on all metrics,
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Table 4: Overall performances for ablation studies on omic inputs and KG structure

Config Setting Recall Precision T Hit@5 1t Hit@10 1
GALAX

E20 Drop 20% edges 0.5061+0.0268  0.5362+0.0059  0.9005+0.0128  0.8741:£0.0060
E40 Drop 40% edges 0.2871+0.0060 0.5079+0.0039  0.8762+0.0138  0.84710.0090
E60 Drop 60% edges 0.2753x0.0020  0.4961+0.0050  0.8635x0.0084  0.83070.0033
E80 Drop 80% edges 0.277540.0134  0.4943+0.0177  0.8434+0.0524  0.8185:£0.0494
N20 Drop 20% nodes 0.2697+0.0013  0.5034+0.0014  0.8786+0.0070  0.8560::0.0092
N40 Drop 40% nodes 0.2675+0.0033  0.4901+0.0035  0.8878=0.0066  0.8503+0.0048
N60 Drop 60% nodes 0.2617+0.0056  0.4929+0.0045  0.8698+0.0200  0.8385+0.0247
N80 Drop 80% nodes 0.2653+0.0032  0.4825+0.0090  0.8341+0.0105  0.8103:£0.0134
Omic-M Remove epigenomic data 0.4810+0.0137  0.5163+0.0086  0.8857+0.0145  0.8614:£0.0115
Omic-G Remove genomic data 0.31210.0052  0.4277+0.0056  0.8550+0.0037  0.84020.0033
Omic-T Remove transcriptomic data (.33 0016 0.4065+0.0042  0.8720+0.0037  0.8672:+0.0037

Omic-P Remove proteomic data 0.3347+0.0013  0.3980+0.0058  0.8540+0.0138  0.8466:£0.0040
Omic-All Remove all omics 0.3024=0.0032  0.3793x0.0019  0.8237+0.0066  0.7967=0.0040
GALAX Original 0.5332x0.0031  0.5472+0.0053  0.9249=0.0048  0.8815+0.0033
L3-FT(QA) + Omic + KG

E20 Drop 20% edges 0.4599+0.0820  0.5214+0.0036  0.8587+0.0157  0.8373+0.0258
E40 Drop 40% edges 0.274240.0090  0.5064+0.0099  0.8429+0.0173  0.8226:£0.0169
E60 Drop 60% edges 0.2676+0.0062  0.4991+0.0099  0.8296+0.0305 0.8111+0.0175
E80 Drop 80% edges 0.2611+0.0074  0.4880+0.0086  0.8254+0.0361  0.8063-+0.0370
N20 Drop 20% nodes 0.2662+0.0059  0.4916+0.0024  0.8434+0.0186  0.8222+0.0193
N40 Drop 40% nodes 0.2658+0.0049  0.4838+0.0169  0.8709+0.0422  0.8339:0.0335
N60 Drop 60% nodes 0.2648+0.0000  0.4742+0.0150  0.7857+0.0247  0.7690+0.0303
N80 Drop 80% nodes 0.2689+0.00a2  0.4722+0.0063  0.7111+0.0055  0.6974+0.0111
Omic-M Remove epigenomic data 0.4602+0.0361  0.4878+0.0256  0.8794+0.0055  0.8466+0.0142
Omic-G Remove genomic data 0.3213+0.0047  0.3962+0.0003  0.8455+0.0073  0.8349+0.0136
Omic-T Remove transcriptomic data  0.3244=0.0034  0.3996+0.0087  0.8550+0.0073  0.8381:£0.0097
Omic-P Remove proteomic data 0.3266+0.0012  0.3872+0.0032  0.8497+0.0048  0.8265:£0.0056
Omic-All Remove all omics 0.2669+0.0075  0.3577+0.0093  0.7830+0.0182  0.7538+0.0174
L3-FT(QA)+Omic+KG  Original 0.4908+0.0402  0.5185+0.0240  0.8794x0.0114  0.8529+0.0153

showing strong transfer to external dataset (Details are provided in Appendix [D.6). Figure @b-c
illustrates the explainable subgraph generated for the lung cancer cell line ACH-000860. To further
validate the biological relevance of the extracted subgraph, we performed functional enrichment
analysis. The results reveal significant enrichment in cancer-associated signaling pathways, includ-
ing the cancer pathway WP5434 and EGFR-related receptor signaling pathways such as WP138 and
WP3680, as cataloged in WikiPathways (Agrawal et al.| 2024)). Notably, EGFR a well-established
therapeutic target in NSCLC (Steuer & Ramalingam, |2015) appears in five enriched terms, together
with PTK2 and WNT16 which are known to regulate invasion, epithelial mesenchymal transition,
and therapeutic resistance (Tong et al.| 2019} Sun et al.l 2012). The observed pathway enrichment
provides strong biological support for the relevance of the selected targets in lung cancer. Additional
disease enrichment using the GAD DISEASE database further supports this conclusion (Sherman
et al.| 2022), with lung cancer identified as the top associated disease term with a p value of 0.0022,
involving GSTM3, APAF1, NOD2, MLLT3, GC and EGFR. Full enrichment details across all can-
cer types are included in the Appendix In addition, human and LLM evaluation results in
Appendix [E.2] show that most generated subgraphs are biologically plausible.

Ablation Studies As shown in Table 4] we evaluated GALAX under systematic perturbations to
omic inputs and KG structure. The KG provides both the guidance for graph generation and the re-
trieved subgraphs that supply biological context to the language model, so removing portions of the
KG naturally reduces overall performance. Under KG deletions, GALAX remained stronger than
the baseline across all edge-removal levels because node attributes and pretrained GNN embeddings
enabled the model to assemble meaningful subnetworks from sparse structure. Node deletion was
more destructive since removing 20% of nodes removed about 35% of edges, but GALAX main-
tained more stable Hit@5 and Hit@ 10 scores than the baseline across all deletion levels. Removing
epigenomic data produced the smallest decline due to methylation saturation, while removing ge-
nomic, transcriptomic, or proteomic signals caused larger drops, yet GALAX still outperformed the
L3-FT(QA)+Omic+KG baseline even when all omics were removed. Overall, these findings show
that GALAX generalizes well under shifts in omic distributions and reduced KG connectivity.

6 CONCLUSION

We present GALAX, a graph-augmented language model that unifies numerical multi-omic ev-
idence, literature-scale textual information, and stepwise graph construction under reinforcement
learning with biologically grounded supervision through a Graph Process Reward Model (GRPM),
which scores intermediate subgraphs for biological plausibility and cancer relevance and guides the
system to generate patient-specific mechanistic subgraph for target prioritization without explicit
labels. To facilitate evaluation, we introduce Target-QA, a benchmark combining multi-omic data,
CRISPR outcomes, and graph knowledge for target discovery. GALAX consistently outperforms
baseline models on this dataset.
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ETHICS STATEMENT

This dataset is derived from the Broad Institute’s Cancer Dependency Map (DepMapﬂ) and will be
released strictly for non-commercial, internal research and academic use, consistent with DepMap’s
Terms of Use. We do not redistribute original DepMap files; instead, we provide derived, non-
identifiable annotations and processing scripts/pointers so users can obtain the source data di-
rectly from DepMap after accepting its terms. The dataset is not intended for clinical applications
and must not be used for any Commercial Use (e.g., direct sale, incorporation into a product, or
training/developing/enhancing ML/AI models beyond internal academic research). Users agree to
acknowledge DepMap and the Broad Institute using the acknowledgement wording specified by
DepMap, and to respect any third-party rights that may attach to the underlying data. Users must
preserve confidentiality and refrain from any re-identification attempts. This statement summarizes
our compliance posture and does not constitute legal advice; users are responsible for ensuring their
own compliance with DepMap’s Terms and applicable policies.

REPRODUCIBILITY STATEMENT

We release the source code together with preprocessing pipelines, thereby enabling reproduction of
Target-QA datasets and reported experiments. The Target-QAE] and GALAXE] are publicly available
at Huggingface and GitHub.
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A THE USE OF LARGE LANGUAGE MODELS

We used ChatGPT-5 as a writing assistant. All LLM-suggested text was reviewed, fact-checked, and
edited by the authors, who take full responsibility for the final content. The LLM is not an author

and is not eligible for authorship under the ICLR Code of Ethics.

B DATASET

B.1

BIOMEDICAL TERMINOLGY CORPUS

Gene
Description

short for double

: TIMM8A, LRRC37A3, NOBOX, ...

i Lung adenocarcinoma is a ic
:recorded in MONDO with MONDO Name lung :
: adenocarcinoma and MONDO:0005061. It is also recorded :
:in UMLS with UMLS ID C0152013. In details, the disease :
i Lung adenocarcinoma has the MONDO description with: A
: carcinoma that arises from the lung and is characterized by :
: the presence of malignant glandular epithelial cells. There is :
:a male predilection with a male to female ratio of 2:1.
: Usually lung adenocarcinoma is asymptomatic and is :
: identified through screening studies or as an incidental :

omeobox B is a protein :
: coding gene located on Chromosome 16 from :
: 75693893 to 75701461. In details, double homeobox :
B has the NCBI Gene description with Predicted to
: enable DNA-binding transcription factor activity, RNA :
: polymerase |Il-specific and RNA polymerase I :
transcription regulatory region sequence-specific DNA
: binding activity. Predicted to be involved in regulation :
: of transcription by RNA polymerase |II. Predicted to be :
: active in nucleus. Aside from that, DUXB is related to
the following genes: CPHXL2, CPHXL, TRIM43B, :
: FAM186A, MBD3L3, DPRX, PRAMEF25, SMCHD1, :
: MBD3L5, ARGFX, UNCX, DUXA, LRRC37A2, :
LRRC37A, DRGX, NOTO, LEUTX, KDM4E, ANHX,
: SDHD, CUX2, TIMM23, SHOX, GSC2, CRX, TIMM44, :

Disease
Description

has been

radiologic finding. If clinical symptoms are present, they
: include shortness of breath, cough, hemoptysis, chest pain, :
: and fever. Tobacco smoke is a known risk factor. Mutations :
: in KRAS, EGFR, BRAF, and ERBB2 genes are associated :
with this cancer. Aside from that, Lung adenocarcinoma is
: related to the following genes: TLR4, IPOS, ... :

0000000
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Figure 5: Biomedical Corpus Composition. Pretraining LLM f{(-) on biomedical terminology and struc-
tural patterns using protein-protein and disease-protein interactions.

Each entities or nodes in TOSG has the name and description about it with 7 = {Thame, Tdesc }»
where |Thame| = |Taesc| = M. And disease entity has has an associated name and textual descrip-
tion with S = {Sname, Suesc } Where |S| = M), In the Figure we pretrained fI with curated
text copora in BioMedGraphiczﬂ where they provided the data collection and integration source
code. Following their processed descriptions, we incorporate GP* and GP™ to enrich the corpus
by appending protein-protein (PPI) and disease-protein (DTI) interaction information as textual de-
scriptions after each protein and disease entity. For entities without known interactions, we assign
empty strings during corpus construction, resulting in the intermediate representations 7 and S. In
practice, we exclude these empty entities to derive the final input sets 7’ and S’, where 7" includes
42,224 protein descriptions and S’ includes 22,340 disease descriptions (i.e., |7'| = 42,224 and
|S’| = M'(5) = 22,340). This yields a combined corpus of 64,564 text samples for pretraining.

B.2 DEPMAP DATA PREPROCESSING

As shown in Figure [6h, after multi-omics integration in BioMedGraphica of DepMap cohort (see
Table EI) comprises N(© (N(©) = 985) cell-line samples, which are organized into three datasets:
a pretraining set, Target-QA, and Drug-QA. Of these 985 samples, 336 samples lack disease/tcga-
code annotations or belong to non-cancerous samples, while 649 samples cancerous. Within the
annotated cancer set, 363 samples overlap with DepMap CRISPR multi-omic data. Since we would
like to utilize as many as samples for training GALAX, we set N = 363 as Target-QA, N(©) = 336

‘nttps://huggingface.co/datasets/FuhailLiAiLab/BioMedGraphica
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Figure 6: Dataset composition, feature landscape, and split statistics. (a) Block diagram of the corpus
partitioned by phenotype (non-cancerous vs. cancerous) and by task: pretraining pool ( ), Target-QA (blue),
and Drug-QA ( ). Numbers within boxes denote sample counts; the dashed horizontal line marks the
train/test division and the dashed vertical line marks the non-cancerous/cancerous and non-annotated/annotated
boundaries. (b) Heatmap of standardized multi-omic features (top 5,000 most variance features) for Target-QA
samples. Rows are samples (annotated by TCGA cancer type); columns are features with top variances. The
colored sidebar encodes TCGA cancer types (legend at right). (¢) Distribution of Target-QA samples by TCGA
code for train (blue) and test (red); totals shown in the inset (N = 363; train = 300 (82.6%), test = 63
(17.4%)).

Table 5: TCGA cancer type codes and their full names.

TCGA Code Full Name TCGA Code Full Name

Overall Average Overall Average MB Medulloblastoma

LUAD Lung Adenocarcinoma ALL Acute Lymphoblastic Leukemia

BRCA Breast Invasive Carcinoma LGG Brain Lower Grade Glioma
COAD/READ Colon/Rectum Adenocarcinoma NB Neuroblastoma

PAAD Pancreatic Adenocarcinoma MESO Mesothelioma

GBM Glioblastoma Multiforme LIHC Liver Hepatocellular Carcinoma

SARC Sarcoma LAML Acute Myeloid Leukemia

ov Opvarian Serous Cystadenocarcinoma DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
SKCM Skin Cutaneous Melanoma MM Multiple Myeloma

ESCA Esophageal Carcinoma KIRC Kidney Renal Clear Cell Carcinoma
SCLC Small Cell Lung Cancer THCA Thyroid Carcinoma

HNSC Head and Neck Squamous Cell Carcinoma | BLCA Bladder Urothelial Carcinoma

LUSC Lung Squamous Cell Carcinoma UCEC Uterine Corpus Endometrial Carcinoma
STAD Stomach Adenocarcinoma PRAD Prostate Adenocarcinoma

as pretraining set. To pretrain the graph foundation model, f5°, fg, we consider |O| = 2 classes—
cancerous (297 samples) and non-cancerous (39 samples)—and perform an 80/20 random split,
yielding 269 training samples (238 cancerous, 31 non-cancerous) and 67 test samples (59 cancer-
ous, 8 non-cancerous). The raw omics feature matrices include promoter and gene modalities m (™)
and m9) (each with 86,238 entities), a transcript modality m® (412,039 transcript-level entities),
and a protein modality 7m(") (121,419 protein-level entities). The promoter modality is represented
as a virtual node type in the graph encoder—entity-wise duplicates of genes whose omic values are
drawn from DepMap methylation. Together, these modalities yield M = 834,809 omics entities (see
Table 7). The unified knowledge graph integrates protein—protein interactions (|| = 27,087,971)
and disease—target associations (|E(FPD| = 17,151,453). Every node in the Text-Omic Signaling
Graph (TOSG) carries text attributes 7 = {Thame, Zaesc } With |Thame| = |Tuesc| = M; empty fields
are set to the empty string to preserve schema alignment. Hence, we construct the TOSG by link-
ing multi-omics features with biomedical relational knowledge using BioMedGraphica and pretrain
the graph encoder f&°, fq (parameters 0¢; °, 6) with a masked-edge modeling objective that en-
courages recovery of held-out interactions from context, capturing implicit omic relationships and
signaling dependencies.
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Table 6: Descriptions and sources of raw data files used in this study

File Type File Name Download Site

Promoter feature CCLE_RRBS_TSS1kb_20181022.txt https://depmap.org/
portal/data_page/?tab=
allData

Gene feature OmicsCNGene.csv https://depmap.org/
portal/data_page/?tab=
allData

Transcript feature See footnote! https://depmap.org/
portal/data_page/?tab=
allData

Protein feature protein_quant_current_normalized.csv  |https://depmap.org/
portal/data_page/?tab=
allData

CRISPR gene effect  CRISPRGeneEffect.csv https://depmap.org/
portal/data_page/?tab=
allData

Cell line annotation ~ Table_S1_Sample_Information.xIsx https://depmap.orqg/
portal/data_page/?tab=
allData

Cell line annotation  cellosaurus.obo https://ftp.expasy.org/
databases/cellosaurus/
cellosaurus.obo

Cell line status cell-lines-in-Non-Cancerous.csv https://depmap.
org/portal/context/
Non—-Cancerous

T Transcript file name: OmicsExpressionProteinCodingGenesTPMLogplBatchCorrected.csv

Table 7: Summary of feature dimensions across omics and samples

Modality Raw Matrix Processed Matrix
Promoter 21,337 rows, 846 samples 86,238 entities, 985 samples
Gene 38,590 rows, 1,928 samples 86,238 entities, 985 samples
Transcript 19,138 rows, 1,672 samples 412,039 entities, 985 samples
Protein 12,755 rows, 378 samples 121,419 entities, 985 samples
Cell Line Annotation 1,019 samples 985 samples
Non-cancer Samples 137 samples 39 samples

B.3 TARGET-QA GENERATION

Based on the raw data provided from the DepMap CRISPR gene effect data with 1178 samples, we
get the overlapped 363 (N = 363) samples with the pretraining samples. And we do 80/20 train/test
split with 80/20 ratiofor 300 training samples and 63 test samples at random seeds. In total, we
collected test samples from LUAD (7 samples), BRCA (6 samples), COAD/READ (5 samples),
PAAD (4 samples), ESCA (3 samples), GBM (3 samples), OV (3 samples), SARC (3 samples),
SCLC (3 samples), SKCM (3 samples), HNSC (2 samples), LUSC (2 samples), STAD (2 samples),
etc. (see Figure[6[C). Given that methylation values in DepMap have so many are 1 (full methylated
over the promoter region around the trasnscription start site), which means that many values are
ranked as top K (K=10), so we just omit the methylation (epigeonomic) values by only providing
geomic, transcriptomic and proteomic values. Afterwards, each QA sample is indexed by a unique
key corresponding to the cancer cell line, such as:

* ACH-000098: The identifier for a glioblastoma cancer cell line.
The corresponding JSON object contains the following fields:

* cell_line_name: Name of the cancer cell line (e.g., GAMG).

» sample_dti_index: Index for omics numpy data to be fetched.
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* disease: Name of the associated disease (e.g., glioblastoma).

* disease_bmgc_id: BioMedGraphica-Conn identifier of the disease (e.g.,
BMGC_DS00965).
* input:
— top_k_gene, top_k_transcript, top_k_protein:
* hgnc_symbols: List of gene/transcript/protein names.
* protein_bmgc_ids: Corresponding BioMedGraphica-Conn identifiers.
#* protein_llmname_ids: Other synonymy names or IDs for corresponding
genes/transcripts/proteins.
— knowledge_graph:
+ disease_protein: Includes bmgc_ids, hgnc_symbols, and indices for
disease-associated proteins.
* ppi_neighbors: PPI-linked proteins with similar structure as above.
#* protein_relationships: Textual descriptions of biological interactions
(e.g., "BRCAL1 — TP53").
* ground_truth_answer: Contains the validated target(s) used for evaluation:

— hgnc_symbols: HGCN symbol names for CRISPR targets

— protein_bmgc_ids: Correpsonded CRISPR targets names for BioMedGraphica-
Conn names

— protein_llmname_ids: Other synonymy names or IDs

This hierarchical structure supports multi-modal reasoning by organizing omic features, biomedical
knowledge graphs, and ground-truth target labels, where the cell line name is denoted as c,,, the

disease name as s, the top-ranked genes, transcripts, and proteins as XTSK), and the associated

knowledge graph as G .

C PRETRAINING OF FOUNDATION MODELS

C.1 LLM PRETRAINING ON BIOMEDICAL CORPUS

We pretrain a large language model, denoted as ff with parameters 6}, using curated text corpora
from final input sets 7”7 and S’. Hence, by pretraining the Llama3-8B-Instruct for 3 epochs using
a per-device batch size of 16 and a gradient accumulation step of 8, resulting in an effective batch
size of 128. The optimizer was AdamW with a learning rate of le-5, no weight decay, and a
cosine learning rate schedule with a warm-up ratio of 10%. Gradient clipping was applied with
a maximum gradient norm of 1.0. To improve memory efficiency during training, we enabled
gradient checkpointing and utilized b£1 6 precision while disabling fp16. Training proceeded for
336 steps, with the loss decreasing from approximately 2.2 at the start to around 0.7 by the end (see

Figure[7).

Raw Loss Values Across Five Runs Smoothed Loss Values

—— Runl —— Run 1 (Final: 0.7258)
225 4 Run 2 22 3 —— Run 2 (Final: 0.7287)
Run 3 Run 3 (Final: 0.7605)

Run 4 —— Run 4 (Final: 0.7657)

\ Run 5 (Best) 2.0 Run 5 (Final: 0.7046)
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Figure 7: Pretraining language model loss on biomedical corpus
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Initial Answering Raw Loss (Every 10 Steps)
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Figure 8: Initial langugage answering training loss

C.2 LLM PRETRAINING ON TARGET-QA

We will supervise the language model using the refined answer A,, as the ground-truth label from
Target-QA with:

N J
Linic == Y Y 108000, (an,j | an,<j, PI™) (15)

n=1j=1

, where P,(Lim[) is the structured prompt as shown in Table 8] This objective enables the model to
refine its initial answering based on user-specific and naive graph information. In details, for each
sample c,,, a question is constructed as Q,, = {cy, s,, X G which integrates the cell line
identifier, disease label, multi-omics features, and a knowledge subgraph specific to the sample
context. The corresponding answer A, is a sentence that enumerates the top v CRISPR-prioritized
gene targets for sample n, denoted as R,, = {ry, 1,72, .., . Each data instance is represented
as a tuple D,, = (Qn,Ay), and the full dataset is given by D = {D;, Do, ..., Dx}. The input
to the model is a structured prompt PS™ derived from Q.,, in which the knowledge subgraph

ffub) is translated into a natural language format designed for expert-level graph reasoning. For

example, a subgraph g,(i ub) may contain nodes BRCA1, TP53, EGFR, MAPKI1, AKTI, PIK3CA,
MTOR, PTEN, and CDK2, with observed interactions: BRCA1 — TP53, TP53 — EGFR,
EGFR — MAPKI1, EGFR — AKT1, AKT1 — MTOR, PIK3CA — AKTI1, PIK3CA — PTEN,
PTEN — MTOR, and MAPK1 — CDK2. This subgraph defines the molecular context for
reasoning about gene knockout effects in the cell line ¢,, under disease condition s/,. We conduct
five independent finetuning trials using the constructed Target-QA dataset, each initialized with
a different random seed. The resulting training loss trajectories are shown in Figure [§] Among
these, the best-performing run (run 5) exhibits stable convergence, beginning with an initial loss
of approximately 1.3 and reaching a final loss of around 0.3. We select this run as the final model
checkpoint and designate it as our initial model f;y;;, which serves as the foundation for downstream
reasoning and refined target prioritization.

For pretraining fi,; with parameterized 6;,;, we pretrain for 5 epochs with per-device batch
size 1 and gradient accumulation 2 (effective global batch size = 2 x GPUs), using AdamW
(adamw_t orch) with learning rate 1 x 1072, cosine schedule with 10% warmup, and gradient clip-
ping at 0.5. We enable gradient checkpointing and b£16 (with £p16 disabled), run on 2xNVIDIA
H100 80GB with DeepSpeed ZeRO-3. Checkpointing and evaluation occur every 67 steps with up
to 5 checkpoints retained. Data loading uses 4 workers, pinned memory, no last-batch drop, and no
length grouping; we set seed= 42.

C.3 GRAPH FOUNDATION MODELS

Pretraining for Capturing the Edge Mechanism We pretrain a graph model, denoted as f&*

with parameters 6%°, using pretraining samples from X (9. To effectively model graph-structured
biological relationships, we pretrain our model using a masked edge prediction objective com-
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Table 8: Prompt design for P{™" and expected output for initial protein target reasoning.

Section Content

Instruction Identify the 100 priority genes whose knockout causes the strongest negative
effect on the viability or proliferation of cell line ¢,, in the context of disease
s, based on multi-omics and knowledge graph signals.

Input - Top 10 ranked genes with amplification from copy number data:
g'(n) g'(n) g'(n)
1 1 Jd2 1 IK

- Top 10 ranked transcripts with high expression: ™ 4™ ... ,t;gn)
- Top 10 ranked proteins from RPPA: p'1<n) , p'z(n), o pllg,m

- Disease-associated proteins from the knowledge graph: V,(f ub)
- Known protein—protein/disease—protein relationships: A

Output Based on the integrated multi-omics data and knowledge graph, I identified the
100 genes whose knockout is predicted to have the most severe negative impact
on the viability or proliferation of the ¢, cell line in s/,. The prioritized gene
list is as follows:

1. T(init)
2. T(inil)

These genes represent critical vulnerabilities for the given cell line under the
disease context.

bined with random walk-based graph sampling. The process starts by masking a small fraction
(p = 0.0001) of edges, allowing the model to infer missing interactions based on surrounding
omics and text-derived features. We adopt a GAT-based encoder with two layers, each consisting
of 8 hidden channels. Decoder layers use 4 channels. Both encoder and decoder modules apply
dropout at a rate of 0.2. The model supports optional batch normalization and uses a leaky_relu
activation function. An internal encoder stack of up to 4 layers enables deeper relational mod-
eling. All architecture and training options are managed through a reproducible argparse
interface. Multimodal inputs include one omic feature and a text embedding of dimension 1,
initialized using BioBERT v1.1. The model optionally supports training of the text encoder via
train_text. We use a pretraining batch size of 4 for omics data and 64 for text. The optimizer
is AdamW with a learning rate of 0.001, weight decay of 5x 10~°, and gradient norm clipping at 1.0.

The pretrained model is evaluated using average loss, AUC, and average precision (AP) over valida-
tion batches. As shown in Figure[9] the model demonstrates progressive improvement across steps,
reaching a minimum batch loss of 0.140, peak AUC of 0.644, and peak AP of 0.619. These results
confirm that the model successfully learns meaningful edge semantics and multimodal associations
during pretraining. All training is conducted on a single NVIDIA H100 GPU (80GB).

Epoch-Level Metrics During Pretraining

0.8 Avg Loss
—A— AUC
—— AP

Metric Value
I o o o
IS @ o <

o
w

o
~

1 2 3 4 5 6 7 8 9 10
Epoch

Figure 9: Pretraining loss to capture gene regulatory mechanism

Pretraining for Capturing the Cancerous Status Due to the severe class imbalance in the train-
ing set, we apply random oversampling to the minority class (non-cancerous) to balance the class
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Table 9: Refined prompt design for P and output with graph context

Section Content

Instruction Based on initial LLM reasoning and the subsignaling gene regulatory net-
work identified by the subgraph generator, please identify the 100 priority
genes whose knockout causes the strongest negative effect on the viability
or proliferation of cell line ¢y, in the context of disease s.,.

Input - Top 10 ranked genes with amplification from copy number data:
a7 (n) (n)
. . . - (n (n
- Top 10 ranked transcripts with high expression: ¢, ..., ¢}
- Top 10 ranked proteins from RPPA: p,(™ ... p}((")

- Disease-associated proteins from the biomedical knowledge graph: V5"

- Known protein—protein/disease—protein relationships: gl
- Identified Subsignaling Gene Regulatory Network from Graph Generator

- Involved genes in best connected subgraph: V™

- Inferred signaling cascade (edge text): gl

Refined Reasoning Based on the integrated multi-omics data and knowledge graph, I identified
the 100 genes whose knockout is predicted to have the most severe negative
impact on the viability or proliferation of the c;, cell line in s},. The priori-
tized gene list is as follows:

1. 1
2. T2
3. Tn,3

These genes represent critical vulnerabilities for the given cell line under
the disease context.

distribution during the pretraining of the graph encoder fg. We pretrained a Graph Attention Net-
work (GAT) model f&° with parameters 6, and selected the best-performing checkpoint based on
test accuracy. The selected model achieved a training loss of 0.036, training accuracy of 99.46%,
and training F1 score of 0.996. On the test set, it obtained a loss of 0.370, accuracy of 96.15%, and
F1 score of 0.973, demonstrating strong generalization to both classes.

D EXPERIMENT DETAILS

D.1 PROMPT AND CONTEXT DESIGN FOR FINETUNING

Same as aforementioned prompt design shown in Table [§], we construct the final-stage prompt
P'finab “which incorporates both the initial answering and the subgraph-based regulatory context, as
detailed in Table 9] We perform five additional finetuning trials using this refined prompt format.
The corresponding training are illustrated in Figure [I0] where the best run (run 5) demonstrates
smooth convergence and is selected as the final model checkpoint fg,, for generating the ultimate
target predictions.

D.2 HYPERPARAMETERS

For finetuning, the model is trained for 5 epochs with a per-device batch size of 1 and a gradient
accumulation step of 2, resulting in an effective batch size of 2. We use the AdamW optimizer
(adamw_torch) with a learning rate of 1 x 10~°, no weight decay, and cosine learning rate
scheduling with a 10% warm-up ratio. Gradient clipping is applied with a maximum gradient norm
of 0.5. To support memory efficiency and large model training, we enable gradient checkpointing
and use bf16 precision (with fp16 explicitly disabled). Training is accelerated using DeepSpeed
Stage 3 parallelism, configured via an external JSON file. All experiments are conducted using 2
NVIDIA H100 GPUs, each with 80GB of memory. The DeepSpeed configuration enables ZeRO
Stage 3 with both optimizer and parameter offloading to CPU, memory pinning, communication
overlap, and gradient contiguity. Key parameters include automatic tuning of reduce bucket sizes
and micro-batch size, sub-grouping disabled, and support for 16-bit weight gathering upon model
saving. Gradient accumulation steps, clipping, learning rate, weight decay, and total training steps
are all set to "auto" for adaptive scaling. Warmup is controlled via WarmupDecayLR, which
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adjusts the schedule based on total steps. Model checkpoints and evaluation are performed every
67 steps, with up to 5 checkpoints retained. Logging is performed at every step. For data loading,
we use 4 dataloader workers and retain all batches (i.e., drop_last=False). Both the initial
answering finetuning and second stage finetuning for fg,a.

To generate high-quality and biologically reasonable subgraph explanations, we implement a
reinforcement-guided generator, denoted as 7(+), which operates over sample-specific graph states
and candidate sets. To enhance robustness under noisy or unstable generation dynamics, we intro-
duce a retry-based mechanism that adaptively tunes key hyperparameters with multiple runs (¥ = 6,
and v denotes the current number of runs), dynamically adjusting the configuration to encourage ex-
ploration and improve convergence. Specifically, the number of training epochs is reduced from 5
to a minimum of 2, promoting faster reinitialization. Simultaneously, the learning rate is increased
linearly from an initial value of 1 x 1073 t0 0.001 - (1 + 1)) to escape local minima. The maximum
number of nodes per graph is reduced from 200 to 100 in steps of 25. The maximum number of
graph construction steps ¢ per rollout is similarly reduced from 50 to 20 in steps of 5. The retry
mechanism enables efficient navigation of the search space while preserving biological plausibility
through domain-specific priors embedded in the reward formulation. To further study the effect of
sparse versus dense rewards, we vary the reward calculation frequency by introducing a step interval
parameter s. Specifically, when s = 2, we compute the reward only every 2 steps during graph
generation. Larger values of s produce sparser, more delayed reward signals, while smaller values
(approaching s = 1) provide denser, more immediate feedback. As shown in Table GALAX
demonstrates consistent stability across all reward calculation intervals. Notably, performance im-
proves as rewards become denser (smaller s), with optimal results achieved at s = 1, the default
GALAX configuration. This trend indicates that the graph generator benefits most from immediate
biological feedback provided at each step by the graph process reward model. In contrast, less fre-
quent reward calculations (larger s) introduce noisier, longer-horizon estimates that dilute the signal
quality. Importantly, even under highly sparse reward conditions (e.g., s = 10), GALAX consis-
tently outperforms the baseline L3-FT(QA) + Omics + KG, demonstrating robustness to reward
sparsity.

Table 10: Ablation study on reward density controlled by step interval s

Reward Interval (s) Precision 1 Recall F1 Score 1 Jaccard 1 Hit@5 1 Hit@10 1
10 0.5312 +£0.0044  0.5163 £ 0.0019  0.5232 £ 0.0031 0.3582 £+ 0.0035  0.8996 + 0.0050  0.8753 + 0.0044
8 0.5347 +£0.0062  0.5224 £+ 0.0043  0.5284 £ 0.0054 0.3619 £ 0.0055 0.9063 + 0.0079  0.8771 + 0.0043
6 0.5398 +0.0051  0.5218 £ 0.0036  0.5316 £ 0.0044  0.3657 £ 0.0044  0.9024 + 0.0079  0.8794 + 0.0040
4 0.5389 +0.0054  0.5278 £+ 0.0025 0.5302 £ 0.0041  0.3673 £0.0046  0.9137 + 0.0056  0.8789 + 0.0038
2 0.5463 +0.0057  0.5296 £+ 0.0032  0.5384 £ 0.0040 0.3718 £ 0.0043  0.9218 + 0.0048  0.8806 + 0.0033
1 (GALAX) 0.5472 + 0.0053  0.5332 £ 0.0031  0.5399 £ 0.0041  0.3726 + 0.0037  0.9249 + 0.0048 0.8815 + 0.0033

L3-FT(QA) + Omics + KG  0.5185 4 0.0240  0.4908 4+ 0.0402  0.5038 £ 0.0327  0.3393 £0.0298 0.8794 £0.0114  0.8529 £ 0.0153

Furthermore, GALAX employs four RL components to collectively prevent reward hacking. First,
the frozen graph oncogenicity classifier (Graph) derives reward signals from a pre-trained, frozen
foundation model rather than a co-trained reward model, thereby eliminating co-evolution exploits.
Second, the schema-based rule term (Rules) validates each action against biomedical knowledge
graph ground truth to ensure that proposed edges conform to established biological constraints.
Third, the rollout-based future reward (Rollout) evaluates each action based on its long-term
consequences, preventing the generator from exploiting local reward irregularities or pursuing my-
opic gains. Fourth, stepwise quality gating (Gating) rejects actions yielding negative cumulative
reward, ensuring that only biologically valid steps—those satisfying both schema rules and onco-
genicity criteria—are retained. Together, these four components constitute a multi-faceted defense
against reward hacking. To validate this design, we conduct an ablation study by systematically
removing each component. As shown in Table the robustness of GALAX does not stem from
any single component but rather from the interplay of all four mechanisms. The rollout and gating
modules help avoid short-sighted decisions and filter out invalid reasoning paths, while the graph
supervisor and schema rules provide the underlying constraints that encourage the model to gener-
ate biologically plausible subgraphs. Notably, removing either the graph supervisor or the schema
rules leads to consistent performance drops, suggesting that the frozen graph oncogenicity classifier
offers reliable biological guidance, and that the schema constraints effectively block structurally in-
correct actions. In sum, these mechanisms work collectively to push the generator toward producing
biologically plausible subgraphs rather than outputs that score well but lack plausibility, making our
RL considerably more robust than prior approaches.
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Table 11: Ablation study of reward components

Model Variant Precision T Recall F11 Jaccard 1 Hit@5 1 Hit@10 1

L3-FT(QA) + Omics 0.5250+0.0282 0.4959+0.0435 0.5094+0.0365 0.3449+0.0338 0.8889+0.0168 0.8693+0.0157
L3-FT(QA) + Omics + KG  0.5185+0.0240 0.4908+0.0402 0.5038+0.0327 0.3393+0.0298 0.8794+0.0114 0.8529+0.0153
GALAX w/o Graph 0.5314+0.0045 0.5275+0.0077 0.5336+0.0053 0.3680+0.0043 0.9048+0.0084 0.8741+0.0056
GALAX w/o Rules 0.5305+0.0074 0.5154+0.0115 0.5221+0.0098 0.3570+0.0078 0.8974+0.0073 0.8746+0.0042
GALAX w/o Rollout 0.5362+0.0060 0.5196-+0.0052 0.5271+0.0046 0.3628+0.0043 0.9067-+0.0062 0.8769+0.0055
GALAX w/o Gating 0.5387+0.0050 0.5243+0.0042 0.5308+0.0024 0.3651+0.0032 0.9118+0.0056 0.8782+0.0046
GALAX (Full Model) 0.5472+0.0053 0.5332+0.0031 0.5399+0.0041 0.3726+0.0037 0.9249+0.0048 0.8815+0.0033
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Figure 10: Final langugage answering training loss

D.3 BASELINE MODELS

Multiomic2Target MultiomicsZTargelE] is a statistical and knowledge-based framework that inte-
grates transcriptomics, proteomics, and phosphoproteomics to identify cancer-specific therapeutic
targets. It leverages curated background knowledge databases and enrichment algorithms to com-
pare tumor profiles against normal tissues, aiming to highlight targets uniquely activated in cancer.
Specifically, the method filters out candidates that lack protein-level evidence or are not phosphory-
lated, and prioritizes those enriched in oncogenic pathways and subtype-specific signaling patterns.
The workflow accounts for tumor heterogeneity by enabling both subtype-level and patient-specific
analyses, thereby offering a safer and more context-aware target identification strategy. However,
as a non-learning-based baseline, Multiomics2Target relies purely on statistical associations, which
limits its precision in complex settings. As shown in the evaluation (see Figure [TT)), this method
demonstrates poor performance compared to other approaches, failing to accurately prioritize the
most effective targets. The model takes as input the cell line’s multi-omics features and outputs a
ranked report of candidate targets, but its statistical scoring alone is insufficient to capture deeper,
context-specific biological relevance.

GAT As a graph-based baseline, we adapt a Graph Attention Network (GAT) to assess the ef-
fect of gene knockouts using multi-omics data and CRISPR-derived gene effect scores. The input
graph represents a biological hierarchy, where nodes correspond to genes, transcripts, and proteins,
and edges capture central dogma relationships and known molecular interactions. For each gene
of interest, we simulate the perturbation process by masking the node corresponding to the gene
and recursively masking its downstream elements—namely its associated transcripts and translated
proteins—mimicking the transcriptional and translational disruptions observed during a real gene
knockout. This masked subgraph is then passed to the GAT model based on the pretrained model
& (parameterized by 6%°), which aggregates information from the unmasked neighborhood to
predict the impact of the knockout on cellular viability, matching the gene effect values from the
CRISPR dataset. This design allows us to evaluate how well the local subgraph structure and omics
context can recover the observed CRISPR perturbation effect. Although this method incorporates the
biological topology and omics signals through attention-weighted message passing, it lacks explicit
global reasoning for disease mechanism and has low performance on CRISPR target prediction.

>https://multiomics2targets.maayanlab.cloud/
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G-Retriever G-Retriever is a graph language framework that enables conversational interaction
with large, complex graphs enriched with textual node and edge attributes. It facilitates question
answering by aligning user queries in natural language with the underlying graph structure, re-
turning both textual responses and highlighted subgraph evidence. This setup is particularly use-
ful for scenarios where graph elements (e.g., proteins, drugs, phenotypes) are associated with rich
descriptions or biomedical annotations. In our implementation, we instantiate G-Retriever with
two pretrained components: (1) a language model fiy;; that has been fine-tuned on domain-specific
question-answering tasks—specifically, CRISPR-target-related biomedical questions; (2) a graph
encoder based on a pretrained Graph Attention Network (GAT), denoted as fgre, parameterized by
65°. The GAT is trained to encode signaling pathway graphs and capture topological and contex-
tual dependencies between biological entities such as genes, proteins, and molecular interactions.
This dual-modality initialization, textual reasoning via fi,; and structural embedding via fgre, al-
lows G-Retriever to support context-aware retrieval over large graphs that exceed the LLM’s con-
text window. Through this integration, the framework effectively aligns natural language queries
with underlying graph structures, enabling biologically grounded reasoning over complex networks.
While G-Retriever offers modest performance improvements over conventional GraphRAG base-
lines—particularly in terms of contextual relevance and retrieval accuracy—it remains limited in its
ability to construct biologically interpretable subgraphs with strong explanatory power. Specifically,
G-Retriever lacks a mechanism for enforcing structural coherence or pathway-level constraints,
which are essential for generating subgraphs with high fidelity to known signaling or regulatory
cascades. Consequently, its generated outputs often fall short of the domain-specific interpretability
and performance achieved by our proposed method, which integrates graph-aware reward signals
and multi-step reasoning for robust target identification.

Other Models RoG, SubgraphRAG, and GNN-RAG are evidence-subgraph-dependent methods
that share a common assumption: a small, clean, and reliable subgraph exists from which a retriever
module can be trained to provide reasoning paths to the LLM. However, this assumption breaks
down in large-scale biomedical knowledge graphs, which are inherently noisier and lack validated
reasoning paths. In the Target-QA setting, each question is paired with a one-hop disease—protein
subgraph and a one-hop PPI neighborhood extracted from BioMedGraphica. These subgraphs are
extremely noisy and large (containing thousands of nodes and edges), and lack ground-truth mecha-
nistic subgraphs, making supervised retrieval difficult. Specifically, RoG, SubgraphRAG, and GNN-
RAG require ground-truth reasoning paths for training. Since such annotations are unavailable in
our setting, we employ ChatGPT 5.1 to generate candidate reasoning paths relevant to the annotated
cell lines, incorporating disease context and multi-omic profiles. However, this GPT-derived super-
vision is inherently noisy and biologically incomplete, limiting retriever effectiveness. All baselines
use the fine-tuned Llama3-8B-Instruct as the backbone LLM.

D.4 RESULTS

We summarize detailed per-cohort results across various cancer types from TCGA in Figure [T1]
and Tables [[6H43] demonstrating that GALAX achieves the highest performance across nearly all
evaluated metrics and cancer cohorts. M2T, serving as a baseline relying solely on multi-omics
data without any structured graph or language modeling, performs poorly, underscoring the neces-
sity of incorporating richer contextual information. Adding graph structure via a pretrained Graph
Attention Network (GAT) provides some improvements, albeit limited, indicating that static graph
representations alone are insufficient for capturing the complex biological interactions inherent in
the data. To further elucidate the value of incorporating language models, we evaluate multiple
LLaMA3 (L3) variants. Models that lack Target-specific finetuning, such as L3 combined only with
omics data (L3) or with additional knowledge graphs (L3 + KG), deliver suboptimal performance,
even with external knowledge enrichment. Biomedical-domain-specific finetuning (L3-FT(Med))
significantly enhances performance in identifying relevant targets, and integrating knowledge graphs
yields modest incremental improvements. Nonetheless, even the variant supervised by Target-QA
(L3-FT(QA) + KG) demonstrates limited additional benefit from knowledge graph integration, pri-
marily due to its inability to dynamically generate structured subgraphs tailored to the reasoning
task. The G-Retriever model, augmenting a pretrained graph attention network with retrieval mech-
anisms, achieves stronger performance compared to earlier baselines but remains limited by its ab-
sence of step-wise supervision and interpretability in biological reasoning. In contrast, GALAX
uniquely integrates a Target-QA finetuned large language model, a pretrained Graph Attention Net-
work, and a reinforcement learning-driven subgraph generator guided by a graph process reward
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Figure 11: Model performance plots over main Target-QA datasets

model. This sophisticated architecture facilitates interpretable and biologically informed reasoning
by dynamically generating structured subgraphs relevant to the biological context. Consequently,
GALAX significantly surpasses all baseline models, achieving state-of-the-art performance across
both overall average metrics and individual cancer cohort-specific evaluations.

D.5 GENERALIZATION TO UNSEEN CANCER TYPES

To assess how well GALAX generalizes across cancer types, we constructed three holdout sets
in which all cell lines under same TCGA codes were removed during training and used only for
evaluation (see Table [T2). This design forces the model to generate CRISPR target predictions for
cancer types not observed during optimization, providing a direct measure of cross-cancer transfer
and robustness to unseen molecular contexts.

As expected, performance decreases when entire cancer types are held out, since no fine-tuning data
from those cancers is available. Nevertheless, the results in Table |E| show that GALAX maintains
stable performance across the three held-out cancer groups. Precision, recall, F1, and Jaccard values
remain consistent, with an average F1 of 0.4862 and Hit@ 10 above 0.85. While these scores are
lower than the full-data GALAX model, the gap is moderate, indicating that the model retains the
ability to infer relevant targets even when the TCGA code of the input cell line has never appeared
during training, as long as it has been well pretrained with sufficient samples. This demonstrates
that GALAX does not overfit to specific cancer labels and can transfer its reasoning across diverse
cell-line backgrounds, addressing concerns regarding generalization to new cancer types.

Table 12: Held-out cancer type fold assignments

Holdout Set Train Test Train/Test TCGA Codes Hold-out Cancer TCGA Codes

COAD/READ, DLBC, KIRC, LCML, LUSC
PAAD, PRAD, SARC, SKCM, STAD
BLCA, GBM, LAML, LGG, LIHC

MESO, MM, NB, UCEC

ALL, BRCA, ESCA, HNSC, LUAD

MB, OV, SCLC, THCA

Holdout Set 1 238 (65.6%) 125 (34.4%) 20/10

Holdout Set 2 289 (79.6%) 74 (20.4%) 21/9

Holdout Set 3 220 (60.6%) 143 (39.4%) 21/9
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Table 13: GALAX performance on unseen cancer types under held-out evaluation

Holdout Set Precision 1 Recall 1 F1 1 Jaccard T Hit@5 1 Hit@10 1
Holdout Set 1 0.4931 0.4501 0.4699 0.3100 0.9024 0.8688
Holdout Set 2 0.5124 0.5151 0.5123 0.3465 0.8703 0.8581
Holdout Set 3 0.4832 0.4715 0.4765 0.3161 0.8993 0.8448
Average 0.4962 0.4789 0.4862 0.3242 0.8907 0.8572
GALAX 0.5472+0.0053  0.533240.0031  0.5399+0.0041  0.3726+0.0037  0.9249+0.0048  0.8815+0.0033

D.6 EXTERNAL DATASETS

To examine generalization beyond Target-QA, we performed an external evaluation on the pediatric
cancer dataset from PedDep® which contains CRISPR-based gene effect profiles and cell-line an-
notations for 31 pediatric cancer samples. The data were processed following the same steps as
Target-QA. Due to the limited sample size, we did not train or finetune on this dataset and instead
evaluated all models in a zero-shot setting. Given that all samples are cancerous, the M2T baseline
cannot be applied. As shown in Table[I4] baseline graph models and language-model variants still
have near-zero performance. Graph-augmented methods such as RoG, SubgraphRAG, and GNN-
RAG yield moderate gains, but GALAX attains the highest precision, recall, F1, and Jaccard scores,
along with notable improvements in Hit@5 and Hit@10 finetuned on Target-QA with multi-omics
and disease-related proteins information. These results demonstrate that GALAX can extend its
target-prediction ability to external cancer datasets without retraining, providing strong evidence of
its robustness and transferability beyond the Target-QA benchmark.

Table 14: Model performance on PedDep cancer dataset

Model Precision 1 Recall 1 F1 1 Jaccard 1 Hit@5 1 Hit@10 1
GAT 0.0005=0.0008 0.0005+0.0008 0.0005+0.0008 0.0002+0.0004 0.0000=+0.0000 0.0000=0.0000
L3-FT(Med) + Omics 0.0144+0.0081 0.0114+0.0049 0.0099-+0.0028 0.0050+0.0014 0.0210+0.0421 0.0109=+0.0218
L3-FT(Med) + Omics + KG  0.0167+0.0161 0.0060+0.0047 0.0068+0.0049 0.0035+0.0025 0.0072+0.0143 0.0073+0.0145
L3 + Omics 0.00540.0108 0.0011+0.0021 0.0018=+0.0036 0.0009+0.0018 0.0000=0.0000 0.0000-0.0000
L3 + Omics + KG 0.0192+0.0188 0.00320.0022 0.0050+0.0035 0.0026+0.0018 0.0142=+0.0165 0.0214+0.0247
L3-FT(QA) + Omics 0.2608-+0.0268 0.2605-+0.0252 0.2606-£0.0260 0.1517+0.0152 0.5810+0.0330 0.4524+0.0502
L3-FT(QA) + Omics + KG 0.2619+0.0075 0.2552+0.0095 0.2584+0.0086 0.1489+0.0055 0.5048+0.0165 0.4952+0.0218
G-Retriever + pre-GAT 0.2624+0.0212 0.2610-0.0206 0.2617+0.0209 0.1522+0.0121 0.5143+0.0495 0.4524+0.0825
RoG 0.2730-0.0050 0.2667+0.0092 0.2697+0.0071 0.1566+0.0047 0.5143+0.0286 0.4714+0.0623
SubgraphRAG 0.2736+0.0091 0.2690+0.0095 0.2712+0.0092 0.1579+0.0062 0.5619+0.0165 0.5286+0.0571
GNN-RAG 0.2760-£0.0092 0.2700+£0.0094 0.2728+0.0093 0.1589+0.0064 0.5714+0.0495 0.53330.0360
GALAX 0.2914+0.0115 0.2889+0.0131 0.2901+0.0123 0.1703+0.0086 0.6357+0.0589 0.5179+0.0513
GALAX (Qwen2.5-7B) 0.2921+0.0055 0.2895+0.0050 0.2908+0.0053 0.1708+0.0038 0.6667+0.0595 0.5381+0.0705

E REINFORCEMENT LEARNING GENERATED SUBGRAPH DETAILS

Figure [I2] provides a high-level overview of the explainable subgraphs of part of cell lines, high-
lighting key proteins and their predicted functional interactions that define the unique molecular
signatures of each cell line. These interpretable network maps identify the most salient features pri-
oritized by our model. To move beyond structural insights and assess their biological significance,
we conduct enrichment analyses to evaluate whether the identified molecules are significantly
over-represented in curated knowledge bases such as KEGG and WikiPathway. This analysis
enables us to contextualize the salient features within relevant targets and signaling pathways. The
resulting cell-line-specific interpretations bridge model-driven discovery with established biological
knowledge and are detailed in the following sections.

E.1 ENRICHMENT ANALYSIS

Enrichment analysis of sample ACH-000054 (HT-1080), representing fibrosarcoma (metastasis;
SARC), revealed a significant association with Sarcoma (P-value = 1.625 X 104, Adj.P
= 4.08 x 1072) driven by COL1A1, WWTR1, APAF1, PLK1, EPHB4, and SH2B1. Pathway-
level signals underscored apoptotic and stress-response programs, with strong enrichment of
Apoptosis Modulation by HSP70 (WP384; P-value = 1.864 x 107%, Adj.P = 1.45 x 10™%)
and Apoptosis (WP254; P-value = 1.73 x 1074, Adj.P = 5.26 x 1072), each supported by

Shttps://peddep.org/
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Protein Signaling Networks Across Different Cancer Types

SRCA (ACH-000054) 0001) SKCM (ACH-000219)

Figure 12: Part of explainable disease mechanism by core signaling subgraphs

MAPK10, APAF1, and TNFRSF1A. Additional inflammatory and mitogenic axes were indicated
by TNF alpha Signaling Pathway (WP231; P-value = 2.27 x 1074, Adj.P = 5.26 x 1073)
involving APAF1, PLK1, and TNFRSF1A, and by the MAPK Signaling Pathway (WP382;
P-value = 2.70 x 1074, Adj.P = 5.26 x 1079) featuring MAPK10, DUSP1, RASGRF2, and
TNFRSF1A. Finally, Nanoparticle-mediated activation of receptor signaling (WP2643; P-value
= 6.02x 1074, Adj.P = 8.99 x 10~3) highlighted extracellular matrix and receptor-proximal cues
via COL1A1 and MAPK10. Collectively, recurrent involvement of apoptosis regulators (APAF1,
TNFRSF1A), MAPK components (MAPK10, DUSP1, RASGRF2), and proliferative drivers
(PLK1) points to coordinated apoptotic, inflammatory, and receptor—-MAPK signaling programs
characteristic of fibrosarcoma biology.

For sample ACH-000001 (NIH:OVCAR-3), an ovarian adenocarcinoma line (metastasis;
OV), analysis indicated only a weak disease-level association with ovarian cancer (P-value
= 1.41 x 107!, Adj.P = 1.65 x 10~1), primarily linked to ERBB2. While this signal was
not significant after multiple-testing correction, pathway-level evaluation revealed several strongly
dysregulated processes. The Prolactin Signaling Pathway (WP2037; P-value = 2.90 x 1074,
Adj.P = 1.49 x 10~2) was prominently enriched through RPS6KB1, NOS2, and ERBB2, pointing
to growth factor—driven oncogenic signaling. Similarly, enrichment of the Leptin Signaling
Pathway (WP2034; P-value = 2.90 x 1074, Adj.P = 1.49 x 1072) and the ErbB Signaling
Pathway (WP673; P-value = 4.92 x 1074, Adj.P = 1.69 x 10~2) implicated RPS6KB1,
ERBB2, and PLCG2, reflecting interconnected receptor tyrosine kinase and metabolic networks.
Additional pathways included IGF1-Akt signaling (WP3850; P-value = 1.26 x 1073, Adj.P
= 3.09 x 10~2) driven by RPS6KB1 and TNFSF9, and BDNF-TrkB Signaling (WP3676;
P-value = 1.52 x 1073, Adj.P = 3.09 x 10~2) via ARC and RPS6KB1. These results underscore
the central role of ERBB2-mediated receptor activity and downstream RPS6KB1-linked pathways,
consistent with known mechanisms of ovarian carcinoma progression.
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In sample ACH-000219 (A-375), representing amelanotic melanoma (primary; SKCM), enrich-
ment testing identified a highly significant signal for melanoma (P-value = 1.08 x 1076, Adj.P
= 1.59 x 10~%) supported by a broad gene panel including CCL25, STAT5B, HSP90AA1, SER-
PINB1, VWF, TYR, THBS1, RELA, TJP1, GHR, CDHS, IRF1, TNFSF10, TRIM24, NCAM1,
ATG7, TNFRSF4, and IL9R. Immune and inflammatory cascades dominated the pathway
enrichments, with the NOD Pathway (WP1433; P-value = 1.77 x 1075, Adj.P = 2.28 x 107%)
enriched via HSP90AA1, NLRP12, MEFV, and RELA, pointing to innate immune activation.
Cytokine-related processes were also evident, including the IL-4 Signaling Pathway (WP395;
P-value = 5.42 x 1075, Adj.P = 2.65 x 10~*) and the IL-9 Signaling Pathway (WP22; P-value
= 6.16 x 1076, Adj.P = 2.65 x 10~%), with contributions from STAT5B, PIK3R1, and ILIR,
consistent with Th2/Th9 regulation. The Oncostatin M Signaling Pathway (WP2374; P-value
= 1.14 x 107°, Adj.P = 3.60 x 10~%) further implicated STAT5B, TYK2, PIK3R1, and
RELA, linking cytokine—STAT and NF-«B signaling to melanoma progression. Overall, repeated
enrichment of STATSB, RELA, and PIK3R1 across pathways highlights coordinated dysregulation
of inflammatory and cytokine signaling networks in amelanotic melanoma.

Enrichment analysis of sample ACH-000070 (697), representing B-cell acute lymphoblastic
leukemia (ALL) with the t(1;19)(q23;p13.3) E2A-PBX1 (TCF3-PBX1) translocation, revealed a
strong disease-level association with acute lymphocytic leukemia (P-value = 7.37 x 107>, Adj.P
= 8.10 x 10~3) supported by genes including IGF2, WBP1L, ELSPBP1, HOXD4, TCF3, THY1,
SIRT1, GATA1, and PBX1. Pathway enrichment further emphasized leukemia-relevant transcrip-
tional programs: Sudden Infant Death Syndrome (SIDS) Susceptibility Pathways (WP706;
P-value = 3.02 x 1074, Adj.P = 1.94 x 10~?) through TCF3, POU2F2, ESR2, and PBXI;
and the Wnt/3-catenin Signaling Pathway in Leukemia (WP3658; P-value = 1.29 x 1073,
Adj.P = 4.13 x 1072) involving AXIN2 and TCF3. Additional signals included the Breast
Cancer Pathway (WP4262; P-value = 3.85 x 1072, Adj.P = 6.06 x 10~2) with E2F3, AXIN2,
and ESR2, and the broader Wnt Signaling Pathway (WP363; P-value = 5.10 x 1073, Adj.P
= 6.06 x 1072) featuring AXIN2 and TCF3. Collectively, these findings underscore recurrent
involvement of the TCF3-PBX1 fusion together with Wnt/3-catenin signaling and leukemogenic
transcription factors, consistent with the molecular etiology of this ALL subtype.

Enrichment analysis of sample ACH-000092 (NCI-H2452), representing pleural mesothelioma
(metastasis; MESO), showed a modest disease-level association with Lung Neoplasms (P-value
= 4.965 x 1073, Adj.P = 1.89 x 10~1) supported by MAP2K1, SLC26A2, AIFM1, SP1,
ATG4B, SAT1, GLUL, and PPP1R9B. Pathway analysis highlighted metabolic and growth-
factor-linked programs: Amino Acid metabolism (WP3925; P-value = 1.20 x 1073, Adj.P
= 5.63 x 107?) involving BHMT, PDHA1, and GLUL; the Estrogen signaling pathway
(WP712; P-value = 1.27 x 1073, Adj.P = 5.63 x 10~2) marked by MAP2K1 and SP1; and
TGF-£ Signaling (WP366; P-value = 3.47 x 1073, Adj.P = 1.15 x 107!) featuring MAP2K1,
SUMOL1, and SP1. Together, these results suggest coordinated amino acid metabolic rewiring and
transcriptional control via MAPK-SP1 and TGF-J axes in the mesothelioma context.

Enrichment analysis of sample ACH-000817 (RPMI 8226), representing plasma cell myeloma
(primary; MM), revealed a highly significant association with Multiple Myeloma (P-value
= 3.891 x 1075, Adj.P = 6.64 x 10~%) supported by ITGB1, KMT2D, CBX7, TNFRSF13B,
IDH1, LAPTMS, HLA-C, TNFRSF10A, PIK3R2, KIR3DL1, BHLHA1S, PIK3R1, MEFV,
AURKA, NRAS, NUAK1, NPC1, BTK, KRAS, SGK1, HRAS, MAPK3, and FBX09. Pathway
analysis further highlighted the ErbB Signaling Pathway (WP673; P-value = 8.47 x 1078, Adj.P
= 1.03 x 1075) involving MAPK10, CAMK2D, NRAS, PIK3R2, KRAS, PIK3R1, HRAS,
and MAPKS3, indicating convergence of RAS-MAPK and PI3K effector cascades downstream of
ErbB family receptors—features consistent with myeloma signaling dependencies and potential
therapeutic vulnerabilities.

Enrichment analysis of sample ACH-000649 (786-0), representing renal cell carcinoma (primary;
KIRC), revealed a highly significant association with Conventional (Clear Cell) Renal Cell
Carcinoma (P-value = 1.273 x 1079, Adj.P = 9.68 x 10~7) supported by TGFB1, IL4R,
VCAM1, APAF1, OGG1l, MSGN1, MITF, UNC5C, SMARCA2, TNF, POMC, FPGT,
ORC2, ERBB2, ALDHI1A1, PGK1, BIRC5, ZNF536, VHL, and CRYAB. This gene set spans
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hallmark features of clear cell RCC biology, including hypoxia/VHL-axis signaling (VHL, PGK1),
apoptosis regulation (APAF1, BIRCS), growth factor and RTK pathways (ERBB2, TGFB1),
immune—inflammatory components (TNF, IL4R, VCAM1), metabolic and oxidative stress re-
sponses (ALDH1A1, CRYAB), and genome maintenance/chromatin remodeling (OGG1, ORC2,
SMARCAY2), collectively underscoring a prototypical clear cell transcriptomic signature.

Enrichment analysis of sample ACH-000018 (T24), representing bladder carcinoma (primary;
BLCA), showed a borderline disease-level signal for Cancer (P-value = 5.755 x 1072, Adj.P
= 1.02 x 107!) driven by ZBTB16 and RAF1. Pathway-level analysis revealed significant
enrichment of Focal Adhesion (WP306; P-value = 1.17 x 1074, AdjP = 1.03 x 1072)
involving MAPK10, RAP1A, COL4A6, and RAF1; the ErbB Signaling Pathway (WP673;
P-value = 2.20 x 1074, Adj.P = 1.03 x 1072) featuring MAPK10, CAMK2D, and RAF1; and
Integrin-mediated Cell Adhesion (WP185; P-value = 2.99 x 10~4, Adj.P = 1.03 x 1072)
with MAPK10, RAP1A, and RAF1. Collectively, recurrent involvement of RAF1 together with
MAPK10 across adhesion and ErbB-axis pathways points to convergent RTK-MAPK and integrin
signaling programs in this BLCA context.

Enrichment analysis of sample ACH-000864 (COLO 684), representing endometrial adenocarci-
noma (primary; UCEC), revealed a highly significant disease-level association with Carcinoma,
Small Cell (P-value = 1.064 x 107°, Adj.P = 1.29 x 10~%) supported by SMARCB1, AKT3,
MTOR, and SMARCA4. Pathway analysis highlighted potent receptor tyrosine kinase and
stemness programs: the ErbB Signaling Pathway (WP673; P-value = 3.38 x 107°, Adj.P
= 4.90 x 10~7) involving JUN, CAMK2A, AKT3, PIK3R2, and MTOR; the EGF/EGFR
Signaling Pathway (WP437; P-value = 6.19 x 1078, Adj.P = 4.48 x 107°) through JUN,
GJA1l, CAMK2A, PIK3R2, and MTOR; and ESC Pluripotency Pathways (WP3931; P-value
= 1.03 x 1075, Adj.P = 4.97 x 107°) marked by JUN, AKT3, PIK3R2, and MTOR.
Collectively, recurrent involvement of AKT3 and MTOR—together with PIK3R2, JUN, and
CAMK2A—points to convergent EGFR/ErbB-PI3K-AKT-mTOR signaling and pluripotency-
associated programs in this UCEC context.

E.2 HUMAN EVALUDATION AND LLM AS JUDGE

To further assess the biological relevance of the generated subgraphs, we conducted a comprehensive
evaluation involving both human domain experts and Large Language Models (LLMs). The human
evaluation panel consisted of three bioinformaticians, denoted as hi, hs, and hg. In parallel, we
used two advanced LLMs as automated evaluators (mj, my): ChatGPT-5.1 and Gemini-3.0 Pro.
Both the human experts and the LLMs were provided with the generated subgraphs, corresponding
gene and pathway enrichment analysis results to facilitate the assessment of biological plausibility.

Table 15: Human Evaluation Scores

Sample ID TCGA Code

=
=
5

g
g

msy Mean £ Std

ACH-000860 LUAD 4 5 5 5 5 480+£045
ACH-000054 SRCA 3 5 3 4 4 3.80£0.84
ACH-000001 ov 3 3 2 4 2 2.80£0.84
ACH-000219 SKCM 4 5 2 4 3 3.60 + 1.14
ACH-000070 ALL 5 5 5 4 5 4.80+0.45
ACH-000092 MESO 3 3 2 3 3 280+045
ACH-000817 MM 5 5 5 3 3 420+ 1.10
ACH-000649 KIRC 4 4 5 5 5 4.60+£0.55
ACH-000018 BLCA 3 3 3 3 3 3.00 £ 0.00
ACH-000864 UCEC 3 4 2 4 3 3.20 £ 0.84
Overall - 37 42 34 39 36 3.76£0.80

Each expert independently reviewed ten subgraph examples shown in Table[I5]and assigned a score
from 1 to 5 based on the degree of correspondence between the subgraph and the known biology of
the associated TCGA cancer type. The scoring rubric was defined as follows:

* 5: Highly related — strong and clear match to hallmark pathways and well-established
features of the cancer type.

* 4: Related — clear relationship to the cancer type but less comprehensive or slightly mixed.
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* 3: Moderately related — some relevant elements present, but mixed with non-specific find-
ings.

* 2: Not related — only weak or indirect connection to the cancer type.
* 1: Not related at all — no meaningful alignment with the biology of the cancer type.

As shown in Table [T3] several samples were evaluated as related or highly related to their TCGA
cancer types, indicating that the subgraphs generated by the model capture meaningful molecular
features. The LUAD sample ACH-000860 received one of the highest average scores, as its sub-
graph highlighted pathways such as regulation of phosphatidylinositol 3-kinase signaling and posi-
tive regulation of kinase activity, involving genes like EGFR, PTK2, and EPHB4 that are central to
lung adenocarcinoma biology. The ALL sample ACH-000070 was also rated highly due to the pres-
ence of TCF3 and PBX1, whose fusion is a well-established driver event in Acute Lymphoblastic
Leukemia.

Table 16: Model Overall performance on Target-QA

Model Precision T Recall 1 F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0016 0.0011 0.0013 0.0006 0.0000 0.0029
GAT 0.0006=0.0000 0.0006=0.0000 0.0006=0.0000 0.0003+0.0000 0.0000=+0.0000 0.0000=+0.0000
L3 + Omics 0.00710.0032 0.0013=0.0002 0.0021+0.0002 0.0011+0.0001 0.0032+0.0055 0.0021+0.0037
L3 + Omics + KG 0.0125-+0.0032 0.0029-0.0003 0.0043-0.0002 0.0022-£0.0001 0.0085+0.0037 0.0122-+0.0033
L3-FT(Med) + Omics 0.0179+0.0045 0.0133+0.0064 0.0115+0.0044 0.0059+0.0023 0.0116+0.0097 0.0122+0.0072
L3-FT(Med) + Omics + KG  0.0158+0.0030 0.0058+0.0011 0.0074+0.0016 0.0038+0.0010 0.0106++0.0048 0.0132+0.0040
L3-FT(QA) + Omics 0.5250-+0.0282 0.4959-0.0435 0.5094+0.0365 0.3449+0.0338 0.8889-+0.0168 0.8693+0.0157
L3-FT(QA) + Omics + KG 0.5185+0.0240 0.4908+0.0402 0.5038+0.0327 0.3393+0.0298 0.8794+0.0114 0.8529+0.0153
G-Retriever + pre-GAT 0.47630.0004 0.3929-+0.0063 0.4286-+0.0044 0.2757+0.0038 0.8804+0.0037 0.8550+0.0046
RoG 0.5248+0.0134 0.4726+0.0445 0.4924+0.0323 0.3338+0.0267 0.8593+0.0318 0.8450+0.0350
SubgraphRAG 0.5280-£0.0044 0.4617+0.0027 0.4860+0.0033 0.3269+0.0024 0.8624+0.0120 0.8476-0.0167
GNN-RAG 0.5258+0.0126 0.4735+0.0190 0.4935+0.0168 0.3345+0.0134 0.8656+0.0302 0.8323+0.0205
GALAX 0.5472+0.0053  0.5332+0.0031 0.5399+0.0041 0.3726+0.0037  0.9249+0.0048  0.8815+0.0033
GALAX (Qwen2.5-7B) 0.5445+0.0114  0.5405+0.0101 0.5422+0.0104 0.3744+0.0008 0.9079+0.0084 0.8841+0.0126

Table 17: Model performance on LUAD

Model Precision 1 Recall 1 F171 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0020 0.0014 0.0017 0.0008 0.0000 0.0000
GAT 0.0000=0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0079=+0.0137 0.0005+0.0008 0.0009+0.0016 0.0005+0.0008 0.0095+0.0165 0.0048+0.0082
L3 + Omics + KG 0.0014+0.0025 0.0010-0.0016 0.0011+0.0020 0.0006+0.0010 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0091+0.0018 0.0105+0.0044 0.0079+0.0022 0.0040+0.0011 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0081+0.0071 0.0024+0.0016 0.0025+0.0002 0.0013+0.0001 0.0095+0.0165 0.0048-+0.0082
L3-FT(CRISPR) + Omics 0.5201+0.0408 0.4905+0.0532 0.5045+0.0475 0.3396+0.0433 0.8476+0.0165 0.8667+0.0218
L3-FT(CRISPR) + Omics + KG  0.5214+0.0242 0.4952-+0.0432 0.5073+0.0343 0.3416+0.0314 0.7905+0.0436 0.8048-£0.0541
G-Retriever + pre-GAT 0.4642+0.0181 0.3881:£0.0264 0.4204+0.0233 0.2671+0.0188 0.8857+0.0000 0.8524:+0.0165
RoG 0.5213+0.0227 0.4562-£0.0848 0.4793=+0.0630 0.3228+0.0530 0.8095+0.0436 0.8238-+0.0218
SubgraphRAG 0.5123+0.0105 0.4448+0.0386 0.4684+0.0279 0.3114+0.0237 0.8190+0.0165 0.8238-+0.0082
GNN-RAG 0.5334+0.0225 0.5052+0.0170 0.5165+0.0161 0.3563+0.0127 0.7905+0.0719 0.7571+0.0623
GALAX 0.5345+0.0185 0.5157-+0.0043 0.5247+0.0109 0.3581+0.0101  0.9238+0.0436 0.8810-0.0082
GALAX (Qwen2.5-7B) 0.5475+0.0019 0.5462+0.0111 0.5465+0.0050 0.3778+0.0046 0.9048+0.0165 0.8667+0.0082

Table 18: Model performance on BRCA

Model Precision 1 Recall 1 F11 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0033=+0.0000 0.0033-£0.0000 0.0033=+0.0000 0.0017+0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0020+0.0035 0.0017+0.0029 0.0018+0.0032 0.0009+0.0016 0.0000+0.0000 0.0000+0.0000
L3 + Omics + KG 0.0073+0.0068 0.0033-0.0029 0.0044+0.0038 0.0022+0.0019 0.0111+0.0192 0.0056-£0.0096
L3-FT(Med) + Omics 0.0110+0.0086 0.0106+0.0075 0.0093+0.0068 0.0047+0.0035 0.0000+0.0000 0.0111+0.0192
L3-FT(Med) + Omics + KG 0.0149+0.0057 0.0050-0.0000 0.0071+0.0012 0.0036+0.0006 0.0000+0.0000 0.0111+0.0192
L3-FT(CRISPR) + Omics 0.5074+0.0498 0.4856-+0.0570 0.4956+0.0535 0.3336+0.0491  0.8889-+0.0509  0.8389+0.0096
L3-FT(CRISPR) + Omics + KG  0.4856+0.0395 0.4656-£0.0436 0.4751+0.0412 0.3142+0.0354 0.8778+0.0192 0.8222-0.0347
G-Retriever + pre-GAT 0.4414+0.0099 0.3772+0.0010 0.4062+0.0034 0.2607+0.0032 0.8667+0.0000  0.8667-0.0000
RoG 0.4791+0.0575 0.4311+0.0721 0.4489-+0.0658 0.2999+0.0528 0.7667+0.0577 0.7611+0.1110
SubgraphRAG 0.4708+0.0317 0.3917+0.0376 0.4196+0.0339 0.2742+0.0271 0.7556+0.0839 0.7333+0.1014
GNN-RAG 0.4787+0.0453 0.4389-0.0584 0.4543+0.0531 0.3025+0.0428 0.8444+0.0385 0.8222-+0.0674
GALAX 0.5608+0.0031 0.5533+0.0033 0.5569+0.0028 0.3886+0.0022 0.8889+0.0839  (0.8500+0.0441
GALAX (Qwen2.5-7B) 0.5171+0.0474 0.5206+0.0419 0.5188+0.0448 0.3532+0.0392 0.8556+0.0385 0.8000+0.0764
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Table 19: Model performance on COAD/READ

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 t Hit@10 1
M2T 0.0023 0.0017 0.0019 0.0010 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000++0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0233+0.0252 0.0020-£0.0020 0.0035+0.0033 0.0018+0.0017 0.0133+0.0231 0.0067+0.0115
L3 + Omics + KG 0.0055+0.0055 0.0033£0.0031 0.0041+0.0039 0.0021+0.0020 0.0000=+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0300+0.0249 0.0220+0.0278 0.0199+0.0214 0.0104+0.0114 0.0267+0.0462 0.0333+0.0306
L3-FT(Med) + Omics + KG 0.0044+0.0038 0.0033+0.0031 0.0032+0.0028 0.0016+0.0014 0.0000=+0.0000 0.0000+0.0000
L3-FT(CRISPR) + Omics 0.5011+0.0335 0.4727-+0.0514 0.4862+0.0430 0.3230+0.0384 0.8400+0.0800 0.8267-£0.0808
L3-FT(CRISPR) + Omics + KG  0.5116+0.0216 0.4807+0.0469 0.4950+0.0351 0.3301+0.0312 0.8800+0.0000 0.8333+0.0231
G-Retriever + pre-GAT 0.4417+0.0005 0.3680-£0.0104 0.3995=+0.0073 0.2504+0.0062 0.7200=+0.0000 0.7667+0.0115
RoG 0.5184+0.0462 0.4627+0.0803 0.4850+0.0658 0.3254+0.0519 0.8533+0.0611 0.8600+0.0400
SubgraphRAG 0.5306+0.0066 0.4627+0.0854 0.4871+0.0556 0.3243+0.0473  0.9333+0.0231  0.8533+0.0115
GNN-RAG 0.5383+0.0306  0.4627+0.0463 0.4909-+0.0404 0.3295+0.0352 0.8533+0.0462  0.8867-0.0115
GALAX 0.5272+0.0143 0.5120+0.0087  0.5192+0.0103 0.3512+0.0098  0.9200+0.0693 0.8400-£0.0200
GALAX (Qwen2.5-7B) 0.5177+0.0124  0.5187+0.0061  0.5177+0.0083 0.3498+0.0076 0.9200+0.0800 0.8733+0.0503
Table 20: Model performance on PAAD
Model Precision 1 Recall 1 F1 1 Jaccard 1 Hit@5 + Hit@10 1
M2T 0.0017 0.0013 0.0014 0.0008 0.0000 0.0000
GAT 0.0025+0.0000 0.0025=0.0000 0.0025=+0.0000 0.0013=+0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics + KG 0.0139+0.0241 0.0008-£0.0014 0.0016-+0.0027 0.0008+0.0014 0.0167+0.0289 0.0083:£0.0144
L3-FT(Med) + Omics 0.0051+0.0061 0.0050-£0.0043 0.0039+0.0036 0.0020+0.0018 0.0167+0.0289 0.0083+0.0144
L3-FT(Med) + Omics + KG 0.0005+0.0008 0.0008+0.0014 0.0006+0.0010 0.0003+0.0005 0.0000+0.0000 0.0000=0.0000
L3-FT(CRISPR) + Omics 0.5649+0.0559 0.5358-+0.0686 0.5492+0.0605 0.3811+0.0584 0.8000+0.0500 0.8417+0.0577
L3-FT(CRISPR) + Omics + KG  0.5499+0.0570 0.5183+0.0794 0.5330+0.0683 0.3657+0.0650 0.8333+0.0764 0.8333+0.0520
G-Retriever + pre-GAT 0.5594+0.0114 0.4567-£0.0058 0.5016-+0.0009 0.3387+0.0007 0.8500+0.0000 0.8500-£0.0000

RoG 0.5196+0.1322 0.4842+0.1461 0.4973=+0.1406 0.3462+0.1107 0.7667+0.1528 0.7833+0.1181
SubgraphRAG 0.5873+0.0050  0.5308+0.0029 0.5518+0.0037 0.3869+0.0028  0.8833+0.0289 0.8750-+0.0000
GNN-RAG 0.4923+0.0762 0.4283-+0.0204 0.4522+0.0411 0.3068+0.0248 0.7667+0.1443 0.7917+0.1233
GALAX 0.5771+0.0174  0.5708+0.0118 0.5739+0.0145 0.4044+0.0154 0.8333+0.0289 0.8500-£0.0000
GALAX (Qwen2.5-7B) 0.5394+0.0417 0.5383+0.0427 0.5387+0.0422 0.3718+0.0402 0.8167+0.0289 0.8333+0.0144
Table 21: Model performance on GBM
Model Precision 1 Recall 1 F171 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0056+0.0096 0.0011+0.0019 0.0019+0.0032 0.0009=+0.0016 0.0000=0.0000 0.0000+0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.00000.0000 0.0000=0.0000 0.0000+0.0000
L3-FT(Med) + Omics 0.0069+0.0045 0.0133-0.0088 0.0090+0.0059 0.0046+0.0030 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0107+0.0158 0.0056+0.0038 0.0064+0.0074 0.0032+0.0037 0.0000+0.0000 0.0000-£0.0000
L3-FT(CRISPR) + Omics 0.5641+0.0310 0.5333+0.0462 0.5480+0.0387 0.3794+0.0364 0.9333+0.0667 0.9000+0.0333
L3-FT(CRISPR) + Omics + KG  0.5391+0.0213 0.5178+0.0164 0.5281+0.0181 0.3596+0.0165  0.9556+0.0385  0.8444+0.0694
G-Retriever + pre-GAT 0.4906+0.0075 0.4411+0.0038 0.4642+0.0010 0.3037+0.0000  0.9556+0.0385  0.8333+0.0577
RoG 0.5910+0.0281  0.5078+0.1165 0.5380+0.0853 0.3734+0.0756  0.9556+0.0770 0.9444-+0.0509
SubgraphRAG 0.5066+0.0597 0.4544+0.1001 0.4707=+0.0884 0.3176+0.0729 0.7778+0.1925 0.7556+0.2117
GNN-RAG 0.5567+0.0222 0.5478+0.0212 0.5521+0.0219 0.3855+0.0141 0.8667+0.2309 0.8111+0.1540
GALAX 0.5527+0.0021 0.5422+0.0139 0.5473+0.0081 0.3769=+0.0079 0.9111+0.0770 0.8667+0.0000

GALAX (Qwen2.5-7B)

0.5715+0.0228  0.5656-+0.0269 0.5685+0.0249 0.3985+0.0236

0.9111+0.0770

0.8556-£0.0385

Table 22: Model performance on SARC

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0047 0.0033 0.0039 0.0019 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0111+0.0192 0.0033:0.0058 0.0051+0.0089 0.0026+0.0045 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0271+0.0062 0.0111=0.0019 0.0157=+0.0029 0.0080=+0.0015 0.0222+0.0385 0.0222+0.0192
L3-FT(Med) + Omics 0.0689+0.0631 0.0167+0.0115 0.0229+0.0180 0.0119+0.0094 0.0222+0.0385 0.0667+0.0577
L3-FT(Med) + Omics + KG 0.0270+0.0108 0.0089-0.0019 0.0120+0.0009 0.0061+0.0005 0.0222+0.0385 0.0222-0.0192
L3-FT(CRISPR) + Omics 0.5347+0.0167 0.5089-+0.0353 0.5211+0.0266 0.3547+0.0253  0.9111+0.0385  0.8778+0.0192
L3-FT(CRISPR) + Omics + KG  0.5423+0.0207 0.5022+0.0539 0.5207+0.0383 0.3570+0.0344 0.8444+0.0385 0.8444+0.0385

G-Retriever + pre-GAT 0.4461+0.0308  0.3667+0.0115  0.4009+0.0055  0.2518+0.0051 0.8667+0.0000  0.9222+0.0192
RoG 0.5533+0.0201  0.4589+0.0740 0.4922+0.0433 0.3324+0.0375 0.8889+0.0385 0.8778+0.0192
SubgraphRAG 0.5365+0.0277 0.4456+0.0168 0.4772+0.0188 0.3175+0.0166 0.8889+0.1018 0.8667+0.0882
GNN-RAG 0.5485+0.0097 0.4778+0.0587 0.5036+0.0423 0.3426+0.0403 0.8889+0.0385 0.8889-£0.0385
GALAX 0.5414+0.0143 0.5144x0.0168 0.5271+0.0157 0.3602+0.0165  0.9111+o0.1018  0.8444+0.0509

GALAX (Qwen2.5-7B)

0.5383+0.0096  0.5311+0.0084 0.5347+0.0000 0.3674+0.0088

0.9111+0.1018

0.8889-£0.0694
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Table 23: Model performance on OV

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 t Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000++0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0241+0.0251 0.0044:0.0051 0.0075=+0.0085 0.0038+0.0043 0.0000+0.0000 0.0111-+0.0192
L3 + Omics + KG 0.0660=+0.0667 0.0111+0.0102 0.0183=+0.0161 0.0093+0.0082 0.0000=+0.0000 0.0889-0.0770
L3-FT(Med) + Omics 0.0356+0.0412 0.0100+0.0067 0.0102+0.0072 0.0051+0.0036 0.0444+0.0770 0.0222+0.0385
L3-FT(Med) + Omics + KG 0.0797+0.0496 0.0344+0.0280 0.0457+0.0375 0.0253+0.0226 0.0000+0.0000 0.0333+0.0333
L3-FT(CRISPR) + Omics 0.5469+0.0274 0.5167-£0.0406 0.5307+0.0325 0.3631+0.0205  1.0000+0.0000  0.9111+0.0694
L3-FT(CRISPR) + Omics + KG  0.5439+0.0066 0.4989-+0.0195 0.5200+0.0123 0.3542+0.0095 0.9556+0.0385 0.9444+0.0385

G-Retriever + pre-GAT
RoG

SubgraphRAG
GNN-RAG

0.5413+0.0525

0.5708+0.0158
0.6143+0.0414

0.5687+0.0300

0.4033+0.0173
0.52890.0523
0.4833-0.0384
0.4600-£0.0145

0.4575=+0.0067
0.5453+0.0343
0.5289+0.0215
0.5026-+0.0061

0.2991+0.0041
0.3774+0.0317
0.3650+0.0185
0.3380+0.0036

1.0000=0.0000
0.9556+0.0385
0.9333+0.0667
0.8444+0.1540

0.9667-0.0000
0.9222+0.0385
0.9444+0.0385
0.8111-+0.1540

GALAX
GALAX (Qwen2.5-7B)

0.5489=+0.0176
0.5643+0.0190

0.5344:0.0259
0.5689=0.0550

0.5413=+0.0219
0.5654+0.0355

0.3714+0.0206
0.3957+0.0349

0.8444+0.0385
0.9778+0.0385

0.8667+0.0333
0.9556-£0.0192

Table 24: Model performance on SKCM

Model Precision 1 Recall 1 F1 1 Jaccard 1 Hit@5 + Hit@10 1
M2T 0.0055 0.0033 0.0041 0.0021 0.0000 0.0333
GAT 0.0000=0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics + KG 0.0028+0.0049 0.0011-0.0019 0.0016-+0.0028 0.0008+0.0014 0.0000+0.0000 0.0111-0.0192
L3-FT(Med) + Omics 0.0047+0.0041 0.0089-£0.0069 0.0061+0.0052 0.0031+0.0026 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0000+0.0000 0.0000=0.0000 0.00000.0000 0.0000+0.0000 0.0000+0.0000 0.0000=0.0000
L3-FT(CRISPR) + Omics 0.5145+0.0437 0.4922+0.0455 0.5028+0.0443 0.3399+0.0401 0.8444+0.1388 0.8556+0.0385
L3-FT(CRISPR) + Omics + KG  0.4871+0.0529 0.4678-£0.0626 0.4771+0.0579 0.3164+0.0514 0.8667+0.0667 0.8667-£0.0667
G-Retriever + pre-GAT 0.5123+0.0545 0.4100-£0.0058 0.4543+0.0258 0.2958+0.0222 0.9333+0.0000 0.8778-+0.0192
RoG 0.5201+0.0255 0.4522-£0.0681 0.4797+0.0520 0.3179=+0.0461 0.8000+0.2309 0.8111+0.1895
SubgraphRAG 0.4929+0.0245 0.4222+0.0403 0.4502+0.0304 0.2929+0.0260 0.6889+0.2143 0.7222+0.2143
GNN-RAG 0.5298+0.0203 0.4956+0.0367 0.5092+0.0257 0.3447+0.0229 0.9556+0.0385 0.9222+0.0385
GALAX 0.5385+0.0116 0.5233-£0.0200 0.5307+0.0160 0.3638+0.0152  1.0000-+0.0000 0.9667--0.0000
GALAX (Qwen2.5-7B) 0.5651+0.0206 0.5589-+0.0280 0.5619+0.0245 0.3938+0.0213 0.8889+0.0770 0.9111+0.0962
Table 25: Model performance on ESCA
Model Precision 1 Recall 1 F171 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000=0.0000 0.0000+0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000=0.0000 0.0000+0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.00000.0000 0.0000=0.0000 0.0000+0.0000
L3-FT(Med) + Omics 0.0143+0.0036 0.0178-0.0038 0.0139+0.0021 0.0071+0.0011 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3-FT(CRISPR) + Omics 0.5210+0.0590 0.4989-+0.0691 0.5093+0.0637 0.3438+0.0577 0.9333+0.0667 0.9333+0.0000
L3-FT(CRISPR) + Omics + KG  0.5146+0.0187 0.4878-+0.0051 0.5003+0.0074 0.3346+0.0059 0.9111+0.0385 0.9333-0.0000
G-Retriever + pre-GAT 0.5083+0.0142 0.4156+0.0038 0.4556+0.0076 0.2959+0.0064 0.9778+0.0385 0.9444+0.0385
RoG 0.5275+0.0188 0.4622-£0.0534 0.4877+0.0400 0.3262+0.0358 0.9111+0.0770 0.9556-£0.0385
SubgraphRAG 0.5373+0.0043 0.4744+0.0372 0.4990=+0.0259 0.3385+0.0210 0.8889+0.0385 0.93330.0000
GNN-RAG 0.5405+0.0036 0.5067-£0.0404 0.5198+0.0283 0.3548+0.0243  1.0000+0.0000 0.9778-+0.0192
GALAX 0.5775+0.0204 0.5667+0.0260 0.5720+0.0233 0.4031+0.0246  0.9556+0.0385 0.9667+0.0333
GALAX (Qwen2.5-7B) 0.5706+0.0228 0.5567+0.0145 0.5634+0.0173 0.3936+0.0156 0.9333+0.1155 0.9333-0.0882
Table 26: Model performance on SCLC

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000+0.0000 0.0000=£0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0184+0.0212 0.0389+0.0448 0.0249+0.0286 0.0131+0.0153 0.0000+0.0000 0.0000=0.0000
L3-FT(Med) + Omics + KG 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3-FT(CRISPR) + Omics 0.5337+0.0349 0.4989-+0.0479 0.5146+0.0378 0.3476+0.0341 0.8667+0.1155 0.8556+0.0694
L3-FT(CRISPR) + Omics + KG  0.4900+0.0597 0.4667+0.0677 0.4778+0.0638 0.3160+0.0555 0.9333+0.0667 0.8778+0.0694
G-Retriever + pre-GAT 0.4203+0.0263 0.3667+0.0115 0.3910=+0.0180 0.2434+0.0140 0.86670.0000 0.8000+0.0000
RoG 0.4971+0.1497 0.4689+0.1375 0.4786+0.1399 0.3313+0.1074 0.7778+0.2694 0.8000+0.2028
SubgraphRAG 0.5516+0.0586 0.4578+0.1711 0.4917+0.1315 0.3346+0.1131 0.8889+0.1388  0.9111+0.1018
GNN-RAG 0.5503+0.0732 0.4844+0.1771 0.5096+0.1386 0.3512+0.1203 0.8667+0.0000 0.8556-£0.0192
GALAX 0.5850+0.0110 0.5822+0.0102 0.5836+0.0105 0.4143+0.0102 0.9778x0.0385 0.9000+0.0333
GALAX (Qwen2.5-7B) 0.5706+0.0190 0.5667+0.0176 0.5686+0.0182 0.3988+0.0189 0.9556+0.0385 0.9000+0.0333
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Table 27: Model performance on HNSC

Model Precision 1 Recall 1 F11 Jaccard 1 Hit@5 t Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000=0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics + KG 0.0128+0.0222 0.0017-0.0029 0.0029+0.0051 0.0015+0.0026 0.0333+0.0577 0.0167-0.0289
L3-FT(Med) + Omics 0.0082+0.0036 0.0100£0.0050 0.0079+0.0016 0.0040+0.0008 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0000+0.0000 0.0000=£0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000=£0.0000
L3-FT(CRISPR) + Omics 0.4374+0.0214 0.4167+0.0208 0.4267+0.0208 0.2718+0.0174  1.0000+0.0000 0.9667+0.0577
L3-FT(CRISPR) + Omics + KG  0.4787+0.0445 0.4450-£0.0676 0.4606-+0.0565 0.3006+0.0470 0.9667+0.0577 0.9500-£0.0000
G-Retriever + pre-GAT 0.4413+0.0030 0.3700-£0.0000 0.4021+0.0009 0.2518+0.0008  1.0000+0.0000  0.9500+0.0000
RoG 0.4718+0.0254 0.4400=0.0673 0.4529-+0.0509 0.2952+0.0404 0.9667+0.0577 0.9500-£0.0500
SubgraphRAG 0.4648+0.0120 0.4233+0.0635 0.4398+0.0450 0.2833+0.0355  1.0000+0.0000  0.9333+0.0289
GNN-RAG 0.4655+0.0351 0.4317-+0.0813 0.4455+0.0631 0.2890+0.0506 0.9000+0.0000 0.9000-£0.0000
GALAX 0.4482+0.0229 0.4283-£0.0208 0.4380+0.0218 0.2822+0.0177 0.9333+0.0577  0.9667-:0.0289
GALAX (Qwen2.5-7B) 0.4787+0.0082 0.4667+0.0153 0.4722+0.0070 0.3095+0.0064 1.0000+0.0000  0.9000+0.0866
Table 28: Model performance on LUSC
Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics 0.0222+0.0192 0.0067-£0.0058 0.0103+0.0089 0.0052+0.0045 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0062+0.0068 0.0050-£0.0050 0.0055+0.0058 0.0028+0.0029 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0165+0.0106 0.0083+0.0058 0.0085+0.0010 0.0043+0.0005 0.0000+0.0000 0.0000+0.0000
L3-FT(Med) + Omics + KG 0.0094+0.0082 0.0033+0.0029 0.0049+0.0043 0.0025+0.0021 0.0000+0.0000 0.0000+£0.0000
L3-FT(CRISPR) + Omics 0.5208+0.0525 0.4767-+0.0810 0.4961+0.0677 0.3320+0.0618 0.9667+0.0577 0.9167-+0.0577
L3-FT(CRISPR) + Omics + KG  0.4656+0.0253 0.4217+0.0584 0.4420+0.0427 0.2844+0.0355 0.9333+0.1155 0.9333+0.0577
G-Retriever + pre-GAT 0.4563+0.0579 0.3417+0.0318 0.3902+0.0418 0.2433+0.0313  1.0000+0.0000  0.9000=+0.0000
RoG 0.5038+0.0245 0.4550+0.0954 0.4717+0.0730 0.3123+0.0583  1.0000+0.0000  0.9667+0.0289
SubgraphRAG 0.5360+0.0133  0.4550+0.0433 0.4869+0.0223 0.3237+0.0186  1.0000+0.0000 1.0000-:0.0000
GNN-RAG 0.4854+0.0257 0.4717+0.0375 0.4782+0.0319 0.3164+0.0263  1.0000+0.0000  0.8833+0.0577
GALAX 0.5046+0.0833 0.4783-0.0808 0.4909=+0.0819 0.3285+0.0726  1.0000+0.0000  0.8833+0.0289

GALAX (Qwen2.5-7B)

0.5237+0.0212

0.5150-+0.0180

0.5193+0.0196

0.3509+0.0178

0.9333+0.0577

0.8500-£0.0500

Table 29: Model performance on STAD

Model Precision 1 Recall T FI1 1 Jaccard T Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000  0.0000=0.0000 0.00000.0000 0.0000=0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics 0.0000+0.0000  0.0000-0.0000 0.00000.0000 0.0000=0.0000 0.0000+0.0000 0.0000=0.0000
L3 + Omics + KG 0.0000+0.0000  0.0000-£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000
L3-FT(Med) + Omics 0.0057+0.0100  0.0017+0.0029 0.0026+0.0045 0.0013+0.0023 0.0000+0.0000 0.0167+0.0289
L3-FT(Med) + Omics + KG 0.0000+0.0000  0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3-FT(CRISPR) + Omics 0.5528+0.0311  0.5200-0.0409 0.5353+0.0325 0.3684+0.0309 0.9333+0.0577 0.9333+0.0289
L3-FT(CRISPR) + Omics + KG  0.5305+0.0231  0.5000+0.0427 0.514440.0332 0.3486+0.0322 0.9000+0.0000 0.8667+0.0289

G-Retriever + pre-GAT
RoG

SubgraphRAG
GNN-RAG

0.5574+0.0091
0.5099+0.0498
0.5044+0.0443
0.5387+0.0068

0.4883+0.0029
0.4950+0.0606
0.4950+0.0606
0.5267+0.0029

0.5193+0.0024
0.5020+0.0556
0.4993+0.0531
0.5325+0.0047

0.3550+0.0043
0.3392+0.0475
0.3353+0.0437
0.3680+0.0037

0.9000+0.0000

0.8000+0.2646

0.7667+0.2309
1.0000-0.0000

0.9000=+0.0000
0.7167+0.2021
0.7667+0.2309
0.8167+0.0577

GALAX
GALAX (Qwen2.5-7B)

0.5298+0.0331
0.5731+0.0132

0.4983+0.0404
0.5883+0.0029

0.5134+0.0371
0.5803+0.0055

0.3465+0.0338
0.4117+0.0057

0.9667+0.0577
1.0000-:0.0000

0.8667+0.0289
0.9833+0.0289

Table 30: Model performance on MB

Model Precision 1 Recall F1 1 Jaccard 1 Hit@5 t Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0333+0.0577 0.0067+0.0115 0.0111+0.0192 0.0056+0.0098 0.0000=0.0000 0.0000+0.0000
L3 + Omics + KG 0.0126+0.0218 0.0067+0.0115 0.0087=+0.0151 0.0044+0.0076 0.0000=0.0000 0.0000+0.0000
L3-FT(Med) + Omics 0.0177+0.0215 0.0100+0.0100 0.0102+0.0089 0.0052+0.0045 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0282+0.0237 0.0167+0.0058 0.0192+0.0090 0.0097+0.0046 0.0667+0.1155 0.0333+0.0577

L3-FT(CRISPR) + Omics
L3-FT(CRISPR) + Omics + KG

0.5308+0.0327
0.5086+0.0633

0.50330.0551
0.5000=£0.0608

0.5164+0.0440
0.5043+0.0620

0.3488+0.0394
0.3387+0.0569

0.8667+0.1155
0.7333+0.2309

0.8000-£0.1000
0.7000+0.2000

G-Retriever + pre-GAT
RoG

SubgraphRAG
GNN-RAG

0.5546+0.0421
0.5530+0.0211
0.5545+0.0119
0.5306+0.0267

0.3600+0.0173
0.5400-+0.0173

0.3900-£0.1212

0.4467+0.1097

0.4365+0.0257
0.5464+0.0192

0.4502+0.0737

0.4776+0.0606

0.2794+0.0213
0.3761+0.0183

0.2925+0.0632

0.3151+0.0512

0.8000+0.0000
1.0000+0.0000

0.8667+0.1155

0.9333+0.1155

0.7000+0.0000

0.9000-£0.0000

0.9000-£0.0000
0.9667+0.0577

GALAX
GALAX (Qwen2.5-7B)

0.4897+0.0304
0.5300+0.0346

0.4867+0.0351
0.5300-£0.0346

0.4882+0.0328
0.5300+0.0346

0.3233+0.0286
0.3611+0.0325

1.0000=0.0000
0.8667+0.1155

0.8333+0.0577
0.9333+0.0577
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Table 31: Model performance on ALL

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 t Hit@10 1
M2T 0.0082 0.0050 0.0062 0.0031 0.0000 0.0500
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000++0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0333+0.0577 0.00330.0058 0.0061+0.0105 0.0031+0.0053 0.0667+0.1155 0.0333+0.0577
L3 + Omics + KG 0.0000=+0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000=+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0015+0.0026 0.0033+0.0058 0.0021+0.0036 0.0010+0.0018 0.0000+0.0000 0.0000+0.0000
L3-FT(Med) + Omics + KG 0.0607+0.0528 0.0133+0.0115 0.0219+0.0189 0.0111+0.0096 0.0000+0.0000 0.0000=0.0000

L3-FT(CRISPR) + Omics
L3-FT(CRISPR) + Omics + KG

0.5487+0.0561
0.6010+0.0608

0.5400-£0.0624
0.5600-£0.1100

0.5443+0.0592
0.5786-+0.0868

0.3754+0.0569
0.4106+0.0872

1.0000+0.0000
0.9333+0.1155

0.9333+0.1155
0.9333+0.1155

G-Retriever + pre-GAT 0.6285+0.0043 0.5300-£0.0000 0.5750=+0.0018 0.4036=+0.0018 0.8000=+0.0000 0.8000-£0.0000
RoG 0.5596+0.0699 0.5133+0.1501 0.5326+0.1168 0.3684+0.1042 0.9333+0.1155 0.9667+0.0577
SubgraphRAG 0.6000+0.0000 0.6000+0.0000 0.6000+0.0000 0.4286+0.0000  1.0000+0.0000 1.0000+0.0000
GNN-RAG 0.5682+0.0858 0.5200-£0.1609 0.5402+0.1293 0.3770+0.1186 0.9333+0.1155 0.9667-+0.0577
GALAX 0.6860+0.0246 0.6700+0.0265 0.6779+0.0255 0.5131+0.02905 1.0000+0.0000 0.9333+0.0577
GALAX (Qwen2.5-7B) 0.6000+0.0520 0.6000+0.0520 0.6000+0.0520 0.4299+0.0542  1.0000+0.0000 1.0000-0.0000

Table 32: Model performance on LGG

Model Precision 1 Recall 1 F11 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000=0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics + KG 0.0053+0.0092 0.0033-0.0058 0.0041+0.0071 0.0021+0.0036 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0070+0.0121 0.0133+0.0231 0.0092+0.0159 0.0046+0.0080 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0000+0.0000 0.0000=0.0000 0.00000.0000 0.0000+0.0000 0.0000+0.0000 0.0000=0.0000
L3-FT(CRISPR) + Omics 0.5000+0.0500 0.4367+0.0702 0.4649+0.0545 0.3040+0.0457  1.0000+0.0000  0.9667+0.0577
L3-FT(CRISPR) + Omics + KG  0.5267+0.0250 0.5067+0.0115 0.5163+0.0141 0.3480+0.0128  1.0000+0.0000  0.9000=+0.1000
G-Retriever + pre-GAT 0.4846+0.0537 0.4300-£0.0173 0.4540+0.0126 0.2937+0.0106 ~ 1.0000+0.0000  0.9000+0.0000

RoG 0.5667+0.0462 0.5667+0.0462 0.5667+0.0462 0.3963+0.0458 1.0000+0.0000 0.9667+0.0577
SubgraphRAG 0.5400+0.0000 0.5400+0.0000 0.5400+0.0000 0.3699+0.0000  1.0000+0.0000 1.0000-+0.0000
GNN-RAG 0.5294+0.0000 0.2700+0.0000 0.3576+0.0000 0.2177+0.0000 0.8000+0.0000 0.8000+0.0000
GALAX 0.5433+0.0252 0.5433-0.0252 0.5433+0.0252 0.3733+0.0238  1.0000-+0.0000  0.9000+0.0000
GALAX (Qwen2.5-7B) 0.5501+0.0576 0.5200-+0.0693 0.5345+0.0639 0.3664+0.0581 0.8667+0.1155 0.8667+0.0577
Table 33: Model performance on NB

Model Precision 1 Recall 1 F171 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000=0.0000 0.0000+0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000=0.0000 0.0000+0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.00000.0000 0.0000=0.0000 0.0000+0.0000
L3-FT(Med) + Omics 0.0085+0.0148 0.0167-0.0289 0.0113+0.0196 0.0057+0.0100 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000

L3-FT(CRISPR) + Omics
L3-FT(CRISPR) + Omics + KG

0.5233+0.0651
0.5067+0.0723

0.5407=+0.0559
0.5275+0.0703

0.3718+0.0523
0.3603=+0.0667

0.5597+0.0479
0.5507+0.0704

0.8667+0.2309
0.9333+0.1155

0.8667+0.1528
0.8667+0.0577

G-Retriever + pre-GAT

0.4322+0.0444 0.3933+0.0404 0.4119+0.0423 0.2599+0.0341

1.0000+0.0000

0.9333+0.0577

RoG 0.5997+0.0551  0.4133+0.0924 0.4817+0.0400 0.3179+0.0353  1.0000+0.0000  0.8667+0.1155
SubgraphRAG 0.5679+0.0551 0.4667-£0.0924 0.5048+0.0400 0.3383+0.0353  1.0000+0.0000 0.9333+0.1155
GNN-RAG 0.5810+0.0165  0.5733+0.0231 0.5771+0.0198 0.4058+0.0197  0.7333+0.2309 0.7333+0.0577
GALAX 0.5533+0.0115 0.5533+0.0115 0.5533+0.0115 0.3825+0.0110 0.8667+0.1155 0.8667+0.0577
GALAX (Qwen2.5-7B) 0.5733+0.0462  0.5733+0.0462  0.5733+0.0462 0.4028+0.0446 0.8000+0.0000 0.8667-+0.0577
Table 34: Model performance on MESO

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0070 0.0050 0.0058 0.0029 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000+0.0000 0.0000=£0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0190+0.0201 0.0167-+0.0208 0.0133+0.0121 0.0067+0.0061 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0192+0.0228 0.0100-t0.0000 0.0104+0.0052 0.0053+0.0026 0.0000+0.0000 0.0000-£0.0000
L3-FT(CRISPR) + Omics 0.5182+0.0806 0.4833+0.0874 0.4995+0.0808 0.3354+0.0720 0.9333+0.1155 0.8667+0.1528
L3-FT(CRISPR) + Omics + KG  0.5417+0.0419 0.5233+0.0416 0.5322+0.0402 0.3633+0.0374 0.8667+0.1155 0.9000-£0.0000
G-Retriever + pre-GAT 0.4721x0.0072 0.3733+0.0462 0.4161+0.0324 0.2630+0.0255  1.0000+0.0000  0.8000=0.0000
RoG 0.4476+0.0755 0.3900+0.1375 0.4137+0.1135 0.2651+0.0893 0.8667+0.2309 0.8000+0.0000
SubgraphRAG 0.4421+0.0000 0.4200+0.0000 0.4308+0.0000 0.2745+0.0000 0.6000+0.0000 0.8000+0.0000
GNN-RAG 0.3750+0.0000 0.2400-£0.0000 0.2927+0.0000 0.1714+0.0000  1.0000+0.0000  0.8000+0.0000
GALAX 0.5933+0.0231 0.5933+0.0231 0.5933+0.0231 0.4221+0.0236 1.0000+0.0000  0.8000=+0.0000

GALAX (Qwen2.5-7B)

0.5621+0.0310 0.5533+0.0462 0.5576+0.0388 0.3872+0.0367

1.0000=0.0000

0.9333+0.0577
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Table 35: Model performance on LIHC

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 t Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0100+0.0000 0.0100-0.0000 0.0100+0.0000 0.0050+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000+0.0000 0.0000-£0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000=+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0031+0.0027 0.0067+0.0058 0.0043+0.0037 0.0021+0.0019 0.0000+0.0000 0.0000+0.0000
L3-FT(Med) + Omics + KG 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000=+0.0000 0.0000+0.0000
L3-FT(CRISPR) + Omics 0.4239+0.0343 0.3967-0.0513 0.4096-+0.0435 0.2582+0.0341 0.7333+0.1155 0.7000-£0.1732
L3-FT(CRISPR) + Omics + KG  0.4552+0.0568 0.4467+0.0635 0.4509-+0.0600 0.2924+0.0512 0.8000+0.0000 0.7667+0.0577

G-Retriever + pre-GAT

0.3598+0.0387

0.3000-£0.0520

0.3270=+0.0467

0.1961+0.0340

0.8000=+0.0000

0.7667+0.1155

RoG 0.4205+0.1173 0.3733+0.1856 0.3903+0.1596 0.2507+0.1247 0.9333+0.1155 0.8000+0.1732
SubgraphRAG 0.4738+0.1320 0.4267+0.2136 0.4436+0.1843 0.2964+0.1437 0.9333+0.1155 0.8000+0.1732
GNN-RAG 0.4233+0.0289 0.4233-£0.0289 0.4233+0.0289 0.2688+0.0230  1.0000+0.0000  0.8333+0.0577
GALAX 0.4900+0.0100 0.4900+0.0100 0.4900+0.0100 0.3245:+0.0088 1.0000+0.0000 0.9000=0.0000
GALAX (Qwen2.5-7B) 0.4362+0.0033 0.4333+0.0058 0.4348+0.0045 0.2778+0.0037 0.8667+0.1155 0.8667+0.0577
Table 36: Model performance on LAML

Model Precision 1 Recall 1 F11 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0164 0.0100 0.0124 0.0062 0.0000 0.0000
GAT 0.0000=0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics + KG 0.1576+0.1412 0.0200-£0.0173 0.0354+0.0307 0.0182+0.0158 0.1333+0.2309 0.2000-£0.1732
L3-FT(Med) + Omics 0.1136+0.0630 0.0400+0.0173 0.0495+0.0008 0.0254+0.0004 0.2000+0.3464 0.1333+0.1528
L3-FT(Med) + Omics + KG 0.1085+0.0867 0.0267+0.0058 0.0377+0.0221 0.0193+0.0114 0.2000+0.3464 0.2000+0.1732

L3-FT(CRISPR) + Omics
L3-FT(CRISPR) + Omics + KG

0.4758+0.0251
0.4988-+0.0700

0.3733+0.0115
0.4500-£0.0600

0.4180+0.0082
0.4721+0.0572

0.2642+0.0066
0.3102+0.0481

0.8667+0.2309
0.8667+0.2309

0.9000=0.1000
0.8333+0.1155

G-Retriever + pre-GAT

0.3719+0.0373

0.2400-£0.0000

0.2912+0.0119

0.1705+0.0081

1.0000+0.0000

0.9000-£0.0000

RoG 0.4228+0.0149 0.3467+0.1097 0.3725+0.0685 0.2303+0.0506 ~ 1.0000+0.0000  0.8667+0.1155
SubgraphRAG 0.4141+0.0000 0.4100+0.0000 0.4121+0.0000 0.2595+0.0000  1.0000+0.0000  0.8000+0.0000
GNN-RAG 0.3972+0.0934 0.3200+0.1559 0.3511+0.1311 0.2183+0.1015  1.0000+0.0000  0.8333+0.0577
GALAX 0.4730+0.0901 0.4333-0.0306 0.4510+0.0554 0.2923+0.0467 0.9333+0.1155 0.8667-£0.2309
GALAX (Qwen2.5-7B) 0.4596+0.0437  0.4567+0.0462  0.458140.0449 0.2979+0.0385 1.0000+0.0000 1.0000+0.0000

Table 37: Model performance on DLBC

Model Precision 1 Recall 1 F171 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000=0.0000 0.0000+0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000=0.0000 0.0000+0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.00000.0000 0.0000=0.0000 0.0000+0.0000
L3-FT(Med) + Omics 0.0220+0.0249 0.0367-+0.0404 0.0275+0.0308 0.0141+0.0159 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0375+0.0385 0.0067+0.0058 0.0111+0.0097 0.0056+0.0049 0.0667+0.1155 0.0333+0.0577
L3-FT(CRISPR) + Omics 0.3985+0.0669 0.3900+0.0721 0.3942+0.0695 0.2470+0.0530 0.9333+0.1155 0.8333+0.0577
L3-FT(CRISPR) + Omics + KG  0.4200+0.0230 0.4100+0.0173 0.4149+0.0200 0.2619+0.0158 0.8667+0.1155 0.7000+0.1000
G-Retriever + pre-GAT 0.3196+0.0307 0.2767+0.0058 0.2963+0.0168 0.1740+0.0115  1.0000+0.0000  0.8000=0.0000
RoG 0.4424+0.0239 0.4367-0.0289 0.4395-+0.0264 0.2819+0.0219 0.8667+0.1155 0.7667+0.1155
SubgraphRAG 0.4286+0.0000 0.4200-£0.0000 0.4242+0.0000 0.2692+0.0000 0.8000+0.0000 0.7000-£0.0000
GNN-RAG 0.4433+0.0231 0.4433+0.0231 0.4433+0.0231 0.2850+0.0192  1.0000=0.0000 0.9000-0.0000
GALAX 0.4400=0.0000 0.4400+0.0000 0.4400+0.0000 0.2821+0.0000 0.8667+0.1155 0.6333+0.2309

GALAX (Qwen2.5-7B)

0.4764+0.0055

0.4700-0.0000

0.4732-+0.0027

0.3099+0.0023

0.8000+0.0000

0.9000-:0.0000

Table 38: Model performance on MM

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000+0.0000 0.0000=£0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0275+0.0296 0.0167-+0.0208 0.0156+0.0149 0.0079+0.0075 0.0667+0.1155 0.0333+0.0577
L3-FT(Med) + Omics + KG 0.1091+0.0630 0.0200-£0.0000 0.0329+0.0027 0.0167+0.0014 0.1333+0.1155 0.1333+0.1155
L3-FT(CRISPR) + Omics 0.4001+0.0022 0.3800-+0.0265 0.3894+0.0134 0.2418+0.0103 0.9333+0.1155 0.9000-0.0000
L3-FT(CRISPR) + Omics + KG  0.4753+0.0613 0.4367+0.0306 0.4549+0.0447 0.2952+0.0377 0.8000+0.0000 0.7333+0.0577
G-Retriever + pre-GAT 0.4514+0.0800  0.3667+0.0808  0.4046+0.0850  0.2561+0.0690  0.9333+0.1155  0.9000+0.0000
RoG 0.4900+0.0615 0.3833+0.1550 0.4246+0.1182 0.2745+0.0997 0.9333+0.1155 0.8667+0.0577
SubgraphRAG 0.4515+0.0122 0.3033+0.0289 0.3620+0.0175 0.2211+0.0130 0.9333+0.1155 0.8667+0.0577
GNN-RAG 0.5166+0.0376 0.5133:0.0404 0.5150+0.0390 0.3474+0.0359  1.0000+0.0000  0.8333+0.0577
GALAX 0.5858+0.0564 0.5700+0.0819 0.5775+0.0695 0.4082+0.0680 1.0000+0.0000 0.9333+0.0577

GALAX (Qwen2.5-7B)

0.5000=+0.0917

0.5000=£0.0917

0.5000=+0.0917

0.3367+0.0834

0.9333+0.1155

0.9000=0.1000
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Table 39: Model performance on KIRC

Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 t Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000++0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000+0.0000 0.0000-£0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000=+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0000+0.0000 0.0000=£0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000=£0.0000
L3-FT(Med) + Omics + KG 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000=+0.0000 0.0000+0.0000
L3-FT(CRISPR) + Omics 0.5458+0.0450 0.5333+0.0513 0.5394+0.0478 0.3703+0.0452 0.8667+0.2309 0.8667-+0.1155
L3-FT(CRISPR) + Omics + KG  0.4897+0.0182 0.4800-0.0265 0.4847+0.0219 0.3201+0.0192 0.8667+0.1155 0.9000-£0.0000
G-Retriever + pre-GAT 0.4160=+0.0315 0.3733+0.0058 0.3933+0.0171 0.2449=+0.0133 0.6000=+0.0000 0.8000-£0.0000

RoG 0.6207+0.0617  0.5867+0.0751 0.6031+0.0689 0.4340+0.0687 1.0000+0.0000 1.0000+0.0000
SubgraphRAG 0.6412+0.0261  0.5300+0.1732 0.5714+0.1237 0.4067+0.1160  1.0000+0.0000  0.9333+0.1155
GNN-RAG 0.5898+0.0350 0.5733:+0.0635 0.5812+0.0499 0.4108+0.0486  1.0000-+0.0000 1.0000-:0.0000
GALAX 0.5797+0.0251 0.5700-£0.0265 0.5748+0.0254 0.4036+0.0247 0.9333+0.1155 0.9000=0.1732
GALAX (Qwen2.5-7B) 0.5786+0.1114 0.5700+0.1044 0.5742+0.1076 0.4079+0.1019 0.8667+0.1155 0.9333+0.0577
Table 40: Model performance on THCA

Model Precision 1 Recall 1 F11 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000=0.0000 0.0000=£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000=0.0000 0.0000=£0.0000
L3 + Omics 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000
L3 + Omics + KG 0.1500+0.1500 0.0200-£0.0173 0.0348+0.0303 0.0179+0.0155 0.1333+0.2309 0.1000-£0.1732
L3-FT(Med) + Omics 0.0439+0.0532 0.0167+0.0058 0.0200+0.0119 0.0101+0.0061 0.0667+0.1155 0.0333+0.0577
L3-FT(Med) + Omics + KG 0.0156+0.0145 0.0300+0.0265 0.0205+0.0187 0.0104+0.0095 0.0000+0.0000 0.0333+0.0577

L3-FT(CRISPR) + Omics
L3-FT(CRISPR) + Omics + KG

0.5495+0.0165
0.5818+0.0490

0.5367+0.0153
0.5333+0.0416

0.5430+0.0158
0.5556+0.0365

0.3728+0.0148
0.3853+0.0353

0.8667+0.1155
0.9333+0.1155

0.8333+0.0577
0.9000-0.1000

G-Retriever + pre-GAT

0.6237+0.0849 0.3833:0.0231 0.4718+0.0097 0.3088+0.0083

0.5333+0.1155

0.7333+0.1155

RoG 0.5696+0.0350 0.5367+0.0635 0.5524+0.0499 0.3827+0.0486  1.0000+0.0000 1.0000-0.0000
SubgraphRAG 0.5495+0.0000 0.5000+0.0000 0.5236+0.0000 0.3546+0.0000  1.0000+0.0000 1.0000-+0.0000
GNN-RAG 0.6465+0.0350  0.4400+0.1386 0.5127+0.0782 0.3473+0.0731 0.9333+0.1155 0.8333+0.0577
GALAX 0.6076+0.0331  0.6033-+0.0289 0.6054+0.0308 0.4346+0.0313 1.0000-+0.0000 1.0000-+0.0000
GALAX (Qwen2.5-7B) 0.5790+0.0350 0.4967+0.0751 0.5312+0.0356 0.3622+0.0333 0.8000+0.2000 0.8333+0.0577
Table 41: Model performance on BLCA

Model Precision 1 Recall 1 F171 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000=0.0000 0.0000+0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000=0.0000 0.0000+0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.00000.0000 0.0000=0.0000 0.0000+0.0000
L3-FT(Med) + Omics 0.0127+0.0111 0.0267-+0.0231 0.0172+0.0149 0.0087+0.0076 0.0000+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics + KG 0.0222+0.0385 0.0033+0.0058 0.0058+0.0100 0.0029+0.0051 0.0000+0.0000 0.0333+0.0577
L3-FT(CRISPR) + Omics 0.5538+0.0498 0.50000.0200 0.5250+0.0301 0.3563+0.0279 0.7333+0.1155 0.8000=£0.0000
L3-FT(CRISPR) + Omics + KG  0.5617+0.0584 0.5367+0.0231 0.5484+0.0376 0.3784+0.0356 0.8667+0.2309 0.8667+0.0577
G-Retriever + pre-GAT 0.5025+0.0481 0.4733+0.0058 0.4870+0.0253 0.3221+0.0223 0.6000+0.0000 0.6333+0.0577

RoG 0.5633+0.0231 0.5633:+0.0231 0.5633+0.0231 0.3924+0.0226  1.0000+0.0000 0.9667-+0.0577
SubgraphRAG 0.5457+0.0075 0.4633+0.1501 0.4922+0.1001 0.3302+0.0851 0.9333+0.1155 0.9000=0.1732
GNN-RAG 0.5270=+0.1006 0.4900=0.1646 0.5056+0.1376 0.3456+0.1177 0.6667+0.5774 0.6000-£0.5196
GALAX 0.5247+0.0081 0.5033+0.0289 0.5133+0.0115 0.3453+0.0104  1.0000+0.0000  0.9000=0.1000
GALAX (Qwen2.5-7B) 0.5852+0.0001 0.5733+0.0115 0.5791+0.0015 0.4076+0.0015 0.9333+0.1155 0.9000-£0.0000
Table 42: Model performance on UCEC
Model Precision 1 Recall T F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0000+0.0000 0.0000=£0.0000 0.0000=+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000=£0.0000
L3-FT(Med) + Omics + KG 0.0000+0.0000 0.0000-£0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3-FT(CRISPR) + Omics 0.5293+0.0394  0.5133+0.0379 0.5211+0.0379 0.3530+0.0344 0.7333+0.1155 0.7000-0.1000
L3-FT(CRISPR) + Omics + KG  0.4672+0.0472 0.4533+0.0231 0.4600+0.0346 0.2991+0.0296 0.8000+0.2000 0.8000£0.1000
G-Retriever + pre-GAT 0.4517+0.0318 0.4000+0.0173 0.4242+0.0237 0.2694+0.0193  1.0000=+0.0000 0.9000+-0.0000
RoG 0.4508+0.0506 0.4233+0.0082 0.4355+0.0772 0.2803+0.0614 0.6667+0.5774 0.4667+0.4041
SubgraphRAG 0.4800+0.0000 0.4800+0.0000 0.4800+0.0000 0.3158+0.0000  1.0000+0.0000  0.7000=0.0000
GNN-RAG 0.4777+0.0739 0.4433+0.1159 0.4589+0.0975 0.3011+0.0795 0.6000+0.5292 0.4667+0.4163
GALAX 0.5280+0.0555  0.5233+0.0635 0.5256+0.0596 0.3579+0.0536 0.8000+0.0000 0.9000=0.0000

GALAX (Qwen2.5-7B)

0.4848+0.0391 0.5033+0.0231 0.4938+0.0313 0.3282+0.0280

0.9333+0.1155

0.8333+0.1155
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Table 43: Model performance on PRAD

Model Precision 1 Recall F1 1 Jaccard 1 Hit@5 1 Hit@10 1
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000+0.0000 0.0000-£0.0000 0.0000++0.0000 0.0000+0.0000 0.0000+0.0000 0.0000-£0.0000
L3 + Omics 0.0111+0.0192 0.0033:0.0058 0.0051+0.0089 0.0026+0.0045 0.0000+0.0000 0.0000-£0.0000
L3 + Omics + KG 0.0000=+0.0000 0.0000-£0.0000 0.0000=0.0000 0.0000=0.0000 0.0000=+0.0000 0.0000-£0.0000
L3-FT(Med) + Omics 0.0145+0.0251 0.0033+0.0058 0.0054+0.0094 0.0027+0.0047 0.0000+0.0000 0.0000+0.0000
L3-FT(Med) + Omics + KG 0.0176+0.0261 0.0067+0.0058 0.0078+0.0083 0.0039-+0.0042 0.0000+0.0000 0.0333+0.0577
L3-FT(CRISPR) + Omics 0.6021+0.0558 0.5600-£0.0400 0.5796+0.0401 0.4088+0.0392  1.0000+0.0000  0.9333+0.1155

L3-FT(CRISPR) + Omics + KG

0.6032+0.0191

0.5867+0.0115

0.5947=+0.0102

0.4232+0.0103

0.9333+0.1155

0.9000-£0.1000

G-Retriever + pre-GAT
RoG

SubgraphRAG
GNN-RAG

0.4749+0.0041
0.5833+0.0404
0.5931+0.1258
0.6140+0.0138

0.4433+0.0231
0.5833+0.0404
0.4500-£0.0964
0.6100-£0.0173

0.4584+0.0141
0.5833+0.0404
0.5042+0.0691
0.6120=+0.0156

0.2974+0.0120
0.4125+0.0410
0.3389+0.0607
0.4411+0.0163

1.0000=0.0000

1.0000+0.0000
0.6667+0.5774

1.0000+0.0000

1.0000+0.0000
0.9333+0.0577
0.6333-+0.5508

1.0000+0.0000

GALAX
GALAX (Qwen2.5-7B)

0.5152+0.1398
0.6195-+0.0292

0.4733+0.0751
0.6133+0.0289

0.4923=+0.1036
0.6164+0.0290

0.3308+0.0934
0.4459+0.0300

0.9333+0.1155
1.0000=0.0000

0.9667+0.0577
0.9000=£0.0000
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