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ABSTRACT

Diffusion bridges are a promising class of deep-learning methods for sampling
from unnormalized distributions. Recent works show that the Log Variance (LV)
loss consistently outperforms the reverse Kullback-Leibler (rKL) loss when us-
ing the reparametrization trick to compute rKL-gradients. While the LV loss
is theoretically justified for diffusion samplers with non-learnable forward pro-
cesses—yielding identical gradients to the rKL loss combined with the log deriva-
tive trick—this equivalence does not hold for diffusion bridges. We point out that
the LV loss does not unconditionally satisfy the data processing inequality, cast-
ing doubt on its suitability for diffusion bridges. To avoid this problem we employ
the rKL loss with the log derivative trick and show that it consistently outper-
forms the LV loss. Furthermore, we introduce two techniques for controlling the
exploration-exploitation trade-off in diffusion samplers—one based on variational
annealing and the other on off-policy exploration. We validate their effectiveness
on highly multimodal benchmark tasks.

1 INTRODUCTION

We consider the task of learning to generate samples X ∈ RN from a target distribution

π0(X,β) =
exp (−β E(X))

Z
where Z = ∫

RN
exp (−β E(X))dX, (1)

where Z represents the partition function, E ∶ RN → R is the energy function, and β is the inverse
temperature of the target distribution π0 which is usually set to 1. In this setting, it is assumed that the
energy function E of the target distribution can be evaluated while Z is unknown and computation-
ally intractable. Sampling problems of this kind represent fundamental challenges in computational
physics and chemistry and in Bayesian learning (Wu et al., 2019; Noé & Wu, 2018; Shih & Er-
mon, 2020). Recent approaches have focused on training generative neural networks to approximate
target distributions. Early deep learning-based methods explored exact likelihood models such as
normalizing flows Noé & Wu (2018) and autoregressive models Wu et al. (2019), while more recent
work has turned to approximate likelihood models like diffusion samplers in continuous Zhang &
Chen (2022) and discrete domains Sanokowski et al. (2024). However, diffusion samplers based on
Stochastic Differential Equations (SDEs) face significant challenges in terms of practical applicabil-
ity. These models require extensive tuning of hyperparameters, particularly diffusion coefficients,
which become infeasible when problem scales differ across dimensions.

In this work, we make four key contributions to address these limitations of diffusion bridge-based
samplers. (i) In addition to the usual learned drift terms of SDEs we propose learnable diffusion
terms that enable dynamic adaptation of the exploration-exploitation trade-off, significantly reduc-
ing the need for manual hyperparameter tuning. Our approach yields significantly improved per-
formance when applied to hitherto state-of-the-art samplers that build on diffusion bridges. (ii) We
identify crucial problems in the application of the popular Log Variance (LV) (Nüsken & Richter,
2021; Richter et al., 2023) loss in these diffusion bridges. While the LV loss and the reverse
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Kullback-Leibler (rKL) are equivalent when only the reverse diffusion process is learned, we iden-
tify a critical discrepancy that arises in the application of these losses in the context of diffusion
bridges and when learning SDE parameters that are shared in the forward- and reverse- diffusion
process. We demonstrate that this discrepancy can drastically deteriorate model performance and
violates a crucial feasibility criterion for divergences in diffusion samplers. (iii) By introducing a
simple rKL-based loss that mitigates these limitations, we consistently outperform recent literature
baselines. (iv) Based on this rKL-based loss we propose the usage of simple exploration methods
that effectively encourage exploration in multimodal distributions and prevent mode collapse.

2 PROBLEM DESCRIPTION

2.1 DIFFUSION BRIDGES

Diffusion models are generative models that are trained to map samples XT from a simple prior
distribution πT to samples from a target distribution X0 ∼ π0. The diffusion path that defines how
samples are supposed to be transported from XT to X0 is determined by a so-called forward diffu-
sion process, which is either defined by a fixed forward SDE or as in the case of diffusion bridges
by a learnable forward SDE. For predefined forward stochastic differential equations (SDEs), such
as variance-exploding or variance-preserving SDEs, the selection of parameters—particularly the
diffusion coefficient and drift term—must be carefully calibrated to align with the target distribu-
tion. This enables the forward process to map samples to the desired prior distribution. In diffusion
bridges, this problem is mitigated as the parameterized forward diffusion process can in principle
learn to map to any prior distribution. Due to this flexibility diffusion bridges (De Bortoli et al.,
2021; Richter et al., 2023; Vargas et al., 2024) have recently attracted increased research interest and
represent the state-of-the-art in a wide range of popular sampling benchmarks. Our contributions
build upon these methods and show how they can be significantly improved.

We define the forward diffusion process via the following SDE:

dXt = v(Xt, t)dt + σt dWt where X0 ∼ π0, (2)

where W is a Brownian motion, i.e. dWt = ϵt
√
dt and ϵt ∼ N (ϵt; 0, I). The reverse process is

defined as:

dXτ = u(Xτ , τ)dτ + στ dWτ where XT ∼ πT (3)

where time evolves in the opposite direction: t = T − τ and u(Xτ , τ),Xt, dWt and σt are each in
RN . We follow Vargas et al. (2024) and aim to learn an optimal transport along a path πt that is
defined via an interpolation between the target and prior distributions according to πt = π

η(t)
0 π

1−η(t)
T

where η(t) ∈ [0,1] is a monotonically increasing function with η(0) = 1 and η(T ) = 1.

They propose to parameterize the forward process according to:

dXt = (
σ2
t

2
∇Xt

logπt(Xt) − uθ(Xt, t))dt + σt dWt,

where X0 ∼ π0 and the reverse process according to:

dXτ = (
σ2
τ

2
∇Xτ logπτ(Xτ) + uθ(Xτ , τ))dτ + στ dWτ ,

where XT ∼ πT . The drift uθ(Xt, t) = σ2
t sθ(Xt) where sθ(Xt) is the control which is parame-

terized by a neural network. In practice the reverse process is often simulated via Euler-Maruyama
integration and with ∆t = 1 so that the reverse SDE generation process is given by:

gθ(Xτ , ϵτ , τ) =Xτ+1 =Xτ +
σ2
τ

2
∇Xτ logπτ(Xτ) + uθ(Xτ , τ) + στ ϵτ .
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2.2 TRANING OF DIFFUSION SAMPLERS

The goal is to generate samples from the target probability distribution π0(X0) by numerically
integrating the SDE in Eq. 3 whose drift is a vector field uθ(Xτ , τ) that is parametrized by a trainable
neural network. The corresponding loss is typically based on a divergence between the underlying
marginal distribution qθ(X0) induced by the reverse diffusion process and the target distribution
π0(X0). For this purpose, f-divergences are a popular choice(Csiszár, 1967):

Df(P (X) ∣∣Q(X)) = ∫ Q(X)f (
P (X)

Q(X)
)dX,

where f is a convex function satisfying f(1) = 0 and P and Q are two probability distributions
satisfying P << Q, i.e. P is absolutely continuous with respect to Q. The rKL, for example, corre-
sponds to f(t) = − log(t). The choice of f significantly influences the learning dynamics in terms
of mode-seeking vs. mass-covering properties. The rKL exhibits a mode-seeking behavior.
For expressive latent variable models like diffusion samplers the marginal sample probability
qθ(X0) is typically intractable. In practice, loss functions are instead based on the joint distri-
butions of the diffusion paths X0∶T . Diffusion paths of the forward process Eq. 2 are distributed
according to qθ(X0∶T ) and those of the reverse process Eq. 3 according to pθ(X0∶T ).
For f-divergences the data processing inequality yields the following monotonicity relation
Df(π0(X0) ∣∣ qθ(X0)) ≤ Df(π0(X0∶T ) ∣∣ qθ(X0∶T )) (Murphy, 2023). The right-hand side of this
inequality is tractable for diffusion samplers and hence minimization of this variational upper bound
represents a suitable learning objective. For the rKL this objective reads:

DKL(qθ(X0∶T ) ∣∣pθ(X0∶T )) = EX0∶T ∼qθ(X0∶T ) [log
qθ(X0∶T )

pθ(X0∶T )
] (4)

In case of diffusion bridges as defined in Eq. 2 and Eq. 3 the corresponding time-discretized proba-
bility density ratios are given by:

qθ(X0∶T )

pθ(X0∶T )
=
πT (XT )

π0(X0)

T

∏
t=1

qθ(Xt−1∣Xt)

pθ(Xt∣Xt−1)
,

where the conditional probability for a step in the reverse direction is given by

qθ(Xt−1∣Xt) = N (Xt−1;Xt +
σ2
t

2
∇Xt logπt(Xt) + uθ(Xt, t), σ

2
t )

and for a step in the forward direction by

pθ(Xt∣Xt−1) = N (Xt;Xt−1 +
σ2
t−1

2
∇Xt−1 logπt−1(Xt−1) − uθ(Xt−1, t − 1), σ

2
t−1).

2.2.1 REVERSE KL DIVERGENCE WITH REPARAMETRIZATION TRICK

The loss in Eq. 4 involves an expectation over the variational distribution which is Gaussian. This
is a typical use case for the reparameterization trick (Glasserman, 2004) which is particularly pop-
ular in the context of stochastic gradient descent (Kingma & Welling, 2014; Rezende et al., 2014).
This technique provides an elegant way of estimating gradients and often yields a lower variance
than the log derivative trick (also known as score-function estimator or REINFORCE (Williams,
1992)). In the context of diffusion samplers, the reparameterization trick was introduced in (Zhang
& Chen, 2022). In this method the trajectory X0∶T ∼ qθ(X0∶T ) is reparameterized as a function
fθ(ϵ0∶T ) ∶= [gθ,0, ..., gθ,T−1] of independent Gaussian noise ϵt ∼ N (0, I) and the model parameters
θ. Here, a sample at each time step is Xt is successively generated via a Euler-Maruyama update
function gθ,t ∶= Xt−1 = gθ(Xt, t, ϵt), which is used to numerically integrate Eq. 3. Substituting this
reparameterization into the rKL loss yields with slight abuse of notation:

DKL(qθ(ϵ0∶T ) ∣∣pθ(ϵ0∶T )) = Eϵ0∶T ∼N (0,I) [log
qθ(fθ(ϵ0∶T ))

pθ(fθ(ϵ0∶T ))
] . (5)

This expression highlights that the gradients of the loss with respect to θ can propagate into the
expectation into the deterministic function fθ, enabling efficient gradient calculation. In diffusion
samplers the frequent iterative application of gθ,t is likely to contribute to the vanishing or exploding
gradient problem, which might explain, why suboptimal behavior of rKL loss when minimized with
usage of the reparametrization trick Zhang & Chen (2022).
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2.2.2 LOG VARIANCE LOSS

Richter et al. (2020) propose the LV loss as a gradient estimator for rKL-based loss functions in
Bayesian variational inference and it has since then been frequently used in the context of diffusion
samplers Richter et al. (2023); Vargas et al. (2024); Chen et al. (2024). In the context of GflowNets
Bengio et al. (2021) this loss is also known as the Trajectory Balance (TB) loss. For diffusion
bridges, i.e. when both the reverse process qθ and the forward process pθ involve learnable parame-
ters θ the LV takes the following form:

Dω
LV (qθ(X0∶T ) ∣∣pθ(X0∶T )) =

1

2
EX0∶T ∼ω

⎡
⎢
⎢
⎢
⎢
⎣

(log
qθ(X0∶T )

pθ(X0∶T )
− bωθ )

2⎤
⎥
⎥
⎥
⎥
⎦

, (6)

where bωθ = EX0∶T ∼ω [log
qθ(X0∶T )

pθ(X0∶T )
]. The corresponding gradient is given by (see App. A.1):

∇θD
ω
LV (qθ(X0∶T ) ∣∣pθ(X0∶T )) = EX0∶T ∼ω [(log

qθ(X0∶T )

pθ(X0∶T )
− bωθ ) ⋅ ∇θ log

qθ(X0∶T )

pθ(X0∶T )
] (7)

If pθ(X0∶T ) does not contain learnable parameters this expression simplifies to:

∇θD
ω
LV (qθ(X0∶T ) ∣∣p(X0∶T )) = EX0∶T ∼ω [(log

qθ(X0∶T )

p(X0∶T )
− bωθ ) ⋅ ∇θ log qθ(X0∶T )] . (8)

When the proposal policy is chosen as ω = stop gradient(qθ) the gradient of the LV loss is identical
to the gradient of the rKL loss when it is trained with the log derivative trick combined with variance
reduction (see Sec. 3.1). In this particular case, we will refer to this loss as the on-policy Log
Variance (OP-LV) loss. For diffusion samplers, the general LV loss and the OP-LV loss were recently
proposed in Richter et al. (2023) with the rationale that it represents a valid divergence. However,
the LV loss is not an f-divergence and we present by a simple counter-example in App. A.5 that
it can violate the data processing inequality. Consequently, we argue that its application to latent
variable models is potentially problematic since it conflicts with the rationale of diffusion sampler
training based on divergences of joint probabilities (Sec. 2.2). These considerations put the validity
of the LV loss for diffusion bridges in question. However, we stress that the OP-LV when applied
on variance preserving and variance exploding SDE-based diffusion samplers is unaffected by these
arguments. This insight is relevant for instance in diffusion bridges with LV losses as in (Richter
et al., 2023; Vargas et al., 2024; Chen et al., 2024).

3 METHOD

3.1 REVERSE KL LOSS WITH LOG DERIVATIVE TRICK AND CONTROL VARIATE

Several recent works demonstrate that the LV loss (Sec. 2.2.2 outperforms the rKL loss with
reparametrization trick Richter et al. (2023). It is argued that this is due to the mode-seeking ten-
dency associated with the rKL objective which results in mode collapse. While the aforementioned
works applied the reparametrization trick in conjunction with the rKL objective we investigate the
rKL objective with the log derivative gradient estimator. This combination remained comparably
underexplored in the diffusion sampler setting so far. The gradient of this loss reads (App. A.2):

∇θDKL(qθ(X0∶T ) ∣∣pθ(X0∶T )) =EX0∶T ∼qθ [(log
qθ(X0∶T )

pθ(X0∶T )
− bqθθ )∇θ log qθ(X0∶T )]

−EX0∶T ∼qθ [∇θ log pθ(X0∶T )] , (9)

where bqθθ = EX0∶T ∼qθ [log
qθ(X0∶T )

pθ(X0∶T )
] is used as a control variate. Comparing Eq. 8 with Eq. 9

shows that when pθ(X0∶T ) does not have learnable parameters the gradients of the OP-LV loss
and rKL-LD loss are identical. Conversely, when ω ≠ stop gradient(qθ) these two losses yield in
general different gradients. Similarly, when the SDE parameters, that are shared by the forward and
reverse process, are learned as described in Sec. 3.2, the gradient of the LV loss does in general
not correspond to the gradient of the rKL loss. As pointed out in Sec. 3.2 this situation arises for
diffusion bridges.
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3.2 LEARNING OF SDE PARAMETERS

By the chain rule for Shannon entropies Shannon (1948), we obtain the following upper bound on
the entropy of the marginal distribution:

H(qθ(X0)) ≤H(qθ(X0∶T )). (10)

Hence, to approximate a target distribution with unknown, potentially high entropy the diffusion
bridge needs to be able to yield a qθ(X0∶T ) with at least this entropy. For diffusion bridges as
defined in Sec. 2.1 the entropy of the joint distribution is given by (App. A.4):

H(qθ(X0∶T )) =H(πT ) +
N

2

T−1

∑
t=0

(1 + log 2πσ2
t ) , (11)

Consequently, the upper bound for the entropy of the marginal qθ(X0) is determined by σt, the num-
ber of diffusion steps, and the entropy of the prior πT . Practically, in our experiments we keep the
diffusion coefficients constant across time, which is why we will denote it in the following as σdiff .
Several recent works (Blessing et al., 2024; Chen et al., 2024) learn the mean and the variance of the
prior distribution πT , which improves the exploration capabilities of the method, as this increases
the entropy of the upper bound in Eq. 10. We build upon this approach by additionally learning
individual entropy contributions for each dimension by learning σdiff ∈ RN (details in App. C.3).
Our experiments in Sec. 5 show that this modification yields a significantly better performance.

3.3 EXPLORATION STRATEGIES

As mentioned above the tendency to result in mode-collapse is a frequent objection against rKL-
based losses. For this reason, we propose the usage of exploration-based methods to alleviate the
problem of mode collapse of the rKL-LD divergence.
Variational Annealing Drawing inspiration from recent advances in physics-inspired combina-
torial optimization Hibat-Allah et al. (2021), we employ variational annealing to encourage ex-
ploration of the variational distribution. This approach has been shown to prevent mode col-
lapse in discrete domain diffusion samplers for combinatorial optimization problems Sanokowski
et al. (2024). The method involves initially approximating the target distribution π0 at an in-
verse temperature β < 1 and then gradually increasing it to β = 1 (see Eq. 1). We adapt
this technique to diffusion samplers by training the diffusion bridge along the interpolation path
πt(Xt, β) = π0(Xt, β)

η(t) πT (Xt)
1−η(t).

Off-policy Sampling We introduce an off-policy training strategy that generates samples in re-
gions where the reverse diffusion process has low probability densities. Inspired by MCMC litera-
ture Andrieu & Thoms (2008), we replace the Gaussian noise in the reverse diffusion process with
noise from a heavy-tailed distribution. Specifically, we propose a mixture of Gaussian and Laplace
distributions:

q̃θ(Xt−1∣Xt) = (1 − α)N (Xt−1;Xt, σt) + αL(Xt−1;Xt, γt) (12)
Here, α represents the probability of sampling from the Laplace distribution L(Xt−1;Xt, γt), and γt
controls the Laplace distribution’s variance. We set γt = κ

√
π
2e
σt with κ = 1, ensuring the Laplace

distribution has the same entropy as the Gaussian distribution. The degree of exploration can be
controlled by the choices of κ and α. We initialize α at a value 0 < αstart ≤ 1 and decrease it
linearly to zero, allowing the variational distribution to better adapt to the target distribution at the
end of training. The off-policy distribution is incorporated into the rKL divergence using importance
weights, resulting in the off-policy rKL-LD loss:

Dq̃θ
KL(qθ(X0∶T ) ∣∣pθ(X0∶T )) = EX0∶T ∼q̃θ [

qθ(X0∶T )

q̃θ(X0∶T )
log

qθ(X0∶T )

pθ(X0∶T )
]

The gradient of this loss function is provided in App. A.3. In Sec. 5, we demonstrate that these
exploration methods effectively alleviate the mode-seeking behavior of the rKL.

4 RELATED WORK

For continuous diffusion samplers, the rKL loss is typically used with the reparametrization trick
(Vargas et al., 2023; Berner et al., 2022). Zhang & Chen (2022) employ a more memory-efficient
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ELBO (↑) Seeds (26d) Sonar (61d) Credit (25d) Brownian (32d) LGCP (1600d)

CMCD-KL ⋆ (r) −73.51±0.01 −109.09±0.01 −507.23±6.40 0.86±0.01 478.75±0.34
CMCD-LV ⋆ (r) −73.67±0.01 −109.50±0.03 −504.90±0.02 0.54±0.03 472.79±0.44

CMCD-rKL ⋆ −74.37±0.01 −109.69±0.063 −504.99±0.016 −0.30±0.018 471.91±0.291471.91±0.291471.91±0.291
CMCD-LV ⋆ −74.13±0.01 −109.53±0.062 −504.91±0.002 −0.05±0.002 460.84±0.099
CMCD-LV −73.53±0.01 −109.66±0.015 −628.39±32.907 � −6.05±0.028 � 447.74±0.0 �
CMCD-rKL-LD ⋆ −74.10±0.01 −109.25±0.007 −504.88±0.003 0.36±0.001 466.73±0.027
CMCD-rKL-LD −73.45±0.01−73.45±0.01−73.45±0.01 −108.83±0.005−108.83±0.005−108.83±0.005 −504.58±0.001−504.58±0.001−504.58±0.001 1.06±0.01.06±0.01.06±0.0 465.80±0.02

Table 1: Results on Bayesian learning benchmarks. The ELBO (the higher the better) is reported
for various methods and tasks. ⋆ denotes that σdiff is not learned during training. Runs that diverge
after reaching the minimum ELBO are denoted with �.

method based on stochastic adjoint sensitivity. However, this gradient estimation method was found
to perform worse than reparametrization in the diffusion samplers in Berner et al. (2022). More re-
cently, Richter et al. (2023) proposed the LV loss as an alternative and showed that it outperforms the
rKL loss with the reparametrization trick. The corresponding experiments are performed with the
Path Integral Sampler Zhang & Chen (2022) and the Time-Reversed Diffusion Sampler. However,
they report that the application of LV to diffusion bridges results in bad performance and numerical
instabilities. In (Vargas et al., 2024; Chen et al., 2024) the LV loss is employed in conjunction with
diffusion bridges and both works report that it outperforms the rKL loss with the parametrization
trick. Frequently, the mode-collapse tendency of rKL is given as an explanation for its inferior per-
formance in the context of diffusion bridges (Richter et al., 2023). Successful applications of the
rKL with other gradient estimators than the reparametrization trick can be found in discrete sampling
problems. Examples of such problems arise in combinatorial optimization and statistical physics of
spin lattices where Sanokowski et al. (2024; 2025) proposed the application of diffusion samplers
based on the rKL-LD loss. Besides its mode-collapse tendency, the straightforward application of
the rKL objective in diffusion samplers is criticized in Richter et al. (2023) for precluding the appli-
cation of off-policy sampling methods. They already point out that it is conceivable to implement
off-policy sampling strategies via an increased sampling noise in the simulation of SDEs. A learn-
able degree of exploration is realized in several diffusion-based methods in Blessing et al. (2024)
where diffusion and friction parameters are treated as learnable parameters. However, in contrast to
the present work, their implementation treats these parameters only as scalars.

Figure 1: Models with fixed σdiff are marked with ⋆. Left: Training curves on the Brownian task
of CMCD trained with LV loss and rKL-LD loss. Middle: Plot of the learned σdiff in ascending
order at the end of training of the best run (CMCD-rKL-LD σdiff,init = 0.05). On the left we show
results of CMCD-rKL-LD ⋆ σdiff,init ≈ 0.018 where σdiff,init is initialized at the average value of
the learned σdiff at the end of training of CMCD-rKL-LD σdiff,init = 0.05. Right: Training curves
on the Seeds task, where CMCD-rKL-LD σdiff,init is compared to CMCD-rKL-LD ⋆ σdiff,init at
different initializations of σdiff,init.

5 EXPERIMENTS

Learnable Diffusion Coefficients and Divergent Behavior of Log Variance Loss We first inves-
tigate the impact of learnable diffusion coefficients when combined with the rKL-LD loss, as shown
in Fig. 1 (left and right). In Fig. 1 (left) we evaluate CMCD under several configurations on the
Brownian Bayesian learning task (see App. B.1). Our baseline comparison is CMCD-LV ⋆, where
the ⋆ denotes that σdiff are not updated during training. This method proved highly sensitive to the
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Task Funnel (10d) GMM-40 (50d) MoS-10 (50d)

Metric Sinkhorn (↓) ELBO (↑) Sinkhorn (↓) ELBO (↑) EMC (↑) Sinkhorn (↓) ELBO (↑) EMC (↑)

Ground Truth 64.770±64.770 0. 875.21±86.023 0 1. 329.81±42.036 0. 1.
CMCD-rKL ⋆ 113.38±0.77 −2.46±0.35 22451.59±931.69 −37.37±0.10 0.490±0.201 1504.11±201.42 −19.88±0.16−19.88±0.16−19.88±0.16 0.628±0.048
CMCD-LV ⋆ 95.90±2.5895.90±2.5895.90±2.58 −0.67±0.00 2689.87±215.51 −37.37±0.10 0.996±0.0010.996±0.0010.996±0.001 1106.72±181.88 −52.52±0.70 0.971±0.001
CMCD-LV 102.94±3.04 � −0.46±0.01 � 2756.96±240.53 −45.85±0.17 0.996±0.0010.996±0.0010.996±0.001 974.38±118.30 −43.63±0.51 0.994±0.0010.994±0.0010.994±0.001
CMCD-rKL-LD ⋆ 94.04±2.23994.04±2.23994.04±2.239 −0.54±0.01 2464.37±222.27 −26.78±0.05 0.997±0.0010.997±0.0010.997±0.001 630.82±55.22630.82±55.22630.82±55.22 −34.93±0.25 0.981±0.004
CMCD-rKL-LD 94.16±2.5594.16±2.5594.16±2.55 −0.23±0.01−0.23±0.01−0.23±0.01 2426.40±160.272426.40±160.272426.40±160.27 −21.94±0.10−21.94±0.10−21.94±0.10 0.997±0.0000.997±0.0000.997±0.000 630.81±55.44630.81±55.44630.81±55.44 −34.93±0.25 0.981±0.004

Table 2: Results on synthetic learning benchmarks. The Sinkhorn distance (the lower the better) is
reported for various methods and tasks. Runs that diverge after reaching the reported value marked
with � and runs that do not converge at all are denoted as N/A. Sinkhorn distances are computed
on Funnel using 2000 samples and on GMM and MoS using 16000 samples. Ground truth sinkhorn
distances are computed by calculating the sinkhorn distance between two independent set of samples
from the target distribution.

Task GMM (5d) MoS (10d)

Metric Sinkhorn (↓) ELBO (↑) Sinkhorn (↓) ELBO (↑)

CMCD-rKL-LD σprior,init = 1 3083.75 −3.68 311.11 −2.39
CMCD-rKL-LD tune σprior,init 1160.30 −1.44−1.44−1.44 222.9 −1.16
CMCD-rKL-LD annealing 146.23146.23146.23 −2.95 42.1342.1342.13 −0.50−0.50−0.50
CMCD-rKL-LD off-policy σprior,init = 1 3069 −3.84 44.68 −0.65
CMCD-rKL-LD off-policy tune σprior,init 996.84 −1.64 44.68 −0.65

Table 3: Comparison of different exploration methods on GMM 5d and MoS 10d. σprior,init = 1
stands for runs that were initialized with a prior with standard deviation of 1. Tune σprior,init denotes
that the standard deviation of the prior was tuned to the problem. Annealing and off-policy denote
the exploration methods presented in Sec. 3.3.

initial choices of σprior and σdiff (see App. C). When we train the diffusion parameters σdiff with the
LV loss (denoted as CMCD-LV), we consistently observe divergent behavior across all hyperparam-
eter choices. For comparison, we study our proposed loss function in two variants: CMCD-rKL-LD
with trainable σdiff , and CMCD-rKL-LD ⋆ with frozen σdiff . For CMCD-rKL-LD ⋆ we performed
hyperparameter tuning on the initial value of σdiff which we call σdiff,init. The experimental results
demonstrate that the rKL-LD loss consistently outperforms the LV loss across all tested configu-
rations and that incorporating learnable diffusion coefficients further enhances model performance
when using this loss function. The results in Tab. 1 and Tab. 2 indicate that the divergent behavior is
present on most investigated benchmarks.
In Fig. 1 (middle), we analyze the learned diffusion coefficients σdiff across dimensions, show-
ing their values in ascending order along with standard deviations computed from three indepen-
dent seeds. The results reveal that σdiff systematically adopts different scales across dimensions
while maintaining consistency between seeds. To test the hypothesis, whether different values of
σdiff in each dimension are indeed beneficial, we additionally train CMCD-rKL-LD with frozen
sigma parameters initialized at the average σdiff after training of the best run (CMCD-rKL-LD ⋆
σdiff,init = σdiff,avg in Fig. 1 (left)). The results show that this uniform choice of σdiff across dimen-
sions yields inferior results.
Figure 1 (right) shows how the initial value of σdiff,init affects performance by comparing CMCD-
rKL-LD with and without learned diffusion on the Seeds dataset. We track the convergence using
∆ELBO, defined as ∣ELBOopt − ELBO∣, where we estimate ELBOopt = −73nats to enable vi-
sualization on a logarithmic scale. The results demonstrate that when CMCD learns σdiff,init, it
successfully approximates the target distribution regardless of the initial parameter choice. Without
learned diffusion parameters, the model struggles to efficiently approximate the target distribution.

Benchmarks Similarly to Chen et al. (2024), we evaluate our model on two types of tasks:
Bayesian learning problems, where we report the ELBO due to the absence of ground truth data
(see App. B), and synthetic targets, where we can report the Sinkhorn distance between model sam-
ples and the target distribution (see App. B) together with the ELBO and Entropic Mode Coverage
(EMC) Blessing et al. (2024) at the same training iteration. On multimodal tasks, a combination
of high ELBO and low Sinkhorn distance indicate good performance. Detailed descriptions of both
task types are provided in App. B.1. Our experimental setup mirrors Chen et al. (2024), i.e. training
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CMCD for 40.000 training iterations with a batch size of 2.000 on all tasks and a batch size of 300 for
LGCP. Models are trained using 128 diffusion steps. We use a simple architecture for all diffusion-
based methods on Bayesian tasks as described in App. C.3. On GMM-40 50d and MoS-10 50d, we
use the PISgradnet architecture from Vargas et al. (2024) as we observed that this architecture is less
prone to mode-collapse when hyperparameters are carefully tuned. In our experiments, we compare
different variations of CMCD trained with different loss functions, denoted as rKL (Eq. 5), rKL-LD
(Eq. 9), and LV (Eq. 7). For each loss, we report the results of a variation, where σdiff is not learned
which we denote with a ⋆. For rKL-LD and LV we also report the results of the method when σdiff is
learned. For each variation, we perform a grid search over the learning rate, σdiff,init and σprior,init

as described in App. C. Runs that diverge, i.e. the ELBO decreases to high magnitudes after the
reported best metric value is reached, are denoted with a �. Tab. 1 and Tab. 2 present our results
on Bayesian and synthetic targets, respectively. Our results show that on Bayesian tasks, CMCD-
rKL-LD ⋆ significantly outperforms CMCD-LV ⋆ in 5 out of 5 tasks and CMCD-rKL on 4 out of 5
tasks. If we additionally train the diffusion coefficients, we observe that CMCD-rKL-LD improves
upon CMCD-rKL-LD ⋆ on 4 out of 5 tasks. In contrast to that, we observe that learning diffusion
coefficients in combination with the LV loss deteriorate the performance of CMCD-rKL-LD in 4
out of 5 cases. In fact, this often leads to unstable learning dynamics as the runs diverge in 3 out
of 5 cases. On synthetic tasks, CMCD-rKL-LD significantly achieves the best Sinkhorn distance on
MoS 50d and insignificantly better Sinkhorn distance than CMCD-LV ⋆ and CMCD-rKL-LD ⋆ on
Funnel and GMM40 50d. In terms of ELBO, CMCD-rKL-LD ⋆ and CMCD-rKL-LD achieve better
results than CMCD-LV ⋆ and CMCD-LV in 3 out of 3 tasks. All methods except CMCD-rKL ⋆
achieve an EMC value close to 1., indicating that all modes are covered.

Exploration Stratergies In the following, we compare different methods to prevent the mode
collapse in multimodal target distributions such as GMM 5d and MoS 10d. Here, we compare vari-
ational annealing (CMCD-rKL-LD Annealing) and off-policy learning (CMCD-rKL-LD off-policy)
as introduced in Sec. 3.3 to careful tuning of σprior,init (CMCD-rKL-LD tune). In variational anneal-
ing, we tune the starting inverse temperature βstart, and in off-policy learning the mixing probability
αstart is tuned. For off-policy and variational annealing, we assume no prior knowledge of the prob-
lem and set σprior,init = 1, except for CMCD-rKL-LD off-policy where we also show results of the
method where σprior,init is tuned. Results in Tab. 3 show that variational annealing obtains the best
results in terms of Sinkhorn distance on both datasets and the best ELBO value on MoS 10d. While
off-policy learning exhibits strong performance on MoS 10d it yields no improvement on GMM 5d
when σprior,init is not tuned. However, when we additionally tune σprior,init the method improves
and helps to prevent mode collapse. Only tuning σprior,init does not help against mode collapse and
yields the worst results.

6 CONCLUSION

In this work, we introduced a novel training approach for diffusion bridge-based samplers using gra-
dients of the reverse Kullback-Leibler divergence estimated with the log derivative trick (rKL-LD).
Our analysis reveals a critical insight: while the Log Variance (LV) loss and reverse KL loss are
equivalent when training only the reverse diffusion process, this equivalence breaks down in two
important scenarios - when working with diffusion bridges or learning diffusion coefficients. Our
theoretical consideration show that in general the LV loss does not satisfy the data processing in-
equality, questioning its soundness in the context of diffusion bridges. Empirical results demonstrate
the superiority of the proposed rKL-LD loss over the recently proposed LV loss. Notably, when us-
ing the rKL-LD loss, we can further improve diffusion bridges by learning the diffusion coefficients,
which also reduces the sensitivity to hyperparameter choices. In contrast, the LV loss often exhibits
unstable behavior during coefficient learning. Additionally, we demonstrated that exploration meth-
ods can effectively prevent mode collapse when dealing with multimodal target distributions. These
findings open new avenues for improving the stability and performance of diffusion-based generative
models.
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A DERIVATIONS AND PROOFS

A.1 GRADIENT OF THE LOG VARIANCE LOSS

In the following we derive the gradient of the log variance loss:

∇θD
ω
LV (qθ, p) = ∇θEX0∶T ∼ω

⎡
⎢
⎢
⎢
⎢
⎣

(log
qθ(X0∶T )

pθ(X0∶T )
−EX0∶T ∼ω [log

qθ(X0∶T )

pθ(X0∶T )
])

2⎤
⎥
⎥
⎥
⎥
⎦

= EX0∶T ∼ω [2 (log
qθ(X0∶T )

pθ(X0∶T )
−EX0∶T ∼ω [log

qθ(X0∶T )

pθ(X0∶T )
]) ⋅ (∇θ log

qθ(X0∶T )

pθ(X0∶T )
−EX0∶T ∼ω [∇θ log

qθ(X0∶T )

pθ(X0∶T )
])]

= EX0∶T ∼ω [2 (log
qθ(X0∶T )

pθ(X0∶T )
−EX0∶T ∼ω [log

qθ(X0∶T )

pθ(X0∶T )
]) ⋅ ∇θ log

qθ(X0∶T )

pθ(X0∶T )
]

Where we have used that EX0∶T ∼ω [2 (log
qθ(X0∶T )

pθ(X0∶T )
−EX0∶T ∼ω [log

qθ(X0∶T )

pθ(X0∶T )
]) ⋅ (EX0∶T ∼ω [∇θ log

qθ(X0∶T )

pθ(X0∶T )
])] =

0

A.2 GRADIENT OF THE REVERSE KULLBACK-LEIBLER DIVERGENCE LOSS

In the following the gradient of the rKL divergence is derived, when it is optimized with the usage
of the log derivative trick:

∇θDKL(qθ(X0∶T ) ∣∣pθ(X0∶T )) = ∇θEX0∶T ∼qθ [log
qθ(X0∶T )

pθ(X0∶T )
]

= EX0∶T ∼qθ [log
qθ(X0∶T )

pθ(X0∶T )
∇θ log qθ(X0∶T )] +EX0∶T ∼qθ [∇θ log

qθ(X0∶T )

pθ(X0∶T )
]

= EX0∶T ∼qθ [(log
qθ(X0∶T )

pθ(X0∶T )
−EX0∶T ∼qθ [log

qθ(X0∶T )

pθ(X0∶T )
])∇θ log qθ(X0∶T )] +EX0∶T ∼qθ [∇θ log

qθ(X0∶T )

pθ(X0∶T )
]

= EX0∶T ∼qθ [(log
qθ(X0∶T )

pθ(X0∶T )
−EX0∶T ∼qθ [log

qθ(X0∶T )

pθ(X0∶T )
])∇θ log qθ(X0∶T )] −EX0∶T ∼qθ [∇θ log pθ(X0∶T )]

where we use in lines two to three the fact that bEX0∶T ∼qθ [∇θ log qθ(X0∶T )] = 0 and that b =
EX0∶T ∼qθ [log

qθ(X0∶T )

pθ(X0∶T )
] is a baseline that leads to gradient updates with lower variance.

A.3 OFF-POLICY GRADIENT OF THE REVERSE KULLBACK-LEIBLER DIVERGENCE LOSS

In off-policy optimization, the gradient of the rKL can be adapted by changing the expectations from
the on-policy distribution qθ(X0∶T ) to an expectation over samples from the off-policy distribution
q̃θ(X0∶T ).

Therefore we first rewrite

∇θDKL(qθ(X0∶T ) ∣∣pθ(X0∶T )) = EX0∶T ∼qθ [log
qθ(X0∶T )

pθ(X0∶T )
∇θ log qθ(X0∶T )] +EX0∶T ∼qθ [∇θ log

qθ(X0∶T )

pθ(X0∶T )
]

to

∇θDKL(qθ(X0∶T ) ∣∣pθ(X0∶T )) = EX0∶T ∼q̃θ [w(X0∶T ) log
qθ(X0∶T )

pθ(X0∶T )
∇θ log qθ(X0∶T )]

+EX0∶T ∼q̃θ [w(X0∶T )∇θ log
qθ(X0∶T )

pθ(X0∶T )
] , (13)
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where w(X0∶T ) =
qθ(X0∶T )

q̃θ(X0∶T )
. In practice, we use self-normalized importance sampling for numerical

stability.

Variance reduction can is applied by computing the baseline with b = EX0∶T ∼q̃θ [log
qθ(X0∶T )

pθ(X0∶T )
]. The

baseline is then subtracted from Eq 13 yields the final gradient update formula as:

∇θDKL(qθ(X0∶T ) ∣∣pθ(X0∶T )) = EX0∶T ∼q̃θ [w(X0∶T )(log
qθ(X0∶T )

pθ(X0∶T )
− b)∇θ log qθ(X0∶T )]

+EX0∶T ∼q̃θ [w(X0∶T )∇θ log
qθ(X0∶T )

pθ(X0∶T )
] .

A.4 ENTROPY OF JOINT VARIATIONAL REVERSE DIFFUSION PROCESS

In the following, we derive that:

H(qθ(X0∶T )) =H(πT ) +
N

2

T

∑
t=1

[1 +
1

2
log(2πσ2

t )]

To show this we compute

H(qθ(Xt−1∣Xt)) = −EXt−1∼qθ(Xt−1∣Xt) [log(qθ(Xt−1∣Xt))] (14)

by using qθ(Xt−1∣Xt) = N (Xt−1;Xt + uθ(Xt), σt) and with the usage of the parametrization trick
Xt−1 =Xt + uθ(Xt) + ϵσt we can show that:

logN (Xt−1;Xt + uθ(Xt), σt) = −
(Xt−1 − (Xt + uθ(Xt)))

2

2σ2
−
N

2
log(2πσ2

t )

= −ϵ2t /2 −
N

2
log(2πσ2

t )

Due to the parametrization trick, we can rewrite the expectation over Xt to an expectation over σt.

Therefore, we have

H(q(Xt−1∣Xt)) = −Eϵt [−ϵ
2
t /2 −

N

2
log(2πσ2

t )] =
N

2
[1 + log(2πσ2

t )] (15)

We can now show with
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A.5 COUNTEREXAMPLE TO DATA PROCESSING INEQUALITY FOR THE LOG VARIANCE LOSS

Let p, q be probability distributions, similar as in Eq. 6 but without learnable parameters, with re-
spective marginal and conditional distributions and (X,Y ) ∼ q. Then the data processing inequality
for the LV loss is

Var(X,Y )∼q [log
q(X)

p(X)
] ≤ Var(X,Y )∼q [log

q(X,Y )

p(X,Y )
] (16)

which can be decomposed such that

Var(X,Y )∼q [log
q(X,Y )

p(X,Y )
] =Var(X,Y )∼q [log

q(X)

p(X)
] +Var(X,Y )∼q [log

q(Y ∣X)

p(Y ∣X)
]

+ 2Cov(X,Y )∼q [log
q(Y ∣X)

p(Y ∣X)
, log

q(X)

p(X)
] .

Therefore, if we find distributions p, q such that

Var(X,Y )∼q [log
q(Y ∣X)

p(Y ∣X)
] + 2Cov(X,Y )∼q [log

q(Y ∣X)

p(Y ∣X)
, log

q(X)

p(X)
] ≤ 0

we disprove inequality Eq. 16. For this, let X ∶= {0,1}, p, q be defined on X × X ∶= X 2 with
marginal probabilities

p(X = 0) = 0.1, p(X = 1) = 0.9, q(X = 0) = 0.9, q(X = 1) = 0.1, q(Y = 0) = 1, q(Y = 1) = 0

and conditional probabilities

p(Y = 0∣X = 0) = 0.5, p(Y = 0∣X = 1) = 0.1.

From q(Y = 1) = 0 we get q(X,Y = 1) = 0. By standard arguments e.g., as used for KL-divergence
we can interpret

q(X,Y = 1) log q(Y = 1∣X) = q(X)q(Y = 1∣X) log q(Y = 1∣X)

as being zero since limx→0+ x logx = 0 which results in the following simplifications
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⎛

⎝
log

q(y∣x)

p(y∣x)
− ∑
(x′,y′)∈X 2

q(x′, y′) log
q(y′∣x′)

p(y′∣x′)

⎞

⎠

2

= ∑
x∈X

q(x,0)(log
q(0∣x)

p(0∣x)
− ∑

x′∈X

q(x′,0) log
q(0∣x′)

p(0∣x′)
)

2

= ∑
x∈X

q(x)(log p(0∣x) − ∑
x′∈X

q(x′) log p(0∣x′))

2

by using q(x,0) = q(x). Analogously we get for

Cov(X,Y )∼q [log
q(Y ∣X)

p(Y ∣X)
, log

q(X)

p(X)
]

= − ∑
x∈X

q(x)(log p(0∣x) − ∑
x′∈X

q(x′) log p(0∣x′))(log
q(x)

p(x)
− ∑

x′∈X

q(x′) log
q(x′)

p(x′)
) .

By inserting the corresponding probability values we have

Cov(X,Y )∼q [log
q(Y ∣X)

p(Y ∣X)
, log

qX(X)

pX(X)
] ≈ −0.6365, Var(X,Y )∼q [log

q(Y ∣X)

p(Y ∣X)
] ≈ 0.2331

which demonstrates that the data processing inequality does not always hold for the LV loss.
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B METRICS

Evidence Lower Bound The evidence lower bound is a lower bound on logZ and is computed
with:

ELBO = EX0∶T ∼qθ(X0∶T ) [
pθ(X0∶T )

qθ(X0∶T )
] ≤ logZ (17)

Sinkhorn Distance The Sinkhorn distance is an entropic regularization of the 2-Wasserstein (W2)
optimal transport (OT) distance Peyré et al. (2019), providing a principled alternative to ELBO for
evaluating sample quality. Unlike ELBO, which is often insensitive to mode collapse Blessing et al.
(2024), the Sinkhorn distance measures the discrepancy between generated and target distributions,
offering better insights into sample diversity and multimodal coverage. As it requires access to
ground-truth samples, its use is limited to synthetic tasks Chen et al. (2024). Following Blessing
et al. (2024); Chen et al. (2024), we compute the Sinkhorn distance using the ott package Cuturi
et al. (2022) and report it as a primary metric for the appropriate benchmarks.

Entropic Mode Coverage The Entropic Mode Coverage Blessing et al. (2024) is given by

EMC ∶= EX0∼qθ [H(p(ξ,X0))] = −
1

N
∑

X0∼qθ

M

∑
i=1

p(ξ,X0) logM p(ξ,X0)

where i ∈ {1, ...,M} and p(ξi,X0) is the probability corresponding to the mixture component with
the highest likelihood at X0. The optimal value of EMC is 1, i.e. every mode from the target
distribution is covered and it is 0. in the worst case.

B.1 BENCHMARKS

B.1.1 BAYESIAN LEARNING TASKS

These tasks involve probabilistic inference where the true underlying parameter distributions are
unknown, requiring Bayesian approaches for estimation.

Bayesian Logistic Regression (Sonar and Credit). We consider Bayesian logistic regression for
binary classification on two well-established benchmark datasets, frequently used for evaluating
variational inference and Markov Chain Monte Carlo (MCMC) methods. The model’s posterior
distribution is given by:

ρtarget(x) = p(x)
n

∏
i=1

Bernoulli (yi; sigmoid(x ⋅ ui))

where the dataset consists of standardized input-output pairs ((ui, yi))
n
i=1. Our evaluation includes

the Sonar dataset (d = 61, n = 208) and the German Credit dataset (d = 25, n = 1000). The prior
distribution is chosen as a standard Gaussian p = N (0, I) for Sonar, whereas for German Credit, we
follow the implementation of Blessing et al. (2024), which omits an explicit prior by setting p ≡ 1.

Random Effect Regression (Seeds). The Seeds dataset (d = 26) is modeled using a hierarchical
random effects regression framework, which captures both fixed and random effects to account for
variability across different experimental conditions. The generative process is specified as:

τ ∼ Gamma(0.01,0.01)

a0, a1, a2, a12 ∼ N (0,10)

bi ∼ N (0,
1
√
τ
) , i = 1, . . . ,21,

logitsi = a0 + a1xi + a2yi + a12xiyi + b1, i = 1, . . . ,21,

ri ∼ Binomial (logitsi,Ni) , i = 1, . . . ,21.

15



Published as a at the ’Frontiers in Probabilistic Inference: Sampling meets Learning Workshop’ at ICLR 2025

The inference task involves estimating the posterior distributions of τ , a0, a1, a2, a12, and the
random effects bi, given observed values of xi, yi, and Ni. This model is particularly relevant
for analyzing seed germination proportions, where the inclusion of random effects accounts for
heterogeneity in experimental conditions; see Geffner & Domke (2023) for further details.

Time Series Models (Brownian). The Brownian motion model (d = 32) represents a discretized
stochastic process commonly used in time series analysis, with Gaussian observation noise. The
generative model follows:

αinn ∼ LogNormal(0,2),

αobs ∼ LogNormal(0,2),

x1 ∼ N (0, αinn),

xi ∼ N (xi−1, αinn), i = 2, . . . ,30,

yi ∼ N (xi, αobs), i = 1, . . . ,30.

The inference objective is to estimate αinn, αobs, and the latent states {xi}
30
i=1 based on the available

observations {yi}10i=1 and {yi}30i=20, with the middle observations missing. This missing-data struc-
ture increases the difficulty of inference, making it a useful benchmark for probabilistic time series
modeling; see Geffner & Domke (2023).

Spatial Statistics (LGCP). The Log-Gaussian Cox Process (LGCP) is a widely used spatial
model in statistics (Møller et al., 1998), which describes spatially distributed point processes such
as the locations of tree saplings. The target density is defined over a discretized spatial grid of size
d = 40 × 40 = 1600, and follows:

ρtarget = N (x;µ,Σ)
d

∏
i=1

exp(xiyi −
exp (xi)

d
) ,

where y represents an observed dataset, and µ and Σ define the mean and covariance of the prior
distribution. This formulation leads to a complex spatial dependency structure. We focus on the
more challenging unwhitened variant of the model, which retains the full covariance structure and
thus introduces stronger dependencies between grid locations, as described in Heng et al. (2020);
Arbel et al. (2021).

B.1.2 SYNTHETIC TARGETS

For these tasks, ground-truth samples are available, allowing for direct evaluation of inference accu-
racy.

Mixture distributions (GMM and MoS). We consider mixture models where the target distribu-
tion consists of m mixture components, defined as:

ptarget =
1

m

m

∑
i=1

pi.

The Gaussian Mixture Model (GMM), adapted from Blessing et al. (2024), is constructed with
m = 40 Gaussian components:

pi = N (µi, I),

µi ∼ Ud(−40,40),

where Ud(l, u) denotes a uniform distribution over [l, u]d. We set the dimensionality to d = 50 in
the experiments in Tab. 2 and to d = 5 in Tab. 3.

The Mixture of Student’s t-distributions (MoS) follows a similar construction but uses Student’s
t-distributions with two degrees of freedom (t2) as the mixture components:

pi = t2 + µi,

µi ∼ Ud(−10,10),
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where µi denotes the translation of each component. We set the dimensionality to d = 50 in the
experiments in Tab. 2 and to d = 10 in Tab. 3.

For both the GMM and MoS tasks, the component locations µi remain fixed across experiments
using a predefined random seed to ensure reproducibility.

Funnel The Funnel distribution, originally introduced in Neal (2003), serves as a challenging
benchmark due to its highly anisotropic shape. It is defined as:

ptarget(x) = N (x1; 0, σ
2
)N (x2, . . . , x10; 0, exp(x1)I), (18)

where σ2 = 9 for any number of dimensions d ≥ 2. In our main experiments, we consider the case
d = 10. To maintain consistency with prior benchmarks Blessing et al. (2024), we apply a hard
constraint by clipping all sampled values to the interval [−30,30].

C EXPERIMENTAL DETAILS

C.1 EVALUATION

In the Bayesian learning task, we compute the average of the ELBO over the previous 10 estimations,
each estimated using 2000 samples. For the LGCP task, the evaluation is performed using 300
samples. The ELBO values reported in Tab. 1 represent the best ELBO achieved during training.
For synthetic tasks, we additionally compute the Sinkhorn distance 100 times throughout the training
process. The ELBO and Sinkhorn distance reported in Tab. 2 correspond to the checkpoint at the end
of training. On MoS-40 50D and GMM-40 50D, we use 16000 samples to estimate the sinkhorn
distance and use 2000 samples on all other synthetic targets. In Tab. 1 and Tab. 2 we report the
average metric value together with the standard error over three seeds.

C.2 HYPERPARAMETER TUNING

Benchmarks In benchmark experiments in Sec. 5 we perform for each method a grid search over
σdiff , σprior, the learning rate of the model. The learning rate of the diffusion parameters such as
σprior and σdiff is always chosen to be equal to the model learning rate. On all Bayesian learning
tasks, we perform a grid search over σdiff,init = {0.1,0.3}, σprior,init = {0.5,1.0} and the learning
rate λmodel,SDE ∈ {0.005,0.002,0.001}. On Brownian and German Credit, we found that if σdiff is
not learned a finer grid-search over σdiff is necessary. Therefore on Brownian, we additionally add
σdiff = 0.05 and on German Credit σdiff = 0.01 to the grid search.

On MoS 50D and GMM 50D, we follow Chen et al. (2024) and fix σprior,init to a high initial
value. We found that σprior,init = 80 yielded the best results. We found that smaller learning rates
are necessary and we also search over the learning rate of the interpolation parameters between
the prior and the target distribution. Therefore we adapt the grid search to σdiff,init = {1.,1.5},
λitnerpol = {0.01,0.001} and the learning rate λmodel,SDE ∈ {0.0001,0.00005,0.00001}.

Grid searches are performed over 8000 training iterations on all targets except MoS 50d and GMM
50d, where 20000 training iterations are performed. The best run is chosen according to the best
ELBO value at the end of training on Bayesian tasks and on Synthetic targets according to the best
Sinkhorn distance. The best hyperparameters are then run for 40000 training iterations. On MoS
50d and GMM 50d in Tab. 2 the best Sinkhorn distance is sometimes achieved at initialization. In
this case, the checkpoint is excluded as it has only slightly better Sinkhorn values but much worse
ELBOs than the runs at the end of training.

Ablations In ablation experiments in Sec. 5 we iteratively tuned hyperparameters such as
σprior,init and σdiff,init and learning rates for each method. For CMCD-LV and CMCD-LV ⋆ we
found it hard to find a good-performing diffusion coefficient. Therefore, we used the learned av-
erage diffusion coefficient of CMCD-rKL-LD σdiff as a starting point for iterative hyperparameter
tuning which resulted in a decent performance of CMCD-LV and CMCD-LV ⋆.
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Exploration Experiments In variational annealing we first approximate the target distribution at
βstart =

1
Tstart

, where T is the temperature. In our experiments, we use a linear schedule, where the
temperature is decreased linearly from Tstart to 1.

A grid search is performed according to:

GMM-40 (5d) - CMCD-rKL-LD off-policy:

• α ∈ {1.1,1.3,1.5,1.7,2.0}

• σprior,init ∈ {1,10,20,40,60}

• βmax ∈ {0.1,0.3,0.5}

GMM-40 (5d) - CMCD-rKL-LD annealing:

• Tstart ∈ {40,60,80,100}

• learning rate ∈ {0.001,0.005,0.008}
• βmax ∈ {0.1,0.3,0.5,1}

GMM-40 (5d) - CMCD-rKL-LD tune σprior,init:

• σprior,init ∈ {10,20,40,60}

• learning rate ∈ {0.001,0.005,0.008}
• βmax ∈ {0.1,0.3,0.5,1}

MoS-10 (10d) - CMCD-rKL-LD off-policy:

• α ∈ {1.1,1.5}

• σprior,init ∈ {1,5,10,20}

MoS-10 (10d) - CMCD-rKL-LD annealing:

• Tstart ∈ {1,2,5,10}

MoS-10 (10d) - CMCD-rKL-LD tune σprior,init:

• σprior,init ∈ {1,2,5,10,20,40}

C.3 ARCHITECTURE

Score parametrization We parameterize the score in the following way:

uθ(Xt) = clip(ũθ(Xt, t) + ûθ(xt, t)⊙ clip(∇Xt logπt,−10
2,102),−104,104) (19)

where ũθ(Xt, t) and ûθ(xt, t) are parameterized with backbone MLPs with two hidden layers and
64 neurons each, where we use skip connections Liu et al. (2021), layer normalization Ba et al.
(2016), and Relu activation layers Agarap (2018) with He initialization He et al. (2015). The input
of the backbone MLPs is a shared embedding, where Xt is processed by a single activation layer
and t is processed by sine and cosine embedding with an overall dimension of 128. The parameter
count of this architecture is similar to PISgradnet from (Vargas et al., 2024).

Parametrization of prior distribution: Similarly to Chen et al. (2024) and Blessing et al. (2024)
and parameterize the prior distribution πT in the following way:

πT = N (µθ,diag(exp(lθ))

where µθ ∈ Rd and logarithmic standard deviations lθ ∈ Rd are learnable parameters. In contrast to
Chen et al. (2024) and Blessing et al. (2024) we do not update µθ and lθ via the reparameterization
trick as training progresses but also with the usage of the log derivative trick.
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Parametrization of interpolation parameters: For each diffusion time step t ∈ {0, ..., T − 1} we
parameterize the interpolation parameter βθ(t) in the following way:

βθ(t) =
softplus(θt)

∑
T
t=0 softplus(θt)

, (20)

where θ ∈ RT are learnable parameters. Each variable of θ ∈ RT is initialized to zero.

Parametrization diffusion coefficient: We keep diffusion coefficients constant across time steps
and parameterize it as σt = expγ, where γ = logσinit. In principle, one could parameterize it
similarly as the interpolation parameters, which would allow for a time-adaptive schedule. However,
we leave this up for future work.

Training All parameters are trained with the usage of the RAdam Liu et al. (2020) optimizer. We
use gradient clipping by norm at the value of 1. The learning rates are decayed with a cosine learning
rate schedule from λstart to λstart/10.
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