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ABSTRACT

Composing pretrained diffusion models provides a cost-effective mechanism to
encode constraints and unlock complex generative capabilities. Prior work re-
lies on crafting compositional operators that seek to extend set-theoretic notions
such as union and intersection to diffusion models, e.g., using a product or mix-
ture of the underlying energy functions. We expose the inadequacy and incon-
sistency of combining these operators in terms of limited mode coverage, biased
sampling, instability under negation queries, and failure to satisfy basic compo-
sitional laws such as idempotency and distributivity. We introduce a principled
calculus grounded in fuzzy logic that resolves these issues. Specifically, we define
a general class of conjunction, disjunction, and negation operators that general-
ize the classical mixtures, illustrating how they circumvent various pathologies
and enable precise combinatorial reasoning with score models. Beyond exist-
ing methods, the proposed Dombi operators afford complex generative outcomes
such as Exclusive-Union (XOR) of individual scores. We establish rigorous the-
oretical guarantees on the stability and temperature scaling of Dombi composi-
tions, and derive Feynman-Kac correctors to mitigate the sampling bias in score
composition. Empirical results on image generation with stable diffusion and
multi-objective molecular generation substantiate the conceptual, theoretical, and
methodological benefits. Overall, this work lays the foundation for systematic
design, analysis, and deployment of diffusion ensembles.

1 INTRODUCTION

Pretrained general-purpose generative machine learning models (Devlin et al., 2019; Brown et al.,
2020) have become practically synonymous with the term artificial intelligence itself. Their vast
capabilities (Bommasani, 2021; Wei et al., 2022), however, come at the cost of an excessive need
for growing datasets (Kaplan et al., 2020; Villalobos et al., 2022), and yet additional techniques
are needed to reach adequate performance in downstream tasks. Finetuning (Devlin et al., 2019),
human-feedback-based reinforcement learning (Christiano et al., 2017; Ouyang et al., 2022; Zhang
et al., 2023), retrieval augmented generation (Lewis et al., 2020), or even specialized prompting
techniques (Brown et al., 2020) are then used to retrofit models to specialized tasks and domains.

As an alternative to monolithic general models, compositional generation (Jordan & Jacobs, 1994;
Hinton, 1999; 2002; Yuksel et al., 2012; Vedantam et al., 2018; Du et al., 2020) seeks to combine
the domain knowledge from different models to solve a task at hand. As many models follow proba-
bilistic formulations, using probabilistic language for composition is a natural approach. Products of
Experts (PoEs) (Hinton, 1999; 2002; Liu et al., 2022; Du et al., 2023; Skreta et al., 2025a) have been
devised and widely used as a mechanism to enforce conjunctive constraints, with the idea that their
product is only large when all components are large. The assumption underlying this approach to
model joint distributions, statistical independence of the factors, however, does not in general hold.

Often tackled as a separate problem is the concept avoidance in generation. Similar to other tasks,
unlearning (Ginart et al., 2019; Nguyen et al., 2022; Wang et al., 2024) as a specific form of fine-
tuning or post-training avoidance and steering methods (Dhariwal & Nichol, 2021; Ho & Salimans,
2021; Dong et al., 2023; Garipov et al., 2023; Kirchhof et al., 2025) have been proposed, which often
utilize PoE with inverse probability densities for avoidance or rely on training additional models.
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Figure 1: Visualisation of Dombi Composition p(x) oy ¢(x) with ¢(x) fixed. Flipping the sign of
A gives the DeMorgan dual operator. For the negation —.p(x) A g(x), the y-axis of the figure flips.
Different choices of A correspond to known operators.
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Figure 2: Overview of the main contributions in this work.

In this paper, we investigate compositions of diffusion models from the viewpoint of fuzzy set theory
and fuzzy logic. We propose a procedure to derive sets of well-behaved composition operators, and
among them, propose Dombi operators in Section 4 as a one-parameter family, extending and uniting
commonly used operations such as mixture of experts (Jordan & Jacobs, 1994) (MoE), harmonic
mean (Garipov et al., 2023) (HM), and as a special case, the geometric mean—a tempered Product
of Experts (Hinton, 1999) (PoE), as visualized in Figure 1. In contrast to many existing effective
methods, our approach is purely online and utilizes pre-trained diffusion models. An overview of
our main contributions is provided in Figure 2.

2 BACKGROUND AND RELATED WORK

2.1 SCORE-BASED MODELS

We want to approximate a probability distribution p defined over R¢ to sample from it. In the context
of score-based modelling, we first recast p as a Boltzmann distribution, and let the model learn the
score function sg(x) ~ V log p(x), avoiding the unknown partition function. To facilitate sampling
via MCMC, the data distribution p is gradually destroyed according to the forward noising SDE
(Dksendal, 2003)
dx; = f-(x)dT + o,dwW,, X0 ~ p(Xo)-

Here f, : R? — R? is some, usually linear, drift function and o, : R — R is a time-dependent
diffusion coefficient and W is the Wiener process. These functions are chosen such that x,—1 ~
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N(0,1,), the standard Gaussian. For sampling, we simulate the backward process with ¢ = 1 — 7 as
dx¢ = [~ fi(x¢) + 07 Vi log py(x)] dt + ordw. (D
which satisfies the Fokker-Planck equation

N 2
W) (9 ) (e + 07V log i (30) + T i), @

where Ap! denotes the Laplacian of p; and (V,-) is the divergence operator. For the rest of
this paper, we assume we are given a set of pre-trained score models {s{}¥_,, which model the
respective probability distributions {p:}¥_,. For statements about the ¢ = 1, we omit the index.

To translate the theory developed in this paper to practice, we rely on efficient density estimation to
assign responsibility to score functions. We can efficiently estimate densities during inference with
1t6’s Lemma (Karczewski et al., 2025a; Skreta et al., 2025b) as

o2
dlog py(x;) =~ <dxt’ St(Xt)> + <<V7 fe(xe)) + (fe(xe), se(xe)) — éHst(xt)W)dt 3)

2.2 COMPOSITION OF SCORE FIELDS

There is a quickly growing body of work on compositions, mixtures, and products of energy-based
models (EBMs), as well as flow and diffusion models. We explicitly focus on training-free mixtures
of score functions in diffusion. Prior work (Du et al., 2020; Ho & Salimans, 2021; Skreta et al.,
2025a;b; Gaudi et al., 2025) mainly bases composition on probabilistic operations on the underlying
distributions. As the interpretation of these operations is often logical or set-theoretic, we will use
the symbols {V, A, =} to denote them, for both probability densities and their scores. In score-based
modelling, conjunctions are then usually represented by (sometimes geometric) products

P (%) Ax p?(x) = p (0)p?(x) = 5" (%) Ax 87(x) = 57 (x) + 5°(x) )
and disjunctions by mixtures, where we use the weighting o' = %, with
1 1
pH(x) Vi p?(x) = §p1 (x) + §p2(x) = s'(x) vy s3(x) =ats'(x) +a?s?(x).  (5)

Two noteworthy exceptions from product-based conjunctions are Garipov et al. (2023), who model
conjunctions with the harmonic mean p* (x)p*(x)/ (p' (x) + p?(x))and Skreta et al. (2025b), who
reweigh individual scores to steer towards equal density directly.

Importantly, under the usual dynamics of diffusion processes, for ¢ # 1, nonlinear compositions do
not commute with the noising operator, i.e., p; V1 p7 = (p* V4 p?); but pi Ay p? # (p* Ax p?)s.
This means that naive composition of perturbed score models leads to a bias that can be corrected
with methods like sequential Monte Carlo (SMC) (Skreta et al., 2025a; Thornton et al., 2025). The
typical formulation of Equations (1) and (2) is then extended to weighted SDEs, where samples have
time-dependent log-weights w; which are defined via the weight field g;(x) as

3p(f)§x) = 5,(x)p(x),  with F(x) = gi(x) — / ge(x)pe (x)dt.

These weighted SDEs with g;(x) then must satisfy the Feynman-Kac PDE

apég;x) = ~(V,pe(x) (—fi + 07V log py(x))) + T-Api(x) + 7, (x)p1 (). ©)

For nonlinear score operations like annealing, CFG, or PoE, Skreta et al. (2025a) then explicitly
derive the biases incurred by approximating the true composed distribution with the composition of
noisy scores, collect the “left-over” terms in g, and use additional correction methods. We adapt
their formalism to improve the simulation of our operators in Section 4.

dw; = g(XQdﬁ —

To avoid certain distributions, EBM’s and score models are usually only negated relative to oth-
ers (Vedantam et al., 2018; Du et al., 2020; 2023; Garipov et al., 2023; Dong et al., 2023; Skreta et al.,
2025a; Gaudi et al., 2025), as also done in classifier-free guidance (Ho & Salimans, 2021) (CFG). In
these settings, independent concept negation (ICN) for a concept y is often defined, for 0 < v < 1
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as p(x|—y) o p(x)/p(x|y)” in the EBM context (Hinton, 2002; Du & Kaelbling, 2024). In
more recent work (Liu et al., 2022; Du et al., 2020; Ho & Salimans, 2021), often the formulation
p(x|=) o< p(x)1 7 p(x]y) ~7 used instead, derived via Bayes rule.

From a perspective of logic, these variants make use of the reciprocal as pseudo-inverse —p(x|y) =
1/p(x|y), but to our knowledge, explicit negations in score-models are not often explored or theo-
retically justified, and alternatives (Chang et al., 2024) also lack clear theoretical interpretation.

2.3 Fuzzy LoGIcC

Our proposed method directly draws from the theory of fuzzy logic. Fuzzy logic relaxes classical
logic from a binary domain to real-valued memberships in [0,1]. We follow the definitions and
notation from Klement et al. (2013) for the following concepts. We define a t-norm, a generalization
of conjunction or intersection operations, as a function 7' : [0,1]> — [0, 1] which is commutative,
associative, monotonously increasing, and fulfills the boundary condition Vx € [0,1] : T'(z,1) = =.
Under the standard negation N(x) = 1 — z, we can define the dual t-conorm S : [0,1]*> — [0, 1],
the corresponding disjunction, via DeMorgan’s law as S(z,y) = N(T(N(z), N(y))).

T-norms that are strict, i.e., continuous and strictly increasing, can be generated (Dombi, 1982;
Klement et al., 2013) by a continuous, strictly decreasing function f : [0, 1] — [0, co] with f(1) = 0,
as so-called additive generator, i.e., T(x,y) == f~1 (f(x) + f(y)) . For this work, the parametrised
Dombi t-norm is the most important representative, generated by fx(z) = (1 — 1)*. A favorable
property of the Dombi t-norm is that limy_,o 7\ = T3y = min. The min t-norm T}, together
with Sj; = max is the only continuous DeMorgan dual that is idempotent with T (z,2) = x and
distributive with Ts(z, Sp (Y, 2)) = Sv (T (z,y), T (z, 2)) (Klement et al., 2013). To make the
domain of probability densities compatible with the theory of fuzzy logic, we utilize some bijective,
order-preserving function ¢ : R>oU{oco} — [0, 1] which converts densities into fuzzy membership.

3 FAILURE MODES IN SCORE COMPOSITION

We provide further motivation for our approach with a brief illustration of the mismatch between ex-
pectation and true behaviour for score composition using PoE and MoE methods. Existing operators
do not carry the well-understood and favorable properties of fuzzy set operators. This makes them
ill-equipped to deal with more complex compositions of models or to encode model constraints.

3.1 UNSTABLE NEGATION

We first discuss the EBM-style negation p!(x)/p?(x)”. While widespread, this negation seems to
have seen only limited theoretical investigation. While the score operation is straightforward, nega-
tive prompts tend to shift the target distribution (Garipov et al., 2023; Chang et al., 2024; Ban et al.,
2024) and require careful calibration of the «y parameter. For the simplest case p!(x)/p?(x), normal-
izability can generally not be guaranteed, unless p*(x) decays much faster in the tails than p?(x).

The common CFG-style negation in diffusion, p!(x)'*7/p?(x)?, has more favorable properties in
terms of stability. However, theoretical arguments for its use are still limited in the relevant the-
ory. In Section 4.2, we explore this formalism for negations more in depth, without the context of
conditional generation. While better behaved, CFG-style negation still exhibits unfavorable proper-
ties, like overaccentuation of p!(x) where p?(x) vanishes (Chidambaram et al., 2024), leading to a
similar bias as the one depicted in Figure 3c.

3.2 INCONSISTENT TEMPERATURE SCALING

PoE uses the score calculus s* Ay s2 := s! + s2. This leads to a scaling of scores depending
on their alignment: ||s* Ay s2|| = /|[s1]|2 + [|s2]|2 + 2[|s']||[s2]| cos 6, where 6 is the angle be-
tween s', s2. In diffusion, temperature scaling is one of the main methods to control the behavior
of the model (Guo et al., 2017; Karczewski et al., 2025b;a). As the alignment of scores can gen-
erally be assumed to be arbitrary, PoE arbitrarily changes temperature-scaling behavior. In regions
with high score alignment (small 6), temperature is decreased, and the composition is biased to-
wards higher density regions than what is dictated by any component. Conversely, in regions with
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Figure 3: Failure Modes of PoE composition in combinatorial settings. a illustrates that ICN can
lead to unstable behaviour, compared to referenced Dombi negation. b shows an intersection, where
the product can lead to locally underscaled and overscaled temperatures simultaneously (green),
in contrast to Dombi composition. ¢ shows that logically equivalent formulas result in different
PoE/MoE compositions.

low alignment between scores (f > ), the temperature is increased, discouraging higher den-
sity regions. Figure 3b illustrates this behavior in contrast to the Dombi operators, which guar-
antee ||s' A s?|] < max{||s']|,||s?||}. Moving from the usual PoE to a geometric mean with
s1(x)/2 + s?(x)/2, this problem does not disappear, rather shift: While the geometric mean does
not overscale scores, the effective temperature of the composition is higher than intended, for the
same reason as in classic PoE.

3.3 COMPOSITION PROPERTIES

Model composition is often interpreted as a logical operation over the underlying models. This in-
terpretation leads to pitfalls, as MoE and PoE do not exhibit the favourable properties expected of
logical or set operations. An important example of this is avoiding multiple distributions ps, p3 indi-
vidually. Intuitively, one might use a conjunction over multiple negated distributions. The resulting
operation, however, does not match the , as negations and conjunctions commute:

1 1
1 ~ o9 ~ 3 1 ~ o2 3 p 1 ~ 5 9 3
PAx TP A P =p A (P ADPY)= 55 FP A (P V4 PY) = 5
X X X X p2p3 X p2+p3

This pitfall is a manifestation of failure to adhere to DeMorgans law and shown in Figure 3c. In a
more general sense, PoE is also neither idempotent, as p A p = p? # p and distributes only in one
direction, i.e., (p! Ax p?) V1 p® # (p* Vi p?) Ax (p? V4 p3). This severely restricts the options for
rewriting compositions for different purposes, such as collecting terms.

4 DOMBI OPERATORS

In this section, we extend the definition of T-norm-conorm pairs to obtain DeMorgan dual density
and score operators. Appendix A describes the exact requirements to generate a set of DeMorgan
dual operators. As a special class we propose and investigate the DeMorgan operators generated by

Y - .
fa(@) = (3 —1) " and map between densities and membership with ¢.(z) = -2 for A, ¢ € Rxo.
This choice of f not only recovers the Dombi t-norm, but ¢, expresses negation with reference to
some constant c. This constant can be interpreted as a normalising factor and serves as a neutral ele-
ment in negations. As our composition properties act at each x independently, we can choose a dif-

ferent constant for each value: ¢(x). In the context of distributions, this normalization by a reference
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distribution ¢(x) is analogous to the probability ratios used in CFG, or the PoE conjunction, e.g., pre-
sented by Liu et al. (2022). With abuse of notation, we will write ¢.(p(x)) = ¢.(p; X) p(x)

IR JCIRRIEIN
Definition 4.1 (Dombi Operators). Choose A € R~ and a continuously differentiable function
c: RY — Rxq with s. = Vyloge. For fi(z) = (L - 1)/\ and ¢.(p(x)) = %, let o =

exp(Alog p'(x)) .
2 jeq1,2y exp(Mlogpl (x))

. The Dombi operators are the DeMorgan dual operators induced by fx, pc:

= C(X)2 TS X) = LS X) — S(X
ﬁcp(X) T p(X) = "¢ ( ) =2 c( ) ( ) (7
_ P (x)p*(x) _
00 13200 = PO 1) 0y 00 =0 20 @
PO VAP ) = (00 + P (0Y) = 51 Vi 2 (x) = als' (1) + 32 (%) )

A detailed derivation of this result can be found in Appendix A.

This definition bears multiple remarkable properties. While being constructed to adhere to DeMor-
gan duality, we can see many similarities to the existing body of work.

4.1 PROPERTIES OF DOMBI OPERATORS

First, dombi compositions over distributions are power norms, and with different choices for the
exponent \, we recover well-known operators, such as min for A\ — —oo, the harmonic mean for
A = —1, the conventional mixture for A\ = 1, and max for A — oo. For A — 0, Dombi composition
is undefined on densities and log-densities, yet the score calculus for A — 0 is equivalent to the
geometric mean. These relations are visualized in Figure 1. This resemblance is consistent with
power means (Amari, 2007), which differ from the Dombi operators by a constant factor of 1/2*,
resulting in equivalent score operators, and tying Dombi composition closely to a-divergence. While
derived score operators are equivalent, power means are not associative and cannot form a logic that
allows for nesting of operations.

4.2 PROPERTIES OF REFERENCED NEGATION

Under our definition, referenced negation results in an expression equivalent to CFG-style negation
for v = 1. We argue that this is favorable from both the perspectives of fuzzy logic and probability
theory. The reference (unconditional) distribution ¢(x) forms a neutral element for negation, i.e.,
—c¢(x) = ¢(x), which is semantically intuitive for conditional generation. From a perspective of
probability theory, we know that a negated distribution results in a normalizable distribution under
bounded y? divergence. We have, per definition (Nishiyama & Sason, 2020)

sy [P —aG? e
X<p”q)"/ ™ - ‘/ ) LS (10

Negation with other ~ violates properties of the logic: = p(x) = ¢(x)'*7 /p(x)? is not involutive
for positive v # 1. In practice, this might not be problematic if compositions are in negation normal
form (NNF).

Combined, our composition and negation show strong grounding in existing theory and are, by
definition, equipped for model composition far beyond the simple use cases of MoE and PoE. In the
next section, we describe how their behaviour in score composition changes for different values of A.

5 INFLUENCE OF A ON DISTRIBUTIVITY AND MIXTURE STABILITY

Besides the connection to prior work, the parameter A from the Dombi operators naturally appears
as inverse temperature in the score composition. For A — co, the Dombi operators recover the exact
{min, max} lattice and with it distributive and idempotent behavior. For finite A, the simple bounds
in Proposition A.3 can be used to quantify biases in density compositions. We use this to present a
simple bound for the maximal density bias we introduce when applying distributive laws.



Under review as a conference paper at ICLR 2026

Corollary 5.1 (Idempotency and Distributivity Bias). Let Ay, V. be the Dombi density operators.
From Proposition A.3 it follows that

Ve €Rso:  aVyz=2Yg, z ANz =21y (11)
Vr,y,z € Ryo: 2V (y A z) € (T Vay) A (2 Vy 2))2E2/* (12)
Va,y,z € Ryg: xAx(yVaz) € ((xAxy) Va (T Ay z))2i2/’\

These easily obtainable bounds trivially generalize to arbitrary compositions, allowing us to make
immediate statements about the stability of our composition. As our score coefficients vary during
the inference process, we would naturally be interested in the rate of change of these coefficients, as
drastic change rates might cause the composite model to “oscillate” between two scores, especially
in conjunctions. As before, the statement can be extended to more complex formulas trivially.

Proposition 5.2 (Mixture Stability). Let oy = softmax, (\log p*, Xlog p?), for a dombi composition

p! oy p?. Then it holds for the scores s, 57

o2 1
[E[doy | x]| < gtH)\Sl = AZ(|([Is* I+ [ls*] + §||)\81 — As?|)dt (13)

Together, Corollary 5.1 and proposition 5.2 quantify the tradeoff between compositional precision
and mixture stability. High A results in small biases over the ground truth of the composition, but
for large differences between the component scores ||s; — s7||, the mixing coefficients o’ might
drastically oscillate. When A is chosen smaller, the volatility of the mixture is naturally bounded.

6 PRECISE SAMPLING WITH FEYNMAN-KAC CORRECTION

While Definition 4.1 explicitly states how the densities and consequently the scores of our target
distribution look, simulation with, e.g., dx; = [—fi(x¢) + 07 (s1(x) Ax s1(x))] dt + o¢dW will not
not sample from the desired marginals during the reverse process and consequently not from the
correct target distribution p; (x) Ay p2(x). Skreta et al. (2025a) introduce Feynman-Kac Correctors
(FKCs) for diffusion, which correct for the biases of score composition. We recast the composition
with Dombi operators as weighted SDEs, then collect all terms that are missing from our score
proposal into the weight field g. At inference time, SMC methods like systematic sampling can be
used to correct for these biases.

In this section, we extend the FKC terms to our Dombi operators, and refer to Appendix B.1 for
proofs. As the Dombi-composition just reduces to “power norms” of our densities, as well as a spe-
cial case of geometric averages in the case of referenced negation, we present these two correction
terms here. More complex compositions then propagate the weight-fields g;(x) of components.

Proposition 6.1 (Referenced Negation as CFG+FKC, Skreta et al., 2025a). Consider two diffusion
models q} (x),q?(x) defined via the Fokker-Planck equation in Equation (2). The weighted SDE
corresponding to the referenced negation of p;(x) ﬁqtz(x)qtl (x) is, with dw(x) = g4(x)dt

dx; = [—ft(xt) + af(2V log qtz(xt) — Vlog qg (xt))] dt + oydwy

(14)
g¢(x) = 07| Vlog q; (x¢) — Vlog gi (x:)|I* + 297 (x) — g; (%),

As stated in Equation (10), p;(x) is then a normalizable probability distribution, if and only if
x°(gt||q?) < oo. We might also want to anneal ¢ to tune the “narrowness” of the concept we avoid.
We propose a combined annealing of the form ¢2(x)**7 /¢*(x)” to allow tuning the two distribu-
tions in relation to each other, while still maintaining slightly improved normalizability compared
to the standard CFG, and maintaining an unbiased energy estimate for further composition.

Next, we state how FKC terms propagate through connectives. As both our connectives are essen-
tially power-norms with positive or negative exponent, both cases can be handled at once.

Theorem 6.2. Consider two weighted diffusion models q} (x), q? (x) defined via the Feynman-Kac
equation with weights gi (x), g?(x), and a parameter A € R\{0}. The weighted SDE corresponding
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A . i HEIR .
10 py(x) o (gt (x)* + ¢7(x)*) YA with oy = W € (0,1), and dwy = g¢(x)dt is
dx; = [~ fi(x¢) + 07 (e Viog ¢ (x¢) + o] Vlog g7 (x¢))] dt + o dw,
2

o2

ge(x) = (1= A) = Y aiVlegai(x)| — Y aiViegai(x)l*| + > aigi(xe).

i€{1,2} i€{1,2} i€{1,2}
15)

Proposition 6.1 and theorem 6.2 are presented in a modular form. This allows us to use arbitrary
combinations of operators and propagate the log-weights of components.

6.1 INFERENCE PROCEDURE

Together, Definition 4.1, proposition 6.1, and theorem 6.2 define our theoretical basis for arbitrarily
nested model composition. During the sampling process, we keep track of the evolution of
loglikelihoods with the It6 density estimator from Equation (3). This efficient density estimation
method enables us to perform complex model compositions with minimal overhead. During
composition, we can then compose our scores, log-likelihoods, and FKC terms with the procedure
described in Algorithm 1. To improve sampling, we can use SMC techniques during the simulation
trajectories (Naesseth et al., 2019). In our experiments, we use systematic sampling proportional to
the exponentially weighted momentary weight-field exp{g:(x)dt} (Douc & Cappé, 2005).

Algorithm 1: DOMBICOMPOSITION over arbitrary formulas

Input : scores {s'}_,, log-likelihoods {log ¢*}¥_, , weights {g*}*_,, formula F" ::= i|—;3|F} o Fy
Output: Composite score s, Composite density log g, Composite weight g

if F/ = i then return s°, log qi,gi

else if I/ = —;i then return 25’ — s°, 2logq¢’ — logq®, o7||s’ — s*||> +2¢ —¢° // Prop. 6.1
elseif F = F; Ay F> then A < —\ // Conjunction is a negative power norm
/x Case F=Fi A\ F> | F1VxFa: evaluate subformulas first */

', logq ,g" < DOMBICOMPOSITION({s'}*_, , {log¢' Yoo\, {¢'}oi,, FY)
52, Togq , §° < DOMBICOMPOSITION({s'}"_ |, {log g’} 1, {g'}oi,, )
a' < softmax; (Alog ql, AMog q2); a?—1—at
2
g 2
g 1-NT [Halgl +a28|° — ()5 + a2\|§2|\2)] // Theorem 6.2

1-1

return o's' + o’5°, %LogSumExp()\log ql7 Alog q2), g+ a'gt + o’

7 EXPERIMENTS

7.1 COMBINATORIAL BIAS IN COMPOSITION SAMPLES

We first test the ability of our method to sample from complex compositions of diffusion models.
We compose three pretrained models that generate colored MNIST digits (LeCun, 1998). Our three
models are defined as follows: Model p; generates the digits {0, 1.2, 3} in cyan, py generates digits
smaller 2: {0, 1,0, 1} in cyan or beige and ps generates the even digits {0, 2 } in cyan or beige.
We would now like to perform set operations on these 7 unique digits, similar to Garipov et al.
(2023), but with general operations. Figure 4 shows a set of chosen set operations on our models.
Beyond the intersection pn = p; A p2 A p3 and the union py = p; V p2 V p3 we show results for the
exclusive-or operation pyor = (p1 V p2) A (—p1 V —pa), that samples digits from either p; or p2 but
not from their intersection. We then show pyor A p3 = {2, 0} as well as pyor A —p3 = {3, 1}.
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Starry Night, Van Gogh NOT Van Gogh ’
Figure 4: Generated Image Compositions with MNIST (A € {5-1073,5 - 1072}) and Stable
Diffusion (A = 10).

As we have no baseline model, we express negation by the mixture of all three models. With few
exceptions, we can see that our approach lets us sample from complex compositions like pyor, solely
by score-composition of the pretrained diffusion models.

7.2 MULTI-PROMPT IMAGE GENERATION AND AVOIDANCE

To show the performance of Dombi composition in production scale diffusion models, we compare
its ability to generate images that interpolate between or avoid concepts using Stable Diffusion (SD)
v1-4. For all our compositions, we choose two prompts c1, c2, €.g., "a mountain landscape"
and "a silhouette of a dog". We then evaluate twenty pairs of images composed con-
junctively, as p(x|c1) A p(x|ca), and compare against and Skreta et al. (2025b) and scaled PoE, i.e.
unweighted averaging of scores (Liu et al., 2022). We further investigate p(x|c1) A —px)p(X|c2)
on ten pairs of prompts to illustrate the ability of our model to avoid concepts. As baselines for con-
trastive prompting, we use ICN (Ho & Salimans, 2021) and the conjunction of (Skreta et al., 2025b),
combined with our referenced negation. We use the composed scores in the usual CFG pipeline of
SD and measure for all prompts the min. CLIP score (Radford et al., 2021), which measures cosine
similarity between image embedding and prompt embedding, and the minimum ImageReward value
(Xu et al., 2023), which estimates how closely generated images align with human preferences. For
contrastive prompts, we report the difference of each mectric between c1 and cs.

Dombi Composition shows improvement beyond state-of-the-art methods in both CLIP and Im-
ageReward scores, as shown in Tables 5a and 5b. with an example of generated images in Figure 4.
For the full list of used prompts, we refer to Appendix C.2. A stark contrast between our method
and SuperDiff can be seen in Figure 3b, depicting the mixture stability during the first 100 iterations
of the generation process. The batch variances of the mixture coefficient o are shown to correspond
nicely to A, with an increase over time caused by different equilibrium points per batch. Superdiffs
and shows strong fluctuations in mixing coefficients, especially during the initial iterations. This
effect is more pronounced when we retrofit and to contrastive settings with our negation definition.

7.3 MULTI-TARGET PROTEIN SYNTHESIS WITH FKC CORRECTION

As a final experiment, we test Dombi composition combined with FKC in the setting of structure-
based drug design (SBDD). The goal here is to generate molecules (ligands) using the structure of a
protein as a guide and evaluate their binding energy (Anderson, 2003). In our experiments, we inves-
tigate the impact of FKC from Theorem 6.2 on the quality of Dombi composed results. We generated
32 ligands of sizes {15, 19, 23,27, 35} each, for 14 protein pairs, and evaluated their docking scores
using Autodock Vina (Eberhardt et al., 2021) and reproduced the experimental setup of (Skreta et al.,
2025a). In this experiment, we use annealing on the base distributions: We evaluate p(x|P1)” A
p(x|P2)7 as well as p(x|P1)7p(x|P2)7, and propagate the FKC term of the annealed base distribu-
tions to our dombi operator as in Algorithm 1. Per batch, we report the average joint docking perfor-
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Figure 5: Joint generation performance with Stable Diffusion, and paired improvement over base-
lines with 20 seeds. a shows results for 20 joint prompts p(x|c1) A p(x|cz). b shows results for 10
contrastive prompts p(x|c1) A —px)P(x[c2)?. ¢ shows the variance of a during conjunctive (top)
and contrastive (bottom) composition. and is from SuperDiff (Skreta et al., 2025b).

(a) Conjunctive prompts (b) Contrastive prompts (A = 1) (c) Mixture Stability
CLIP(1)  Im. reward (1) CLIP(1) Im.reward() oo — Swerdift  — Dombir=1
—— DombiA=0.1 Dombi A =10
Method A\ mean std meanpstd ~ Method ~  meanistd  meanystd . Zz: iy
and 24.87+505 -1.33.083 ICN 72957 114107 8oz
PoE 2441:571 -1.5540.75 and- 5.44.5 40 0.514065 ¥ o1s
Prompt 23.791 570 -1.6440.75 0.10
0.1 25.25.570 -1.18.0. 54 1 6.91is43 0.9040 75 005
Dombi 1.0 25.32.5 55 -1.161( 35 Dombi 3 7.401262 1.111¢.72 0.00 r') x - - - oo
10.0 25.50.2.54 -1.18.¢.s5 10  7.024254 1.2140.66 teration
Improvements vs. baseline (and) Improvements vs. baseline (ICN) Z:z T supervitt — bombiacl
and 0.0010.00 0.0000) ICN 0.00:0.00  0.0020.00 030 DoMPIA=01 DombiA =10
PoE -0.46+5 14 -0.2211 0o and — -1.85+3.54 -0.6340.77 3 025
Prompt -5.1115 95 0.1310.07 Q 0.20
0.1 0.381257 0.15 1 83 1 -0.38:215 -0.2410.66 B o1s
Dombi 1.0 0.4615 62 0.18 . 5.s0 Dombi 3 0.1041.88 -0.0340.63 0.10
10.0 0.64 .3 56 0.1540.82 10 -0.27+1.82 0.07+0.55 0.05

0.00

o4

T T T
20 40 60 80
iteration

Table 1: Docking Scores of generated ligands for 14 protein target pairs (P, P2), in batches of 32
ligands for 5 molecule lengths each. We compare conjunction with Dombi (A = 1) with and without
FKC with annealed base distribution and also report TargetDiff from (Guan et al., 2023) as baseline.

Method Temp.y FKC? (P; *Py) (1) max(Py,Py)(]) Better than ref. (1) Div. (1) Val. & Unig. (1) QED (1) SA ()
TargetDiff - - 62.19 ., o -724 032, ., 089, 095 ., 0.57 ., 059
Dombi 1 X 68.60 , . —742 . 028 ., 0.88, 096 ., 058 ., 059
Dombi 1 v 7283, ,,,, =771 027, . 0.86, s 0.95 s 057 ., 059
Dombi 2 X T1.36 ., =759, 0.30 ., 0.88, 093, 059, ., 062, .,
Dombi 2 v 81.63 —8.25 0.38 0.85 0.93 0.59 0.62

25.91 1.56 0.40 0.11 i 0.1 0.12 0.10

mance to each target protein as their product (P *P5), the objective of PoE, as well as max(Ps, P5),
which is closer to the objective of the Dombi composition. Further, we measure the fraction of
molecules that have a higher docking score than the known reference molecules, the diversity of
molecules, as well as the fraction of valid and unique molecules, and their drug-likeness (QED)
(Bickerton et al., 2012) and how easy they are to synthesize (SA) (Ertl & Schuffenhauer, 2009).

FKC Correction improves the docking performance in annealed and unannealed settings, as
shown in Table 1. The difference is more pronounced for v = 2, where we also collect FKC
terms for the annealed base distributions. In Appendix C.3 we show results with an additional small
sweep over A\ values, where the performance for A = 0.3 and A = 3 shows to be similar.

8 CONCLUSION AND FUTURE WORK

In this work, we introduced Dombi composition operators as a purely online, well-defined, general
class of score-composition operators. Based on power norms, our method recovers and unifies
prior work, like MoE, the harmonic mean, or contrast operators (Garipov et al., 2023), yet offers
theoretical benefits that are crucial to ensure stability when score compositions become more
complex. An important future direction are dynamic schedules for A, as Proposition 5.2 suggests
that adaptive choices depending on the scores might be better suited to ensure stability. This work
opens up some exciting possibilities, e.g., potential applications in neurosymbolic methods, where
modular diffusion models could be coupled to solve combinatorial tasks. Furthermore, the option to
rewrite formulas might in principle be utilized to switch to different sampling techniques for, e.g.,
factoring out subformulas.

10
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9 REPRODUCIBILITY STATEMENT

Detailed proofs are provided in the Appendix for all our theoretical results. We also provide a link
to an anonymous github repository containing all the code used to reproduce the results in this
manuscript!. The Repository contains the details required to reproduce the empirical results includ-
ing our hyperparameter settings. We will make our code public under MIT License upon acceptance.
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A Fuzzy LoGIC OPERATORS

In this section, we define the class of DeMorgan dual density and score operators, and investigate one
example, the Dombi operators, in detail. We show that they generalize probabilistic mixtures and
the harmonic mean, and discuss methods to stabilize explicitly used negations with these operators.
We first extend the definition of fuzzy logic operators to the domain of probability densities.

Definition A.1 (DeMorgan Density Operators). Let ¢ : [0,00] — [0, 1] be an order-isomorphism
and f : [0,1] — [0, 00| be a continuous, strictly decreasing function with f(0) = oo. For g = fo ¢,
we define

—p(x) = ¢~ (1 - o(p(x))) (16)
p1(x) Ap2(x) = g (9(p1(x)) + 9(p2(x))) (17)
p1(x) V pa(x) = = (=p1(x) A =p2(x)) (18)

For differentiable f and ¢, the application to scores follows directly:

Proposition A.2 (DeMorgan score calculus). Let ¢ and f be fully differentiable functions that gen-
erate the DeMorgan density operators {\,V,—}. Then with g = fo ¢, h: z — f(1 — ¢(x)),
w(z) =z ¢'(z) and W(x) := x b/ (x) the corresponding operations on the energies and scores are
defined as

)
0= ) w0 * 4
_w(p1(x))s1(x) + w(pz(x))s2(x)
51(x) A s2(x) = W0 () A pa(x)) (20)
_W(p1(x))s1(x) + W(p2(x))s2(x)
Sl(x) \ 52(x) - m(p1<x) \/pg(X)) . (21)
Proof. See Appendix B. O

This result shows that score operations are, in essence, just responsibility-weighted combinations of
the component scores. It is then easy to see that bounds on w(pr () Fwlp2(9) for 6 ¢ {A,V} can

. w(p1(x)op2(x))
serve as stability guarantees on ours operators.
A.1 DERIVATION OF DOMBI OPERATORS
. . 1 1 A .
We now define the dombi operators with ¢.(z) = ;. = = and fx(z) = (£ — 1), and derive
. . . _1 _ _ _
their corresponding score calculus here. First, we can see here that ¢ ' (z) = %5 = T g(x) =

Pr@c@) = () hia) = 1 = o)) = 12 (552) = £ (1) = (2)" Forther g1 (@) =
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cx~ Y. With this we can derive Definition 4.1 as:

9(0) = 62 (1 0up0) = 7" () ) = D )
P16 A 22() = 4™ (9(p1 09) + 9(p2()) @

—1/A

e <<;1((Xx)) ) A " ( pCQ((XX)) ) A) (24)
1 A 1 A\ —1/A

} <(p1<x>) " (m(x)) ) (25)

- “ay —1/A
= () )Y (26)
P1(x) Va pa(x) = 7e(mep1 (%) Ax —ep2(x)) (27
2
= C(X)zc(X) c(x)? (28)
P00 " 2
1
= T (29)
P19 " pa(x)
= ! (30)
(p1(x)* + p2(3)%)
/A
= (11 + (0N (31)
In log-likelihoods and scores, the negation is straightforward. For a power-mixture

(pl(x))‘ + p2 (X)/\)l/ )\, the log-likelihood and score operations are familiar. We investigate dis-
junction and conjunction at the same time and state for all A £ 0 :

a(x) = (P (x)* + pa(x)Y) " — 3
log q(x) :% log (p1(x)* + pa(x)?) (33)
% log (exp(Alog p1(x)) + exp(Alog p2(x))) (34)
%LogSumExp()\ log p1 (), Alog pa(x)) — 39
Viloga(x) = 3 (softmaxs(Alogpr (x), Alog pa(x)) Vi og pi(x)) (36)
ie{1.2)
P
3 (e e v ) a7

In terms of score calculus, or Dombi Operators, end up being softmax-weighted, convex combina-
tions of the component scores.

A.2 DoMBI ERROR BOUNDS

For a given value of )\, the maximal difference between the Dombi operators and the min / max
functions can be easily bounded as an additive term in log-likelihood:

Proposition A.3. Let Ay, V) be the Dombi density operators. Then it holds that

Vz,y € R>o: min{x,y}Z_l/)‘ <z Axy < min{z,y} (38)
Vz,y € R>o: max{z,y} <z Vyy < max{z,y}2/* (39)
Proof. See Appendix B [
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B PROOFS

Proposition A.2 (DeMorgan score calculus). Let ¢ and f be fully differentiable functions that gen-
erate the DeMorgan density operators {\,V,—}. Then with g = fo ¢, h: z — f(1 — ¢(x)),
w(zx) := x ¢'(z) and wW(x) := x h'(x) the corresponding operations on the energies and scores are
defined as

__ Y
"5 =~ B () w0 * (9
~w(p1(x))s1(x) + w(p2(x))s2(x)
1) A 5200 = B A p0)) 20
w(p1(x))s1(x) + W(p2(x))s2(x)
51(x) V sa(x) = 01 () Y pa(x)) (21)
Proof. -
—81(x) = Vx log —p(x) (40)
o vxﬁp<x)
- p(x) @D
Vo (1 - é(p(x)))
T 10— o) @
_ Vall— 6(p()) w
' (o1 (1 = ¢(p(x)))) ¢~ 1(1 — d(p(x)))
—¢'(p(x))p(x)
P 0= o) o1 (1= s “ ) 49
—¢'(p(x))p(x)
Fw09) () ) 4
A
51(x) A s2(x) = Vx log(p1(x) A p2(x)) (46)
~ Vx(pi(x) Apa(x))
T pi(x) Ape(x) @7
Vg™ 9(p1(x)) + g9(p2(x)))
T @ ARK @9
_ 9 (m(x¥)p1(x)s1(%) + 9'(p2(x))p2(x)52(x) 49)

g'(p1(x) A pa(x)) (p1(x) A p2(x))

V Symmetric derivation with h instead of g.

We note that, if we can relate the ratios of the weights, we can give upper and lower bounds on the
norm of the scores of compositions. O

Proposition A.3. Let Ay, V) be the Dombi density operators. Then it holds that
Va,y € R>p: min{x,y}?fl/’\ <z Ayy < min{z,y} (38)
Va,y € R>q: max{z,y} <z Vyy < max{x,y}Ql/)‘ (39)

Proof. We show the case for p V) ¢ = (p>‘ + q>‘) 1/ first. The definition of V, is equivalent to that
of a P-norm over two components. We have the standard inequality (w.l.o.g. for p > ¢q)

/A /A
pvaa= (0 +¢)"" < @) =2 max{p,q} (50)
The lower bound similarly follows from
/A /A
pvag= (@ +¢)"" = ()" = max{p, ¢} (51)

17
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For Ay, we can use DeMorgan to obtain the symmetric bounds. We can note that the upper bound
is tight for p = ¢ and the lower bound is tight for ¢ = 0. O

Proposition 5.2 (Mixture Stability). Let oy, = softmax, (X log p*, Xlog p?), for a dombi composition

p! oy p?. Then it holds for the scores s, s?

o2 1
[E[doy | x]| < ?\P\Sl = As?(|([Is* [l + [ls*] + §||)\81 — As?|)dt (13)

Proof. First, we can show easily that |$d(log p! — log p?)| + %‘?d[log p' —log p?].
o =softmax; (Alog p', Alog p?) (52)
=sigmoid(\ log p* — Alog p?) (53)
Now, by It6’s Lemma we have, for ¢ = sigmoid(\log p' — Xlog p?)

do = ¢(1 — ¢)Ad(logp' — log p*) + %d)"kzd[logpl — log p?] (54)

We know that, as ¢ is sigmoid, we can bound its derivative with 1 and second derviative with %.

A A3
|da| < kidﬂong-—log1?)|+-4§6*dﬂong-—logpQ} (55)

Now, we derive a bound for [E[dlog p; — dlogp? | x]| using Equation (3), defining ¢ = log p; —
logp?, s = as' + (1 — a)s? and uy(x) = — fi(x) + %st(x).
We then have

2
o
dl, = <s% — sf,uﬁdt + <s,:§l — sf,fﬁdt — Et (||s}||2 — ||sf||2) dt + O’t<81 — 32,dW> (56)

2
= T st = 0 = (s} + D)t + s’ — 5%, ) 7

If we condition on x, the stochastic part vanishes in expectation, we are left with

2

¢ :%<st1 — 52,5, — (57 + s2))dt (58)
UtQ 1 2 1 2
<5 lIs” = s7Mlise = (si + si)lldt (59)
Ut2 1 2 1 2
<5 lls” = 7= (1 = a)s; + asi)|ldt (60)
Utz 1 ol ia 2 1 2
<5 lls” =875 Als™ + 87 + 5™ = s7|at (61)
Ut2 1 2 1 2
<5 lIs” = sl dls™l + N7l (62)
(63)
Furthermore, we have
dll]; = o7 ||s; — s7||dt (64)
E[d[f);|x;] = 0®|[s; — 57|t (65)

Finally, we have

18
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A A2V3
|da| < |7 (dlogp’ — dlogp®)| + S{d[logpl — log p?] (66)
A A2V/3
[Elda | x.] < | JEIde | xi] + =< Eld[flfxi]| (©7)
o2 \202./3
< = Ist = S2I(Is ] + (15?1 dt + Is' — s%|%dt| (68)
8 36
Ut2 1 2 1 2 1 1 2
< g s = AT+ D17l + 5 l1As™ = As7)d (69)
O
B.1 FEYNMAN-KAC CORRECTION
The reweighting equation
Ops(x
dw, = g(x)dt = p(;g ) = G,(x)pe(x) (70)

describes how the log-weight-field influences the marginals of the weighted SDE. The translation of
continuity (drift) terms and diffusion terms into log-weights is then given by the following schemes:

8pt(x)__ x)ve(x)) = =t x)v (x X
0 — T ) = (s (T ) ) i) — o
dwy = (—(V,v(x)) — (V1og pe(x), v¢(x)))
for drift terms and
Ope(x) o? B o?
o ?Apt(x) = Ept(x) (A log pi(x) + ||Vlogpt(x)||2) = a2

2
o
dw,; = 5 (Alog pi(x) + ||V log p(x)[|%)

for diffusion terms.

Dombi Composition is equivalent to applying a power-norm to probability distributions. We recast
this as annealing, a case shown by Skreta et al. (2025a), then taking an (unweighted) mixture and
then inverse annealing of the mixture of annealed distributions.

We state the following results before proceeding with the main proofs.

Lemma B.1 (Mixture of SDEs + FKC). Consider two weighted diffusion models g} (x), q?(x) de-
fined via the Feynman-Kac equation with corresponding weights gi (x), g?(x). The weighted SDE

corresponding to the sum of the marginals p;(x) x q} (x) + ¢Z(x), with o} = % € (0,1)

dx; = [~ fi(x¢) + 07 (0 Viog gf (x¢) + af Vog g7 (x¢))] dt + o¢dw, )
1
t

dwy = [0 g (x) + of g7 (x)] dt

Proof. The proof in this case is straightforward.

We have, for g;(x) = o} g} (x) + a?g2(x)
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opr _9q¢f | Oqi Oq; g

ot o T o ) o o (74)
0.2
(¥, 0} ()~ fi — 77V og g} () + - A} () + () [a} ()] +
0.2
(V. 200 (i — 02V oz a?(0)) + T-Aqd00) + () [3260)] — [ 20 4 O
(75)
0_2
=0} )~ = oF s Vit () + G- Al (09 + a1 09 [5G0 +
(926200~ = oF =V () + e ) + 20 [ 0)] — [ G+ A
(76)
L5} (— o2 2(x)(— _UQL 2(x
=(V,q; (x)(=fr — t‘]tl( )th( x)) +q; (x)(—f: tqtg(X)Vqt( )+ -
T Ap )+ p0g(x) — [ P
=g} () + 00 (~ ) + 6} 09 (=07 5l () + 4200z Vi) +
%EAP:& )+ pe(x /8pf
(78)
(V. (4} (9) + 60)(~f) + (~02V (g} () + )+
% Api(x) + pilx / PN ™
_ ) 2 (— o f g2 (VX |, Va(x)
V(660 + () + i) (—oF (LB 4 TREIY )y o
%Apt(X)ert(X)ét( x) — %ﬁtd
_ X)(— X o Vai(x) | Vi (x)
V) + i) (o (T THEIY )y, o
%Apt(x) + pe(x)ge(x) — %dx
Lix 2(x o2 ¢
(- (2450 S L s o
(82)
_ 0 gt (x) oo at(x g; (%) oo a2(x
V() (~f t(p( 19103010 + LV log ) ) )+ -
%Apt + pe(x /%dx
=(V,pe(x) (—fi — (%Vlogqt( ) + afVlog g; (x))))+
o2 . 84
éApt(X)—l—pt(x)gt(x)— %%dx &
0.2
=(V,pu(x) (= fi = 0 (1 Viog g; (x) + aiVlog ¢} (x)))) + 5 Ape(x) + pi(x)3i(x) = 0
(85)
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‘We can simulate this as

dx; = [~ fi(x:) + o7 (a; Vog q; (x4) + a7 Vog g} (x1))] dt + o, dw,

86
duwy = [algh(x) + a2g2(x)] dt (80

Lemma B.2 (Target Score Annealed SDE + FKC, Skreta et al., 2025a). Consider a diffusion model
qt(x) defined via the Feynman-Kac equation with the weight-field g.(x) and some parameter \ €
R\ {0}. The weighted SDE corresponding to the annealed marginals p;(x) oc q;(x)* can be
performed by simulating the following weighted SDE

dx; = [—fu(xe) + o7AV log q(x¢)] dt + oydw,

o2 , (87)
dwy = |(A = IV, fi(x)) + AMA = 1) [[VIog g:(x)]I + Ag(x) | dt

Proof. We follow the proofs of Skreta et al. (2025a).

We aim to find the partial derivative of the density p;(x) = % over time 22 *(x) , where
0qi(x o} _
WO — (9, ,0) (e + 03V log () + %L Agi(30) + au(x) [1:00)]
Then we have
dlog g:(x) 1 9gi(x)
= 88
ot @ (x) Ot (88)
1 O' Aqt< ) _
=— V, q(x)(—fi + 02V 1og ¢ (x))) + = +g(x 89
Qt(x>< qt(x)(—fi + 07 V1og qi(x))) > () g(x) (89)
1 2

= —mw, q¢(x) (= fi + 07 V1og g;(x))) + é(AlOth-i- IV 1og g:1%) + g(x)
(90)

=—(V, —fi+0;Viogq) — (—fi +0;Viogq, Viogq)

2
+ T (Alog g + || Viog ar][*) + () 1
= (V. fi) + (fe, Viog ai) — o} Alog g, — o} | V1og ¢ |
2

?t(AIOth + ||V log ¢:]|?) + g(x) (92)
= (V£ + (. Vogar) - % (Alogg, + | Vlogar|?) + 0. 93)
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and can now compute

Ologps(x) | Ologq:(x) 7/ 0log q:(x)
ot =\ 5t Ape(x) o dx 94)
2
= A{(V, fe) + (ft,Viogq:) — %(A log g+ + HV]qut”?) +g| -
95)
dlog g:(x)
/)\pt(x)iat dx
)\0'152 2 _
=MV, fo) + Mfi, Viog gt) — —=(Alog gs + [|[VIog ¢el|°) + Ag—
dlog g:(x) ©0
t
/)\pt(x)T dx
\o? 2 _
= (Vi Mfo) + (fi, Viogpe) — ZH(Alogg: + [ Viog ge”) + Ag—
O7)

a1
/Apt(x)%t(ﬂ dx
2

= (V. 10+ (o Vogpe) — (1= AV, i) = 228 Alog g + |V logar][?) + A~

2
[ (9 0w — (=T, = 2 (Ao + [V log ) + A ax

(98)
2

= (V, fs) + (fo, Viogps) — (1 — ANV, fo) — 2o (A log g + ||V 1og ¢:[|*) + Ag

o2 ©9)
- [0 - 2 stoga ||VIogqt|\2) +4g] ax
2 2

= (V. fo) + (fi, Viogpe) = (1= N(V, fi) = T Alogpe = 51| VIogpe|* + Ag

(100)

— [N~ G alogp — I g+ 2a)
= (V. 0+ (e Vdogpe) = (1= N)(¥. £ = % Alogpe — % [V logpi|*+

1yai ot ot 2
(1= ) F IV 08mI* + 39 = [ p - (1= (T, £) — G Alogp — T [Vlogl*+
1 2
(1—*>§|\V10gptl\ + Ag|dx
(101)
2

2
= (V. o) + {fr, Viogps) = (1= (V. fi) = 5 Alogpe — 5 [[Vlogpe|*+
1 2
(1= ) FIv0emI* + 29 — [m - (1= 0T, £+ (102)

(1 — %)%?HngptHZ + )\g] dx.

With this, defining ¢' = —(1 — A\)(V, fi) + (1 — %)U—;HVlogptH2 + Ag we finally have

0log py
ot

o? o?
=(V, ft) + (ft, Viogps) — ?tAlogpt — éHVIOgPt”Q +9 - /pt(x)gldx (103)
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%: 0log p,
ot o

0'2 0'2
=pt {(V, fey + (ft, Viogpy) — ?tAlngt - jIIVIOgPtH2 +4'(x) — Emg’(X)} (105)

(104)

o? o?
= —(V,—fipe) + pt |:_2tA10gpt - jllVlogptll2 +9'(x) - Eptg’(X)] (106)
o2 A o2 o?
= —(V,—fipe) + ¢ [_;pﬂt?t + ?tHVlOgPtHQ - éHVIOgPtHZ +4'(x) — Eptgl(x):|
(107)
2
g
= (V. pu(—fo + 02V lox ) + T Ape+ 1219/ (x) — By, () (108

And finally, we can reexpress this as

Opy

2
ot = —(V,pe(—fe + o?\V logq;)) + %Apt + Dy [gl(x) - ]Epf,gl(x)] (109)

And for A > 0 we can simulate this as

dx; = [_ft(xt) + UtQ)\V log qt(Xt)] dt + oydwy

/ o? ) (110)
dw; = gy (x)dt = | =(1 = AV, fo(x)) + AA = 1) [V Iog gi[|” + Ag | dt

Proposition 6.1 (Referenced Negation as CFG+FKC, Skreta et al., 2025a). Consider two diffusion
models q} (x), q?(x) defined via the Fokker-Planck equation in Equation (2). The weighted SDE
corresponding to the referenced negation of p;(x) x ﬂqf(x)qtl (x) is, with dw;(x) = g¢(x)dt

dx; = [—ft(xt) + Uf(ZV log qf(xt) — Vliog qt1 (xt))] dt + o dwy

(14)
9¢(x) = 07| Vlog gy (x¢) — Vlog gi (x:)|I* + 27 (x) — g; (%),
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Proof. We start with the annealed distribution g7 (x)? and the annealed pseudo-distribution ¢} (x) L.

We now try to find

dlogp: __Odlogg; dloggt dlogg; Ologgq}
o L o ot 7 ot (1
alog q; _ Olog a 7/ dlog ¢} _ Olog qt
ot ot 7 ot (112)

2
= [<v,ft> +(fVlogg?) - % (Aloga? + |V loga? ) + (x)} -

{(Vft) + (fe,Vlogqs) — *t(Alqut +[IViog g |I*) + (X)} - (113)
dlog ¢? (x Odlog q; (x
/pt(X) [2 Oga(i (x) Ogai t )] dx
2
=(V, fo) + (f:,2Vlogqi) — (f:, Viogq) +2{ j(Alogqt +[IViog g/ |I?) + 2(X)} -
: dloggi(x)  dloggi(x)
% (stogal + IV Iogal ) +'9)] - [ o) [22108 0] _ log G

(114)
2
=(V, fe) + (ft, Vlogp:) — 3( (Alogg; + [ Vloggi||?) — (Alogq; + [[Vleg g |1%))+

2970 — 9" — [ o) [22105 0] Dhog GO g

(115)
=(V, fe) + (ft, Viogp:) — 7(Alogpt + HVlogptH —2||Vlogqt Vlogqﬂ\z)—i— e
257 (x) — 5 (x [ 8log qt 810g8(it (x)] dx
=(V, fi) + (f, Viogps) — j(Alogpz + |Vilogpel?) + o ||V Iog g7 — Viogq, ||*+ amn
29°(x) — g' (x) — Ey, [07]|V1og g — Viegq!|* + 2¢°(x) — ¢'(x)]
And with g(x) = 07|V log g} — Viogat|* + 26 (x) — ¢'(x)
Ope _ Ologpy (118)

ot~ Pt oy

2

(V, ft) + (ft, Viogps) — %(A logpr + ||V 1og pe||*) | + pe [9(x) — Ep, g(x)] (119)

2
= —(V,pt(x)(=f: + Vlogps)) + %Apt + e [9(x) — Ep, 9(x)], (120)

which we can simulate with
dx; = [—ft(xt) + af(?V log qf(xt) — Vlog qt1 (Xt))] dt + odwy

(121)
9:(x) = 07| Vlog q; (x:) — Vog g7 (x,)||” + 297 (x) — g (x).

O

Theorem 6.2. Consider two weighted diffusion models q; (x), q? (x) defined via the Feynman-Kac
equation with weights g} (x), g?(x), and a parameter \ € R\{O} The weighted SDE corresponding

1/X X
10 py(x) o< (gt (x)* + ¢7(x)*) A with al = q%(‘;;(w (0,1), and dw, = g,(x)dt is

dx; = [~ fi(x¢) + 0f (0} Viog g; (x;) + af Vg ¢ (x;))] dt + o,dw,

2
2

g i i i i i i
ge(x) = (1= A)— > aiVioggi(x)|| — Y aiVieggi(xo)lI”| + Y aigi(xe).
ie€{1,2} i€{1,2} 1€{1,2}
(15)
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Proof of Theorem 6.2. We now use our two lemmas to show the main result. We begin with

dxy = [~ fi(x¢) + 07 AV log gi (x;)] dt + o, dW,

2 . ) 122)
= 0=1) (19 ) + GAT gl e+ i)

for both annealed distributions, according to Lemma B.2. Then, by Lemma B.1, we have a mixture
of these distributions with

dx; = [—ft(xt) + Uf)\(aiv log qtl(xt) + a?V log qf(xt))] dt + o dwy

2
dun=at |- 1) (V. ) + GAITIogab ol ) de-t 20|+ 1y

a [ 1) (9.1 + AT 0200 ) e+ 05700

which simplifies to

. 2 . .
dwy = (A = 1)V, fe(x¢))dt + A Z oy ((A - 1)%||V10g gy (x1)||Pdt + 9;(&)) - (124)
i€{1,2}

Finally, we apply Lemma B.2 to the resulting mixture with 1/A. This then results in
dx; = [~ fi(x¢) + 07 (o Viog g (x¢) + o Vog g7 (x¢))] dt + opdw, (125)

which is the target score as desired. For our weight-field we then have

1 ’1
S <<V7ft(xrs)> + 2 $llaiAVIog i (x:) + ai AV logq?(xt)nz) di+

d’UJt =
1 i 2 7 i
3= 0@ ea | 3 et (0= DG TG0 +aixo)) || a
ie{1,2}
(126)
11— 1-Xo?1
(Vs filbxa))dt + T%Xllaiz\v log q; (x1) + a AV log g7 (x)||*dt+
= A—1 i o? i 2 i
T<V,f,g(xt))dt—|— Z ay ()\—1)?\|Vlogqt(xt)|\ + gi(x¢) | dt
ie{1,2}
(127)
2
2 . .
(1—)\)% Z a;Vlogqi(x¢)|| dit+
_ i€{1,2}

3 o ((A ~ 1% IV log gi (xo)]” +gé’<><t>) dt

ic{1,2}
(128)
2
2
a i i i i i
= ( _>\)7 [ Z a;Vloggi(x:)|| — . Z Olt|V10th(Xt)||2] dt + . Z gt (xe)dt
i€{1,2} i€{1,2} i€{1,2}

(129)

We can see that, as expected, for A = 1 we are left with the unweighted mixture of distributions. For
more complex compositions, the weight fields just propagate as well, we can see that the statement
trivially generalizses to more than two diffusion models, so we maintain associativity.

O
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(d) (p2Vps) A(—=p2V—p3) A=p1 () pr Ap2 A p3

Figure 6: Generated MNIST score compositions.

C EXPERIMENTS

All our experiments on stable diffusion and SBDD were performed on unmodified, pretrained mod-
els. We performed inference on Nvidia v100 and a100 GPUs.

C.1 MNIST EXPERIMENTS

We reproduce the setup of (Garipov et al., 2023), and generate images from the score composition of
the three toy mnist models. The code to training the models can be obtained from the code repository
and training was performed on a Nvidia GTX 3080 desktop within 10 minutes.

We show image collages for non-trivial example formulas in Figure 6. For each formula we gener-
ated a batch of 1024 images.

C.2 STABLE DIFFUSION IMAGE GENERATION

We reproduce the stable diffusion experimental setup of (Skreta et al, 2025b)
with  Stable  Diffusion vI1-4  available pretrained publically at  huggingface:
https://huggingface.co/CompVis/stable-diffusion-v1l-4. We then report,
PoE, superdiffs and as well as joint prompts.

We use 20 pairs of conjunctive prompt-pairs and generate 20 images each. We provide a batch of the
generated images in the supplementary material. and list the prompts here, also reused from (Skreta
et al., 2025b):

* "a mountain landscape" A "silhouette of a dog"
e "a flamingo" A "a candy cane"

e "a dragonfly" A"a helicopter"

* "dandelion" A "fireworks"

e "a sunflower" A "a lemon"
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* "a rocket" A"a cactus"

* "moon" A "cookie"

* "3 snail" A"a cinnamon roll"
* "an eagle" A"an airplane"

e "zebra" A "barcode"

¢ "chess pawn" A "bottle cap"

V)

pineapple" A "a beehive"
a spider web" A"a bicycle wheel"
a waffle cone" A "a volcano"
e "a cat" A"a dog"
a chair" A "an avocado"
e "a donut" A "a map"
e "otter" A "duck"
* "pebbles on a beach" A"a turtle"
e "teddy bear" A "panda"

For the contrastive Prompts, we partially use our own prompts and partially use the prompts from
(Dong et al., 2023). We provide a batch of the generated images in the supplementary material. and
list the prompts here:

* "A night sky with stars and a crescent moon, reminiscent of
Van Gogh’s ’Starry Night’." A= "Van Gogh"

* "A night sky with stars and a crescent moon, reminiscent of
Van Gogh’s ’Starry Night’." A= "Picasso’s Cubist style"

* "A portrait of a man with a distorted and fragmented face
painted in Picasso’s Cubist style." A= "Picasso’s Cubist
style"

* "A cat and a ball on the shelf" A= "cat, ball"

* "There are a bicycle and a car in front of the house" A= "a
bicycle and a car"

* "orange fruit" A-"orange color palette"
* "a banana" A—"yellow color palette"

* "an ocean" A—"blue color palette"

e "strawberry" A— "red color palette"

* "round shape" A= "circle"

C.2.1 ADDITIONAL RESULTS

We provide additional plots illustrating the behaviour of composition under varying values of A in
Figure 7.

C.3 ADDITIONAL RESULTS ON SBDD MOLECULE GENERATION

We report a sweep across three values of A for the molecule generation task in Table 2. As the
variance in this experiment is high, none of the differences can be considered significant.
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(a) Variability of mixture coefficients for conjunction (b) Absolute difference in likelihood during generation
Figure 7: Mixture Stability vs Likelihood Bias in SD experiment. Figure 7a shows the absolute
changerate of o, Figure 7b shows the median absolute log-density ratio. PoE (or geometric mean)
has constant mixture coefficients, but log-likelihoods diverge during the diffusion process. Superdiff
forces equal likelihoods as the cost of a highly variable mixture, especially early during the diffusion
process. Dombi composition (ours.[A]) provides a tradeoff, depending on .

Table 2: Docking Scores of generated ligands for 14 protein target pairs (P1, P2), in batches of 32
ligands for 5 molecule lengths each. Extended runs across temperatures v € {1,2}. We compare
conjunction with Dombi with various A with and without FKC with annealed base distribution and
also report TargetDiff from (Guan et al., 2023) as baseline.
Method Temp.y A FKC? (P; *Ps) (1) max(Py,P2)(]) Better than ref. (1) Div. (1) Val. & Uniq. (1) QED (1) SA ()
TargetDiff - - 62.19 724, 032 ., 0.89 0.95 057, 0.59

08 0.01 + 0.07 0.14 + 0.09
Dombi 103 X 6812, 737, 026, ., 088,,, 096 ., ., 058, . 059
Dombi 1 Lo X 6860 L, —T42, 028, ., 088,,, 096 , , 058 059
Dombi 1 30X 6T, -T33,, 028 ., 088,,, 096, 057 . 059
Dombi 103 v T209 ., -THl 031, 087, ,, 095 ., 056, 059,
Dombi 1 1 v T8, 17 027, 086, ,, 095 . 057, 059
Dombi 1 3 v T001.,,, —TH0, ., 028 ., 086, ,, 096, 058 . 061,
Dombi 2 03 x 7254, 7167, 032, ., 088, ,, 093, ., 059, . 06l
Dombi 2 1 X TL36.,, -T59_,, 030 ., 088, 093, 059, 062,
Dombi 2 30X T92 . -TT4 031, 088, ,, 094 . 060,  , 062
Dombi 203 v/ 7875, ~7.98, ., 037, 4 87,0 094, 059 061,
Dombi 2 1 v 8163, 825 038, 085, 093, ,,, 059, 062
Dombi 2 3/ 8306, ~8.40 0.40 085, ,, 094 0.57 0.62

02 1.61 0.41 0.03 +0.12 0.13 - 0.09
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D SAT-EXPERIMENT

D.1 SETUP

We illustrate the capability of Dombi compositions to adhere to combinatorial constraints by sam-
pling uniformly from satisfying variable assignments of propositional formulas. For a formula with
k propositional variables P;, for ¢ € [1, k], we set up our diffusion ensemble as follows: In R, we
place 2% Guassian modes, one for each possible variable assignment. Then, in our ensemble, each
of k score models simulates one propositional variable. For ¢ € [1, k], we have access to s;, which
defines a denoising process to a uniform mixture of the 2! Gaussian modes, where the P; is true.
Additionally, a reference model defines a denoising process uniformly to all 2* Gaussian modes.
For k = 2, this setup is visualized in Figure 8a.

PP, P1 XOR P,
4 4
N N k=2 k=5 k=10
S B Y [ e B
i I—J?ch ) I—J 1 EJQZW Formula ~ Method 7corr  Man PPLT ncor man PPLT 7com man PPLT
1 ®e % 1 @ %
o - S ol o - S Mot Dombi 100 100 100 100 100 100 100 100 098
5 S ¢ A Yk Prod 100 100 082 1.00 100 009 000 0.00 0.00
—14 o WFCQ ~14 o WFCY
L m L Dombi 097 100 100 095 100 100 091 100 098
-2 'S'“a:)_ rﬂﬂ -2 g"t'aL_ Eﬂ XORk  prod 100 000 1.00 000 000 000 000 0.00 0.00
ombDI ombDI
-39 Product -39 Product Oncto, DOmbi 097 100 100 059 100 100 009 100 0.99
4 — 4 E Prod 100 000 100 000 0.00 000 0.00 000 0.0

-4 -2 0 2 4 -4 2 0 2 4

(a) SAT experiment in R2. (b) Overview of SAT experiment for three formulas.

Figure 8: Figure 8a shows the SAT experiment in R?, with squares corresponding to satisfying
assignments. The corresponding numerical overview for k € {2,5, 10} in Figure 8b. Best are bold.

Our objective is then to use score-composition to uniformly sample from all satisfying variable as-
signments. We repeat this setup for the Dombi operators, as well as POE/MoE composition for three
formulas for k& € [1, 10], and report mode coverage, uniformity, and stability of the composition.

D.1.1 SAT FORMULAS

We use three different propositional formulas: majority, xor, and one-hot. The formulations of these
formulas are designed to test different aspects of the score composition.

Majority We define the formula over k variables as

Maj, (Py,...,Py) = /\ \/ .

SC{Py,...,P,} PeS
[S|=[k/2]

This formula is negation-free, but might lead to mode dropping for variable assignments with fewer
positive variables.

One-Hot We define a formula where exactly one variable has to be true as

OneHoty(Py,. .., Py) = (\k/ Pi) A ( A (ﬁpivﬁpj)).
i=1

1<i<j<k

It is only quadratic in the length of the variables, but it contains many clauses without positive
literals, requiring precise handling of explicit negation.

Exclusive Or We define xor as a parity function over k variables as
k
XORk(Py,..., Py) = /\ \/(Ui?ﬁpi: P).

ve{0,1}* 1=1
>, vi=0 (mod 2)
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This formula can only be expressed in exponential length with 2~ clauses, which explicitly ex-
clude one assignment with even parity.

D.2 SCORE MODEL SETUP

We translate each of the 2 propositional variable assignments to a Gaussian mode in R* as

p(x):% Z Ni(x]4v — 2,0?).

ve{0,1}F

‘We then define “directional” diffusion models

Vi€ [1,k] : pi(x) = 2;_1 Z Ni(x|4v — 2,02).

vef{0,1}*

’U,;:1

In this setup, each distribution plays the role of one propositional variable. The distributions p;
can then be composed to mirror a propositional formula, with the goal that particles converge only
to modes that correspond to satisfying variable assignments. We use p as an additional stabilizing
model to guide particles to any location that corresponds to an assignment.

As these models are mixtures of Gaussians, we derive optimal scores and energy functions from the
standard Gaussian to our distributions in closed form.

We then model each type of formula for k € [1, 10] as direct composition and simulate 24 particles
over 100 denoising steps.

For each mode, when then check a L, bounding box around its mean of sidelength 30 and consider
all particles within that radius to be valid assignments.

In Figure 8b we show the most important metrics: 7)o, the fraction of particles within bounding
boxes of satisfying modes, 7.y, the fraction of particles converging to any mode. Additionally, we
measure the normalized perplexity in the particle distributions across as PPL. In this experiment,
PPL measures mode uniformity, where a higher number indicates more uniform samples from sat-
isfying modes of the formula. In a formula with K satisfying variable assignments, for a batch of n
particles, with nn.. particles within satisfying modes, we denote the fraction of particles within the
bounding box of the assignment index i € [1, K| as n; with >, 7; = neor. We then calculate PPL
for mode confusion as

i

PPL — o(— ZiLi 7 log, ﬁ)/[(_

D.3 RESULTS

Figure 8a shows samples of formulas in R?. An overview of the experimental results is provided
in Figure 8b. We can see multiple shortcomings of products in our experimental results. On the
negation-free Maj, , PoE drastically reduces the per-mode variance, as seen in Figure 8a, drops most
of the modes for & = 5, and completely breaks down for £k = 10. In contrast to this, the dombi
Operators do not drop modes and maintain a close-to-uniform distribution over modes in high di-
mensions. For XORj, and OneHot;, PoE breaks down for £ = 2 already, due to the negated literals.
In Figure 8a, the modes of the PoE sample appear drastically biased by the negated clause. Some-
what surprisingly, the Dombi composition can sample comparatively well from the exponentially
sized XORg, and struggles much more for OneHot, which is comprised of many purely negative
clauses.
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