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ABSTRACT

In precision medicine, quantitative multi-omic features, topological context, and
textual biological knowledge play vital roles in identifying disease-critical signal-
ing pathways and targets, guiding the discovery of novel therapeutics and effec-
tive treatment strategies. Existing pipelines capture only one or two of these,
thereby limiting mechanistic interpretability. Although Process Reward Mod-
els (PRMs) aim to guide reasoning in LLMs, they remain limited by coarse
step definitions, unreliable intermediate evaluation, and vulnerability to reward
hacking with added computational cost. These gaps motivate jointly integrating
quantitative multi-omic signals, topological structure with node annotations, and
literature-scale text via LLMs, using subgraph reasoning as the principle bridge
linking numeric evidence, topological knowledge and language context. To re-
solve this challenge, we propose GALAX (Graph Augmented LAnguage model
with eXplainability), an innovative framework that integrates pretrained Graph
Neural Networks (GNNs) into Large Language Models (LLMs) via reinforce-
ment learning guided by a Graph Process Reward Model (GPRM), which gener-
ates disease-relevant subgraphs in a step-wise manner initiated by an LLM and
iteratively evaluated by a pretrained GNN and schema-based rule check, enabling
process-level supervision without explicit labels. As an application, we also in-
troduced Target-QA, a benchmark combining CRISPR-identified targets, multi-
omic profiles, and biomedical graph knowledge across diverse cancer cell lines,
which enables GNN pretraining for supervising step-wise graph construction and
supports long-context reasoning over text-numeric graphs (TNGs), providing a
scalable and biologically grounded framework for explainable, reinforcement-
guided subgraph reasoning toward reliable and interpretable target and pathway
discovery in precision medicine.

1 INTRODUCTION

Identifying therapeutic targets and elucidating disease mechanisms are main challenges in preci-
sion medicine (Steyaert et al., 2023; Topol, 2019). CRISPR-based gene editing has revolutionized
functional genomic by enabling high-throughput perturbation of gene function across diverse cel-
lular contexts (Shalem et al., 2014; Li et al., 2023). In oncology, large-scale CRISPR screens in
cancer cell lines and patient-derived models have revealed context-specific genetic vulnerabilities,
providing a robust experimental foundation for biomarker and target discovery (Shi et al., 2015).
Despite these advances, computationally predicting key targets from multi-omic profiles and in-
terpreting their mechanistic role in disease progression remains difficult. In particular, bridging
omic data with interpretable explanations of molecular mechanisms continues to be a critical un-
met need (Zhang et al., 2024a). Traditional approaches, such as differential expression analysis or
essentiality scoring, lack the capacity to model the hierarchical and cross-modal dependencies in
molecular networks, often overlooking key regulatory redundancies and pathway-level dynamics.
Recent graph-based models have shown promise in outcome prediction tasks (Ren et al., 2024), yet
they typically lack the structured supervision necessary for accurate target prioritization and mech-
anism discovery and seldom jointly integrate quantitative multi-omic features, topological structure
with node annotations, and literature-scale text—limiting mechanistic interpretability.
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Meanwhile, Large Language Models (LLMs) have demonstrated strong capabilities in natural
language understanding and reasoning, particularly through techniques like in-context learning
(ICL) (Brown et al., 2020) and chain-of-thought (CoT) prompting (Wei et al., 2022), which enable
multi-step reasoning. However, LLMs often suffer from hallucination and lack grounding in struc-
tured knowledge, especially in scientific domains. To mitigate these issues, Retrieval-Augmented
Generation (RAG) (Lewis et al., 2020) and its graph-based variants, such as RoG (Luo et al., 2023),
SubgraphRAG (Li et al., 2024), GNN-RAG (Mavromatis & Karypis, 2025) and G-Retriever (He
et al., 2024), have been proposed to enhance LLM performance by incorporating external knowl-
edge graph. Despite their utility, these approaches still focus on final answer accuracy and give little
attention to the reliability of intermediate reasoning. The retrieved subgraphs are noisy, large, and
lack ground-truth mechanistic structure, making supervised retrieval unstable. Most existing models
also fail to integrate numerical omic signals, causing the loss of cell line–specific information
needed for target discovery. On the other hand, the Process Reward Model (PRM) framework has
been introduced to provide fine-grained supervision over intermediate steps in reasoning tasks (Luo
et al., 2024; Lightman et al., 2023; Uesato et al., 2022; Wang et al., 2023). PRMs provide step-wise
supervision by assigning intermediate rewards to reinforcement learning (RL) agents, forming
the foundation for Large Reasoning Models (LRMs) trained with Reinforcement Learning with
Human Feedback (RLHF) (Bai et al., 2022), Proximal Policy Optimization (PPO) (Schulman
et al., 2017), and Group Relative Policy Optimization (GRPO) (Shao et al., 2024). For example,
StepGRPO (Zhang et al., 2025b) extends GRPO by incorporating rule-based step-wise rewards to
supervise each intermediate reasoning step, addressing the sparse reward problem and enhancing
multi-step reasoning in multimodal language models. However, PRMs face key limitations in defin-
ing fine-grained reasoning steps, verifying intermediate correctness, and hacking for model-based
rewards (Gao et al., 2023), further complicating training.

These challenges are amplified in biomedicine: reasoning over multi-omic, gene-regulatory
text–numeric graphs (TNGs) lacks ground-truth stepwise annotations, making intermediate su-
pervision infeasible, and the combinatorial explosion of biological paths renders exhaustive plan-
ning or retrieval impractical. We propose GALAX (Graph-Augmented LAnguage model with
eXplainability), which couples LLMs with a pretrained GNN under reinforcement learning guided
by a Graph Process Reward Model (GPRM). Instead of explicit labels, GALAX uses the GNN as
a stepwise supervisor and schema-based rule term to check validity, scoring intermediate subgraphs
(partial signaling cascades) for biological plausibility and cancer relevance to provide fine-grained,
graph-based rewards. GALAX prompts an LLM to propose candidate targets from multi-omic pro-
files and partial knowledge graphs, then an RL graph generator assembles task-specific cancer sub-
networks under GPRM scoring—translating language reasoning into interpretable graph construc-
tion and yielding mechanistically grounded, patient-specific subnetworks for target prioritization.
To evaluate, we introduce Target-QA, a benchmark integrating multi-omic data, biomedical graph
knowledge, and CRISPR screening outcomes across diverse cancer cell lines. Together, GALAX
and Target-QA deliver a scalable, reinforcement-guided solution for interpretable, patient-specific
target identification and disease-mechanism discovery.

2 RELATED WORK

LLMs Augmented with Knowledge and Graph Structures Prompt tuning has emerged as a
lightweight and scalable method for adapting LLMs to downstream tasks without full finetun-
ing (Korbak et al., 2023; Lester et al., 2021). While effective, it operates over flat text representations
and struggles to incorporate structured domain knowledge or multi-modal signals. To address this,
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) and graph-augmented approaches
such as G-Retriever (He et al., 2024), RoG (Luo et al., 2023), SubgraphRAG (Li et al., 2024) and
GNN-RAG (Mavromatis & Karypis, 2025) have been proposed. However, these methods depend
on accurate subgraph retrieval and still lack support for reliable reasoning. Most existing models
also fail to integrate numerical omic signals, causing the loss of cell line–specific information
needed for target discovery and leaving them poorly suited for large, patient-specific text–numeric
graphs such as multi-omic signaling networks.

Reinforcement Learning for Step-wise Reasoning Reinforcement learning has been instrumen-
tal in aligning LLM behavior through methods like RLHF (Bai et al., 2022), PPO (Schulman
et al., 2017), and GRPO (Shao et al., 2024). The Process Reward Model (PRM) (Luo et al.,
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Figure 1: Representative paradigms of patient-specific target prediction in-context LLM workflows and
comparison with our approach. (a) User-specific in-context prompts with basic query input. (b) Augmenta-
tion with retrieved knowledge relevant to the query. (c) GALAX framework: combining user-specific prompts,
biomedical knowledge, and reinforcement-guided subgraph reasoning for explainable target prediction.

2024) enables step-wise supervision and has been adopted in Large Reasoning Models (LRMs).
However, PRMs face key challenges: fine-grained step definitions are ambiguous, intermediate
correctness is hard to validate, and model-based rewards can lead to reward hacking (Gao et al.,
2023). These challenges are particularly acute in biomedical domains, where reasoning is inher-
ently unstructured and lacks step-wise annotations, making conventional PRM pipelines impractical.

Multi-omic Data Integration in Biomedical AI From a biological standpoint, the integration
of genomic, transcriptomic, and proteomic has been essential for understanding disease mech-
anisms and therapeutic vulnerabilities (Hasin et al., 2017; Kristensen et al., 2014). Traditional
approaches rely on statistical fusion or dimensionality reduction (Meng et al., 2016; Shen et al.,
2009; Rohart et al., 2017; Argelaguet et al., 2018; Nguyen & Wang, 2020), which overlook the
hierarchical and interconnected nature of molecular data. More recently, GNN-based models like
MOGONET (Wang et al., 2021) and MoGCN (Li et al., 2022) have demonstrated the value of
structured graph reasoning for cancer subtype classification and biomarker identification. However,
these models are primarily designed for outcome prediction and often fall short in identifying
actionable biomarkers associated with specific disease mechanisms.

GALAX addresses the limitations of existing models by introducing a RL-guided framework that
dynamically constructs biologically relevant subgraphs for each patient or cell line. This enables in-
terpretable, context-sensitive target prioritization that adapts to both multi-omic features and disease-
specific graph as the text-numeric format. To our knowledge, GALAX is the first to unify numerical
multi-omic signals, literature-scale textual information, and biological topology under a reinforce-
ment learning paradigm with biologically grounded supervision, which learns to reason through
step-wise subgraph generation, guided by an authoritative biomedical GRPM.

3 PROBLEM FORMULATION

Identifying key targets and uncovering disease mechanisms remains a major challenge in precision
medicine. To address this, we adopt the Text-Omic Signaling Graph (TOSG) (Zhang et al., 2025a),
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Figure 2: Demonstration of TOSG Con-
struction and Graph Foundation Model

which integrates multi-omic features and biomedical con-
text into a unified graph structure. Built upon TOSG, our
model GALAX couples LLM-based hypothesis genera-
tion with reinforcement-guided subgraph reasoning to en-
able interpretable, patient-specific target predictions on the
Target-QA benchmark.

TOSG Construction We construct the TOSG by inte-
grating three modalities: numerical omic evidence X (0),
textual entity descriptions T , and topological information
within a unified biomedical knowledge graph G = {V, E}.
Here, V represents the topological entities and E denotes
the biological relations. The detailed formulation of each
modality is presented as follows. Feature Space: Specifically, utilizing the DepMap as the source
of numerical evidence (Dempster et al., 2019), we formulate this raw data as X (0) = {X(0)

n }N(0)

n=1 ,
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where X(0)
n ∈ RM comprises of N (0) samples with M entities. These samples are paired with

binary labels for cancerous or non-cancerous cell lines, denoted as Y(0) ∈ {0, 1}N(0)

. Textual
Space: Each entity in the TOSG is associated with a name and description, represented as T =
{Tname, Tdesc}, where |Tname| = |Tdesc| =M . Topological Space: TheM entities in each sample are
composed of multiple components derived from genomic, transcriptomic, and proteomic contexts.
These multi-omic features are integrated into the TOSG using an existing integration tool, BioMed-
Graphica (Zhang et al., 2024b), resulting in a text-attributed knowledge graph G = {V, E}. The set
of vertices is defined as V = {V(pm),V(g),V(t),V(p)}, representing promoter, gene, transcript, and
protein entities, respectively. The size of each set is given by |V(pm)| = m(pm), |V(g)| = m(g),
|V(t)| = m(t), and |V(p)| = m(p), such that |V| = m(pm)+m(g)+m(t)+m(p) =M . Correspond-
ingly, we map the cell-specific omic features for the n-th sample, denoted as X(0)

n ∈ RM , using a
compact vector concatenation of the four entity types: X(0)

n =
[
x
(pm)
n ⊕ x

(g)
n ⊕ x

(t)
n ⊕ x

(p)
n

]
, where

x
(·)
n represents the feature vector for the respective modality (e.g., x(p)

n ∈ Rm(p)

corresponds to pro-
tein levels). In detail, this graph can be decomposed into two subgraphs: G(in) = (V(in), E(in)) and
G(PPI) = (V(PPI), E(PPI)). Here, G(in) captures the internal signaling processes for protein translation.
As shown in Figure 2, internal propagation follows the central dogma (Crick, 1970): promoter (pur-
ple) → gene (red) → transcript (yellow) → protein (blue), with V = V(in) and |V(in)| =M . Mean-
while, G(PPI) represents the gene regulatory network structured around protein-protein interactions
(PPI), where V(PPI) = V(p). In summary, the TOSG unifies numerical omic evidence, textual de-
scriptions, and topological information into a Text-Numeric Graph, defined as G = {X (0), T ,V, E}.

Target-QA Generation We construct the feature set X by filtering for cancer cell lines that con-
tain both comprehensive annotations and curated CRISPR-based target information, defining the
collective multi-omic evidence as set X = {Xn}Nn=1, where Xn ∈ RM . Subsequently, to align
this quantitative data with the reasoning capabilities of LLMs, we systematically structure the input
context for each instance by integrating textual metadata, molecular profiles, and interaction graphs,
detailed as follows. Omics Information: To augment context with patient-specific data, we in-
corporate the top-K features for the LLM. Due to input token constraints of LLMs (Achiam et al.,
2023) and the presence of CpG sites with methylation beta values saturated at 1, which dominate
rankings and render top-K selection uninformative, we derive a concise multi-omic representation
X

(K)
n = [g

(K)
n ⊕ t

(K)
n ⊕ p

(K)
n ] by extracting the top K features from genomic, transcriptomic,

and proteomic modalities. Here, g(K)
n , t

(K)
n , and p

(K)
n denote the ordered lists of selected gene,

transcript, and protein names, respectively, which correspond directly to the omic-related graph
nodes V(omic)

n . Sample Information: Disease entity has an associated name and textual descrip-
tion with S = {Sname, Sdesc} where |S| = m(S). Leveraging annotations from DepMap about
cell lines, we mapped the cell line and disease names in samples to form the sets C = {cn}Nn=1
and S ′ = {s′n}Nn=1, respectively. Disease-related Protein Subgraph: For cell line, cn, we use the
cell line related disease entity s′n to retrieve from BioMedGraphica’s disease-target interaction graph
G(DTI) = {V(DTI), E(DTI)}, where V(DTI) = {V(S),V(p)} includes disease and protein nodes. To pro-
vide structured graph context, we apply a subgraph retrieval strategy that extracts disease-relevant
protein entities V(p)

n ⊂ V(p) and their interactions E(DTI)
n , along with h-hop protein neighbors V(h)

n

by extracting interactions from E(PPI), where V(h)
n ⊂ V(p). This yields a sample-specific subgraph

G(sub)
n = {V(sub)

n , E(sub)
n }, where V(sub)

n = V(p)
n ∪ V(h)

n , with the full graph set G(sub) = {G(sub)
n }Nn=1.

Hence, each queryQn = {cn, s′n, X
(K)
n ,G(sub)

n } is paired with answerAn describing top-γ CRISPR
targets Rn = {rn,1, . . . , rn,γ}, yielding instance Dn = (Qn, An) in dataset D = {Dn}Nn=1, strati-
fied by TCGA (Weinstein et al., 2013) types (e.g., DLUAD,DBRCA).

Patient-Specific Target Prediction with Explainability GALAX is designed to generate not only
accurate but also interpretable predictions by explicitly modeling the reasoning process through
subgraph construction (see Figure 3). Given a query Qn, the model produces both a prioritized
target list Ân and an explanatory subgraph G†

n:

Ân,G†
n = f(Qn, Xn, T , E ; θG, θL) (1)

The function f is composed of three modules (see Section 4.2): (1) an initial language model finit that
performs coarse reasoning and extracts candidate entities via initial answering; (2) a reinforcement-
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Figure 3: An overview of the GALAX workflow. Given processed multi-omic profiles (genomic, transcrip-
tomic, proteomic), a subgraph is retrieved by identifying disease-associated proteins and their h-hop neighbors.
Then finit(·) proposes initial targets, refined by a reinforcement-guided graph generator π(·) supervised by a
pretrained graph foundation model g(·). The final subgraph, G†, combined with the query, is passed to a
second-stage LLM ffinal(·) for target prediction. The full pipeline enables explainable, patient-specific reason-
ing grounded in molecular biology and CRISPR evidence.

based graph generator π(·) that incrementally constructs the explainable subgraph G†
n under the

guidance of a pretrained graph classifier g(·) parameterized by θG, using step-wise biological plau-
sibility rewards; and (3) a final language model ffinal that refines the prediction by reasoning over
both the initial output and the generated subgraph context. The subgraph G†

n serves as a transparent
rationale, offering deeper insights into the disease mechanism.

4 GALAX

4.1 FOUNDATION MODELS PRETRAINING

LLM Pretraining We pretrain a large language model, denoted as f pre
L with parameters θpre

L , using
curated text corpora. The input data comprises omic entity descriptions T , disease annotations S,
protein–protein interactions E(PPI), and disease–target relationships E(DTI). As illustrated in Figure 5,
this pretraining phase equips the model with foundational knowledge of biomedical terminology and
relational structure (see Appendix C.1), thereby enhancing its capacity for downstream reasoning in
biomedical tasks. Then we will continue pretraining the language model finit parameterized by θinit,
which are detailed in Appendix C.2.

Graph Foundation Model Pretraining We pretrain the graph encoder θpre
G via a two-stage

pipeline (see Figure2). In stage one, a unified graph–language model f pre
G is trained over node

attributes X (0), textual features T , and edge set E , with protein–protein interaction edges stochasti-
cally masked as Emask ∼ Bernoulli(p), p < 1. The resulting representation is

Hpre = f pre
G (X (0), T , E , Emask) (2)

, where Hpre ∈ RN(0)×M×d(pre)
encodes contextualized entity states. In details, we generate edge

mask Emask ∼ Bernoulli(p), where p < 1 is the ratio of the masked edges for E(PPI) to mask out the
signaling flows in protein-protein interactions. Then, we apply internal message propagation with

Hpre
in = GNNpre

in (ENCpre
cross(X (0), T ), E(in)) (3)

, where ENCpre
cross is a cross-modal encoder to align textual and omic features and Hpre

in ∈
RN(0)×M×d(in)

. The first-stage pretraining captures gene regulatory patterns by performing masked
global message passing over E(PPI) by

Hpre = GNNpre
PPI(H

pre
in , E

(PPI), Emask) (4)

In the second stage, downstream model fG is initialized with pretrained parameters θpre
G and is used

to predict disease types from multi-omic inputs. The predicted class for each sample is given by:

Ŷ(0) = argmax
o∈O

Softmax
[
MLPG

(
fG(X (0), T , E ; θpre

G )
)]

(5)
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, where O denotes the set of disease types, and fG consists of the same architecture as ENCcross,
GNNin, and GNNPPI. The model is trained to minimize the cross-entropy loss between the predicted
probability distribution by Softmax[MLPG(fG(·))] and the ground-truth label. The pretrained graph
foundation model fG serves as a structural proxy to guide step-wise reasoning in downstream tasks.

4.2 MODEL TRAINING

The pipeline of model couples initial answering, a reinforcement-guided subgraph generator, and fi-
nal answering. Given the structured prompt P (init)

n from query Qn, the pretrained model finit outputs
A

(init)
n and a biomedical named entity recognition (NER) ϕ extracts entities R(init)

n and maps them to
proteins V(init)

n , which will contribute to forming the start set V(start)
n depending on situation. Node

features are embedded by pretrained graph foundation model to obtain Hin and formedX(cand)
n . Sub-

graph construction is framed as reinforcement learning problem consisting of four elements: state
G(i)
n = (V(i)

n , E(i)
n ); action ∆

(i)
n = (visrc, v

i
tgt) adds a single edge under feasibility masks; policy

uses a message propagation (MSG) module to produce X(i)
n = πMSG(G(i)

n , X
(cand)
n ) and two masked

probability function πSRC, πTGT to sample visrc and vitgt; reward combines feedback from a pretrained
classifier g(·), a rollout averaging L simulated continuations, and a rule-based term Rrule that penal-
izes schema violations. We accept an action e only when R(i)

total > 0 and update the generator with
reward-weighted cross-entropy with early stopping; the best subgraph G†

n is retained in Ω stochastic
run. For final answering, G†

n is verbalized in expert mode (Fatemi et al., 2023) and appended to
Qn to form P

(final)
n ; the model ffinal is finetuned with token-level cross-entropy against An. What

follows is a detailed exposition of the model design and training framework.

Initial Answering With the pretrained language model finit based on fL, parameterized by θinit,
the input to the model is a structured prompt P (init)

n derived from the original query Qn, specificially
for turning G(sub)

n into a graph expert format (see Appendix C.2 for details), and it will output
A

(init)
n . Afterwards, an NER function, ϕ, is applied to extract biomedical entities from A

(init)
n by

R
(init)
n = ϕ(A

(init)
n ), where R(init)

n = {r(init)
n,1 , r

(init)
n,2 , . . . , r

(init)
n,α }. And which are then mapped to

corresponding protein nodes, V(init)
n = {v(p)n,init,1, v

(p)
n,init,2, · · · , v

(p)
n,init,α′}.

Process Reward Graph Generator The initial node set V(start)
n is selected based on a predefined

priority: if the disease-related protein set V(p)
n is available, the top η most relevant entities are used;

if not, the top η entities from the initialization set V(init)
n are selected. If both are unavailable, η nodes

are randomly sampled from the omic-derived set V(omic)
n . Formally,

V(start)
n =


Top-η(V(p)

n ), if V(p)
n ̸= ∅

Top-η(V(init)
n ), else if V(init)

n ̸= ∅
Sample-η(V(omic)

n ), otherwise

(6)

The candidate set was generated based on V(cand)
n = V(init)

n ∪ V(sub)
n ∪ V(omic)

n and V(start)
n ⊂ V(cand)

n .
And the features of X are precomputed using a graph encoder f pre

G with parameters θpre
G , followed

by pretrained modules ENCcross and GNNin with parameters θG
cross and θG

in, respectively:

Hin = GNNin

(
ENCcross

(
f pre

G (X , T , E ; θpre
G ), T ; θG

cross

)
, E(in); θG

in

)
∈ RN×M×d(in)

(7)

The candidate node features X (cand)
n are selected from the precomputed representation Hin. Then

we introduce a reinforcement-guided graph generator, denoted as π(·), where the policy operates
over sample-specific graph states and candidate sets, enabling personalized subgraph construction.
At step i, the current graph state is defined as G(i)

n = {V(i)
n , E(i)

n } after applying the action of
constructing edge (visrc, v

i
tgt). The next graph state G(i+1)

n is formed by adding an edge between a
sampled source node visrc and target node vitgt. To compute the probabilities of selecting these nodes,

we embed the node features from G(i)
n together with the candidate features X (cand)

n as:

X(i)
n = πMSG(G(i)

n , X (cand)
n ) (8)

6
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, where πMSG consists of a message propagation (MSG) module and a feature selection mecha-
nism that extracts node embeddings corresponding to V(i)

n from the propagated features. Based on
embeddings, the source and target nodes are sampled according to the generated probabilities with

visrc ∼ πSRC(X
(i)
n ,MSRC); vitgt ∼ πTGT(X

(i)
n ,MTGT; v

i
src) (9)

, where πSRC and πTGT are returned with probability implemented via MLPs and softmax by masking
MSRC and MTGT, which restrict source selection to nodes in G(i)

n and exclude the source when
selecting the target. Based on the probability, nodes visrc and vitgt will be selected by the sampling

function. The selected node pair then forms the updated graph state G(i+1)
n for next step.

Reinforcement-Guided Reward and Training To guide the graph generation process, we define
a rollout-based reward function that combines immediate classifier feedback with future trajectory
simulation. At generation step i, the intermediate graph is represented as G(i+1)

n = {V(i+1)
n , E(i+1)

n }
after applying the action of constructing edge (visrc, v

i
tgt). We define g(·) as a pretrained graph classi-

fier that computes class probabilities by applying a GNN encoder GNNG
PPI followed by a projection

head MLPG, formally expressed as g(·) = Softmax
[
MLPG

(
GNNG

PPI(·)
)]

. The model is parameter-
ized by pretrained weights θG

PPI and θG
MLP, and outputs a probability distribution over classes in O.

Let o⋆ ∈ O denote the target class. The reward R(i)
n for step i is defined as:

R(i)
n = go⋆(G(i+1)

n )− 1

|O|
+ λ · 1

L

L∑
ℓ=1

[
go⋆(Rolloutℓ(G(i+1)

n ))− 1

|O|

]
(10)

Here, go⋆(G) refers to the probability assigned to the target class o⋆, and Rolloutℓ(·) simulates the
ℓ-th full trajectory by continuing generation from the current partial graph using the current policy.
The hyperparameter λ balances intermediate and future rollout-based feedback. To ensure reasoning
aligning with biological plausibility, we incorporate a rule-based reward term Rrule(G(i+1)

n ) that
penalizes invalid edges according to relations from BioMedGraphica. The final reward is:

R(i)
total = R(i)

n + λrule · Rrule(G(i+1)
n ) (11)

This formulation guides the generation process toward subgraphs that are both predictive of the tar-
get class and consistent with domain-specific biological priors. And we used the greedy acceptance
where if R(i)

total > 0, set G(i+1) as current state; otherwise keep the previous state. Then in each step
i, the model will be trained with loss function,

Lstep = −R(i)
total[CE(visrc, πSRC(X

(i)
n ,MSRC)) + CE(vitgt, πTGT(X

(i)
n ,MTGT; v

i
src))] (12)

, where the generator is optimized with reward-weighted cross-entropy (CE) function. In practice,
we sample multiple candidate subgraphs under the policy parameterized by θπ across multiple runs
Ω, and select the optimal subgraph G†

n.

Final Answer Generation with Prompt Tuning The optimal subgraph G†
n is converted into a

structured textual description via expert mode (see details in Appendix D.1), which will be appended
to original queryQn to form final graph-augmented promptP (final)

n . With language model ffinal based
on pretrained finit, it generates the output sequence Ân = {ân,1, ân,2, . . . , ân,J′} according to:

ξθfinal(Ân | Qn,G†
n) =

J′∏
j=1

ξθfinal(ân,j | ân,<j , P
(final)
n ) (13)

To align the model output with the refined ground-truth answer An, which contains the top γ
CRISPR-prioritized gene targets for sample n, we finetune the model by:

Lfinal = −
N∑

n=1

J′∑
j=1

log ξθfinal(an,j | an,<j , P
(final)
n ) (14)

This objective encourages the model to internalize the structured reasoning encoded in G†
n to gener-

ate biologically grounded answers. After generation, an NER function ϕ will extract entities from
the model’s output Ân with R̂n = ϕ(Ân) = {r̂n,1, r̂n,2, . . . , r̂n,β}. These predicted protein targets
are used for evaluating biological relevance and overlap within reference targets in An.

7
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5 EXPERIMENTS

Datasets We construct the Target-QA dataset over multiple TCGA cancer types using DepMap, in-
tegrating multi-omic features (epigenomic, genomic, transcriptomic, proteomic) and metadata from
cancer cell lines. Each QA pair consists of an input query, including multi-omic and cell line infor-
mation, and an output answer comprising the top-γ (γ = 100) CRISPR-prioritized targets. The final
dataset contains 363 QA pairs from cancerous cell lines after integration and preprocessing. We use
an 80/20 train-test split and repeat experiments across four randomized seeds to ensure stability and
generalization. For foundation model pretraining, we collect dataset of 336 samples with multi-omic
features from unannotated samples, including both disease and control groups (297 cancerous, 39
non-cancerous), and apply stratified sampling to address class imbalance. Full data processing and
cohort composition are described in Appendix B.

Experimental Setup We initialize the language model with LLaMA3-8B-Instruct (Grattafiori
et al., 2024), pretrained on biomedical terminology and curated textual descriptions involv-
ing protein–protein and disease–protein relationships from BioMedGraphica to enhance domain-
specific vocabulary and biological context understanding (see Figure 5). For graph encoding,
we use BioBERT-v1.1 (Lee et al., 2020) for text embeddings and Graph Attention Networks
(GAT) (Veličković et al., 2017) to learn topological features from protein interaction graphs, incor-
porating random edge masking to improve robustness (see Figure 2 global message propagation).
The pretrained GNN achieves 64.4% AUC in edge prediction, and 99.46% / 96.15% accuracy on
disease type classification (train/test). Named entities are extracted using GPT-4o-mini via ChatGPT
API (Hurst et al., 2024).GALAX is trained using the Adam optimizer on two NVIDIA H100 GPUs
(80GB). We set the number of top omic features per modality to K=10, the maximum subgraph
rollout depth to L=5, and the number of candidate starting nodes η=20. The reward formulation
includes both rollout- and rule-based components, each weighted equally with λ=1 and λrule=1.
The reasoning task is formulated as a binary classification problem (|O|=2), using a 1-hop (h=1)
protein neighborhood from the disease-annotated subgraph. Model outputs are evaluated using pre-
cision, recall, F1-score, Jaccard similarity, Hit@5 and Hit@10, by comparing predicted target sets
R̂n against reference labels Rn. Additional details are provided in the Appendix D.2.

Table 1: Performance of models across datasets and metrics
Overall LUAD BRCA

Model Precision ↑ Recall ↑ Precision ↑ Recall ↑ Precision ↑ Recall ↑
M2T 0.0016 0.0011 0.0020 0.0014 0.0000 0.0000
GAT 0.0006±0.0000 0.0006±0.0000 0.0000±0.0000 0.0000±0.0000 0.0033±0.0000 0.0033±0.0000

L3 + Omics 0.0071±0.0032 0.0013±0.0002 0.0079±0.0137 0.0005±0.0008 0.0020±0.0035 0.0017±0.0029

L3 + Omics + KG 0.0125±0.0032 0.0029±0.0003 0.0014±0.0025 0.0010±0.0016 0.0073±0.0068 0.0033±0.0029

L3-FT(Med) + Omics 0.0179±0.0045 0.0133±0.0064 0.0091±0.0018 0.0105±0.0044 0.0110±0.0086 0.0106±0.0075

L3-FT(Med) + Omics + KG 0.0158±0.0030 0.0058±0.0011 0.0081±0.0071 0.0024±0.0016 0.0149±0.0057 0.0050±0.0000

L3-FT(QA) + Omics 0.5250±0.0282 0.4959±0.0435 0.5201±0.0408 0.4905±0.0532 0.5074±0.0498 0.4856±0.0570

L3-FT(QA) + Omics + KG 0.5185±0.0240 0.4908±0.0402 0.5214±0.0242 0.4952±0.0432 0.4856±0.0395 0.4656±0.0436

G-Retriever + pre-GAT 0.4763±0.0004 0.3929±0.0063 0.4642±0.0181 0.3881±0.0264 0.4414±0.0099 0.3772±0.0010

RoG 0.5248±0.0134 0.4726±0.0445 0.5213±0.0227 0.4562±0.0848 0.4791±0.0575 0.4311±0.0721

SubgraphRAG 0.5280±0.0044 0.4617±0.0027 0.5123±0.0105 0.4448±0.0386 0.4708±0.0317 0.3917±0.0376

GNN-RAG 0.5258±0.0126 0.4735±0.0190 0.5334±0.0225 0.5052±0.0170 0.4787±0.0453 0.4389±0.0584

GALAX 0.5472±0.0053 0.5332±0.0031 0.5345±0.0185 0.5157±0.0043 0.5608±0.0031 0.5533±0.0033

GALAX (Qwen2.5-7B) 0.5445±0.0114 0.5405±0.0101 0.5475±0.0019 0.5462±0.0111 0.5171±0.0474 0.5206±0.0419

Table 2: Hit@10 and Hit@5 for models across datasets
Overall LUAD BRCA

Model Hit@10 ↑ Hit@5 ↑ Hit@10 ↑ Hit@5 ↑ Hit@10 ↑ Hit@5 ↑
M2T 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0021±0.0037 0.0032±0.0055 0.0048±0.0082 0.0095±0.0165 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0122±0.0033 0.0085±0.0037 0.0000±0.0000 0.0000±0.0000 0.0056±0.0096 0.0111±0.0192

L3-FT(Med) + Omics 0.0122±0.0072 0.0116±0.0097 0.0000±0.0000 0.0000±0.0000 0.0111±0.0192 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0132±0.0040 0.0106±0.0048 0.0048±0.0082 0.0095±0.0165 0.0111±0.0192 0.0000±0.0000

L3-FT(QA) + Omics 0.8693±0.0157 0.8889±0.0168 0.8667±0.0218 0.8476±0.0165 0.8389±0.0096 0.8889±0.0509

L3-FT(QA) + Omics + KG 0.8529±0.0153 0.8794±0.0114 0.8048±0.0541 0.7905±0.0436 0.8222±0.0347 0.8778±0.0192

G-Retriever + pre-GAT 0.8550±0.0046 0.8804±0.0037 0.8524±0.0165 0.8857±0.0000 0.8667±0.0000 0.8667±0.0000

RoG 0.8450±0.0350 0.8593±0.0318 0.8238±0.0218 0.8095±0.0436 0.7611±0.1110 0.7667±0.0577

SubgraphRAG 0.8476±0.0167 0.8624±0.0120 0.8238±0.0082 0.8190±0.0165 0.7333±0.1014 0.7556±0.0839

GNN-RAG 0.8323±0.0205 0.8656±0.0302 0.7571±0.0623 0.7905±0.0719 0.8222±0.0674 0.8444±0.0385

GALAX 0.8815±0.0033 0.9249±0.0048 0.8810±0.0082 0.9238±0.0436 0.8500±0.0441 0.8889±0.0839

GALAX (Qwen2.5-7B) 0.8841±0.0126 0.9079±0.0084 0.8667±0.0082 0.9048±0.0165 0.8000±0.0764 0.8556±0.0385

Baseline Models Traditional method, M2T (Multiomic2Target(Deng et al., 2024)), serves as a
baseline that uses only multi-omic features without graph or language modeling and performs poorly
across all metrics. And we perform ablation studies to isolate the contribution of core compo-
nents of language and graph modules in GALAX. On the language axis, a non–task-tuned LLaMA3
(L3+Omics) is weak; domain-adaptive finetuning on biomedical text (L3-FT(Med)+Omics) yields
modest gains; task-adaptive finetuning on Target-QA (L3-FT(QA)+Omics) produces the step-
change. On the graph axis, GAT incorporates graph foundation model and trained to predict the
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(a) (b) (c)

Figure 4: Model performance and analysis. (a) Overall performance across metrics. (b) LUAD (ACH-
000860): cancer-relevant subgraph highlighting disease-associated nodes (purple) and enrichment-supported
edges (orange). (c) Enrichment analysis: top pathway and disease terms with p-values and gene counts.

CRISPR knockout effects, shows limited improvements. Furthermore, integrating graph modules
into language models comes with different outputs. Adding a static KG to each language foun-
dation models ([L3 / L3-FT(Med) / L3-FT(QA)]+Omics+KG) barely improve or even decrease
model performances, and graph retrieval with pretrained GAT (G-Retriever+pre-GAT) outper-
form some task-adaptive finetuned language models but not reliably due to the difficulty of ex-
tracting relevant subgraphs from millions of nodes/edges. RoG, SubgraphRAG (Li et al., 2024),
and GNN-RAG (Mavromatis & Karypis, 2025) augment the language model by retrieving optimal
paths, achieving moderate improvements over L3-FT(QA)+Omics+KG. Reinforcement-guided sub-
graph construction on top of QA-tuned language (GALAX: L3-FT(QA)+Omics+KG+RL) delivers
consistent, cross-dataset gains of roughly 2%-5% on each metric, indicating that a reinforcement-
guided subgraph generator outperforms other graph augmented models across all datasets by en-
abling process-level reasoning over biologically plausible subgraphs (shown in Tables 1–2). Details
of baseline models are provided in Appendix D.3.

Model Training & Inference
L3-FT(QA)+Omics O(κ)
L3-FT(QA)+Omics+KG O(κ+M2)
SubgraphRAG O(κ+M2ε)
G-retriever+preGAT O(κ+Mε+M2ε)
RoG O(κ+Mε+M2ε)
GNN-RAG O(κ+Mε+M2ε)
GALAX O(κ+Mε+M2ε)

Table 3: Complexity comparisons

Computational Complexity We denote the language
model complexity by O(κ). The retrieved KG sub-
graph includes M nodes, and ε denotes the graph em-
bedding cost. When augmented with KG retrieval, L3-
FT(QA)+Omics+KG introduces an additional O(M2) per
query, yielding O(κ+M2) for both training and inference.
G-retriever+preGAT embeds all M nodes and thus incurs
O(Mε+M2ε). RoG and GNN-RAG follow the same cost
at retrieval, since they embed entities and relations, requir-
ing O(Mε + M2ε). SubgraphRAG reduces this by retrieving only relation triplets, which costs
O(M2ε) at retrieval. And G-retreiver. RoG, GNN-RAG and SubgraphRAG all requires an O(κ)
at both training and inference for language models. GALAX augments the language model with
reinforcement-guided subgraph construction, with embedding cost O(Mε +M2ε). The model re-
quires anO(κ) forward pass to initialize the top η candidates and another for final answer generation;
since η ≪ M , the graph-embedding term dominates the RL reward cost. Overall, the training and
inference complexity of GALAX is therefore O(κ+Mε+M2ε) (see Table 3).

Main Results Tables 1–2 summarize the performance of GALAX and several competitive base-
lines on the full test dataset. GALAX outperforms all baselines on every metric, reaching an overall
precision of 0.5472 and recall of 0.5332. To further assess target prioritization quality, we report
Hit@10 and Hit@5 in Table 2, where GALAX again achieves the highest accuracy with an overall
Hit@10 of 0.8815 and Hit@5 of 0.9249. We also replaced the backbone with Qwen2.5–7B–Instruct
and observed similar performances on all metrics, indicating that GALAX maintains stable perfor-
mance under backbone changes (See Appendix D.4 for full experiment results). We further tested
generalization by forming three holdout sets in which the selected TCGA cancer types were excluded
from training and treated as unseen during evaluation. Across all holdout sets, GALAX showed only
modest performance declines, indicating that it preserves strong accuracy and generalizes reliably
to previously unseen cancer types (Details are provided in Appendix D.5). Beyond Target-QA, we
evaluate GALAX on the pediatric cancer dataset from PedDep (Dharia et al., 2021), which offers
multi-omic profiles and CRISPR-based targets for 31 tumor cell lines, using zero-shot inference due
to its small sample size. Even under this setting, GALAX surpasses all baselines on all metrics,
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Table 4: Overall performances for ablation studies on omic inputs and KG structure
Config Setting Recall ↑ Precision ↑ Hit@5 ↑ Hit@10 ↑
GALAX
E20 Drop 20% edges 0.5061±0.0268 0.5362±0.0059 0.9005±0.0128 0.8741±0.0060

E40 Drop 40% edges 0.2871±0.0060 0.5079±0.0039 0.8762±0.0138 0.8471±0.0090

E60 Drop 60% edges 0.2753±0.0020 0.4961±0.0059 0.8635±0.0084 0.8307±0.0033

E80 Drop 80% edges 0.2775±0.0134 0.4943±0.0177 0.8434±0.0524 0.8185±0.0494

N20 Drop 20% nodes 0.2697±0.0013 0.5034±0.0014 0.8786±0.0070 0.8560±0.0092

N40 Drop 40% nodes 0.2675±0.0033 0.4901±0.0035 0.8878±0.0066 0.8503±0.0048

N60 Drop 60% nodes 0.2617±0.0056 0.4929±0.0045 0.8698±0.0290 0.8385±0.0247

N80 Drop 80% nodes 0.2653±0.0032 0.4825±0.0090 0.8341±0.0105 0.8103±0.0134

Omic-M Remove epigenomic data 0.4810±0.0137 0.5163±0.0086 0.8857±0.0145 0.8614±0.0115

Omic-G Remove genomic data 0.3121±0.0052 0.4277±0.0056 0.8550±0.0037 0.8402±0.0033

Omic-T Remove transcriptomic data 0.3377±0.0016 0.4065±0.0042 0.8720±0.0037 0.8672±0.0037

Omic-P Remove proteomic data 0.3347±0.0013 0.3980±0.0058 0.8540±0.0138 0.8466±0.0040

Omic-All Remove all omics 0.3024±0.0032 0.3793±0.0019 0.8237±0.0066 0.7967±0.0040

GALAX Original 0.5332±0.0031 0.5472±0.0053 0.9249±0.0048 0.8815±0.0033

L3-FT(QA) + Omic + KG
E20 Drop 20% edges 0.4599±0.0820 0.5214±0.0036 0.8587±0.0157 0.8373±0.0258

E40 Drop 40% edges 0.2742±0.0090 0.5064±0.0099 0.8429±0.0173 0.8226±0.0169

E60 Drop 60% edges 0.2676±0.0062 0.4991±0.0099 0.8296±0.0305 0.8111±0.0175

E80 Drop 80% edges 0.2611±0.0074 0.4880±0.0086 0.8254±0.0361 0.8063±0.0370

N20 Drop 20% nodes 0.2662±0.0059 0.4916±0.0024 0.8434±0.0186 0.8222±0.0193

N40 Drop 40% nodes 0.2658±0.0049 0.4838±0.0169 0.8709±0.0422 0.8339±0.0335

N60 Drop 60% nodes 0.2648±0.0000 0.4742±0.0150 0.7857±0.0247 0.7690±0.0303

N80 Drop 80% nodes 0.2689±0.0042 0.4722±0.0063 0.7111±0.0055 0.6974±0.0111

Omic-M Remove epigenomic data 0.4602±0.0361 0.4878±0.0256 0.8794±0.0055 0.8466±0.0142

Omic-G Remove genomic data 0.3213±0.0047 0.3962±0.0093 0.8455±0.0073 0.8349±0.0136

Omic-T Remove transcriptomic data 0.3244±0.0034 0.3996±0.0087 0.8550±0.0073 0.8381±0.0097

Omic-P Remove proteomic data 0.3266±0.0012 0.3872±0.0032 0.8497±0.0048 0.8265±0.0056

Omic-All Remove all omics 0.2669±0.0075 0.3577±0.0093 0.7830±0.0182 0.7538±0.0174

L3-FT(QA)+Omic+KG Original 0.4908±0.0402 0.5185±0.0240 0.8794±0.0114 0.8529±0.0153

showing strong transfer to external dataset (Details are provided in Appendix D.6). Figure 4b-c
illustrates the explainable subgraph generated for the lung cancer cell line ACH-000860. To further
validate the biological relevance of the extracted subgraph, we performed functional enrichment
analysis. The results reveal significant enrichment in cancer-associated signaling pathways, includ-
ing the cancer pathway WP5434 and EGFR-related receptor signaling pathways such as WP138 and
WP3680, as cataloged in WikiPathways (Agrawal et al., 2024). Notably, EGFR a well-established
therapeutic target in NSCLC (Steuer & Ramalingam, 2015) appears in five enriched terms, together
with PTK2 and WNT16 which are known to regulate invasion, epithelial mesenchymal transition,
and therapeutic resistance (Tong et al., 2019; Sun et al., 2012). The observed pathway enrichment
provides strong biological support for the relevance of the selected targets in lung cancer. Additional
disease enrichment using the GAD DISEASE database further supports this conclusion (Sherman
et al., 2022), with lung cancer identified as the top associated disease term with a p value of 0.0022,
involving GSTM3, APAF1, NOD2, MLLT3, GC and EGFR. Full enrichment details across all can-
cer types are included in the Appendix E.1. In addition, human and LLM evaluation results in
Appendix E.2 show that most generated subgraphs are biologically plausible.

Ablation Studies As shown in Table 4, we evaluated GALAX under systematic perturbations to
omic inputs and KG structure. The KG provides both the guidance for graph generation and the re-
trieved subgraphs that supply biological context to the language model, so removing portions of the
KG naturally reduces overall performance. Under KG deletions, GALAX remained stronger than
the baseline across all edge-removal levels because node attributes and pretrained GNN embeddings
enabled the model to assemble meaningful subnetworks from sparse structure. Node deletion was
more destructive since removing 20% of nodes removed about 35% of edges, but GALAX main-
tained more stable Hit@5 and Hit@10 scores than the baseline across all deletion levels. Removing
epigenomic data produced the smallest decline due to methylation saturation, while removing ge-
nomic, transcriptomic, or proteomic signals caused larger drops, yet GALAX still outperformed the
L3-FT(QA)+Omic+KG baseline even when all omics were removed. Overall, these findings show
that GALAX generalizes well under shifts in omic distributions and reduced KG connectivity.

6 CONCLUSION

We present GALAX, a graph-augmented language model that unifies numerical multi-omic ev-
idence, literature-scale textual information, and stepwise graph construction under reinforcement
learning with biologically grounded supervision through a Graph Process Reward Model (GRPM),
which scores intermediate subgraphs for biological plausibility and cancer relevance and guides the
system to generate patient-specific mechanistic subgraph for target prioritization without explicit
labels. To facilitate evaluation, we introduce Target-QA, a benchmark combining multi-omic data,
CRISPR outcomes, and graph knowledge for target discovery. GALAX consistently outperforms
baseline models on this dataset.
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This dataset is derived from the Broad Institute’s Cancer Dependency Map (DepMap1) and will be
released strictly for non-commercial, internal research and academic use, consistent with DepMap’s
Terms of Use. We do not redistribute original DepMap files; instead, we provide derived, non-
identifiable annotations and processing scripts/pointers so users can obtain the source data di-
rectly from DepMap after accepting its terms. The dataset is not intended for clinical applications
and must not be used for any Commercial Use (e.g., direct sale, incorporation into a product, or
training/developing/enhancing ML/AI models beyond internal academic research). Users agree to
acknowledge DepMap and the Broad Institute using the acknowledgement wording specified by
DepMap, and to respect any third-party rights that may attach to the underlying data. Users must
preserve confidentiality and refrain from any re-identification attempts. This statement summarizes
our compliance posture and does not constitute legal advice; users are responsible for ensuring their
own compliance with DepMap’s Terms and applicable policies.

REPRODUCIBILITY STATEMENT

We release the source code together with preprocessing pipelines, thereby enabling reproduction of
Target-QA datasets and reported experiments. The Target-QA2 and GALAX3 are publicly available
at Huggingface and GitHub.

ACKNOWLEDGMENTS

This research was partially supported by NLM 1R01LM013902-01A1.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Ayushi Agrawal, Hasan Balcı, Kristina Hanspers, Susan L Coort, Marvin Martens, Denise N Slenter,
Friederike Ehrhart, Daniela Digles, Andra Waagmeester, Isabel Wassink, et al. Wikipathways
2024: next generation pathway database. Nucleic acids research, 52(D1):D679–D689, 2024.

Ricard Argelaguet, Britta Velten, Damien Arnol, Sascha Dietrich, Thorsten Zenz, John C Marioni,
Florian Buettner, Wolfgang Huber, and Oliver Stegle. Multi-omics factor analysis—a framework
for unsupervised integration of multi-omics data sets. Molecular systems biology, 14(6):e8124,
2018.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Francis Crick. Central dogma of molecular biology. Nature, 227(5258):561–563, 1970.

Joshua M Dempster, Jordan Rossen, Mariya Kazachkova, Joshua Pan, Guillaume Kugener, David E
Root, and Aviad Tsherniak. Extracting biological insights from the project achilles genome-scale
crispr screens in cancer cell lines. BioRxiv, pp. 720243, 2019.

Eden Z Deng, Giacomo B Marino, Daniel JB Clarke, Ido Diamant, Adam C Resnick, Weiping Ma,
Pei Wang, and Avi Ma’ayan. Multiomics2targets identifies targets from cancer cohorts profiled
with transcriptomics, proteomics, and phosphoproteomics. Cell Reports Methods, 4(8), 2024.

1https://depmap.org/portal/
2Hugging Face: https://huggingface.co/datasets/FuhaiLiAiLab/Target-QA
3GitHub: https://github.com/FuhaiLiAiLab/GALAX

11

https://depmap.org/portal/
https://huggingface.co/datasets/FuhaiLiAiLab/Target-QA
https://github.com/FuhaiLiAiLab/GALAX


Published as a conference paper at ICLR 2026

Neekesh V Dharia, Guillaume Kugener, Lillian M Guenther, Clare F Malone, Adam D Durbin,
Andrew L Hong, Thomas P Howard, Pratiti Bandopadhayay, Caroline S Wechsler, Iris Fung,
et al. A first-generation pediatric cancer dependency map. Nature genetics, 53(4):529–538, 2021.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560, 2023.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Yehudit Hasin, Marcus Seldin, and Aldons Lusis. Multi-omics approaches to disease. Genome
biology, 18(1):83, 2017.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering. Advances in Neural Information Processing Systems, 37:132876–132907,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley, Jason
Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human prefer-
ences. In International Conference on Machine Learning, pp. 17506–17533. PMLR, 2023.

Vessela N Kristensen, Ole Christian Lingjærde, Hege G Russnes, Hans Kristian M Vollan, Arnoldo
Frigessi, and Anne-Lise Børresen-Dale. Principles and methods of integrative genomic analyses
in cancer. Nature Reviews Cancer, 14(5):299–313, 2014.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jae-
woo Kang. Biobert: a pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics, 36(4):1234–1240, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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A THE USE OF LARGE LANGUAGE MODELS

We used ChatGPT-5 as a writing assistant. All LLM-suggested text was reviewed, fact-checked, and
edited by the authors, who take full responsibility for the final content. The LLM is not an author
and is not eligible for authorship under the ICLR Code of Ethics.

B DATASET

B.1 BIOMEDICAL TERMINOLGY CORPUS

DUXB short for double homeobox B is a protein 

coding gene located on Chromosome 16 from 

75693893 to 75701461. In details, double homeobox 

B has the NCBI Gene description with Predicted to 

enable DNA-binding transcription factor activity, RNA 

polymerase II-specific and RNA polymerase II 

transcription regulatory region sequence-specific DNA 

binding activity. Predicted to be involved in regulation 

of transcription by RNA polymerase II. Predicted to be 

active in nucleus. Aside from that, DUXB is related to 

the following genes: CPHXL2, CPHXL, TRIM43B, 

FAM186A, MBD3L3, DPRX, PRAMEF25, SMCHD1, 

MBD3L5, ARGFX, UNCX, DUXA, LRRC37A2, 

LRRC37A, DRGX, NOTO, LEUTX, KDM4E, ANHX, 

SDHD, CUX2, TIMM23, SHOX, GSC2, CRX, TIMM44, 

TIMM8A, LRRC37A3, NOBOX, …

Lung adenocarcinoma is a disease, which has been 

recorded in MONDO with MONDO Name lung 

adenocarcinoma and MONDO:0005061. It is also recorded 

in UMLS with UMLS ID C0152013. In details, the disease 

Lung adenocarcinoma has the MONDO description with: A 

carcinoma that arises from the lung and is characterized by 

the presence of malignant glandular epithelial cells. There is 

a male predilection with a male to female ratio of 2:1. 

Usually lung adenocarcinoma is asymptomatic and is 

identified through screening studies or as an incidental 

radiologic finding. If clinical symptoms are present, they 

include shortness of breath, cough, hemoptysis, chest pain, 

and fever. Tobacco smoke is a known risk factor. Mutations 

in KRAS, EGFR, BRAF, and ERBB2 genes are associated 

with this cancer. Aside from that, Lung adenocarcinoma is 

related to the following genes: TLR4, IPO5, …

…
…

…
…

Gene 

Description 
Disease 

Description 

𝒇𝐋
𝒑𝒓𝒆

(⋅)

Figure 5: Biomedical Corpus Composition. Pretraining LLM f pre
L (·) on biomedical terminology and struc-

tural patterns using protein-protein and disease-protein interactions.

Each entities or nodes in TOSG has the name and description about it with T = {Tname, Tdesc},
where |Tname| = |Tdesc| = M . And disease entity has has an associated name and textual descrip-
tion with S = {Sname, Sdesc} where |S| = M (S). In the Figure 5, we pretrained f pre

L with curated
text copora in BioMedGraphica4, where they provided the data collection and integration source
code. Following their processed descriptions, we incorporate G(PPI) and G(DTI) to enrich the corpus
by appending protein-protein (PPI) and disease-protein (DTI) interaction information as textual de-
scriptions after each protein and disease entity. For entities without known interactions, we assign
empty strings during corpus construction, resulting in the intermediate representations T and S. In
practice, we exclude these empty entities to derive the final input sets T ′ and S ′, where T ′ includes
42,224 protein descriptions and S ′ includes 22,340 disease descriptions (i.e., |T ′| = 42,224 and
|S ′| =M ′(S) = 22,340). This yields a combined corpus of 64,564 text samples for pretraining.

B.2 DEPMAP DATA PREPROCESSING

As shown in Figure 6a, after multi-omics integration in BioMedGraphica of DepMap cohort (see
Table 6) comprises N (0) (N (0) = 985) cell-line samples, which are organized into three datasets:
a pretraining set, Target-QA, and Drug-QA. Of these 985 samples, 336 samples lack disease/tcga-
code annotations or belong to non-cancerous samples, while 649 samples cancerous. Within the
annotated cancer set, 363 samples overlap with DepMap CRISPR multi-omic data. Since we would
like to utilize as many as samples for training GALAX, we set N = 363 as Target-QA, N (0) = 336

4https://huggingface.co/datasets/FuhaiLiAiLab/BioMedGraphica
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Figure 6: Dataset composition, feature landscape, and split statistics. (a) Block diagram of the corpus
partitioned by phenotype (non-cancerous vs. cancerous) and by task: pretraining pool (pink), Target-QA (blue),
and Drug-QA (yellow). Numbers within boxes denote sample counts; the dashed horizontal line marks the
train/test division and the dashed vertical line marks the non-cancerous/cancerous and non-annotated/annotated
boundaries. (b) Heatmap of standardized multi-omic features (top 5,000 most variance features) for Target-QA
samples. Rows are samples (annotated by TCGA cancer type); columns are features with top variances. The
colored sidebar encodes TCGA cancer types (legend at right). (c) Distribution of Target-QA samples by TCGA
code for train (blue) and test (red); totals shown in the inset (N = 363; train = 300 (82.6%), test = 63
(17.4%)).

Table 5: TCGA cancer type codes and their full names.

TCGA Code Full Name TCGA Code Full Name
Overall Average Overall Average MB Medulloblastoma
LUAD Lung Adenocarcinoma ALL Acute Lymphoblastic Leukemia
BRCA Breast Invasive Carcinoma LGG Brain Lower Grade Glioma
COAD/READ Colon/Rectum Adenocarcinoma NB Neuroblastoma
PAAD Pancreatic Adenocarcinoma MESO Mesothelioma
GBM Glioblastoma Multiforme LIHC Liver Hepatocellular Carcinoma
SARC Sarcoma LAML Acute Myeloid Leukemia
OV Ovarian Serous Cystadenocarcinoma DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
SKCM Skin Cutaneous Melanoma MM Multiple Myeloma
ESCA Esophageal Carcinoma KIRC Kidney Renal Clear Cell Carcinoma
SCLC Small Cell Lung Cancer THCA Thyroid Carcinoma
HNSC Head and Neck Squamous Cell Carcinoma BLCA Bladder Urothelial Carcinoma
LUSC Lung Squamous Cell Carcinoma UCEC Uterine Corpus Endometrial Carcinoma
STAD Stomach Adenocarcinoma PRAD Prostate Adenocarcinoma

as pretraining set. To pretrain the graph foundation model, f pre
G , fG, we consider |O| = 2 classes—

cancerous (297 samples) and non-cancerous (39 samples)—and perform an 80/20 random split,
yielding 269 training samples (238 cancerous, 31 non-cancerous) and 67 test samples (59 cancer-
ous, 8 non-cancerous). The raw omics feature matrices include promoter and gene modalitiesm(pm)

and m(g) (each with 86,238 entities), a transcript modality m(t) (412,039 transcript-level entities),
and a protein modality m(p) (121,419 protein-level entities). The promoter modality is represented
as a virtual node type in the graph encoder—entity-wise duplicates of genes whose omic values are
drawn from DepMap methylation. Together, these modalities yieldM = 834,809 omics entities (see
Table 7). The unified knowledge graph integrates protein–protein interactions (|E| = 27,087,971)
and disease–target associations (|E(PPI)| = 17,151,453). Every node in the Text-Omic Signaling
Graph (TOSG) carries text attributes T = {Tname, Tdesc} with |Tname| = |Tdesc| = M ; empty fields
are set to the empty string to preserve schema alignment. Hence, we construct the TOSG by link-
ing multi-omics features with biomedical relational knowledge using BioMedGraphica and pretrain
the graph encoder fpreG , fG (parameters θpreG , θG) with a masked-edge modeling objective that en-
courages recovery of held-out interactions from context, capturing implicit omic relationships and
signaling dependencies.
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Table 6: Descriptions and sources of raw data files used in this study

File Type File Name Download Site

Promoter feature CCLE RRBS TSS1kb 20181022.txt https://depmap.org/
portal/data_page/?tab=
allData

Gene feature OmicsCNGene.csv https://depmap.org/
portal/data_page/?tab=
allData

Transcript feature See footnote† https://depmap.org/
portal/data_page/?tab=
allData

Protein feature protein quant current normalized.csv https://depmap.org/
portal/data_page/?tab=
allData

CRISPR gene effect CRISPRGeneEffect.csv https://depmap.org/
portal/data_page/?tab=
allData

Cell line annotation Table S1 Sample Information.xlsx https://depmap.org/
portal/data_page/?tab=
allData

Cell line annotation cellosaurus.obo https://ftp.expasy.org/
databases/cellosaurus/
cellosaurus.obo

Cell line status cell-lines-in-Non-Cancerous.csv https://depmap.
org/portal/context/
Non-Cancerous

† Transcript file name: OmicsExpressionProteinCodingGenesTPMLogp1BatchCorrected.csv

Table 7: Summary of feature dimensions across omics and samples

Modality Raw Matrix Processed Matrix
Promoter 21,337 rows, 846 samples 86,238 entities, 985 samples
Gene 38,590 rows, 1,928 samples 86,238 entities, 985 samples
Transcript 19,138 rows, 1,672 samples 412,039 entities, 985 samples
Protein 12,755 rows, 378 samples 121,419 entities, 985 samples
Cell Line Annotation 1,019 samples 985 samples
Non-cancer Samples 137 samples 39 samples

B.3 TARGET-QA GENERATION

Based on the raw data provided from the DepMap CRISPR gene effect data with 1178 samples, we
get the overlapped 363 (N = 363) samples with the pretraining samples. And we do 80/20 train/test
split with 80/20 ratiofor 300 training samples and 63 test samples at random seeds. In total, we
collected test samples from LUAD (7 samples), BRCA (6 samples), COAD/READ (5 samples),
PAAD (4 samples), ESCA (3 samples), GBM (3 samples), OV (3 samples), SARC (3 samples),
SCLC (3 samples), SKCM (3 samples), HNSC (2 samples), LUSC (2 samples), STAD (2 samples),
etc. (see Figure 6C). Given that methylation values in DepMap have so many are 1 (full methylated
over the promoter region around the trasnscription start site), which means that many values are
ranked as top K (K=10), so we just omit the methylation (epigeonomic) values by only providing
geomic, transcriptomic and proteomic values. Afterwards, each QA sample is indexed by a unique
key corresponding to the cancer cell line, such as:

• ACH-000098: The identifier for a glioblastoma cancer cell line.

The corresponding JSON object contains the following fields:

• cell line name: Name of the cancer cell line (e.g., GAMG).

• sample dti index: Index for omics numpy data to be fetched.
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• disease: Name of the associated disease (e.g., glioblastoma).

• disease bmgc id: BioMedGraphica-Conn identifier of the disease (e.g.,
BMGC DS00965).

• input:
– top k gene, top k transcript, top k protein:

* hgnc symbols: List of gene/transcript/protein names.
* protein bmgc ids: Corresponding BioMedGraphica-Conn identifiers.
* protein llmname ids: Other synonymy names or IDs for corresponding

genes/transcripts/proteins.
– knowledge graph:

* disease protein: Includes bmgc ids, hgnc symbols, and indices for
disease-associated proteins.

* ppi neighbors: PPI-linked proteins with similar structure as above.
* protein relationships: Textual descriptions of biological interactions

(e.g., "BRCA1→ TP53").

• ground truth answer: Contains the validated target(s) used for evaluation:

– hgnc symbols: HGCN symbol names for CRISPR targets
– protein bmgc ids: Correpsonded CRISPR targets names for BioMedGraphica-

Conn names
– protein llmname ids: Other synonymy names or IDs

This hierarchical structure supports multi-modal reasoning by organizing omic features, biomedical
knowledge graphs, and ground-truth target labels, where the cell line name is denoted as cn, the
disease name as s′n, the top-ranked genes, transcripts, and proteins as X(K)

n , and the associated
knowledge graph as G(sub)

n .

C PRETRAINING OF FOUNDATION MODELS

C.1 LLM PRETRAINING ON BIOMEDICAL CORPUS

We pretrain a large language model, denoted as f pre
L with parameters θpre

L , using curated text corpora
from final input sets T ′ and S ′. Hence, by pretraining the Llama3-8B-Instruct for 3 epochs using
a per-device batch size of 16 and a gradient accumulation step of 8, resulting in an effective batch
size of 128. The optimizer was AdamW with a learning rate of 1e-5, no weight decay, and a
cosine learning rate schedule with a warm-up ratio of 10%. Gradient clipping was applied with
a maximum gradient norm of 1.0. To improve memory efficiency during training, we enabled
gradient checkpointing and utilized bf16 precision while disabling fp16. Training proceeded for
336 steps, with the loss decreasing from approximately 2.2 at the start to around 0.7 by the end (see
Figure 7).
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Figure 7: Pretraining language model loss on biomedical corpus
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Figure 8: Initial langugage answering training loss

C.2 LLM PRETRAINING ON TARGET-QA

We will supervise the language model using the refined answer An as the ground-truth label from
Target-QA with:

Linit = −
N∑

n=1

J∑
j=1

log ξθinit,θL(an,j | an,<j , P
(init)
n ) (15)

, where P (init)
n is the structured prompt as shown in Table 8. This objective enables the model to

refine its initial answering based on user-specific and naive graph information. In details, for each
sample cn, a question is constructed as Qn = {cn, s′n, X

(K)
n ,G(sub)

n }, which integrates the cell line
identifier, disease label, multi-omics features, and a knowledge subgraph specific to the sample
context. The corresponding answer An is a sentence that enumerates the top γ CRISPR-prioritized
gene targets for sample n, denoted asRn = {rn,1, rn,2, . . . , rn,γ}. Each data instance is represented
as a tuple Dn = (Qn, An), and the full dataset is given by D = {D1, D2, . . . , DN}. The input
to the model is a structured prompt P (init)

n derived from Qn, in which the knowledge subgraph
G(sub)
n is translated into a natural language format designed for expert-level graph reasoning. For

example, a subgraph G(sub)
n may contain nodes BRCA1, TP53, EGFR, MAPK1, AKT1, PIK3CA,

MTOR, PTEN, and CDK2, with observed interactions: BRCA1 → TP53, TP53 → EGFR,
EGFR → MAPK1, EGFR → AKT1, AKT1 → MTOR, PIK3CA → AKT1, PIK3CA → PTEN,
PTEN → MTOR, and MAPK1 → CDK2. This subgraph defines the molecular context for
reasoning about gene knockout effects in the cell line cn under disease condition s′n. We conduct
five independent finetuning trials using the constructed Target-QA dataset, each initialized with
a different random seed. The resulting training loss trajectories are shown in Figure 8. Among
these, the best-performing run (run 5) exhibits stable convergence, beginning with an initial loss
of approximately 1.3 and reaching a final loss of around 0.3. We select this run as the final model
checkpoint and designate it as our initial model finit, which serves as the foundation for downstream
reasoning and refined target prioritization.

For pretraining finit with parameterized θinit, we pretrain for 5 epochs with per-device batch
size 1 and gradient accumulation 2 (effective global batch size = 2 × GPUs), using AdamW
(adamw torch) with learning rate 1×10−5, cosine schedule with 10% warmup, and gradient clip-
ping at 0.5. We enable gradient checkpointing and bf16 (with fp16 disabled), run on 2×NVIDIA
H100 80GB with DeepSpeed ZeRO-3. Checkpointing and evaluation occur every 67 steps with up
to 5 checkpoints retained. Data loading uses 4 workers, pinned memory, no last-batch drop, and no
length grouping; we set seed= 42.

C.3 GRAPH FOUNDATION MODELS

Pretraining for Capturing the Edge Mechanism We pretrain a graph model, denoted as f pre
G

with parameters θpre
G , using pretraining samples from X (0). To effectively model graph-structured

biological relationships, we pretrain our model using a masked edge prediction objective com-
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Table 8: Prompt design for P (init)
n and expected output for initial protein target reasoning.

Section Content

Instruction Identify the 100 priority genes whose knockout causes the strongest negative
effect on the viability or proliferation of cell line cn in the context of disease
s′n, based on multi-omics and knowledge graph signals.

Input - Top 10 ranked genes with amplification from copy number data:
g
′(n)
1 , g

′(n)
2 , . . . , g

′(n)
K

- Top 10 ranked transcripts with high expression: t′(n)
1 , t

′(n)
2 , . . . , t

′(n)
K

- Top 10 ranked proteins from RPPA: p′(n)
1 , p

′(n)
2 , . . . , p

′(n)
K

- Disease-associated proteins from the knowledge graph: V(sub)
n

- Known protein–protein/disease–protein relationships: E(sub)
n

Output Based on the integrated multi-omics data and knowledge graph, I identified the
100 genes whose knockout is predicted to have the most severe negative impact
on the viability or proliferation of the cn cell line in s′n. The prioritized gene
list is as follows:

1. r(init)
n,1

2. r(init)
n,2

3. r(init)
n,3

. . .

These genes represent critical vulnerabilities for the given cell line under the
disease context.

bined with random walk-based graph sampling. The process starts by masking a small fraction
(p = 0.0001) of edges, allowing the model to infer missing interactions based on surrounding
omics and text-derived features. We adopt a GAT-based encoder with two layers, each consisting
of 8 hidden channels. Decoder layers use 4 channels. Both encoder and decoder modules apply
dropout at a rate of 0.2. The model supports optional batch normalization and uses a leaky relu
activation function. An internal encoder stack of up to 4 layers enables deeper relational mod-
eling. All architecture and training options are managed through a reproducible argparse
interface. Multimodal inputs include one omic feature and a text embedding of dimension 1,
initialized using BioBERT v1.1. The model optionally supports training of the text encoder via
train text. We use a pretraining batch size of 4 for omics data and 64 for text. The optimizer
is AdamW with a learning rate of 0.001, weight decay of 5×10−5, and gradient norm clipping at 1.0.

The pretrained model is evaluated using average loss, AUC, and average precision (AP) over valida-
tion batches. As shown in Figure 9, the model demonstrates progressive improvement across steps,
reaching a minimum batch loss of 0.140, peak AUC of 0.644, and peak AP of 0.619. These results
confirm that the model successfully learns meaningful edge semantics and multimodal associations
during pretraining. All training is conducted on a single NVIDIA H100 GPU (80GB).
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Figure 9: Pretraining loss to capture gene regulatory mechanism

Pretraining for Capturing the Cancerous Status Due to the severe class imbalance in the train-
ing set, we apply random oversampling to the minority class (non-cancerous) to balance the class
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Table 9: Refined prompt design for P (final)
n and output with graph context

Section Content

Instruction Based on initial LLM reasoning and the subsignaling gene regulatory net-
work identified by the subgraph generator, please identify the 100 priority
genes whose knockout causes the strongest negative effect on the viability
or proliferation of cell line cn in the context of disease s′n.

Input - Top 10 ranked genes with amplification from copy number data:
g
′(n)
1 , . . . , g

′(n)
K

- Top 10 ranked transcripts with high expression: t′(n)
1 , . . . , t

′(n)
K

- Top 10 ranked proteins from RPPA: p′(n)
1 , . . . , p

′(n)
K

- Disease-associated proteins from the biomedical knowledge graph: V(sub)
n

- Known protein–protein/disease–protein relationships: E(sub)
n

- Identified Subsignaling Gene Regulatory Network from Graph Generator
- Involved genes in best connected subgraph: V(conn)

n

- Inferred signaling cascade (edge text): E(sub)
n

Refined Reasoning Based on the integrated multi-omics data and knowledge graph, I identified
the 100 genes whose knockout is predicted to have the most severe negative
impact on the viability or proliferation of the cn cell line in s′n. The priori-
tized gene list is as follows:

1. r̂n,1

2. r̂n,2

3. r̂n,3

. . .

These genes represent critical vulnerabilities for the given cell line under
the disease context.

distribution during the pretraining of the graph encoder fG. We pretrained a Graph Attention Net-
work (GAT) model f pre

G with parameters θpre
G , and selected the best-performing checkpoint based on

test accuracy. The selected model achieved a training loss of 0.036, training accuracy of 99.46%,
and training F1 score of 0.996. On the test set, it obtained a loss of 0.370, accuracy of 96.15%, and
F1 score of 0.973, demonstrating strong generalization to both classes.

D EXPERIMENT DETAILS

D.1 PROMPT AND CONTEXT DESIGN FOR FINETUNING

Same as aforementioned prompt design shown in Table 8 , we construct the final-stage prompt
P (final)
n , which incorporates both the initial answering and the subgraph-based regulatory context, as

detailed in Table 9. We perform five additional finetuning trials using this refined prompt format.
The corresponding training are illustrated in Figure 10, where the best run (run 5) demonstrates
smooth convergence and is selected as the final model checkpoint ffinal for generating the ultimate
target predictions.

D.2 HYPERPARAMETERS

For finetuning, the model is trained for 5 epochs with a per-device batch size of 1 and a gradient
accumulation step of 2, resulting in an effective batch size of 2. We use the AdamW optimizer
(adamw torch) with a learning rate of 1 × 10−5, no weight decay, and cosine learning rate
scheduling with a 10% warm-up ratio. Gradient clipping is applied with a maximum gradient norm
of 0.5. To support memory efficiency and large model training, we enable gradient checkpointing
and use bf16 precision (with fp16 explicitly disabled). Training is accelerated using DeepSpeed
Stage 3 parallelism, configured via an external JSON file. All experiments are conducted using 2
NVIDIA H100 GPUs, each with 80GB of memory. The DeepSpeed configuration enables ZeRO
Stage 3 with both optimizer and parameter offloading to CPU, memory pinning, communication
overlap, and gradient contiguity. Key parameters include automatic tuning of reduce bucket sizes
and micro-batch size, sub-grouping disabled, and support for 16-bit weight gathering upon model
saving. Gradient accumulation steps, clipping, learning rate, weight decay, and total training steps
are all set to "auto" for adaptive scaling. Warmup is controlled via WarmupDecayLR, which
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adjusts the schedule based on total steps. Model checkpoints and evaluation are performed every
67 steps, with up to 5 checkpoints retained. Logging is performed at every step. For data loading,
we use 4 dataloader workers and retain all batches (i.e., drop last=False). Both the initial
answering finetuning and second stage finetuning for ffinal.

To generate high-quality and biologically reasonable subgraph explanations, we implement a
reinforcement-guided generator, denoted as π(·), which operates over sample-specific graph states
and candidate sets. To enhance robustness under noisy or unstable generation dynamics, we intro-
duce a retry-based mechanism that adaptively tunes key hyperparameters with multiple runs (Ψ = 6,
and ψ denotes the current number of runs), dynamically adjusting the configuration to encourage ex-
ploration and improve convergence. Specifically, the number of training epochs is reduced from 5
to a minimum of 2, promoting faster reinitialization. Simultaneously, the learning rate is increased
linearly from an initial value of 1× 10−3 to 0.001 · (1 + ψ) to escape local minima. The maximum
number of nodes per graph is reduced from 200 to 100 in steps of 25. The maximum number of
graph construction steps i per rollout is similarly reduced from 50 to 20 in steps of 5. The retry
mechanism enables efficient navigation of the search space while preserving biological plausibility
through domain-specific priors embedded in the reward formulation. To further study the effect of
sparse versus dense rewards, we vary the reward calculation frequency by introducing a step interval
parameter s. Specifically, when s = 2, we compute the reward only every 2 steps during graph
generation. Larger values of s produce sparser, more delayed reward signals, while smaller values
(approaching s = 1) provide denser, more immediate feedback. As shown in Table 10, GALAX
demonstrates consistent stability across all reward calculation intervals. Notably, performance im-
proves as rewards become denser (smaller s), with optimal results achieved at s = 1, the default
GALAX configuration. This trend indicates that the graph generator benefits most from immediate
biological feedback provided at each step by the graph process reward model. In contrast, less fre-
quent reward calculations (larger s) introduce noisier, longer-horizon estimates that dilute the signal
quality. Importantly, even under highly sparse reward conditions (e.g., s = 10), GALAX consis-
tently outperforms the baseline L3-FT(QA) + Omics + KG, demonstrating robustness to reward
sparsity.

Table 10: Ablation study on reward density controlled by step interval s
Reward Interval (s) Precision ↑ Recall ↑ F1 Score ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑

10 0.5312 ± 0.0044 0.5163 ± 0.0019 0.5232 ± 0.0031 0.3582 ± 0.0035 0.8996 ± 0.0050 0.8753 ± 0.0044
8 0.5347 ± 0.0062 0.5224 ± 0.0043 0.5284 ± 0.0054 0.3619 ± 0.0055 0.9063 ± 0.0079 0.8771 ± 0.0043
6 0.5398 ± 0.0051 0.5218 ± 0.0036 0.5316 ± 0.0044 0.3657 ± 0.0044 0.9024 ± 0.0079 0.8794 ± 0.0040
4 0.5389 ± 0.0054 0.5278 ± 0.0025 0.5302 ± 0.0041 0.3673 ± 0.0046 0.9137 ± 0.0056 0.8789 ± 0.0038
2 0.5463 ± 0.0057 0.5296 ± 0.0032 0.5384 ± 0.0040 0.3718 ± 0.0043 0.9218 ± 0.0048 0.8806 ± 0.0033

1 (GALAX) 0.5472 ± 0.0053 0.5332 ± 0.0031 0.5399 ± 0.0041 0.3726 ± 0.0037 0.9249 ± 0.0048 0.8815 ± 0.0033
L3-FT(QA) + Omics + KG 0.5185 ± 0.0240 0.4908 ± 0.0402 0.5038 ± 0.0327 0.3393 ± 0.0298 0.8794 ± 0.0114 0.8529 ± 0.0153

Furthermore, GALAX employs four RL components to collectively prevent reward hacking. First,
the frozen graph oncogenicity classifier (Graph) derives reward signals from a pre-trained, frozen
foundation model rather than a co-trained reward model, thereby eliminating co-evolution exploits.
Second, the schema-based rule term (Rules) validates each action against biomedical knowledge
graph ground truth to ensure that proposed edges conform to established biological constraints.
Third, the rollout-based future reward (Rollout) evaluates each action based on its long-term
consequences, preventing the generator from exploiting local reward irregularities or pursuing my-
opic gains. Fourth, stepwise quality gating (Gating) rejects actions yielding negative cumulative
reward, ensuring that only biologically valid steps—those satisfying both schema rules and onco-
genicity criteria—are retained. Together, these four components constitute a multi-faceted defense
against reward hacking. To validate this design, we conduct an ablation study by systematically
removing each component. As shown in Table 11, the robustness of GALAX does not stem from
any single component but rather from the interplay of all four mechanisms. The rollout and gating
modules help avoid short-sighted decisions and filter out invalid reasoning paths, while the graph
supervisor and schema rules provide the underlying constraints that encourage the model to gener-
ate biologically plausible subgraphs. Notably, removing either the graph supervisor or the schema
rules leads to consistent performance drops, suggesting that the frozen graph oncogenicity classifier
offers reliable biological guidance, and that the schema constraints effectively block structurally in-
correct actions. In sum, these mechanisms work collectively to push the generator toward producing
biologically plausible subgraphs rather than outputs that score well but lack plausibility, making our
RL considerably more robust than prior approaches.
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Table 11: Ablation study of reward components

Model Variant Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
L3-FT(QA) + Omics 0.5250±0.0282 0.4959±0.0435 0.5094±0.0365 0.3449±0.0338 0.8889±0.0168 0.8693±0.0157

L3-FT(QA) + Omics + KG 0.5185±0.0240 0.4908±0.0402 0.5038±0.0327 0.3393±0.0298 0.8794±0.0114 0.8529±0.0153

GALAX w/o Graph 0.5314±0.0045 0.5275±0.0077 0.5336±0.0053 0.3680±0.0043 0.9048±0.0084 0.8741±0.0056

GALAX w/o Rules 0.5305±0.0074 0.5154±0.0115 0.5221±0.0098 0.3570±0.0078 0.8974±0.0073 0.8746±0.0042

GALAX w/o Rollout 0.5362±0.0060 0.5196±0.0052 0.5271±0.0046 0.3628±0.0043 0.9067±0.0062 0.8769±0.0055

GALAX w/o Gating 0.5387±0.0050 0.5243±0.0042 0.5308±0.0024 0.3651±0.0032 0.9118±0.0056 0.8782±0.0046

GALAX (Full Model) 0.5472±0.0053 0.5332±0.0031 0.5399±0.0041 0.3726±0.0037 0.9249±0.0048 0.8815±0.0033
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Figure 10: Final langugage answering training loss

D.3 BASELINE MODELS

Multiomic2Target Multiomics2Target5 is a statistical and knowledge-based framework that inte-
grates transcriptomics, proteomics, and phosphoproteomics to identify cancer-specific therapeutic
targets. It leverages curated background knowledge databases and enrichment algorithms to com-
pare tumor profiles against normal tissues, aiming to highlight targets uniquely activated in cancer.
Specifically, the method filters out candidates that lack protein-level evidence or are not phosphory-
lated, and prioritizes those enriched in oncogenic pathways and subtype-specific signaling patterns.
The workflow accounts for tumor heterogeneity by enabling both subtype-level and patient-specific
analyses, thereby offering a safer and more context-aware target identification strategy. However,
as a non-learning-based baseline, Multiomics2Target relies purely on statistical associations, which
limits its precision in complex settings. As shown in the evaluation (see Figure 11), this method
demonstrates poor performance compared to other approaches, failing to accurately prioritize the
most effective targets. The model takes as input the cell line’s multi-omics features and outputs a
ranked report of candidate targets, but its statistical scoring alone is insufficient to capture deeper,
context-specific biological relevance.

GAT As a graph-based baseline, we adapt a Graph Attention Network (GAT) to assess the ef-
fect of gene knockouts using multi-omics data and CRISPR-derived gene effect scores. The input
graph represents a biological hierarchy, where nodes correspond to genes, transcripts, and proteins,
and edges capture central dogma relationships and known molecular interactions. For each gene
of interest, we simulate the perturbation process by masking the node corresponding to the gene
and recursively masking its downstream elements—namely its associated transcripts and translated
proteins—mimicking the transcriptional and translational disruptions observed during a real gene
knockout. This masked subgraph is then passed to the GAT model based on the pretrained model
f pre

G (parameterized by θpre
G ), which aggregates information from the unmasked neighborhood to

predict the impact of the knockout on cellular viability, matching the gene effect values from the
CRISPR dataset. This design allows us to evaluate how well the local subgraph structure and omics
context can recover the observed CRISPR perturbation effect. Although this method incorporates the
biological topology and omics signals through attention-weighted message passing, it lacks explicit
global reasoning for disease mechanism and has low performance on CRISPR target prediction.

5https://multiomics2targets.maayanlab.cloud/
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G-Retriever G-Retriever is a graph language framework that enables conversational interaction
with large, complex graphs enriched with textual node and edge attributes. It facilitates question
answering by aligning user queries in natural language with the underlying graph structure, re-
turning both textual responses and highlighted subgraph evidence. This setup is particularly use-
ful for scenarios where graph elements (e.g., proteins, drugs, phenotypes) are associated with rich
descriptions or biomedical annotations. In our implementation, we instantiate G-Retriever with
two pretrained components: (1) a language model finit that has been fine-tuned on domain-specific
question-answering tasks—specifically, CRISPR-target-related biomedical questions; (2) a graph
encoder based on a pretrained Graph Attention Network (GAT), denoted as f pre

G , parameterized by
θpre

G . The GAT is trained to encode signaling pathway graphs and capture topological and contex-
tual dependencies between biological entities such as genes, proteins, and molecular interactions.
This dual-modality initialization, textual reasoning via finit and structural embedding via f pre

G , al-
lows G-Retriever to support context-aware retrieval over large graphs that exceed the LLM’s con-
text window. Through this integration, the framework effectively aligns natural language queries
with underlying graph structures, enabling biologically grounded reasoning over complex networks.
While G-Retriever offers modest performance improvements over conventional GraphRAG base-
lines—particularly in terms of contextual relevance and retrieval accuracy—it remains limited in its
ability to construct biologically interpretable subgraphs with strong explanatory power. Specifically,
G-Retriever lacks a mechanism for enforcing structural coherence or pathway-level constraints,
which are essential for generating subgraphs with high fidelity to known signaling or regulatory
cascades. Consequently, its generated outputs often fall short of the domain-specific interpretability
and performance achieved by our proposed method, which integrates graph-aware reward signals
and multi-step reasoning for robust target identification.

Other Models RoG, SubgraphRAG, and GNN-RAG are evidence-subgraph-dependent methods
that share a common assumption: a small, clean, and reliable subgraph exists from which a retriever
module can be trained to provide reasoning paths to the LLM. However, this assumption breaks
down in large-scale biomedical knowledge graphs, which are inherently noisier and lack validated
reasoning paths. In the Target-QA setting, each question is paired with a one-hop disease–protein
subgraph and a one-hop PPI neighborhood extracted from BioMedGraphica. These subgraphs are
extremely noisy and large (containing thousands of nodes and edges), and lack ground-truth mecha-
nistic subgraphs, making supervised retrieval difficult. Specifically, RoG, SubgraphRAG, and GNN-
RAG require ground-truth reasoning paths for training. Since such annotations are unavailable in
our setting, we employ ChatGPT 5.1 to generate candidate reasoning paths relevant to the annotated
cell lines, incorporating disease context and multi-omic profiles. However, this GPT-derived super-
vision is inherently noisy and biologically incomplete, limiting retriever effectiveness. All baselines
use the fine-tuned Llama3-8B-Instruct as the backbone LLM.

D.4 RESULTS

We summarize detailed per-cohort results across various cancer types from TCGA in Figure 11
and Tables 16–43, demonstrating that GALAX achieves the highest performance across nearly all
evaluated metrics and cancer cohorts. M2T, serving as a baseline relying solely on multi-omics
data without any structured graph or language modeling, performs poorly, underscoring the neces-
sity of incorporating richer contextual information. Adding graph structure via a pretrained Graph
Attention Network (GAT) provides some improvements, albeit limited, indicating that static graph
representations alone are insufficient for capturing the complex biological interactions inherent in
the data. To further elucidate the value of incorporating language models, we evaluate multiple
LLaMA3 (L3) variants. Models that lack Target-specific finetuning, such as L3 combined only with
omics data (L3) or with additional knowledge graphs (L3 + KG), deliver suboptimal performance,
even with external knowledge enrichment. Biomedical-domain-specific finetuning (L3-FT(Med))
significantly enhances performance in identifying relevant targets, and integrating knowledge graphs
yields modest incremental improvements. Nonetheless, even the variant supervised by Target-QA
(L3-FT(QA) + KG) demonstrates limited additional benefit from knowledge graph integration, pri-
marily due to its inability to dynamically generate structured subgraphs tailored to the reasoning
task. The G-Retriever model, augmenting a pretrained graph attention network with retrieval mech-
anisms, achieves stronger performance compared to earlier baselines but remains limited by its ab-
sence of step-wise supervision and interpretability in biological reasoning. In contrast, GALAX
uniquely integrates a Target-QA finetuned large language model, a pretrained Graph Attention Net-
work, and a reinforcement learning-driven subgraph generator guided by a graph process reward
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Figure 11: Model performance plots over main Target-QA datasets

model. This sophisticated architecture facilitates interpretable and biologically informed reasoning
by dynamically generating structured subgraphs relevant to the biological context. Consequently,
GALAX significantly surpasses all baseline models, achieving state-of-the-art performance across
both overall average metrics and individual cancer cohort-specific evaluations.

D.5 GENERALIZATION TO UNSEEN CANCER TYPES

To assess how well GALAX generalizes across cancer types, we constructed three holdout sets
in which all cell lines under same TCGA codes were removed during training and used only for
evaluation (see Table 12). This design forces the model to generate CRISPR target predictions for
cancer types not observed during optimization, providing a direct measure of cross-cancer transfer
and robustness to unseen molecular contexts.

As expected, performance decreases when entire cancer types are held out, since no fine-tuning data
from those cancers is available. Nevertheless, the results in Table 13 show that GALAX maintains
stable performance across the three held-out cancer groups. Precision, recall, F1, and Jaccard values
remain consistent, with an average F1 of 0.4862 and Hit@10 above 0.85. While these scores are
lower than the full-data GALAX model, the gap is moderate, indicating that the model retains the
ability to infer relevant targets even when the TCGA code of the input cell line has never appeared
during training, as long as it has been well pretrained with sufficient samples. This demonstrates
that GALAX does not overfit to specific cancer labels and can transfer its reasoning across diverse
cell-line backgrounds, addressing concerns regarding generalization to new cancer types.

Table 12: Held-out cancer type fold assignments
Holdout Set Train Test Train/Test TCGA Codes Hold-out Cancer TCGA Codes

Holdout Set 1 238 (65.6%) 125 (34.4%) 20 / 10 COAD/READ, DLBC, KIRC, LCML, LUSC
PAAD, PRAD, SARC, SKCM, STAD

Holdout Set 2 289 (79.6%) 74 (20.4%) 21 / 9 BLCA, GBM, LAML, LGG, LIHC
MESO, MM, NB, UCEC

Holdout Set 3 220 (60.6%) 143 (39.4%) 21 / 9 ALL, BRCA, ESCA, HNSC, LUAD
MB, OV, SCLC, THCA
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Table 13: GALAX performance on unseen cancer types under held-out evaluation

Holdout Set Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
Holdout Set 1 0.4931 0.4501 0.4699 0.3100 0.9024 0.8688
Holdout Set 2 0.5124 0.5151 0.5123 0.3465 0.8703 0.8581
Holdout Set 3 0.4832 0.4715 0.4765 0.3161 0.8993 0.8448

Average 0.4962 0.4789 0.4862 0.3242 0.8907 0.8572

GALAX 0.5472±0.0053 0.5332±0.0031 0.5399±0.0041 0.3726±0.0037 0.9249±0.0048 0.8815±0.0033

D.6 EXTERNAL DATASETS

To examine generalization beyond Target-QA, we performed an external evaluation on the pediatric
cancer dataset from PedDep6, which contains CRISPR-based gene effect profiles and cell-line an-
notations for 31 pediatric cancer samples. The data were processed following the same steps as
Target-QA. Due to the limited sample size, we did not train or finetune on this dataset and instead
evaluated all models in a zero-shot setting. Given that all samples are cancerous, the M2T baseline
cannot be applied. As shown in Table 14, baseline graph models and language-model variants still
have near-zero performance. Graph-augmented methods such as RoG, SubgraphRAG, and GNN-
RAG yield moderate gains, but GALAX attains the highest precision, recall, F1, and Jaccard scores,
along with notable improvements in Hit@5 and Hit@10 finetuned on Target-QA with multi-omics
and disease-related proteins information. These results demonstrate that GALAX can extend its
target-prediction ability to external cancer datasets without retraining, providing strong evidence of
its robustness and transferability beyond the Target-QA benchmark.

Table 14: Model performance on PedDep cancer dataset

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
GAT 0.0005±0.0008 0.0005±0.0008 0.0005±0.0008 0.0002±0.0004 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0144±0.0081 0.0114±0.0049 0.0099±0.0028 0.0050±0.0014 0.0210±0.0421 0.0109±0.0218

L3-FT(Med) + Omics + KG 0.0167±0.0161 0.0060±0.0047 0.0068±0.0049 0.0035±0.0025 0.0072±0.0143 0.0073±0.0145

L3 + Omics 0.0054±0.0108 0.0011±0.0021 0.0018±0.0036 0.0009±0.0018 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0192±0.0188 0.0032±0.0022 0.0050±0.0035 0.0026±0.0018 0.0142±0.0165 0.0214±0.0247

L3-FT(QA) + Omics 0.2608±0.0268 0.2605±0.0252 0.2606±0.0260 0.1517±0.0152 0.5810±0.0330 0.4524±0.0502

L3-FT(QA) + Omics + KG 0.2619±0.0075 0.2552±0.0095 0.2584±0.0086 0.1489±0.0055 0.5048±0.0165 0.4952±0.0218

G-Retriever + pre-GAT 0.2624±0.0212 0.2610±0.0206 0.2617±0.0209 0.1522±0.0121 0.5143±0.0495 0.4524±0.0825

RoG 0.2730±0.0050 0.2667±0.0092 0.2697±0.0071 0.1566±0.0047 0.5143±0.0286 0.4714±0.0623

SubgraphRAG 0.2736±0.0091 0.2690±0.0095 0.2712±0.0092 0.1579±0.0062 0.5619±0.0165 0.5286±0.0571

GNN-RAG 0.2760±0.0092 0.2700±0.0094 0.2728±0.0093 0.1589±0.0064 0.5714±0.0495 0.5333±0.0360

GALAX 0.2914±0.0115 0.2889±0.0131 0.2901±0.0123 0.1703±0.0086 0.6357±0.0589 0.5179±0.0513

GALAX (Qwen2.5-7B) 0.2921±0.0055 0.2895±0.0050 0.2908±0.0053 0.1708±0.0038 0.6667±0.0595 0.5381±0.0705

E REINFORCEMENT LEARNING GENERATED SUBGRAPH DETAILS

Figure 12 provides a high-level overview of the explainable subgraphs of part of cell lines, high-
lighting key proteins and their predicted functional interactions that define the unique molecular
signatures of each cell line. These interpretable network maps identify the most salient features pri-
oritized by our model. To move beyond structural insights and assess their biological significance,
we conduct enrichment analyses to evaluate whether the identified molecules are significantly
over-represented in curated knowledge bases such as KEGG and WikiPathway. This analysis
enables us to contextualize the salient features within relevant targets and signaling pathways. The
resulting cell-line-specific interpretations bridge model-driven discovery with established biological
knowledge and are detailed in the following sections.

E.1 ENRICHMENT ANALYSIS

Enrichment analysis of sample ACH-000054 (HT-1080), representing fibrosarcoma (metastasis;
SARC), revealed a significant association with Sarcoma (P-value = 1.625 × 10−4, Adj.P
= 4.08 × 10−2) driven by COL1A1, WWTR1, APAF1, PLK1, EPHB4, and SH2B1. Pathway-
level signals underscored apoptotic and stress-response programs, with strong enrichment of
Apoptosis Modulation by HSP70 (WP384; P-value = 1.864 × 10−6, Adj.P = 1.45 × 10−4)
and Apoptosis (WP254; P-value = 1.73 × 10−4, Adj.P = 5.26 × 10−3), each supported by

6https://peddep.org/
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Figure 12: Part of explainable disease mechanism by core signaling subgraphs

MAPK10, APAF1, and TNFRSF1A. Additional inflammatory and mitogenic axes were indicated
by TNF alpha Signaling Pathway (WP231; P-value = 2.27 × 10−4, Adj.P = 5.26 × 10−3)
involving APAF1, PLK1, and TNFRSF1A, and by the MAPK Signaling Pathway (WP382;
P-value = 2.70 × 10−4, Adj.P = 5.26 × 10−3) featuring MAPK10, DUSP1, RASGRF2, and
TNFRSF1A. Finally, Nanoparticle-mediated activation of receptor signaling (WP2643; P-value
= 6.02×10−4, Adj.P = 8.99×10−3) highlighted extracellular matrix and receptor-proximal cues
via COL1A1 and MAPK10. Collectively, recurrent involvement of apoptosis regulators (APAF1,
TNFRSF1A), MAPK components (MAPK10, DUSP1, RASGRF2), and proliferative drivers
(PLK1) points to coordinated apoptotic, inflammatory, and receptor–MAPK signaling programs
characteristic of fibrosarcoma biology.

For sample ACH-000001 (NIH:OVCAR-3), an ovarian adenocarcinoma line (metastasis;
OV), analysis indicated only a weak disease-level association with ovarian cancer (P-value
= 1.41 × 10−1, Adj.P = 1.65 × 10−1), primarily linked to ERBB2. While this signal was
not significant after multiple-testing correction, pathway-level evaluation revealed several strongly
dysregulated processes. The Prolactin Signaling Pathway (WP2037; P-value = 2.90 × 10−4,
Adj.P = 1.49×10−2) was prominently enriched through RPS6KB1, NOS2, and ERBB2, pointing
to growth factor–driven oncogenic signaling. Similarly, enrichment of the Leptin Signaling
Pathway (WP2034; P-value = 2.90 × 10−4, Adj.P = 1.49 × 10−2) and the ErbB Signaling
Pathway (WP673; P-value = 4.92 × 10−4, Adj.P = 1.69 × 10−2) implicated RPS6KB1,
ERBB2, and PLCG2, reflecting interconnected receptor tyrosine kinase and metabolic networks.
Additional pathways included IGF1–Akt signaling (WP3850; P-value = 1.26 × 10−3, Adj.P
= 3.09 × 10−2) driven by RPS6KB1 and TNFSF9, and BDNF–TrkB Signaling (WP3676;
P-value = 1.52× 10−3, Adj.P = 3.09× 10−2) via ARC and RPS6KB1. These results underscore
the central role of ERBB2-mediated receptor activity and downstream RPS6KB1-linked pathways,
consistent with known mechanisms of ovarian carcinoma progression.
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In sample ACH-000219 (A-375), representing amelanotic melanoma (primary; SKCM), enrich-
ment testing identified a highly significant signal for melanoma (P-value = 1.08 × 10−6, Adj.P
= 1.59× 10−4) supported by a broad gene panel including CCL25, STAT5B, HSP90AA1, SER-
PINB1, VWF, TYR, THBS1, RELA, TJP1, GHR, CDH5, IRF1, TNFSF10, TRIM24, NCAM1,
ATG7, TNFRSF4, and IL9R. Immune and inflammatory cascades dominated the pathway
enrichments, with the NOD Pathway (WP1433; P-value = 1.77 × 10−6, Adj.P = 2.28 × 10−4)
enriched via HSP90AA1, NLRP12, MEFV, and RELA, pointing to innate immune activation.
Cytokine-related processes were also evident, including the IL-4 Signaling Pathway (WP395;
P-value = 5.42× 10−6, Adj.P = 2.65× 10−4) and the IL-9 Signaling Pathway (WP22; P-value
= 6.16 × 10−6, Adj.P = 2.65 × 10−4), with contributions from STAT5B, PIK3R1, and IL9R,
consistent with Th2/Th9 regulation. The Oncostatin M Signaling Pathway (WP2374; P-value
= 1.14 × 10−5, Adj.P = 3.60 × 10−4) further implicated STAT5B, TYK2, PIK3R1, and
RELA, linking cytokine–STAT and NF-κB signaling to melanoma progression. Overall, repeated
enrichment of STAT5B, RELA, and PIK3R1 across pathways highlights coordinated dysregulation
of inflammatory and cytokine signaling networks in amelanotic melanoma.

Enrichment analysis of sample ACH-000070 (697), representing B-cell acute lymphoblastic
leukemia (ALL) with the t(1;19)(q23;p13.3) E2A–PBX1 (TCF3–PBX1) translocation, revealed a
strong disease-level association with acute lymphocytic leukemia (P-value = 7.37× 10−5, Adj.P
= 8.10×10−3) supported by genes including IGF2, WBP1L, ELSPBP1, HOXD4, TCF3, THY1,
SIRT1, GATA1, and PBX1. Pathway enrichment further emphasized leukemia-relevant transcrip-
tional programs: Sudden Infant Death Syndrome (SIDS) Susceptibility Pathways (WP706;
P-value = 3.02 × 10−4, Adj.P = 1.94 × 10−2) through TCF3, POU2F2, ESR2, and PBX1;
and the Wnt/β-catenin Signaling Pathway in Leukemia (WP3658; P-value = 1.29 × 10−3,
Adj.P = 4.13 × 10−2) involving AXIN2 and TCF3. Additional signals included the Breast
Cancer Pathway (WP4262; P-value = 3.85× 10−3, Adj.P = 6.06× 10−2) with E2F3, AXIN2,
and ESR2, and the broader Wnt Signaling Pathway (WP363; P-value = 5.10 × 10−3, Adj.P
= 6.06 × 10−2) featuring AXIN2 and TCF3. Collectively, these findings underscore recurrent
involvement of the TCF3–PBX1 fusion together with Wnt/β-catenin signaling and leukemogenic
transcription factors, consistent with the molecular etiology of this ALL subtype.

Enrichment analysis of sample ACH-000092 (NCI-H2452), representing pleural mesothelioma
(metastasis; MESO), showed a modest disease-level association with Lung Neoplasms (P-value
= 4.965 × 10−3, Adj.P = 1.89 × 10−1) supported by MAP2K1, SLC26A2, AIFM1, SP1,
ATG4B, SAT1, GLUL, and PPP1R9B. Pathway analysis highlighted metabolic and growth-
factor–linked programs: Amino Acid metabolism (WP3925; P-value = 1.20 × 10−3, Adj.P
= 5.63 × 10−2) involving BHMT, PDHA1, and GLUL; the Estrogen signaling pathway
(WP712; P-value = 1.27 × 10−3, Adj.P = 5.63 × 10−2) marked by MAP2K1 and SP1; and
TGF-β Signaling (WP366; P-value = 3.47 × 10−3, Adj.P = 1.15 × 10−1) featuring MAP2K1,
SUMO1, and SP1. Together, these results suggest coordinated amino acid metabolic rewiring and
transcriptional control via MAPK–SP1 and TGF-β axes in the mesothelioma context.

Enrichment analysis of sample ACH-000817 (RPMI 8226), representing plasma cell myeloma
(primary; MM), revealed a highly significant association with Multiple Myeloma (P-value
= 3.891 × 10−6, Adj.P = 6.64 × 10−4) supported by ITGB1, KMT2D, CBX7, TNFRSF13B,
IDH1, LAPTM5, HLA-C, TNFRSF10A, PIK3R2, KIR3DL1, BHLHA15, PIK3R1, MEFV,
AURKA, NRAS, NUAK1, NPC1, BTK, KRAS, SGK1, HRAS, MAPK3, and FBXO9. Pathway
analysis further highlighted the ErbB Signaling Pathway (WP673; P-value = 8.47× 10−8, Adj.P
= 1.03 × 10−5) involving MAPK10, CAMK2D, NRAS, PIK3R2, KRAS, PIK3R1, HRAS,
and MAPK3, indicating convergence of RAS–MAPK and PI3K effector cascades downstream of
ErbB family receptors—features consistent with myeloma signaling dependencies and potential
therapeutic vulnerabilities.

Enrichment analysis of sample ACH-000649 (786-O), representing renal cell carcinoma (primary;
KIRC), revealed a highly significant association with Conventional (Clear Cell) Renal Cell
Carcinoma (P-value = 1.273 × 10−9, Adj.P = 9.68 × 10−7) supported by TGFB1, IL4R,
VCAM1, APAF1, OGG1, MSGN1, MITF, UNC5C, SMARCA2, TNF, POMC, FPGT,
ORC2, ERBB2, ALDH1A1, PGK1, BIRC5, ZNF536, VHL, and CRYAB. This gene set spans
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hallmark features of clear cell RCC biology, including hypoxia/VHL-axis signaling (VHL, PGK1),
apoptosis regulation (APAF1, BIRC5), growth factor and RTK pathways (ERBB2, TGFB1),
immune–inflammatory components (TNF, IL4R, VCAM1), metabolic and oxidative stress re-
sponses (ALDH1A1, CRYAB), and genome maintenance/chromatin remodeling (OGG1, ORC2,
SMARCA2), collectively underscoring a prototypical clear cell transcriptomic signature.

Enrichment analysis of sample ACH-000018 (T24), representing bladder carcinoma (primary;
BLCA), showed a borderline disease-level signal for Cancer (P-value = 5.755 × 10−2, Adj.P
= 1.02 × 10−1) driven by ZBTB16 and RAF1. Pathway-level analysis revealed significant
enrichment of Focal Adhesion (WP306; P-value = 1.17 × 10−4, Adj.P = 1.03 × 10−2)
involving MAPK10, RAP1A, COL4A6, and RAF1; the ErbB Signaling Pathway (WP673;
P-value = 2.20 × 10−4, Adj.P = 1.03 × 10−2) featuring MAPK10, CAMK2D, and RAF1; and
Integrin-mediated Cell Adhesion (WP185; P-value = 2.99 × 10−4, Adj.P = 1.03 × 10−2)
with MAPK10, RAP1A, and RAF1. Collectively, recurrent involvement of RAF1 together with
MAPK10 across adhesion and ErbB-axis pathways points to convergent RTK–MAPK and integrin
signaling programs in this BLCA context.

Enrichment analysis of sample ACH-000864 (COLO 684), representing endometrial adenocarci-
noma (primary; UCEC), revealed a highly significant disease-level association with Carcinoma,
Small Cell (P-value = 1.064 × 10−6, Adj.P = 1.29 × 10−4) supported by SMARCB1, AKT3,
MTOR, and SMARCA4. Pathway analysis highlighted potent receptor tyrosine kinase and
stemness programs: the ErbB Signaling Pathway (WP673; P-value = 3.38 × 10−9, Adj.P
= 4.90 × 10−7) involving JUN, CAMK2A, AKT3, PIK3R2, and MTOR; the EGF/EGFR
Signaling Pathway (WP437; P-value = 6.19 × 10−8, Adj.P = 4.48 × 10−6) through JUN,
GJA1, CAMK2A, PIK3R2, and MTOR; and ESC Pluripotency Pathways (WP3931; P-value
= 1.03 × 10−6, Adj.P = 4.97 × 10−5) marked by JUN, AKT3, PIK3R2, and MTOR.
Collectively, recurrent involvement of AKT3 and MTOR—together with PIK3R2, JUN, and
CAMK2A—points to convergent EGFR/ErbB–PI3K–AKT–mTOR signaling and pluripotency-
associated programs in this UCEC context.

E.2 HUMAN EVALUDATION AND LLM AS JUDGE

To further assess the biological relevance of the generated subgraphs, we conducted a comprehensive
evaluation involving both human domain experts and Large Language Models (LLMs). The human
evaluation panel consisted of three bioinformaticians, denoted as h1,h2, and h3. In parallel, we
used two advanced LLMs as automated evaluators (m1,m2): ChatGPT-5.1 and Gemini-3.0 Pro.
Both the human experts and the LLMs were provided with the generated subgraphs, corresponding
gene and pathway enrichment analysis results to facilitate the assessment of biological plausibility.

Table 15: Human Evaluation Scores

Sample ID TCGA Code h1 h2 h3 m1 m2 Mean ± Std

ACH-000860 LUAD 4 5 5 5 5 4.80 ± 0.45
ACH-000054 SRCA 3 5 3 4 4 3.80 ± 0.84
ACH-000001 OV 3 3 2 4 2 2.80 ± 0.84
ACH-000219 SKCM 4 5 2 4 3 3.60 ± 1.14
ACH-000070 ALL 5 5 5 4 5 4.80 ± 0.45
ACH-000092 MESO 3 3 2 3 3 2.80 ± 0.45
ACH-000817 MM 5 5 5 3 3 4.20 ± 1.10
ACH-000649 KIRC 4 4 5 5 5 4.60 ± 0.55
ACH-000018 BLCA 3 3 3 3 3 3.00 ± 0.00
ACH-000864 UCEC 3 4 2 4 3 3.20 ± 0.84

Overall - 3.7 4.2 3.4 3.9 3.6 3.76± 0.80

Each expert independently reviewed ten subgraph examples shown in Table 15 and assigned a score
from 1 to 5 based on the degree of correspondence between the subgraph and the known biology of
the associated TCGA cancer type. The scoring rubric was defined as follows:

• 5: Highly related — strong and clear match to hallmark pathways and well-established
features of the cancer type.

• 4: Related — clear relationship to the cancer type but less comprehensive or slightly mixed.
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• 3: Moderately related — some relevant elements present, but mixed with non-specific find-
ings.

• 2: Not related — only weak or indirect connection to the cancer type.
• 1: Not related at all — no meaningful alignment with the biology of the cancer type.

As shown in Table 15, several samples were evaluated as related or highly related to their TCGA
cancer types, indicating that the subgraphs generated by the model capture meaningful molecular
features. The LUAD sample ACH-000860 received one of the highest average scores, as its sub-
graph highlighted pathways such as regulation of phosphatidylinositol 3-kinase signaling and posi-
tive regulation of kinase activity, involving genes like EGFR, PTK2, and EPHB4 that are central to
lung adenocarcinoma biology. The ALL sample ACH-000070 was also rated highly due to the pres-
ence of TCF3 and PBX1, whose fusion is a well-established driver event in Acute Lymphoblastic
Leukemia.

Table 16: Model Overall performance on Target-QA

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0016 0.0011 0.0013 0.0006 0.0000 0.0029
GAT 0.0006±0.0000 0.0006±0.0000 0.0006±0.0000 0.0003±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0071±0.0032 0.0013±0.0002 0.0021±0.0002 0.0011±0.0001 0.0032±0.0055 0.0021±0.0037

L3 + Omics + KG 0.0125±0.0032 0.0029±0.0003 0.0043±0.0002 0.0022±0.0001 0.0085±0.0037 0.0122±0.0033

L3-FT(Med) + Omics 0.0179±0.0045 0.0133±0.0064 0.0115±0.0044 0.0059±0.0023 0.0116±0.0097 0.0122±0.0072

L3-FT(Med) + Omics + KG 0.0158±0.0030 0.0058±0.0011 0.0074±0.0016 0.0038±0.0010 0.0106±0.0048 0.0132±0.0040

L3-FT(QA) + Omics 0.5250±0.0282 0.4959±0.0435 0.5094±0.0365 0.3449±0.0338 0.8889±0.0168 0.8693±0.0157

L3-FT(QA) + Omics + KG 0.5185±0.0240 0.4908±0.0402 0.5038±0.0327 0.3393±0.0298 0.8794±0.0114 0.8529±0.0153

G-Retriever + pre-GAT 0.4763±0.0004 0.3929±0.0063 0.4286±0.0044 0.2757±0.0038 0.8804±0.0037 0.8550±0.0046

RoG 0.5248±0.0134 0.4726±0.0445 0.4924±0.0323 0.3338±0.0267 0.8593±0.0318 0.8450±0.0350

SubgraphRAG 0.5280±0.0044 0.4617±0.0027 0.4860±0.0033 0.3269±0.0024 0.8624±0.0120 0.8476±0.0167

GNN-RAG 0.5258±0.0126 0.4735±0.0190 0.4935±0.0168 0.3345±0.0134 0.8656±0.0302 0.8323±0.0205

GALAX 0.5472±0.0053 0.5332±0.0031 0.5399±0.0041 0.3726±0.0037 0.9249±0.0048 0.8815±0.0033

GALAX (Qwen2.5-7B) 0.5445±0.0114 0.5405±0.0101 0.5422±0.0104 0.3744±0.0098 0.9079±0.0084 0.8841±0.0126

Table 17: Model performance on LUAD

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0020 0.0014 0.0017 0.0008 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0079±0.0137 0.0005±0.0008 0.0009±0.0016 0.0005±0.0008 0.0095±0.0165 0.0048±0.0082

L3 + Omics + KG 0.0014±0.0025 0.0010±0.0016 0.0011±0.0020 0.0006±0.0010 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0091±0.0018 0.0105±0.0044 0.0079±0.0022 0.0040±0.0011 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0081±0.0071 0.0024±0.0016 0.0025±0.0002 0.0013±0.0001 0.0095±0.0165 0.0048±0.0082

L3-FT(CRISPR) + Omics 0.5201±0.0408 0.4905±0.0532 0.5045±0.0475 0.3396±0.0433 0.8476±0.0165 0.8667±0.0218

L3-FT(CRISPR) + Omics + KG 0.5214±0.0242 0.4952±0.0432 0.5073±0.0343 0.3416±0.0314 0.7905±0.0436 0.8048±0.0541

G-Retriever + pre-GAT 0.4642±0.0181 0.3881±0.0264 0.4204±0.0233 0.2671±0.0188 0.8857±0.0000 0.8524±0.0165

RoG 0.5213±0.0227 0.4562±0.0848 0.4793±0.0630 0.3228±0.0530 0.8095±0.0436 0.8238±0.0218

SubgraphRAG 0.5123±0.0105 0.4448±0.0386 0.4684±0.0279 0.3114±0.0237 0.8190±0.0165 0.8238±0.0082

GNN-RAG 0.5334±0.0225 0.5052±0.0170 0.5165±0.0161 0.3563±0.0127 0.7905±0.0719 0.7571±0.0623

GALAX 0.5345±0.0185 0.5157±0.0043 0.5247±0.0109 0.3581±0.0101 0.9238±0.0436 0.8810±0.0082

GALAX (Qwen2.5-7B) 0.5475±0.0019 0.5462±0.0111 0.5465±0.0050 0.3778±0.0046 0.9048±0.0165 0.8667±0.0082

Table 18: Model performance on BRCA

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0033±0.0000 0.0033±0.0000 0.0033±0.0000 0.0017±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0020±0.0035 0.0017±0.0029 0.0018±0.0032 0.0009±0.0016 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0073±0.0068 0.0033±0.0029 0.0044±0.0038 0.0022±0.0019 0.0111±0.0192 0.0056±0.0096

L3-FT(Med) + Omics 0.0110±0.0086 0.0106±0.0075 0.0093±0.0068 0.0047±0.0035 0.0000±0.0000 0.0111±0.0192

L3-FT(Med) + Omics + KG 0.0149±0.0057 0.0050±0.0000 0.0071±0.0012 0.0036±0.0006 0.0000±0.0000 0.0111±0.0192

L3-FT(CRISPR) + Omics 0.5074±0.0498 0.4856±0.0570 0.4956±0.0535 0.3336±0.0491 0.8889±0.0509 0.8389±0.0096

L3-FT(CRISPR) + Omics + KG 0.4856±0.0395 0.4656±0.0436 0.4751±0.0412 0.3142±0.0354 0.8778±0.0192 0.8222±0.0347

G-Retriever + pre-GAT 0.4414±0.0099 0.3772±0.0010 0.4062±0.0034 0.2607±0.0032 0.8667±0.0000 0.8667±0.0000

RoG 0.4791±0.0575 0.4311±0.0721 0.4489±0.0658 0.2999±0.0528 0.7667±0.0577 0.7611±0.1110

SubgraphRAG 0.4708±0.0317 0.3917±0.0376 0.4196±0.0339 0.2742±0.0271 0.7556±0.0839 0.7333±0.1014

GNN-RAG 0.4787±0.0453 0.4389±0.0584 0.4543±0.0531 0.3025±0.0428 0.8444±0.0385 0.8222±0.0674

GALAX 0.5608±0.0031 0.5533±0.0033 0.5569±0.0028 0.3886±0.0022 0.8889±0.0839 0.8500±0.0441

GALAX (Qwen2.5-7B) 0.5171±0.0474 0.5206±0.0419 0.5188±0.0448 0.3532±0.0392 0.8556±0.0385 0.8000±0.0764
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Table 19: Model performance on COAD/READ

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0023 0.0017 0.0019 0.0010 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0233±0.0252 0.0020±0.0020 0.0035±0.0033 0.0018±0.0017 0.0133±0.0231 0.0067±0.0115

L3 + Omics + KG 0.0055±0.0055 0.0033±0.0031 0.0041±0.0039 0.0021±0.0020 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0300±0.0249 0.0220±0.0278 0.0199±0.0214 0.0104±0.0114 0.0267±0.0462 0.0333±0.0306

L3-FT(Med) + Omics + KG 0.0044±0.0038 0.0033±0.0031 0.0032±0.0028 0.0016±0.0014 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5011±0.0335 0.4727±0.0514 0.4862±0.0430 0.3230±0.0384 0.8400±0.0800 0.8267±0.0808

L3-FT(CRISPR) + Omics + KG 0.5116±0.0216 0.4807±0.0469 0.4950±0.0351 0.3301±0.0312 0.8800±0.0000 0.8333±0.0231

G-Retriever + pre-GAT 0.4417±0.0005 0.3680±0.0104 0.3995±0.0073 0.2504±0.0062 0.7200±0.0000 0.7667±0.0115

RoG 0.5184±0.0462 0.4627±0.0803 0.4850±0.0658 0.3254±0.0519 0.8533±0.0611 0.8600±0.0400

SubgraphRAG 0.5306±0.0066 0.4627±0.0854 0.4871±0.0556 0.3243±0.0473 0.9333±0.0231 0.8533±0.0115

GNN-RAG 0.5383±0.0306 0.4627±0.0463 0.4909±0.0404 0.3295±0.0352 0.8533±0.0462 0.8867±0.0115

GALAX 0.5272±0.0143 0.5120±0.0087 0.5192±0.0103 0.3512±0.0098 0.9200±0.0693 0.8400±0.0200

GALAX (Qwen2.5-7B) 0.5177±0.0124 0.5187±0.0061 0.5177±0.0083 0.3498±0.0076 0.9200±0.0800 0.8733±0.0503

Table 20: Model performance on PAAD

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0017 0.0013 0.0014 0.0008 0.0000 0.0000
GAT 0.0025±0.0000 0.0025±0.0000 0.0025±0.0000 0.0013±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0139±0.0241 0.0008±0.0014 0.0016±0.0027 0.0008±0.0014 0.0167±0.0289 0.0083±0.0144

L3-FT(Med) + Omics 0.0051±0.0061 0.0050±0.0043 0.0039±0.0036 0.0020±0.0018 0.0167±0.0289 0.0083±0.0144

L3-FT(Med) + Omics + KG 0.0005±0.0008 0.0008±0.0014 0.0006±0.0010 0.0003±0.0005 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5649±0.0559 0.5358±0.0686 0.5492±0.0605 0.3811±0.0584 0.8000±0.0500 0.8417±0.0577

L3-FT(CRISPR) + Omics + KG 0.5499±0.0570 0.5183±0.0794 0.5330±0.0683 0.3657±0.0650 0.8333±0.0764 0.8333±0.0520

G-Retriever + pre-GAT 0.5594±0.0114 0.4567±0.0058 0.5016±0.0009 0.3387±0.0007 0.8500±0.0000 0.8500±0.0000

RoG 0.5196±0.1322 0.4842±0.1461 0.4973±0.1406 0.3462±0.1107 0.7667±0.1528 0.7833±0.1181

SubgraphRAG 0.5873±0.0050 0.5308±0.0029 0.5518±0.0037 0.3869±0.0028 0.8833±0.0289 0.8750±0.0000

GNN-RAG 0.4923±0.0762 0.4283±0.0204 0.4522±0.0411 0.3068±0.0248 0.7667±0.1443 0.7917±0.1233

GALAX 0.5771±0.0174 0.5708±0.0118 0.5739±0.0145 0.4044±0.0154 0.8333±0.0289 0.8500±0.0000

GALAX (Qwen2.5-7B) 0.5394±0.0417 0.5383±0.0427 0.5387±0.0422 0.3718±0.0402 0.8167±0.0289 0.8333±0.0144

Table 21: Model performance on GBM

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0056±0.0096 0.0011±0.0019 0.0019±0.0032 0.0009±0.0016 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0069±0.0045 0.0133±0.0088 0.0090±0.0059 0.0046±0.0030 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0107±0.0158 0.0056±0.0038 0.0064±0.0074 0.0032±0.0037 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5641±0.0310 0.5333±0.0462 0.5480±0.0387 0.3794±0.0364 0.9333±0.0667 0.9000±0.0333

L3-FT(CRISPR) + Omics + KG 0.5391±0.0213 0.5178±0.0164 0.5281±0.0181 0.3596±0.0165 0.9556±0.0385 0.8444±0.0694

G-Retriever + pre-GAT 0.4906±0.0075 0.4411±0.0038 0.4642±0.0010 0.3037±0.0000 0.9556±0.0385 0.8333±0.0577

RoG 0.5910±0.0281 0.5078±0.1165 0.5380±0.0853 0.3734±0.0756 0.9556±0.0770 0.9444±0.0509

SubgraphRAG 0.5066±0.0597 0.4544±0.1001 0.4707±0.0884 0.3176±0.0729 0.7778±0.1925 0.7556±0.2117

GNN-RAG 0.5567±0.0222 0.5478±0.0212 0.5521±0.0219 0.3855±0.0141 0.8667±0.2309 0.8111±0.1540

GALAX 0.5527±0.0021 0.5422±0.0139 0.5473±0.0081 0.3769±0.0079 0.9111±0.0770 0.8667±0.0000

GALAX (Qwen2.5-7B) 0.5715±0.0228 0.5656±0.0269 0.5685±0.0249 0.3985±0.0236 0.9111±0.0770 0.8556±0.0385

Table 22: Model performance on SARC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0047 0.0033 0.0039 0.0019 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0111±0.0192 0.0033±0.0058 0.0051±0.0089 0.0026±0.0045 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0271±0.0062 0.0111±0.0019 0.0157±0.0029 0.0080±0.0015 0.0222±0.0385 0.0222±0.0192

L3-FT(Med) + Omics 0.0689±0.0631 0.0167±0.0115 0.0229±0.0180 0.0119±0.0094 0.0222±0.0385 0.0667±0.0577

L3-FT(Med) + Omics + KG 0.0270±0.0108 0.0089±0.0019 0.0120±0.0009 0.0061±0.0005 0.0222±0.0385 0.0222±0.0192

L3-FT(CRISPR) + Omics 0.5347±0.0167 0.5089±0.0353 0.5211±0.0266 0.3547±0.0253 0.9111±0.0385 0.8778±0.0192

L3-FT(CRISPR) + Omics + KG 0.5423±0.0207 0.5022±0.0539 0.5207±0.0383 0.3570±0.0344 0.8444±0.0385 0.8444±0.0385

G-Retriever + pre-GAT 0.4461±0.0308 0.3667±0.0115 0.4009±0.0055 0.2518±0.0051 0.8667±0.0000 0.9222±0.0192

RoG 0.5533±0.0201 0.4589±0.0740 0.4922±0.0433 0.3324±0.0375 0.8889±0.0385 0.8778±0.0192

SubgraphRAG 0.5365±0.0277 0.4456±0.0168 0.4772±0.0188 0.3175±0.0166 0.8889±0.1018 0.8667±0.0882

GNN-RAG 0.5485±0.0097 0.4778±0.0587 0.5036±0.0423 0.3426±0.0403 0.8889±0.0385 0.8889±0.0385

GALAX 0.5414±0.0143 0.5144±0.0168 0.5271±0.0157 0.3602±0.0165 0.9111±0.1018 0.8444±0.0509

GALAX (Qwen2.5-7B) 0.5383±0.0096 0.5311±0.0084 0.5347±0.0090 0.3674±0.0088 0.9111±0.1018 0.8889±0.0694
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Table 23: Model performance on OV

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0241±0.0251 0.0044±0.0051 0.0075±0.0085 0.0038±0.0043 0.0000±0.0000 0.0111±0.0192

L3 + Omics + KG 0.0660±0.0667 0.0111±0.0102 0.0183±0.0161 0.0093±0.0082 0.0000±0.0000 0.0889±0.0770

L3-FT(Med) + Omics 0.0356±0.0412 0.0100±0.0067 0.0102±0.0072 0.0051±0.0036 0.0444±0.0770 0.0222±0.0385

L3-FT(Med) + Omics + KG 0.0797±0.0496 0.0344±0.0280 0.0457±0.0375 0.0253±0.0226 0.0000±0.0000 0.0333±0.0333

L3-FT(CRISPR) + Omics 0.5469±0.0274 0.5167±0.0406 0.5307±0.0325 0.3631±0.0295 1.0000±0.0000 0.9111±0.0694

L3-FT(CRISPR) + Omics + KG 0.5439±0.0066 0.4989±0.0195 0.5200±0.0123 0.3542±0.0095 0.9556±0.0385 0.9444±0.0385

G-Retriever + pre-GAT 0.5413±0.0525 0.4033±0.0173 0.4575±0.0067 0.2991±0.0041 1.0000±0.0000 0.9667±0.0000

RoG 0.5708±0.0158 0.5289±0.0523 0.5453±0.0343 0.3774±0.0317 0.9556±0.0385 0.9222±0.0385

SubgraphRAG 0.6143±0.0414 0.4833±0.0384 0.5289±0.0215 0.3650±0.0185 0.9333±0.0667 0.9444±0.0385

GNN-RAG 0.5687±0.0300 0.4600±0.0145 0.5026±0.0061 0.3380±0.0036 0.8444±0.1540 0.8111±0.1540

GALAX 0.5489±0.0176 0.5344±0.0259 0.5413±0.0219 0.3714±0.0206 0.8444±0.0385 0.8667±0.0333

GALAX (Qwen2.5-7B) 0.5643±0.0190 0.5689±0.0550 0.5654±0.0355 0.3957±0.0349 0.9778±0.0385 0.9556±0.0192

Table 24: Model performance on SKCM

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0055 0.0033 0.0041 0.0021 0.0000 0.0333
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0028±0.0049 0.0011±0.0019 0.0016±0.0028 0.0008±0.0014 0.0000±0.0000 0.0111±0.0192

L3-FT(Med) + Omics 0.0047±0.0041 0.0089±0.0069 0.0061±0.0052 0.0031±0.0026 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5145±0.0437 0.4922±0.0455 0.5028±0.0443 0.3399±0.0401 0.8444±0.1388 0.8556±0.0385

L3-FT(CRISPR) + Omics + KG 0.4871±0.0529 0.4678±0.0626 0.4771±0.0579 0.3164±0.0514 0.8667±0.0667 0.8667±0.0667

G-Retriever + pre-GAT 0.5123±0.0545 0.4100±0.0058 0.4543±0.0258 0.2958±0.0222 0.9333±0.0000 0.8778±0.0192

RoG 0.5201±0.0255 0.4522±0.0681 0.4797±0.0520 0.3179±0.0461 0.8000±0.2309 0.8111±0.1895

SubgraphRAG 0.4929±0.0245 0.4222±0.0403 0.4502±0.0304 0.2929±0.0260 0.6889±0.2143 0.7222±0.2143

GNN-RAG 0.5298±0.0203 0.4956±0.0367 0.5092±0.0257 0.3447±0.0229 0.9556±0.0385 0.9222±0.0385

GALAX 0.5385±0.0116 0.5233±0.0200 0.5307±0.0160 0.3638±0.0152 1.0000±0.0000 0.9667±0.0000

GALAX (Qwen2.5-7B) 0.5651±0.0206 0.5589±0.0280 0.5619±0.0245 0.3938±0.0213 0.8889±0.0770 0.9111±0.0962

Table 25: Model performance on ESCA

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0143±0.0036 0.0178±0.0038 0.0139±0.0021 0.0071±0.0011 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5210±0.0590 0.4989±0.0691 0.5093±0.0637 0.3438±0.0577 0.9333±0.0667 0.9333±0.0000

L3-FT(CRISPR) + Omics + KG 0.5146±0.0187 0.4878±0.0051 0.5003±0.0074 0.3346±0.0059 0.9111±0.0385 0.9333±0.0000

G-Retriever + pre-GAT 0.5083±0.0142 0.4156±0.0038 0.4556±0.0076 0.2959±0.0064 0.9778±0.0385 0.9444±0.0385

RoG 0.5275±0.0188 0.4622±0.0534 0.4877±0.0400 0.3262±0.0358 0.9111±0.0770 0.9556±0.0385

SubgraphRAG 0.5373±0.0043 0.4744±0.0372 0.4990±0.0259 0.3385±0.0210 0.8889±0.0385 0.9333±0.0000

GNN-RAG 0.5405±0.0036 0.5067±0.0404 0.5198±0.0283 0.3548±0.0243 1.0000±0.0000 0.9778±0.0192

GALAX 0.5775±0.0204 0.5667±0.0260 0.5720±0.0233 0.4031±0.0246 0.9556±0.0385 0.9667±0.0333

GALAX (Qwen2.5-7B) 0.5706±0.0228 0.5567±0.0145 0.5634±0.0173 0.3936±0.0156 0.9333±0.1155 0.9333±0.0882

Table 26: Model performance on SCLC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0184±0.0212 0.0389±0.0448 0.0249±0.0286 0.0131±0.0153 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5337±0.0349 0.4989±0.0479 0.5146±0.0378 0.3476±0.0341 0.8667±0.1155 0.8556±0.0694

L3-FT(CRISPR) + Omics + KG 0.4900±0.0597 0.4667±0.0677 0.4778±0.0638 0.3160±0.0555 0.9333±0.0667 0.8778±0.0694

G-Retriever + pre-GAT 0.4203±0.0263 0.3667±0.0115 0.3910±0.0180 0.2434±0.0140 0.8667±0.0000 0.8000±0.0000

RoG 0.4971±0.1497 0.4689±0.1375 0.4786±0.1399 0.3313±0.1074 0.7778±0.2694 0.8000±0.2028

SubgraphRAG 0.5516±0.0586 0.4578±0.1711 0.4917±0.1315 0.3346±0.1131 0.8889±0.1388 0.9111±0.1018

GNN-RAG 0.5503±0.0732 0.4844±0.1771 0.5096±0.1386 0.3512±0.1203 0.8667±0.0000 0.8556±0.0192

GALAX 0.5850±0.0110 0.5822±0.0102 0.5836±0.0105 0.4143±0.0102 0.9778±0.0385 0.9000±0.0333

GALAX (Qwen2.5-7B) 0.5706±0.0190 0.5667±0.0176 0.5686±0.0182 0.3988±0.0189 0.9556±0.0385 0.9000±0.0333
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Table 27: Model performance on HNSC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0128±0.0222 0.0017±0.0029 0.0029±0.0051 0.0015±0.0026 0.0333±0.0577 0.0167±0.0289

L3-FT(Med) + Omics 0.0082±0.0036 0.0100±0.0050 0.0079±0.0016 0.0040±0.0008 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.4374±0.0214 0.4167±0.0208 0.4267±0.0208 0.2718±0.0174 1.0000±0.0000 0.9667±0.0577

L3-FT(CRISPR) + Omics + KG 0.4787±0.0445 0.4450±0.0676 0.4606±0.0565 0.3006±0.0470 0.9667±0.0577 0.9500±0.0000

G-Retriever + pre-GAT 0.4413±0.0030 0.3700±0.0000 0.4021±0.0009 0.2518±0.0008 1.0000±0.0000 0.9500±0.0000

RoG 0.4718±0.0254 0.4400±0.0673 0.4529±0.0509 0.2952±0.0404 0.9667±0.0577 0.9500±0.0500

SubgraphRAG 0.4648±0.0120 0.4233±0.0635 0.4398±0.0450 0.2833±0.0355 1.0000±0.0000 0.9333±0.0289

GNN-RAG 0.4655±0.0351 0.4317±0.0813 0.4455±0.0631 0.2890±0.0506 0.9000±0.0000 0.9000±0.0000

GALAX 0.4482±0.0229 0.4283±0.0208 0.4380±0.0218 0.2822±0.0177 0.9333±0.0577 0.9667±0.0289

GALAX (Qwen2.5-7B) 0.4787±0.0082 0.4667±0.0153 0.4722±0.0070 0.3095±0.0064 1.0000±0.0000 0.9000±0.0866

Table 28: Model performance on LUSC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0222±0.0192 0.0067±0.0058 0.0103±0.0089 0.0052±0.0045 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0062±0.0068 0.0050±0.0050 0.0055±0.0058 0.0028±0.0029 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0165±0.0106 0.0083±0.0058 0.0085±0.0010 0.0043±0.0005 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0094±0.0082 0.0033±0.0029 0.0049±0.0043 0.0025±0.0021 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5208±0.0525 0.4767±0.0810 0.4961±0.0677 0.3320±0.0618 0.9667±0.0577 0.9167±0.0577

L3-FT(CRISPR) + Omics + KG 0.4656±0.0253 0.4217±0.0584 0.4420±0.0427 0.2844±0.0355 0.9333±0.1155 0.9333±0.0577

G-Retriever + pre-GAT 0.4563±0.0579 0.3417±0.0318 0.3902±0.0418 0.2433±0.0313 1.0000±0.0000 0.9000±0.0000

RoG 0.5038±0.0245 0.4550±0.0954 0.4717±0.0730 0.3123±0.0583 1.0000±0.0000 0.9667±0.0289

SubgraphRAG 0.5360±0.0133 0.4550±0.0433 0.4869±0.0223 0.3237±0.0186 1.0000±0.0000 1.0000±0.0000

GNN-RAG 0.4854±0.0257 0.4717±0.0375 0.4782±0.0319 0.3164±0.0263 1.0000±0.0000 0.8833±0.0577

GALAX 0.5046±0.0833 0.4783±0.0808 0.4909±0.0819 0.3285±0.0726 1.0000±0.0000 0.8833±0.0289

GALAX (Qwen2.5-7B) 0.5237±0.0212 0.5150±0.0180 0.5193±0.0196 0.3509±0.0178 0.9333±0.0577 0.8500±0.0500

Table 29: Model performance on STAD

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0057±0.0100 0.0017±0.0029 0.0026±0.0045 0.0013±0.0023 0.0000±0.0000 0.0167±0.0289

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5528±0.0311 0.5200±0.0409 0.5353±0.0325 0.3684±0.0309 0.9333±0.0577 0.9333±0.0289

L3-FT(CRISPR) + Omics + KG 0.5305±0.0231 0.5000±0.0427 0.5144±0.0332 0.3486±0.0322 0.9000±0.0000 0.8667±0.0289

G-Retriever + pre-GAT 0.5574±0.0091 0.4883±0.0029 0.5193±0.0024 0.3550±0.0043 0.9000±0.0000 0.9000±0.0000

RoG 0.5099±0.0498 0.4950±0.0606 0.5020±0.0556 0.3392±0.0475 0.8000±0.2646 0.7167±0.2021

SubgraphRAG 0.5044±0.0443 0.4950±0.0606 0.4993±0.0531 0.3353±0.0437 0.7667±0.2309 0.7667±0.2309

GNN-RAG 0.5387±0.0068 0.5267±0.0029 0.5325±0.0047 0.3680±0.0037 1.0000±0.0000 0.8167±0.0577

GALAX 0.5298±0.0331 0.4983±0.0404 0.5134±0.0371 0.3465±0.0338 0.9667±0.0577 0.8667±0.0289

GALAX (Qwen2.5-7B) 0.5731±0.0132 0.5883±0.0029 0.5803±0.0055 0.4117±0.0057 1.0000±0.0000 0.9833±0.0289

Table 30: Model performance on MB

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0333±0.0577 0.0067±0.0115 0.0111±0.0192 0.0056±0.0098 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0126±0.0218 0.0067±0.0115 0.0087±0.0151 0.0044±0.0076 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0177±0.0215 0.0100±0.0100 0.0102±0.0089 0.0052±0.0045 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0282±0.0237 0.0167±0.0058 0.0192±0.0090 0.0097±0.0046 0.0667±0.1155 0.0333±0.0577

L3-FT(CRISPR) + Omics 0.5308±0.0327 0.5033±0.0551 0.5164±0.0440 0.3488±0.0394 0.8667±0.1155 0.8000±0.1000

L3-FT(CRISPR) + Omics + KG 0.5086±0.0633 0.5000±0.0608 0.5043±0.0620 0.3387±0.0569 0.7333±0.2309 0.7000±0.2000

G-Retriever + pre-GAT 0.5546±0.0421 0.3600±0.0173 0.4365±0.0257 0.2794±0.0213 0.8000±0.0000 0.7000±0.0000

RoG 0.5530±0.0211 0.5400±0.0173 0.5464±0.0192 0.3761±0.0183 1.0000±0.0000 0.9000±0.0000

SubgraphRAG 0.5545±0.0119 0.3900±0.1212 0.4502±0.0737 0.2925±0.0632 0.8667±0.1155 0.9000±0.0000

GNN-RAG 0.5306±0.0267 0.4467±0.1097 0.4776±0.0606 0.3151±0.0512 0.9333±0.1155 0.9667±0.0577

GALAX 0.4897±0.0304 0.4867±0.0351 0.4882±0.0328 0.3233±0.0286 1.0000±0.0000 0.8333±0.0577

GALAX (Qwen2.5-7B) 0.5300±0.0346 0.5300±0.0346 0.5300±0.0346 0.3611±0.0325 0.8667±0.1155 0.9333±0.0577
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Table 31: Model performance on ALL

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0082 0.0050 0.0062 0.0031 0.0000 0.0500
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0333±0.0577 0.0033±0.0058 0.0061±0.0105 0.0031±0.0053 0.0667±0.1155 0.0333±0.0577

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0015±0.0026 0.0033±0.0058 0.0021±0.0036 0.0010±0.0018 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0607±0.0528 0.0133±0.0115 0.0219±0.0189 0.0111±0.0096 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5487±0.0561 0.5400±0.0624 0.5443±0.0592 0.3754±0.0569 1.0000±0.0000 0.9333±0.1155

L3-FT(CRISPR) + Omics + KG 0.6010±0.0608 0.5600±0.1100 0.5786±0.0868 0.4106±0.0872 0.9333±0.1155 0.9333±0.1155

G-Retriever + pre-GAT 0.6285±0.0043 0.5300±0.0000 0.5750±0.0018 0.4036±0.0018 0.8000±0.0000 0.8000±0.0000

RoG 0.5596±0.0699 0.5133±0.1501 0.5326±0.1168 0.3684±0.1042 0.9333±0.1155 0.9667±0.0577

SubgraphRAG 0.6000±0.0000 0.6000±0.0000 0.6000±0.0000 0.4286±0.0000 1.0000±0.0000 1.0000±0.0000

GNN-RAG 0.5682±0.0858 0.5200±0.1609 0.5402±0.1293 0.3770±0.1186 0.9333±0.1155 0.9667±0.0577

GALAX 0.6860±0.0246 0.6700±0.0265 0.6779±0.0255 0.5131±0.0295 1.0000±0.0000 0.9333±0.0577

GALAX (Qwen2.5-7B) 0.6000±0.0520 0.6000±0.0520 0.6000±0.0520 0.4299±0.0542 1.0000±0.0000 1.0000±0.0000

Table 32: Model performance on LGG

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0053±0.0092 0.0033±0.0058 0.0041±0.0071 0.0021±0.0036 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0070±0.0121 0.0133±0.0231 0.0092±0.0159 0.0046±0.0080 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5000±0.0500 0.4367±0.0702 0.4649±0.0545 0.3040±0.0457 1.0000±0.0000 0.9667±0.0577

L3-FT(CRISPR) + Omics + KG 0.5267±0.0250 0.5067±0.0115 0.5163±0.0141 0.3480±0.0128 1.0000±0.0000 0.9000±0.1000

G-Retriever + pre-GAT 0.4846±0.0537 0.4300±0.0173 0.4540±0.0126 0.2937±0.0106 1.0000±0.0000 0.9000±0.0000

RoG 0.5667±0.0462 0.5667±0.0462 0.5667±0.0462 0.3963±0.0458 1.0000±0.0000 0.9667±0.0577

SubgraphRAG 0.5400±0.0000 0.5400±0.0000 0.5400±0.0000 0.3699±0.0000 1.0000±0.0000 1.0000±0.0000

GNN-RAG 0.5294±0.0000 0.2700±0.0000 0.3576±0.0000 0.2177±0.0000 0.8000±0.0000 0.8000±0.0000

GALAX 0.5433±0.0252 0.5433±0.0252 0.5433±0.0252 0.3733±0.0238 1.0000±0.0000 0.9000±0.0000

GALAX (Qwen2.5-7B) 0.5501±0.0576 0.5200±0.0693 0.5345±0.0639 0.3664±0.0581 0.8667±0.1155 0.8667±0.0577

Table 33: Model performance on NB

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0085±0.0148 0.0167±0.0289 0.0113±0.0196 0.0057±0.0100 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5597±0.0479 0.5233±0.0651 0.5407±0.0559 0.3718±0.0523 0.8667±0.2309 0.8667±0.1528

L3-FT(CRISPR) + Omics + KG 0.5507±0.0704 0.5067±0.0723 0.5275±0.0703 0.3603±0.0667 0.9333±0.1155 0.8667±0.0577

G-Retriever + pre-GAT 0.4322±0.0444 0.3933±0.0404 0.4119±0.0423 0.2599±0.0341 1.0000±0.0000 0.9333±0.0577

RoG 0.5997±0.0551 0.4133±0.0924 0.4817±0.0400 0.3179±0.0353 1.0000±0.0000 0.8667±0.1155

SubgraphRAG 0.5679±0.0551 0.4667±0.0924 0.5048±0.0400 0.3383±0.0353 1.0000±0.0000 0.9333±0.1155

GNN-RAG 0.5810±0.0165 0.5733±0.0231 0.5771±0.0198 0.4058±0.0197 0.7333±0.2309 0.7333±0.0577

GALAX 0.5533±0.0115 0.5533±0.0115 0.5533±0.0115 0.3825±0.0110 0.8667±0.1155 0.8667±0.0577

GALAX (Qwen2.5-7B) 0.5733±0.0462 0.5733±0.0462 0.5733±0.0462 0.4028±0.0446 0.8000±0.0000 0.8667±0.0577

Table 34: Model performance on MESO

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0070 0.0050 0.0058 0.0029 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0190±0.0201 0.0167±0.0208 0.0133±0.0121 0.0067±0.0061 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0192±0.0228 0.0100±0.0000 0.0104±0.0052 0.0053±0.0026 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5182±0.0806 0.4833±0.0874 0.4995±0.0808 0.3354±0.0720 0.9333±0.1155 0.8667±0.1528

L3-FT(CRISPR) + Omics + KG 0.5417±0.0419 0.5233±0.0416 0.5322±0.0402 0.3633±0.0374 0.8667±0.1155 0.9000±0.0000

G-Retriever + pre-GAT 0.4721±0.0072 0.3733±0.0462 0.4161±0.0324 0.2630±0.0255 1.0000±0.0000 0.8000±0.0000

RoG 0.4476±0.0755 0.3900±0.1375 0.4137±0.1135 0.2651±0.0893 0.8667±0.2309 0.8000±0.0000

SubgraphRAG 0.4421±0.0000 0.4200±0.0000 0.4308±0.0000 0.2745±0.0000 0.6000±0.0000 0.8000±0.0000

GNN-RAG 0.3750±0.0000 0.2400±0.0000 0.2927±0.0000 0.1714±0.0000 1.0000±0.0000 0.8000±0.0000

GALAX 0.5933±0.0231 0.5933±0.0231 0.5933±0.0231 0.4221±0.0236 1.0000±0.0000 0.8000±0.0000

GALAX (Qwen2.5-7B) 0.5621±0.0310 0.5533±0.0462 0.5576±0.0388 0.3872±0.0367 1.0000±0.0000 0.9333±0.0577
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Table 35: Model performance on LIHC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0100±0.0000 0.0100±0.0000 0.0100±0.0000 0.0050±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0031±0.0027 0.0067±0.0058 0.0043±0.0037 0.0021±0.0019 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.4239±0.0343 0.3967±0.0513 0.4096±0.0435 0.2582±0.0341 0.7333±0.1155 0.7000±0.1732

L3-FT(CRISPR) + Omics + KG 0.4552±0.0568 0.4467±0.0635 0.4509±0.0600 0.2924±0.0512 0.8000±0.0000 0.7667±0.0577

G-Retriever + pre-GAT 0.3598±0.0387 0.3000±0.0520 0.3270±0.0467 0.1961±0.0340 0.8000±0.0000 0.7667±0.1155

RoG 0.4205±0.1173 0.3733±0.1856 0.3903±0.1596 0.2507±0.1247 0.9333±0.1155 0.8000±0.1732

SubgraphRAG 0.4738±0.1320 0.4267±0.2136 0.4436±0.1843 0.2964±0.1437 0.9333±0.1155 0.8000±0.1732

GNN-RAG 0.4233±0.0289 0.4233±0.0289 0.4233±0.0289 0.2688±0.0230 1.0000±0.0000 0.8333±0.0577

GALAX 0.4900±0.0100 0.4900±0.0100 0.4900±0.0100 0.3245±0.0088 1.0000±0.0000 0.9000±0.0000

GALAX (Qwen2.5-7B) 0.4362±0.0033 0.4333±0.0058 0.4348±0.0045 0.2778±0.0037 0.8667±0.1155 0.8667±0.0577

Table 36: Model performance on LAML

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0164 0.0100 0.0124 0.0062 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.1576±0.1412 0.0200±0.0173 0.0354±0.0307 0.0182±0.0158 0.1333±0.2309 0.2000±0.1732

L3-FT(Med) + Omics 0.1136±0.0630 0.0400±0.0173 0.0495±0.0008 0.0254±0.0004 0.2000±0.3464 0.1333±0.1528

L3-FT(Med) + Omics + KG 0.1085±0.0867 0.0267±0.0058 0.0377±0.0221 0.0193±0.0114 0.2000±0.3464 0.2000±0.1732

L3-FT(CRISPR) + Omics 0.4758±0.0251 0.3733±0.0115 0.4180±0.0082 0.2642±0.0066 0.8667±0.2309 0.9000±0.1000

L3-FT(CRISPR) + Omics + KG 0.4988±0.0700 0.4500±0.0600 0.4721±0.0572 0.3102±0.0481 0.8667±0.2309 0.8333±0.1155

G-Retriever + pre-GAT 0.3719±0.0373 0.2400±0.0000 0.2912±0.0119 0.1705±0.0081 1.0000±0.0000 0.9000±0.0000

RoG 0.4228±0.0149 0.3467±0.1097 0.3725±0.0685 0.2303±0.0506 1.0000±0.0000 0.8667±0.1155

SubgraphRAG 0.4141±0.0000 0.4100±0.0000 0.4121±0.0000 0.2595±0.0000 1.0000±0.0000 0.8000±0.0000

GNN-RAG 0.3972±0.0934 0.3200±0.1559 0.3511±0.1311 0.2183±0.1015 1.0000±0.0000 0.8333±0.0577

GALAX 0.4730±0.0901 0.4333±0.0306 0.4510±0.0554 0.2923±0.0467 0.9333±0.1155 0.8667±0.2309

GALAX (Qwen2.5-7B) 0.4596±0.0437 0.4567±0.0462 0.4581±0.0449 0.2979±0.0385 1.0000±0.0000 1.0000±0.0000

Table 37: Model performance on DLBC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0220±0.0249 0.0367±0.0404 0.0275±0.0308 0.0141±0.0159 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0375±0.0385 0.0067±0.0058 0.0111±0.0097 0.0056±0.0049 0.0667±0.1155 0.0333±0.0577

L3-FT(CRISPR) + Omics 0.3985±0.0669 0.3900±0.0721 0.3942±0.0695 0.2470±0.0530 0.9333±0.1155 0.8333±0.0577

L3-FT(CRISPR) + Omics + KG 0.4200±0.0230 0.4100±0.0173 0.4149±0.0200 0.2619±0.0158 0.8667±0.1155 0.7000±0.1000

G-Retriever + pre-GAT 0.3196±0.0307 0.2767±0.0058 0.2963±0.0168 0.1740±0.0115 1.0000±0.0000 0.8000±0.0000

RoG 0.4424±0.0239 0.4367±0.0289 0.4395±0.0264 0.2819±0.0219 0.8667±0.1155 0.7667±0.1155

SubgraphRAG 0.4286±0.0000 0.4200±0.0000 0.4242±0.0000 0.2692±0.0000 0.8000±0.0000 0.7000±0.0000

GNN-RAG 0.4433±0.0231 0.4433±0.0231 0.4433±0.0231 0.2850±0.0192 1.0000±0.0000 0.9000±0.0000

GALAX 0.4400±0.0000 0.4400±0.0000 0.4400±0.0000 0.2821±0.0000 0.8667±0.1155 0.6333±0.2309

GALAX (Qwen2.5-7B) 0.4764±0.0055 0.4700±0.0000 0.4732±0.0027 0.3099±0.0023 0.8000±0.0000 0.9000±0.0000

Table 38: Model performance on MM

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0275±0.0296 0.0167±0.0208 0.0156±0.0149 0.0079±0.0075 0.0667±0.1155 0.0333±0.0577

L3-FT(Med) + Omics + KG 0.1091±0.0630 0.0200±0.0000 0.0329±0.0027 0.0167±0.0014 0.1333±0.1155 0.1333±0.1155

L3-FT(CRISPR) + Omics 0.4001±0.0022 0.3800±0.0265 0.3894±0.0134 0.2418±0.0103 0.9333±0.1155 0.9000±0.0000

L3-FT(CRISPR) + Omics + KG 0.4753±0.0613 0.4367±0.0306 0.4549±0.0447 0.2952±0.0377 0.8000±0.0000 0.7333±0.0577

G-Retriever + pre-GAT 0.4514±0.0890 0.3667±0.0808 0.4046±0.0850 0.2561±0.0690 0.9333±0.1155 0.9000±0.0000

RoG 0.4900±0.0615 0.3833±0.1550 0.4246±0.1182 0.2745±0.0997 0.9333±0.1155 0.8667±0.0577

SubgraphRAG 0.4515±0.0122 0.3033±0.0289 0.3620±0.0175 0.2211±0.0130 0.9333±0.1155 0.8667±0.0577

GNN-RAG 0.5166±0.0376 0.5133±0.0404 0.5150±0.0390 0.3474±0.0359 1.0000±0.0000 0.8333±0.0577

GALAX 0.5858±0.0564 0.5700±0.0819 0.5775±0.0695 0.4082±0.0680 1.0000±0.0000 0.9333±0.0577

GALAX (Qwen2.5-7B) 0.5000±0.0917 0.5000±0.0917 0.5000±0.0917 0.3367±0.0834 0.9333±0.1155 0.9000±0.1000
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Table 39: Model performance on KIRC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5458±0.0450 0.5333±0.0513 0.5394±0.0478 0.3703±0.0452 0.8667±0.2309 0.8667±0.1155

L3-FT(CRISPR) + Omics + KG 0.4897±0.0182 0.4800±0.0265 0.4847±0.0219 0.3201±0.0192 0.8667±0.1155 0.9000±0.0000

G-Retriever + pre-GAT 0.4160±0.0315 0.3733±0.0058 0.3933±0.0171 0.2449±0.0133 0.6000±0.0000 0.8000±0.0000

RoG 0.6207±0.0617 0.5867±0.0751 0.6031±0.0689 0.4340±0.0687 1.0000±0.0000 1.0000±0.0000

SubgraphRAG 0.6412±0.0261 0.5300±0.1732 0.5714±0.1237 0.4067±0.1160 1.0000±0.0000 0.9333±0.1155

GNN-RAG 0.5898±0.0350 0.5733±0.0635 0.5812±0.0499 0.4108±0.0486 1.0000±0.0000 1.0000±0.0000

GALAX 0.5797±0.0251 0.5700±0.0265 0.5748±0.0254 0.4036±0.0247 0.9333±0.1155 0.9000±0.1732

GALAX (Qwen2.5-7B) 0.5786±0.1114 0.5700±0.1044 0.5742±0.1076 0.4079±0.1019 0.8667±0.1155 0.9333±0.0577

Table 40: Model performance on THCA

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.1500±0.1500 0.0200±0.0173 0.0348±0.0303 0.0179±0.0155 0.1333±0.2309 0.1000±0.1732

L3-FT(Med) + Omics 0.0439±0.0532 0.0167±0.0058 0.0200±0.0119 0.0101±0.0061 0.0667±0.1155 0.0333±0.0577

L3-FT(Med) + Omics + KG 0.0156±0.0145 0.0300±0.0265 0.0205±0.0187 0.0104±0.0095 0.0000±0.0000 0.0333±0.0577

L3-FT(CRISPR) + Omics 0.5495±0.0165 0.5367±0.0153 0.5430±0.0158 0.3728±0.0148 0.8667±0.1155 0.8333±0.0577

L3-FT(CRISPR) + Omics + KG 0.5818±0.0490 0.5333±0.0416 0.5556±0.0365 0.3853±0.0353 0.9333±0.1155 0.9000±0.1000

G-Retriever + pre-GAT 0.6237±0.0849 0.3833±0.0231 0.4718±0.0097 0.3088±0.0083 0.5333±0.1155 0.7333±0.1155

RoG 0.5696±0.0350 0.5367±0.0635 0.5524±0.0499 0.3827±0.0486 1.0000±0.0000 1.0000±0.0000

SubgraphRAG 0.5495±0.0000 0.5000±0.0000 0.5236±0.0000 0.3546±0.0000 1.0000±0.0000 1.0000±0.0000

GNN-RAG 0.6465±0.0350 0.4400±0.1386 0.5127±0.0782 0.3473±0.0731 0.9333±0.1155 0.8333±0.0577

GALAX 0.6076±0.0331 0.6033±0.0289 0.6054±0.0308 0.4346±0.0313 1.0000±0.0000 1.0000±0.0000

GALAX (Qwen2.5-7B) 0.5790±0.0350 0.4967±0.0751 0.5312±0.0356 0.3622±0.0333 0.8000±0.2000 0.8333±0.0577

Table 41: Model performance on BLCA

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0127±0.0111 0.0267±0.0231 0.0172±0.0149 0.0087±0.0076 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0222±0.0385 0.0033±0.0058 0.0058±0.0100 0.0029±0.0051 0.0000±0.0000 0.0333±0.0577

L3-FT(CRISPR) + Omics 0.5538±0.0498 0.5000±0.0200 0.5250±0.0301 0.3563±0.0279 0.7333±0.1155 0.8000±0.0000

L3-FT(CRISPR) + Omics + KG 0.5617±0.0584 0.5367±0.0231 0.5484±0.0376 0.3784±0.0356 0.8667±0.2309 0.8667±0.0577

G-Retriever + pre-GAT 0.5025±0.0481 0.4733±0.0058 0.4870±0.0253 0.3221±0.0223 0.6000±0.0000 0.6333±0.0577

RoG 0.5633±0.0231 0.5633±0.0231 0.5633±0.0231 0.3924±0.0226 1.0000±0.0000 0.9667±0.0577

SubgraphRAG 0.5457±0.0075 0.4633±0.1501 0.4922±0.1001 0.3302±0.0851 0.9333±0.1155 0.9000±0.1732

GNN-RAG 0.5270±0.1006 0.4900±0.1646 0.5056±0.1376 0.3456±0.1177 0.6667±0.5774 0.6000±0.5196

GALAX 0.5247±0.0081 0.5033±0.0289 0.5133±0.0115 0.3453±0.0104 1.0000±0.0000 0.9000±0.1000

GALAX (Qwen2.5-7B) 0.5852±0.0091 0.5733±0.0115 0.5791±0.0015 0.4076±0.0015 0.9333±0.1155 0.9000±0.0000

Table 42: Model performance on UCEC

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(CRISPR) + Omics 0.5293±0.0394 0.5133±0.0379 0.5211±0.0379 0.3530±0.0344 0.7333±0.1155 0.7000±0.1000

L3-FT(CRISPR) + Omics + KG 0.4672±0.0472 0.4533±0.0231 0.4600±0.0346 0.2991±0.0296 0.8000±0.2000 0.8000±0.1000

G-Retriever + pre-GAT 0.4517±0.0318 0.4000±0.0173 0.4242±0.0237 0.2694±0.0193 1.0000±0.0000 0.9000±0.0000

RoG 0.4508±0.0506 0.4233±0.0982 0.4355±0.0772 0.2803±0.0614 0.6667±0.5774 0.4667±0.4041

SubgraphRAG 0.4800±0.0000 0.4800±0.0000 0.4800±0.0000 0.3158±0.0000 1.0000±0.0000 0.7000±0.0000

GNN-RAG 0.4777±0.0739 0.4433±0.1159 0.4589±0.0975 0.3011±0.0795 0.6000±0.5292 0.4667±0.4163

GALAX 0.5280±0.0555 0.5233±0.0635 0.5256±0.0596 0.3579±0.0536 0.8000±0.0000 0.9000±0.0000

GALAX (Qwen2.5-7B) 0.4848±0.0391 0.5033±0.0231 0.4938±0.0313 0.3282±0.0280 0.9333±0.1155 0.8333±0.1155
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Table 43: Model performance on PRAD

Model Precision ↑ Recall ↑ F1 ↑ Jaccard ↑ Hit@5 ↑ Hit@10 ↑
M2T 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GAT 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3 + Omics 0.0111±0.0192 0.0033±0.0058 0.0051±0.0089 0.0026±0.0045 0.0000±0.0000 0.0000±0.0000

L3 + Omics + KG 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics 0.0145±0.0251 0.0033±0.0058 0.0054±0.0094 0.0027±0.0047 0.0000±0.0000 0.0000±0.0000

L3-FT(Med) + Omics + KG 0.0176±0.0261 0.0067±0.0058 0.0078±0.0083 0.0039±0.0042 0.0000±0.0000 0.0333±0.0577

L3-FT(CRISPR) + Omics 0.6021±0.0558 0.5600±0.0400 0.5796±0.0401 0.4088±0.0392 1.0000±0.0000 0.9333±0.1155

L3-FT(CRISPR) + Omics + KG 0.6032±0.0191 0.5867±0.0115 0.5947±0.0102 0.4232±0.0103 0.9333±0.1155 0.9000±0.1000

G-Retriever + pre-GAT 0.4749±0.0041 0.4433±0.0231 0.4584±0.0141 0.2974±0.0120 1.0000±0.0000 1.0000±0.0000

RoG 0.5833±0.0404 0.5833±0.0404 0.5833±0.0404 0.4125±0.0410 1.0000±0.0000 0.9333±0.0577

SubgraphRAG 0.5931±0.1258 0.4500±0.0964 0.5042±0.0691 0.3389±0.0607 0.6667±0.5774 0.6333±0.5508

GNN-RAG 0.6140±0.0138 0.6100±0.0173 0.6120±0.0156 0.4411±0.0163 1.0000±0.0000 1.0000±0.0000

GALAX 0.5152±0.1398 0.4733±0.0751 0.4923±0.1036 0.3308±0.0934 0.9333±0.1155 0.9667±0.0577

GALAX (Qwen2.5-7B) 0.6195±0.0292 0.6133±0.0289 0.6164±0.0290 0.4459±0.0300 1.0000±0.0000 0.9000±0.0000

37


	Introduction
	Related Work
	Problem Formulation
	GALAX
	Foundation Models Pretraining
	Model Training

	Experiments
	Conclusion
	The Use of Large Language Models
	Dataset
	BioMedical Terminolgy Corpus
	DepMap Data Preprocessing
	Target-QA Generation

	Pretraining of Foundation Models
	LLM Pretraining on BioMedical Corpus
	LLM Pretraining on Target-QA
	Graph Foundation Models

	Experiment Details
	Prompt and Context Design for Finetuning
	Hyperparameters
	Baseline Models
	Results
	Generalization to Unseen Cancer Types
	External datasets

	Reinforcement Learning Generated Subgraph Details
	Enrichment analysis
	Human evaludation and LLM as judge


