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ABSTRACT

Composing pretrained diffusion models provides a cost-effective mechanism to
encode constraints and unlock complex generative capabilities. Prior work re-
lies on crafting compositional operators that seek to extend set-theoretic notions
such as union and intersection to diffusion models, e.g., using a product or mix-
ture of the underlying energy functions. We expose the inadequacy and incon-
sistency of combining these operators in terms of limited mode coverage, biased
sampling, instability under negation queries, and failure to satisfy basic compo-
sitional laws such as idempotency and distributivity. We introduce a principled
calculus grounded in fuzzy logic that resolves these issues. Specifically, we define
a general class of conjunction, disjunction, and negation operators that general-
ize the classical mixtures, illustrating how they circumvent various pathologies
and enable precise combinatorial reasoning with score models. Beyond exist-
ing methods, the proposed Dombi operators afford complex generative outcomes
such as Exclusive-Union (XOR) of individual scores. We establish rigorous the-
oretical guarantees on the stability and temperature scaling of Dombi composi-
tions, and derive Feynman-Kac correctors to mitigate the sampling bias in score
composition. Empirical results on image generation with stable diffusion and
multi-objective molecular generation substantiate the conceptual, theoretical, and
methodological benefits. Overall, this work lays the foundation for systematic
design, analysis, and deployment of diffusion ensembles.

1 INTRODUCTION

Pretrained general-purpose generative machine learning models (Devlin et al., 2019; Brown et al.,
2020) have become practically synonymous with the term artificial intelligence itself. Their vast
capabilities (Bommasani, 2021; Wei et al., 2022), however, come at the cost of an excessive need
for growing datasets (Kaplan et al., 2020; Villalobos et al., 2022), and yet additional techniques
are needed to reach adequate performance in downstream tasks. Finetuning (Devlin et al., 2019),
human-feedback-based reinforcement learning (Christiano et al., 2017; Ouyang et al., 2022; Zhang
et al., 2023), retrieval augmented generation (Lewis et al., 2020), or even specialized prompting
techniques (Brown et al., 2020) are then used to retrofit models to specialized tasks and domains.

As an alternative to monolithic general models, compositional generation (Jordan & Jacobs, 1994;
Hinton, 1999; 2002; Yuksel et al., 2012; Vedantam et al., 2018; Du et al., 2020) seeks to combine
the domain knowledge from different models to solve a task at hand. As many models follow proba-
bilistic formulations, using probabilistic language for composition is a natural approach. Products of
Experts (PoEs) (Hinton, 1999; 2002; Liu et al., 2022; Du et al., 2023; Skreta et al., 2025a) have been
devised and widely used as a mechanism to enforce conjunctive constraints, with the idea that their
product is only large when all components are large. The assumption underlying this approach to
model joint distributions, statistical independence of the factors, however, does not in general hold.

Often tackled as a separate problem is the concept avoidance in generation. Similar to other tasks,
unlearning (Ginart et al., 2019; Nguyen et al., 2022; Wang et al., 2024) as a specific form of fine-
tuning or post-training avoidance and steering methods (Dhariwal & Nichol, 2021; Ho & Salimans,
2021; Dong et al., 2023; Garipov et al., 2023; Kirchhof et al., 2025) have been proposed, which often
utilize PoE with inverse probability densities for avoidance or rely on training additional models.
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Figure 1: Visualisation of Dombi Composition p(x) ◦λ q(x) with q(x) fixed. Flipping the sign of
λ gives the DeMorgan dual operator. For the negation ¬cp(x) ∧ q(x), the y-axis of the figure flips.
Different choices of λ correspond to known operators.

Section 3 Failure Modes in Score-Composition
Unstable Negation. Section 3.1
Inconsistent Temperature Scaling. Section 3.2
Violation of DeMorgan, Idempotency, Distributivity. Section 3.3

Section 4 DeMorgan Dual Dombi Composition Operators
Properties of Dombi Operators. Section 4.1
Properties of Stable Negations. Section 4.2

Section 5 Guarantees on Precision and Temperature Stability
Bounds on Idempotency and Distributivity Bias. Corollary 5.1
Bounds on Composition Stability. Proposition 5.2

Section 6 Exact Sampling with Feynman-Kac Correction
Section 7 Experiments on Image and Molecule Synthesis

Figure 2: Overview of the main contributions in this work.

In this paper, we investigate compositions of diffusion models from the viewpoint of fuzzy set theory
and fuzzy logic. We propose a procedure to derive sets of well-behaved composition operators, and
among them, propose Dombi operators in Section 4 as a one-parameter family, extending and uniting
commonly used operations such as mixture of experts (Jordan & Jacobs, 1994) (MoE), harmonic
mean (Garipov et al., 2023) (HM), and as a special case, the geometric mean—a tempered Product
of Experts (Hinton, 1999) (PoE), as visualized in Figure 1. In contrast to many existing effective
methods, our approach is purely online and utilizes pre-trained diffusion models. An overview of
our main contributions is provided in Figure 2.

2 BACKGROUND AND RELATED WORK

2.1 SCORE-BASED MODELS

We want to approximate a probability distribution p defined over Rd to sample from it. In the context
of score-based modelling, we first recast p as a Boltzmann distribution, and let the model learn the
score function sθ(x) ≈ ∇ log p(x), avoiding the unknown partition function. To facilitate sampling
via MCMC, the data distribution p is gradually destroyed according to the forward noising SDE
(Øksendal, 2003)

dxτ = fτ (x)dτ + στdwτ , x0 ∼ p(x0).

Here fτ : Rd → Rd is some, usually linear, drift function and στ : R → R is a time-dependent
diffusion coefficient and wτ is the Wiener process. These functions are chosen such that xτ=1 ∼

2
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N (0, Id), the standard Gaussian. For sampling, we simulate the backward process with t = 1− τ as

dxt =
[
−ft(xt) + σ2

t∇x log pt(xt)
]
dt+ σtdwt. (1)

which satisfies the Fokker-Planck equation

∂pt(x)

∂t
= −⟨∇, pt(x)(−ft + σ2

t∇x log pt(x))⟩+
σ2
t

2
∆pt(x), (2)

where ∆pit denotes the Laplacian of pt and ⟨∇, ·⟩ is the divergence operator. For the rest of
this paper, we assume we are given a set of pre-trained score models {sit}ki=1, which model the
respective probability distributions {pit}ki=1. For statements about the t = 1, we omit the index.

To translate the theory developed in this paper to practice, we rely on efficient density estimation to
assign responsibility to score functions. We can efficiently estimate densities during inference with
Itô’s Lemma (Karczewski et al., 2025a; Skreta et al., 2025b) as

d log pt(xt) ≈
〈
dxt, st(xt)

〉
+
(
⟨∇, ft(xt)⟩+ ⟨ft(xt), st(xt)⟩ −

σ2
t

2
∥st(xt)∥2

)
dt. (3)

2.2 COMPOSITION OF SCORE FIELDS

There is a quickly growing body of work on compositions, mixtures, and products of energy-based
models (EBMs), as well as flow and diffusion models. We explicitly focus on training-free mixtures
of score functions in diffusion. Prior work (Du et al., 2020; Ho & Salimans, 2021; Skreta et al.,
2025a;b; Gaudi et al., 2025) mainly bases composition on probabilistic operations on the underlying
distributions. As the interpretation of these operations is often logical or set-theoretic, we will use
the symbols {∨,∧,¬} to denote them, for both probability densities and their scores. In score-based
modelling, conjunctions are then usually represented by (sometimes geometric) products

p1(x) ∧× p2(x) := p1(x)p2(x) =⇒ s1(x) ∧× s2(x) = s1(x) + s2(x) (4)

and disjunctions by mixtures, where we use the weighting αi = pi(x)
p1(x)+p2(x) , with

p1(x) ∨+ p2(x) :=
1

2
p1(x) +

1

2
p2(x) =⇒ s1(x) ∨+ s2(x) = α1s1(x) + α2s2(x). (5)

Two noteworthy exceptions from product-based conjunctions are Garipov et al. (2023), who model
conjunctions with the harmonic mean p1(x)p2(x)/

(
p1(x) + p2(x)

)
and Skreta et al. (2025b), who

reweigh individual scores to steer towards equal density directly.

Importantly, under the usual dynamics of diffusion processes, for t ̸= 1, nonlinear compositions do
not commute with the noising operator, i.e., p1t ∨+ p2t = (p1 ∨+ p2)t but p1t ∧× p2t ̸= (p1 ∧× p2)t.
This means that naive composition of perturbed score models leads to a bias that can be corrected
with methods like sequential Monte Carlo (SMC) (Skreta et al., 2025a; Thornton et al., 2025). The
typical formulation of Equations (1) and (2) is then extended to weighted SDEs, where samples have
time-dependent log-weights wt which are defined via the weight field gt(x) as

dwt = g(xt)dt =⇒
∂pt(x)

∂t
= gt(x)pt(x), with g(x) := gt(x)−

∫
gt(x)pt(x)dt.

These weighted SDEs with gt(x) then must satisfy the Feynman-Kac PDE

∂pt(x)

∂t
= −⟨∇, pt(x)(−ft + σ2

t∇x log pt(x))⟩+
σ2

2
∆pt(x) + gt(x)pt(x). (6)

For nonlinear score operations like annealing, CFG, or PoE, Skreta et al. (2025a) then explicitly
derive the biases incurred by approximating the true composed distribution with the composition of
noisy scores, collect the “left-over” terms in g, and use additional correction methods. We adapt
their formalism to improve the simulation of our operators in Section 4.

To avoid certain distributions, EBM’s and score models are usually only negated relative to oth-
ers (Vedantam et al., 2018; Du et al., 2020; 2023; Garipov et al., 2023; Dong et al., 2023; Skreta et al.,
2025a; Gaudi et al., 2025), as also done in classifier-free guidance (Ho & Salimans, 2021) (CFG). In
these settings, independent concept negation (ICN) for a concept y is often defined, for 0 < γ < 1

3
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as p(x|¬y) ∝ p(x)/p(x|y)γ in the EBM context (Hinton, 2002; Du & Kaelbling, 2024). In
more recent work (Liu et al., 2022; Du et al., 2020; Ho & Salimans, 2021), often the formulation
p(x|¬) ∝ p(x)1+γp(x|y)−γ used instead, derived via Bayes rule.

From a perspective of logic, these variants make use of the reciprocal as pseudo-inverse ¬p(x|y) =
1/p(x|y), but to our knowledge, explicit negations in score-models are not often explored or theo-
retically justified, and alternatives (Chang et al., 2024) also lack clear theoretical interpretation.

2.3 FUZZY LOGIC

Our proposed method directly draws from the theory of fuzzy logic. Fuzzy logic relaxes classical
logic from a binary domain to real-valued memberships in [0, 1]. We follow the definitions and
notation from Klement et al. (2013) for the following concepts. We define a t-norm, a generalization
of conjunction or intersection operations, as a function T : [0, 1]2 → [0, 1] which is commutative,
associative, monotonously increasing, and fulfills the boundary condition ∀x ∈ [0, 1] : T (x, 1) = x.
Under the standard negation N(x) = 1 − x, we can define the dual t-conorm S : [0, 1]2 → [0, 1],
the corresponding disjunction, via DeMorgan’s law as S(x, y) = N(T (N(x), N(y))).

T-norms that are strict, i.e., continuous and strictly increasing, can be generated (Dombi, 1982;
Klement et al., 2013) by a continuous, strictly decreasing function f : [0, 1] → [0,∞] with f(1) = 0,
as so-called additive generator, i.e., T (x, y) := f−1 (f(x) + f(y)) . For this work, the parametrised
Dombi t-norm is the most important representative, generated by fλ(x) = ( 1x − 1)λ. A favorable
property of the Dombi t-norm is that limλ→∞ Tλ = TM = min. The min t-norm TM together
with SM = max is the only continuous DeMorgan dual that is idempotent with TM (x, x) = x and
distributive with TM (x, SM (y, z)) = SM (TM (x, y), TM (x, z)) (Klement et al., 2013). To make the
domain of probability densities compatible with the theory of fuzzy logic, we utilize some bijective,
order-preserving function ϕ : R≥0∪{∞} → [0, 1] which converts densities into fuzzy membership.

3 FAILURE MODES IN SCORE COMPOSITION

We provide further motivation for our approach with a brief illustration of the mismatch between ex-
pectation and true behaviour for score composition using PoE and MoE methods. Existing operators
do not carry the well-understood and favorable properties of fuzzy set operators. This makes them
ill-equipped to deal with more complex compositions of models or to encode model constraints.

3.1 UNSTABLE NEGATION

We first discuss the EBM-style negation p1(x)/p2(x)γ . While widespread, this negation seems to
have seen only limited theoretical investigation. While the score operation is straightforward, nega-
tive prompts tend to shift the target distribution (Garipov et al., 2023; Chang et al., 2024; Ban et al.,
2024) and require careful calibration of the γ parameter. For the simplest case p1(x)/p2(x), normal-
izability can generally not be guaranteed, unless p1(x) decays much faster in the tails than p2(x).

The common CFG-style negation in diffusion, p1(x)1+γ/p2(x)γ , has more favorable properties in
terms of stability. However, theoretical arguments for its use are still limited in the relevant the-
ory. In Section 4.2, we explore this formalism for negations more in depth, without the context of
conditional generation. While better behaved, CFG-style negation still exhibits unfavorable proper-
ties, like overaccentuation of p1(x) where p2(x) vanishes (Chidambaram et al., 2024), leading to a
similar bias as the one depicted in Figure 3c.

3.2 INCONSISTENT TEMPERATURE SCALING

PoE uses the score calculus s1 ∧× s2 := s1 + s2. This leads to a scaling of scores depending
on their alignment: ∥s1 ∧× s2∥ =

√
∥s1∥2 + ∥s2∥2 + 2∥s1∥∥s2∥ cos θ, where θ is the angle be-

tween s1, s2. In diffusion, temperature scaling is one of the main methods to control the behavior
of the model (Guo et al., 2017; Karczewski et al., 2025b;a). As the alignment of scores can gen-
erally be assumed to be arbitrary, PoE arbitrarily changes temperature-scaling behavior. In regions
with high score alignment (small θ), temperature is decreased, and the composition is biased to-
wards higher density regions than what is dictated by any component. Conversely, in regions with
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Figure 3: Failure Modes of PoE composition in combinatorial settings. a illustrates that ICN can
lead to unstable behaviour, compared to referenced Dombi negation. b shows an intersection, where
the product can lead to locally underscaled and overscaled temperatures simultaneously (green),
in contrast to Dombi composition. c shows that logically equivalent formulas result in different
PoE/MoE compositions.

low alignment between scores (θ > π), the temperature is increased, discouraging higher den-
sity regions. Figure 3b illustrates this behavior in contrast to the Dombi operators, which guar-
antee ∥s1 ∧× s2∥ ≤ max{∥s1∥, ∥s2∥}. Moving from the usual PoE to a geometric mean with
s1(x)/2 + s2(x)/2, this problem does not disappear, rather shift: While the geometric mean does
not overscale scores, the effective temperature of the composition is higher than intended, for the
same reason as in classic PoE.

3.3 COMPOSITION PROPERTIES

Model composition is often interpreted as a logical operation over the underlying models. This in-
terpretation leads to pitfalls, as MoE and PoE do not exhibit the favourable properties expected of
logical or set operations. An important example of this is avoiding multiple distributions p2, p3 indi-
vidually. Intuitively, one might use a conjunction over multiple negated distributions. The resulting
operation, however, does not match the expected result, as negations and conjunctions commute:

p1∧×
∼¬ p2∧×

∼¬ p3 = p1∧×
∼¬ (p2 ∧× p3) =

p1

p2p3
̸= p1∧×

∼¬ (p2 ∨+ p3) =
p1

p2 + p3
.

This pitfall is a manifestation of failure to adhere to DeMorgans law and shown in Figure 3c. In a
more general sense, PoE is also neither idempotent, as p ∧× p = p2 ̸= p and distributes only in one
direction, i.e., (p1 ∧× p2)∨+ p3 ̸= (p1 ∨+ p3)∧× (p2 ∨+ p3). This severely restricts the options for
rewriting compositions for different purposes, such as collecting terms.

4 DOMBI OPERATORS

In this section, we extend the definition of T-norm-conorm pairs to obtain DeMorgan dual density
and score operators. Appendix A describes the exact requirements to generate a set of DeMorgan
dual operators. As a special class we propose and investigate the DeMorgan operators generated by
fλ(x) =

(
1
x − 1

)−λ
and map between densities and membership with ϕc(x) =

x
x+c for λ, c ∈ R≥0.

This choice of f not only recovers the Dombi t-norm, but ϕc expresses negation with reference to
some constant c. This constant can be interpreted as a normalising factor and serves as a neutral ele-
ment in negations. As our composition properties act at each x independently, we can choose a dif-
ferent constant for each value: c(x). In the context of distributions, this normalization by a reference
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distribution c(x) is analogous to the probability ratios used in CFG, or the PoE conjunction, e.g., pre-
sented by Liu et al. (2022). With abuse of notation, we will write ϕc(p(x)) := ϕc(p;x) =

p(x)
p(x)+c(x) .

Definition 4.1 (Dombi Operators). Choose λ ∈ R>0 and a continuously differentiable function
c : Rd → R≥0 with sc = ∇x log c. For fλ(x) =

(
1
x − 1

)λ
and ϕc(p(x)) = p(x)

p(x)+c(x) , let αi
λ =

exp(λ log pi(x))∑
j∈{1,2} exp(λ log pj(x)) . The Dombi operators are the DeMorgan dual operators induced by fλ, ϕc:

¬cp(x) :=
c(x)2

p(x)
=⇒ ¬cs(x) = 2sc(x)− s(x) (7)

p1(x) ∧λ p2(x) :=
p1(x)p2(x)

(p1(x)λ + p2(x)λ)
1/λ

=⇒ s1(x) ∧λ s2(x) = α1
−λs

1(x) + α2
−λs

2(x) (8)

p1(x) ∨λ p2(x) :=
(
p1(x)λ + p2(x)λ

)1/λ
=⇒ s1(x) ∨λ s2(x) = α1

λs
1(x) + α2

λs
2(x) (9)

A detailed derivation of this result can be found in Appendix A.

This definition bears multiple remarkable properties. While being constructed to adhere to DeMor-
gan duality, we can see many similarities to the existing body of work.

4.1 PROPERTIES OF DOMBI OPERATORS

First, dombi compositions over distributions are power norms, and with different choices for the
exponent λ, we recover well-known operators, such as min for λ → −∞, the harmonic mean for
λ = −1, the conventional mixture for λ = 1, and max for λ → ∞. For λ → 0, Dombi composition
is undefined on densities and log-densities, yet the score calculus for λ → 0 is equivalent to the
geometric mean. These relations are visualized in Figure 1. This resemblance is consistent with
power means (Amari, 2007), which differ from the Dombi operators by a constant factor of 1/2λ,
resulting in equivalent score operators, and tying Dombi composition closely to α-divergence. While
derived score operators are equivalent, power means are not associative and cannot form a logic that
allows for nesting of operations.

4.2 PROPERTIES OF REFERENCED NEGATION

Under our definition, referenced negation results in an expression equivalent to CFG-style negation
for γ = 1. We argue that this is favorable from both the perspectives of fuzzy logic and probability
theory. The reference (unconditional) distribution c(x) forms a neutral element for negation, i.e.,
¬cc(x) = c(x), which is semantically intuitive for conditional generation. From a perspective of
probability theory, we know that a negated distribution results in a normalizable distribution under
bounded χ2 divergence. We have, per definition (Nishiyama & Sason, 2020)

χ2(p||q) :=
∫

(p(x)− q(x))2

q(x)
dx =

∫
p(x)2

q(x)
− 1 < ∞. (10)

Negation with other γ violates properties of the logic: ¬c,γp(x) := c(x)1+γ/p(x)γ is not involutive
for positive γ ̸= 1. In practice, this might not be problematic if compositions are in negation normal
form (NNF).

Combined, our composition and negation show strong grounding in existing theory and are, by
definition, equipped for model composition far beyond the simple use cases of MoE and PoE. In the
next section, we describe how their behaviour in score composition changes for different values of λ.

5 INFLUENCE OF λ ON DISTRIBUTIVITY AND MIXTURE STABILITY

Besides the connection to prior work, the parameter λ from the Dombi operators naturally appears
as inverse temperature in the score composition. For λ → ∞, the Dombi operators recover the exact
{min,max} lattice and with it distributive and idempotent behavior. For finite λ, the simple bounds
in Proposition A.3 can be used to quantify biases in density compositions. We use this to present a
simple bound for the maximal density bias we introduce when applying distributive laws.
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Corollary 5.1 (Idempotency and Distributivity Bias). Let ∧λ,∨λ be the Dombi density operators.
From Proposition A.3 it follows that

∀x ∈ R≥0 : x ∨λ x = 21/λx, x ∧λ x = 2−1/λx (11)

∀x, y, z ∈ R≥0 : x ∨λ (y ∧λ z) ∈ ((x ∨λ y) ∧λ (x ∨λ z))2±2/λ

∀x, y, z ∈ R≥0 : x ∧λ (y ∨λ z) ∈ ((x ∧λ y) ∨λ (x ∧λ z))2±2/λ
(12)

These easily obtainable bounds trivially generalize to arbitrary compositions, allowing us to make
immediate statements about the stability of our composition. As our score coefficients vary during
the inference process, we would naturally be interested in the rate of change of these coefficients, as
drastic change rates might cause the composite model to “oscillate” between two scores, especially
in conjunctions. As before, the statement can be extended to more complex formulas trivially.

Proposition 5.2 (Mixture Stability). Let αt = softmax1(λ log p1, λ log p2), for a dombi composition
p1 ◦λ p2. Then it holds for the scores s1t , s

2
t

|E[dαt | xt]| ≤
σ2
t

8
∥λs1 − λs2∥(∥s1∥+ ∥s2∥+ 1

2
∥λs1 − λs2∥)dt (13)

Together, Corollary 5.1 and proposition 5.2 quantify the tradeoff between compositional precision
and mixture stability. High λ results in small biases over the ground truth of the composition, but
for large differences between the component scores ∥s1t − s2t∥, the mixing coefficients αi might
drastically oscillate. When λ is chosen smaller, the volatility of the mixture is naturally bounded.

6 PRECISE SAMPLING WITH FEYNMAN-KAC CORRECTION

While Definition 4.1 explicitly states how the densities and consequently the scores of our target
distribution look, simulation with, e.g., dxt =

[
−ft(xt) + σ2

t (s1(x) ∧λ s1(x))
]
dt+σtdw will not

not sample from the desired marginals during the reverse process and consequently not from the
correct target distribution p1(x) ∧λ p2(x). Skreta et al. (2025a) introduce Feynman-Kac Correctors
(FKCs) for diffusion, which correct for the biases of score composition. We recast the composition
with Dombi operators as weighted SDEs, then collect all terms that are missing from our score
proposal into the weight field g. At inference time, SMC methods like systematic sampling can be
used to correct for these biases.

In this section, we extend the FKC terms to our Dombi operators, and refer to Appendix B.1 for
proofs. As the Dombi-composition just reduces to “power norms” of our densities, as well as a spe-
cial case of geometric averages in the case of referenced negation, we present these two correction
terms here. More complex compositions then propagate the weight-fields gt(x) of components.

Proposition 6.1 (Referenced Negation as CFG+FKC, Skreta et al., 2025a). Consider two diffusion
models q1t (x), q

2
t (x) defined via the Fokker-Planck equation in Equation (2). The weighted SDE

corresponding to the referenced negation of pt(x) ∝ ¬q2t (x)
q1t (x) is, with dwt(x) = gt(x)dt

dxt =
[
−ft(xt) + σ2

t (2∇ log q2t (xt)−∇ log q1t (xt))
]
dt+ σtdwt

gt(x) = σ2
t ∥∇ log q1t (xt)−∇ log q2t (xt)∥2 + 2g2t (x)− g1t (x),

(14)

As stated in Equation (10), pt(x) is then a normalizable probability distribution, if and only if
χ2(q1t ||q2t ) < ∞. We might also want to anneal q2 to tune the “narrowness” of the concept we avoid.
We propose a combined annealing of the form q2(x)1+γ/q1(x)γ to allow tuning the two distribu-
tions in relation to each other, while still maintaining slightly improved normalizability compared
to the standard CFG, and maintaining an unbiased energy estimate for further composition.

Next, we state how FKC terms propagate through connectives. As both our connectives are essen-
tially power-norms with positive or negative exponent, both cases can be handled at once.

Theorem 6.2. Consider two weighted diffusion models q1t (x), q
2
t (x) defined via the Feynman-Kac

equation with weights g1t (x), g
2
t (x), and a parameter λ ∈ R\{0}. The weighted SDE corresponding

7
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to pt(x) ∝
(
q1t (x)

λ + q2t (x)
λ
)1/λ

, with αi
t =

qit(x)
λ

q1t (x)
λ+q2t (x)

λ ∈ (0, 1), and dwt = gt(x)dt is

dxt =
[
−ft(xt) + σ2

t (α
1
t∇ log q1t (xt) + α2

t∇ log q2t (xt))
]
dt+ σtdwt

gt(x) = (1− λ)
σ2

2


∥∥∥∥∥∥
∑

i∈{1,2}

αi
t∇ log qit(xt)

∥∥∥∥∥∥
2

−
∑

i∈{1,2}

αi
t∥∇ log qit(xt)∥2

+
∑

i∈{1,2}

αi
tg

i
t(xt).

(15)

Proposition 6.1 and theorem 6.2 are presented in a modular form. This allows us to use arbitrary
combinations of operators and propagate the log-weights of components.

6.1 INFERENCE PROCEDURE

Together, Definition 4.1, proposition 6.1, and theorem 6.2 define our theoretical basis for arbitrarily
nested model composition. During the sampling process, we keep track of the evolution of
loglikelihoods with the Itô density estimator from Equation (3). This efficient density estimation
method enables us to perform complex model compositions with minimal overhead. During
composition, we can then compose our scores, log-likelihoods, and FKC terms with the procedure
described in Algorithm 1. To improve sampling, we can use SMC techniques during the simulation
trajectories (Naesseth et al., 2019). In our experiments, we use systematic sampling proportional to
the exponentially weighted momentary weight-field exp{gt(x)dt} (Douc & Cappé, 2005).

Algorithm 1: DOMBICOMPOSITION over arbitrary formulas

Input : scores {si}ki=1 , log-likelihoods {log qi}ki=1 , weights {gi}ki=1 , formula F ::= i|¬ji|F1 ◦ F2

Output: Composite score s , Composite density log q , Composite weight g

1 if F = i then return si , log qi ,gi

2 else if F = ¬ji then return 2sj − si , 2 log qj − log qi , σ2
t ∥sj − si∥2 + 2gj − gi // Prop. 6.1

3

4 else if F = F1 ∧λ F2 then λ← −λ // Conjunction is a negative power norm
5

/* Case F = F1 ∧λ F2 | F1 ∨λ F2: evaluate subformulas first */

6 s̄1 , log q
1
, ḡ1 ← DOMBICOMPOSITION({si}ki=1 , {log qi}ki=1 , {gi}ki=1 , F1)

7 s̄2 , log q
2
, ḡ2 ← DOMBICOMPOSITION({si}ki=1 , {log qi}ki=1 , {gi}ki=1 , F2)

8 α1 ← softmax1(λlog q
1
, λlog q

2
); α2 ← 1− α1

9 ḡ ← (1− λ)
σ2

2

[∥∥α1s̄1 + α2s̄2
∥∥2 − (α1∥s̄1∥2 + α2∥s̄2∥2)

]
// Theorem 6.2

10 return α1s̄1 + α2s̄2 ,
1

λ
LogSumExp(λlog q

1
, λlog q

2
) , ḡ + α1ḡ1 + α2ḡ2

7 EXPERIMENTS

7.1 COMBINATORIAL BIAS IN COMPOSITION SAMPLES

We first test the ability of our method to sample from complex compositions of diffusion models.
We compose three pretrained models that generate colored MNIST digits (LeCun, 1998). Our three
models are defined as follows: Model p1 generates the digits {0, 1, 2, 3} in cyan, p2 generates digits
smaller 2: {0, 1, 0, 1} in cyan or beige and p3 generates the even digits {0, 2, 0, 2} in cyan or beige.
We would now like to perform set operations on these 7 unique digits, similar to Garipov et al.
(2023), but with general operations. Figure 4 shows a set of chosen set operations on our models.
Beyond the intersection p∩ = p1 ∧ p2 ∧ p3 and the union p∪ = p1 ∨ p2 ∨ p3 we show results for the
exclusive-or operation pxor = (p1 ∨ p2) ∧ (¬p1 ∨ ¬p2), that samples digits from either p1 or p2 but
not from their intersection. We then show pxor ∧ p3 = {2, 0} as well as pxor ∧ ¬p3 = {3, 1}.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Mountain Landscape

∧

Silhouette of a Dog

=

Starry Night, Van Gogh

∧

NOT Van Gogh

=

(a) p∩ (b) p∪

(c) pxor ∧ p3 (d) pxor ∧ ¬p3

Figure 4: Generated Image Compositions with MNIST (λ ∈ {5 · 10−3, 5 · 10−2}) and Stable
Diffusion (λ = 10).

As we have no baseline model, we express negation by the mixture of all three models. With few
exceptions, we can see that our approach lets us sample from complex compositions like pxor, solely
by score-composition of the pretrained diffusion models.

7.2 MULTI-PROMPT IMAGE GENERATION AND AVOIDANCE

To show the performance of Dombi composition in production scale diffusion models, we compare
its ability to generate images that interpolate between or avoid concepts using Stable Diffusion (SD)
v1-4. For all our compositions, we choose two prompts c1, c2, e.g., "a mountain landscape"
and "a silhouette of a dog". We then evaluate twenty pairs of images composed con-
junctively, as p(x|c1)∧ p(x|c2), and compare against and Skreta et al. (2025b) and scaled PoE, i.e.
unweighted averaging of scores (Liu et al., 2022). We further investigate p(x|c1) ∧ ¬p(x)p(x|c2)
on ten pairs of prompts to illustrate the ability of our model to avoid concepts. As baselines for con-
trastive prompting, we use ICN (Ho & Salimans, 2021) and the conjunction of (Skreta et al., 2025b),
combined with our referenced negation. We use the composed scores in the usual CFG pipeline of
SD and measure for all prompts the min. CLIP score (Radford et al., 2021), which measures cosine
similarity between image embedding and prompt embedding, and the minimum ImageReward value
(Xu et al., 2023), which estimates how closely generated images align with human preferences. For
contrastive prompts, we report the difference of each mectric between c1 and c2.

Dombi Composition shows improvement beyond state-of-the-art methods in both CLIP and Im-
ageReward scores, as shown in Tables 5a and 5b. with an example of generated images in Figure 4.
For the full list of used prompts, we refer to Appendix C.2. A stark contrast between our method
and SuperDiff can be seen in Figure 3b, depicting the mixture stability during the first 100 iterations
of the generation process. The batch variances of the mixture coefficient α are shown to correspond
nicely to λ, with an increase over time caused by different equilibrium points per batch. Superdiffs
and shows strong fluctuations in mixing coefficients, especially during the initial iterations. This
effect is more pronounced when we retrofit and to contrastive settings with our negation definition.

7.3 MULTI-TARGET PROTEIN SYNTHESIS WITH FKC CORRECTION

As a final experiment, we test Dombi composition combined with FKC in the setting of structure-
based drug design (SBDD). The goal here is to generate molecules (ligands) using the structure of a
protein as a guide and evaluate their binding energy (Anderson, 2003). In our experiments, we inves-
tigate the impact of FKC from Theorem 6.2 on the quality of Dombi composed results. We generated
32 ligands of sizes {15, 19, 23, 27, 35} each, for 14 protein pairs, and evaluated their docking scores
using Autodock Vina (Eberhardt et al., 2021) and reproduced the experimental setup of (Skreta et al.,
2025a). In this experiment, we use annealing on the base distributions: We evaluate p(x|P1)

γ ∧
p(x|P2)

γ as well as p(x|P1)
γp(x|P2)

γ , and propagate the FKC term of the annealed base distribu-
tions to our dombi operator as in Algorithm 1. Per batch, we report the average joint docking perfor-

9
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Figure 5: Joint generation performance with Stable Diffusion, and paired improvement over base-
lines with 20 seeds. a shows results for 20 joint prompts p(x|c1) ∧ p(x|c2). b shows results for 10
contrastive prompts p(x|c1) ∧ ¬p(x)p(x|c2)γ . c shows the variance of α during conjunctive (top)
and contrastive (bottom) composition. and is from SuperDiff (Skreta et al., 2025b).

(a) Conjunctive prompts

CLIP (↑) Im. reward (↑)

Method λ mean±std mean±std

and 24.87±2.92 -1.33±0.83

PoE 24.41±2.71 -1.55±0.75

Prompt 23.79±2.72 -1.64±0.75

0.1 25.25±2.79 -1.18±0.84

1.0 25.32±2.55 -1.16±0.85Dombi
10.0 25.50±2.54 -1.18±0.85

Improvements vs. baseline (and)

and 0.00±0.00 0.00±0.00

PoE -0.46±3.11 -0.22±1.00

Prompt -5.11±3.25 0.13±0.97

0.1 0.38±2.57 0.15±0.83

1.0 0.46±2.62 0.18±0.80Dombi
10.0 0.64±2.56 0.15±0.82

(b) Contrastive prompts (λ = 1)

CLIP (↑) Im. reward (↑)

Method γ mean±std mean±std

ICN 7.29±2.76 1.14±0.72

and ¬ 5.44±3.49 0.51±0.65

1 6.91±2.63 0.90±0.75

3 7.40±2.62 1.11±0.72Dombi
10 7.02±2.54 1.21±0.66

Improvements vs. baseline (ICN)

ICN 0.00±0.00 0.00±0.00

and ¬ -1.85±3.54 -0.63±0.77

1 -0.38±2.15 -0.24±0.66

3 0.10±1.88 -0.03±0.63Dombi
10 -0.27±1.82 0.07±0.55

(c) Mixture Stability

Table 1: Docking Scores of generated ligands for 14 protein target pairs (P1, P2), in batches of 32
ligands for 5 molecule lengths each. We compare conjunction with Dombi (λ = 1) with and without
FKC with annealed base distribution and also report TargetDiff from (Guan et al., 2023) as baseline.

Method Temp. γ FKC? (P1 * P2) (↑) max(P1, P2) (↓) Better than ref. (↑) Div. (↑) Val. & Uniq. (↑) QED (↑) SA (↓)

TargetDiff – – 62.19± 27.08 −7.24± 2.35 0.32± 0.37 0.89± 0.01 0.95± 0.07 0.57± 0.14 0.59± 0.09

Dombi 1 ✗ 68.60± 28.09 −7.42± 2.57 0.28± 0.34 0.88± 0.02 0.96± 0.09 0.58± 0.13 0.59± 0.10
Dombi 1 ✓ 72.83± 22.42 −7.71± 1.65 0.27± 0.35 0.86± 0.03 0.95± 0.08 0.57± 0.13 0.59± 0.11

Dombi 2 ✗ 71.36± 29.44 −7.59± 2.48 0.30± 0.34 0.88± 0.01 0.93± 0.16 0.59± 0.12 0.62± 0.09
Dombi 2 ✓ 81.63± 25.91 −8.25± 1.56 0.38± 0.40 0.85± 0.11 0.93± 0.17 0.59± 0.12 0.62± 0.10

mance to each target protein as their product (P1∗P2), the objective of PoE, as well as max(P2,P2),
which is closer to the objective of the Dombi composition. Further, we measure the fraction of
molecules that have a higher docking score than the known reference molecules, the diversity of
molecules, as well as the fraction of valid and unique molecules, and their drug-likeness (QED)
(Bickerton et al., 2012) and how easy they are to synthesize (SA) (Ertl & Schuffenhauer, 2009).

FKC Correction improves the docking performance in annealed and unannealed settings, as
shown in Table 1. The difference is more pronounced for γ = 2, where we also collect FKC
terms for the annealed base distributions. In Appendix C.3 we show results with an additional small
sweep over λ values, where the performance for λ = 0.3 and λ = 3 shows to be similar.

8 CONCLUSION AND FUTURE WORK

In this work, we introduced Dombi composition operators as a purely online, well-defined, general
class of score-composition operators. Based on power norms, our method recovers and unifies
prior work, like MoE, the harmonic mean, or contrast operators (Garipov et al., 2023), yet offers
theoretical benefits that are crucial to ensure stability when score compositions become more
complex. An important future direction are dynamic schedules for λ, as Proposition 5.2 suggests
that adaptive choices depending on the scores might be better suited to ensure stability. This work
opens up some exciting possibilities, e.g., potential applications in neurosymbolic methods, where
modular diffusion models could be coupled to solve combinatorial tasks. Furthermore, the option to
rewrite formulas might in principle be utilized to switch to different sampling techniques for, e.g.,
factoring out subformulas.
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9 REPRODUCIBILITY STATEMENT

Detailed proofs are provided in the Appendix for all our theoretical results. We also provide a link
to an anonymous github repository containing all the code used to reproduce the results in this
manuscript1. The Repository contains the details required to reproduce the empirical results includ-
ing our hyperparameter settings. We will make our code public under MIT License upon acceptance.
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A FUZZY LOGIC OPERATORS

In this section, we define the class of DeMorgan dual density and score operators, and investigate one
example, the Dombi operators, in detail. We show that they generalize probabilistic mixtures and
the harmonic mean, and discuss methods to stabilize explicitly used negations with these operators.
We first extend the definition of fuzzy logic operators to the domain of probability densities.

Definition A.1 (DeMorgan Density Operators). Let ϕ : [0,∞] → [0, 1] be an order-isomorphism
and f : [0, 1] → [0,∞] be a continuous, strictly decreasing function with f(0) = ∞. For g = f ◦ϕ,
we define

¬p(x) := ϕ−1(1− ϕ(p(x))) (16)

p1(x) ∧ p2(x) := g−1(g(p1(x)) + g(p2(x))) (17)
p1(x) ∨ p2(x) := ¬(¬p1(x) ∧ ¬p2(x)) (18)

For differentiable f and ϕ, the application to scores follows directly:

Proposition A.2 (DeMorgan score calculus). Let ϕ and f be fully differentiable functions that gen-
erate the DeMorgan density operators {∧,∨,¬}. Then with g = f ◦ ϕ, h : x 7→ f(1 − ϕ(x)),
w(x) := x g′(x) and w(x) := xh′(x) the corresponding operations on the energies and scores are
defined as

¬s(x) =− ϕ′(p(x))p(x)

ϕ′(¬p(x))¬p(x)
s(x) (19)

s1(x) ∧ s2(x) =
w(p1(x))s1(x) + w(p2(x))s2(x)

w(p1(x) ∧ p2(x))
(20)

s1(x) ∨ s2(x) =
w(p1(x))s1(x) + w(p2(x))s2(x)

w(p1(x) ∨ p2(x))
. (21)

Proof. See Appendix B.

This result shows that score operations are, in essence, just responsibility-weighted combinations of
the component scores. It is then easy to see that bounds on w(p1(x))+w(p2(x))

w(p1(x)◦p2(x))
for ◦ ∈ {∧,∨} can

serve as stability guarantees on ours operators.

A.1 DERIVATION OF DOMBI OPERATORS

We now define the dombi operators with ϕc(x) =
x

x+c = 1
c
x+1 and fλ(x) =

(
1
x − 1

)λ
, and derive

their corresponding score calculus here. First, we can see here that ϕ−1
c (x) = cx

1−x = c
1
x−1

, g(x) =

fλ(ϕc(x)) =
(
c
x

)λ
, h(x) = fλ(1− ϕc(x)) = fλ

(
c

x+c

)
= fλ

(
1

x
c +1

)
=
(
x
c

)λ
. Further g−1(x) =

15
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cx−1/λ. With this we can derive Definition 4.1 as:

¬p(x) = ϕ−1
c (1− ϕc(p(x))) = ϕ−1

c

(
c(x)

c(x) + p(x)

)
=

c(x)2

p(x)
(22)

p1(x) ∧λ p2(x) := g−1(g(p1(x)) + g(p2(x))) (23)

= c(x)

((
c(x)

p1(x)

)λ

+

(
c(x)

p2(x)

)λ
)−1/λ

(24)

=

((
1

p1(x)

)λ

+

(
1

p2(x)

)λ
)−1/λ

(25)

=
(
p1(x)

−λ + p2(x)
−λ
)−1/λ

(26)

p1(x) ∨λ p2(x) := ¬c(¬cp1(x) ∧λ ¬cp2(x)) (27)

=
c(x)2

c(x)2

p1(x)
∧λ

c(x)2

p2(x)

(28)

=
1

1
p1(x)

∧λ
1

p2(x)

(29)

=
1

(p1(x)λ + p2(x)λ)
−1/λ

(30)

=
(
p1(x)

λ + p2(x)
λ
)1/λ

(31)

In log-likelihoods and scores, the negation is straightforward. For a power-mixture(
p1(x)

λ + p2(x)
λ
)1/λ

, the log-likelihood and score operations are familiar. We investigate dis-
junction and conjunction at the same time and state for all λ ̸= 0 :

q(x) =
(
p1(x)

λ + p2(x)
λ
)1/λ

=⇒ (32)

log q(x) =
1

λ
log
(
p1(x)

λ + p2(x)
λ
)

(33)

1

λ
log (exp(λ log p1(x)) + exp(λ log p2(x))) (34)

1

λ
LogSumExp(λ log p1(x), λ log p2(x)) =⇒ (35)

∇x log q(x) =
∑

i∈{1,2}

(softmaxi(λ log p1(x), λ log p2(x))∇x log pi(x)) (36)

=
∑

i∈{1,2}

(
pi(x)

λ

p1(x)λ + p2(x)λ
∇x log pi(x)

)
(37)

In terms of score calculus, or Dombi Operators, end up being softmax-weighted, convex combina-
tions of the component scores.

A.2 DOMBI ERROR BOUNDS

For a given value of λ, the maximal difference between the Dombi operators and the min /max
functions can be easily bounded as an additive term in log-likelihood:
Proposition A.3. Let ∧λ,∨λ be the Dombi density operators. Then it holds that

∀x, y ∈ R≥0 : min{x, y}2−1/λ ≤ x ∧λ y ≤ min{x, y} (38)

∀x, y ∈ R≥0 : max{x, y} ≤ x ∨λ y ≤ max{x, y}21/λ (39)

Proof. See Appendix B
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B PROOFS

Proposition A.2 (DeMorgan score calculus). Let ϕ and f be fully differentiable functions that gen-
erate the DeMorgan density operators {∧,∨,¬}. Then with g = f ◦ ϕ, h : x 7→ f(1 − ϕ(x)),
w(x) := x g′(x) and w(x) := xh′(x) the corresponding operations on the energies and scores are
defined as

¬s(x) =− ϕ′(p(x))p(x)

ϕ′(¬p(x))¬p(x)
s(x) (19)

s1(x) ∧ s2(x) =
w(p1(x))s1(x) + w(p2(x))s2(x)

w(p1(x) ∧ p2(x))
(20)

s1(x) ∨ s2(x) =
w(p1(x))s1(x) + w(p2(x))s2(x)

w(p1(x) ∨ p2(x))
. (21)

Proof. ¬
¬s1(x) = ∇x log¬p(x) (40)

=
∇x¬p(x)
¬p(x)

(41)

=
∇xϕ

−1(1− ϕ(p(x)))

ϕ−1(1− ϕ(p(x)))
(42)

=
∇x(1− ϕ(p(x)))

ϕ′(ϕ−1(1− ϕ(p(x))))ϕ−1(1− ϕ(p(x)))
(43)

=
−ϕ′(p(x))p(x)

ϕ′(ϕ−1(1− ϕ(p(x))))ϕ−1(1− ϕ(p(x)))
s(x) (44)

=
−ϕ′(p(x))p(x)

ϕ′(¬p(x))¬p(x)
s(x) (45)

∧
s1(x) ∧ s2(x) = ∇x log(p1(x) ∧ p2(x)) (46)

=
∇x(p1(x) ∧ p2(x))

p1(x) ∧ p2(x)
(47)

=
∇xg

−1
(
g(p1(x)) + g(p2(x))

)
p1(x) ∧ p2(x)

(48)

=
g′(p1(x))p1(x)s1(x) + g′(p2(x))p2(x)s2(x)

g′(p1(x) ∧ p2(x))
(
p1(x) ∧ p2(x)

) (49)

∨ Symmetric derivation with h instead of g.

We note that, if we can relate the ratios of the weights, we can give upper and lower bounds on the
norm of the scores of compositions.

Proposition A.3. Let ∧λ,∨λ be the Dombi density operators. Then it holds that

∀x, y ∈ R≥0 : min{x, y}2−1/λ ≤ x ∧λ y ≤ min{x, y} (38)

∀x, y ∈ R≥0 : max{x, y} ≤ x ∨λ y ≤ max{x, y}21/λ (39)

Proof. We show the case for p ∨λ q =
(
pλ + qλ

)1/λ
first. The definition of ∨λ is equivalent to that

of a P-norm over two components. We have the standard inequality (w.l.o.g. for p ≥ q)

p ∨λ q =
(
pλ + qλ

)1/λ ≤
(
2pλ
)1/λ

= 21/λ max{p, q} (50)

The lower bound similarly follows from

p ∨λ q =
(
pλ + qλ

)1/λ ≥
(
pλ
)1/λ

= max{p, q} (51)
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For ∧λ, we can use DeMorgan to obtain the symmetric bounds. We can note that the upper bound
is tight for p = q and the lower bound is tight for q = 0.

Proposition 5.2 (Mixture Stability). Let αt = softmax1(λ log p1, λ log p2), for a dombi composition
p1 ◦λ p2. Then it holds for the scores s1t , s

2
t

|E[dαt | xt]| ≤
σ2
t

8
∥λs1 − λs2∥(∥s1∥+ ∥s2∥+ 1

2
∥λs1 − λs2∥)dt (13)

Proof. First, we can show easily that |λ4 d(log p
1 − log p2)|+ λ

√
3

36 d[log p1 − log p2].

α =softmax1(λ log p1, λ log p2) (52)

=sigmoid(λ log p1 − λ log p2) (53)

Now, by Itô’s Lemma we have, for ϕ = sigmoid(λ log p1 − λ log p2)

dα = ϕ(1− ϕ)λd(log p1 − log p2) +
1

2
ϕ′′λ2d[log p1 − log p2] (54)

We know that, as ϕ is sigmoid, we can bound its derivative with 1
4 , and second derviative with

√
3

18 .

|dα| ≤ |λ
4
d(log p1 − log p2)|+ λ

√
3

36
d[log p1 − log p2] (55)

Now, we derive a bound for |E[d log p1t − d log p2t | xτ ]
∣∣ using Equation (3), defining ℓ = log p1t −

log p2t , s = αs1 + (1− α)s2 and ut(x) = −ft(x) +
σ2

2 st(x).

We then have

dℓt = ⟨s1t − s2t , ut⟩dt+ ⟨s1t − s2t , ft⟩dt−
σ2
t

2

(
∥s1t∥2 − ∥s2t∥2

)
dt+ σt⟨s1 − s2, dw⟩ (56)

=
σ2
t

2
⟨s1t − s2t , st − (s1t + s2t )⟩dt+ σt⟨s1 − s2, dw⟩ (57)

If we condition on xt, the stochastic part vanishes in expectation, we are left with

dℓ =
σ2
t

2
⟨s1t − s2t , st − (s1t + s2t )⟩dt (58)

≤σ2
t

2
∥s1 − s2∥∥st − (s1t + s2t )∥dt (59)

≤σ2
t

2
∥s1 − s2∥∥−((1− α)s1t + αs2t )∥dt (60)

≤σ2
t

2
∥s1 − s2∥1

2
(∥s1 + s2∥+ ∥s1 − s2∥)dt (61)

≤σ2
t

2
∥s1 − s2∥(∥s1∥+ ∥s2∥)dt (62)

(63)

Furthermore, we have

d[ℓ]t = σ2
t ∥s1t − s2t∥2dt (64)

E[d[ℓ]t|xt] = σ2∥s1t − s2t∥2dt (65)

Finally, we have

18
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|dα| ≤ |λ
4
(d log p1 − d log p2)|+ λ2

√
3

36
d[log p1 − log p2] (66)

|E[dα | xt] ≤
∣∣λ
4
E[dℓ | xt] +

λ2
√
3

36
E[d[ℓ]t|xt]

∣∣ (67)

≤ |λσ
2
t

8
∥s1 − s2∥(∥s1∥+ ∥s2∥)dt+ λ2σ2

√
3

36
∥s1 − s2∥2dt| (68)

≤ σ2
t

8
∥λs1 − λs2∥(∥s1∥+ ∥s2∥+ 1

2
∥λs1 − λs2∥)dt (69)

B.1 FEYNMAN-KAC CORRECTION

The reweighting equation

dwt = g(x)dt =⇒ ∂pt(x)

∂t
= gt(x)pt(x) (70)

describes how the log-weight-field influences the marginals of the weighted SDE. The translation of
continuity (drift) terms and diffusion terms into log-weights is then given by the following schemes:

∂pt(x)

∂t
= −⟨∇, pt(x)vt(x)⟩ =

(
−1

pt(x)
⟨∇, pt(x)vt(x)⟩

)
pt(x) =⇒

dwt = (−⟨∇, vt(x)⟩ − ⟨∇ log pt(x), vt(x)⟩)
(71)

for drift terms and

∂pt(x)

∂t
=

σ2

2
∆pt(x) =

σ2

2
pt(x)

(
∆ log pt(x) + ∥∇ log pt(x)∥2

)
=⇒

dwt =
σ2

2

(
∆ log pt(x) + ∥∇ log pt(x)∥2

) (72)

for diffusion terms.

Dombi Composition is equivalent to applying a power-norm to probability distributions. We recast
this as annealing, a case shown by Skreta et al. (2025a), then taking an (unweighted) mixture and
then inverse annealing of the mixture of annealed distributions.

We state the following results before proceeding with the main proofs.

Lemma B.1 (Mixture of SDEs + FKC). Consider two weighted diffusion models q1t (x), q
2
t (x) de-

fined via the Feynman-Kac equation with corresponding weights g1t (x), g
2
t (x). The weighted SDE

corresponding to the sum of the marginals pt(x) ∝ q1t (x) + q2t (x), with αi
t =

qit(x)

q1t (x)+q2t (x)
∈ (0, 1)

dxt =
[
−ft(xt) + σ2

t (α
1
t∇ log q1t (xt) + α2

t∇ log q2t (xt))
]
dt+ σtdwt

dwt =
[
α1
t g

1
t (x) + α2

t g
2
t (x)

]
dt

(73)

Proof. The proof in this case is straightforward.

We have, for ḡt(x) = α1
t ḡ

1
t (x) + α2

t ḡ
2
t (x)
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∂pt
∂t

=
∂q1t
∂t

+
∂q2t
∂t

−
∫

∂q1t
∂t

+
∂q2t
∂t

dx (74)

=⟨∇, q1t (x)(−ft − σ2
t∇ log q1t (x))⟩+

σ2
t

2
∆q1t (x) + q1t (x)

[
ḡ1t (x)

]
+

⟨∇, q2t (x)(−ft − σ2
t∇ log q2t (x))⟩+

σ2
t

2
∆q2t (x) + q2t (x)

[
ḡ2t (x)

]
−
∫

∂q1t
∂t

+
∂q2t
∂t

dx

(75)

=⟨∇, q1t (x)(−ft − σ2
t

1

q1t (x)
∇q1t (x))⟩+

σ2
t

2
∆q1t (x) + q1t (x)

[
ḡ1t (x)

]
+

⟨∇, q2t (x)(−ft − σ2
t

1

q2t (x)
∇q2t (x))⟩+

σ2
t

2
∆q2t (x) + q2t (x)

[
ḡ2t (x)

]
−
∫

∂q1t
∂t

+
∂q2t
∂t

dx

(76)

=⟨∇, q1t (x)(−ft − σ2
t

1

q1t (x)
∇q1t (x)) + q2t (x)(−ft − σ2

t

1

q2t (x)
∇q2t (x))⟩+

σ2
t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx

(77)

=⟨∇, (q1t (x) + q2t (x))(−ft) + q1t (x)(−σ2
t

1

q1t (x)
∇q1t (x)) + q2t (x)(−σ2

t

1

q2t (x)
∇q2t (x))⟩+

σ2
t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx

(78)

=⟨∇, (q1t (x) + q2t (x))(−ft) + (−σ2
t∇(q1t (x) + q2t (x)))⟩+

σ2
t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx
(79)

=⟨∇, (q1t (x) + q2t (x))(−ft) + pt(x)

(
−σ2

t

(
∇q1t (x)

pt(x)
+

∇q2t (x)

pt(x)

))
⟩+

σ2
t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx

(80)

=⟨∇, pt(x)(−ft) + pt(x)

(
−σ2

t

(
∇q1t (x)

pt(x)
+

∇q2t (x)

pt(x)

))
⟩+

σ2
t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx

(81)

=⟨∇, pt(x)

(
−ft − σ2

t

(
∇q1t (x)

pt(x)
+

∇q2t (x)

pt(x)

))
⟩+ σ2

t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx

(82)

=⟨∇, pt(x)

(
−ft − σ2

t

(
q1t (x)

pt(x)
∇ log q1t (x) +

q2t (x)

pt(x)
∇ log q2t (x)

))
⟩+

σ2
t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx

(83)

=⟨∇, pt(x)
(
−ft − σ2

t

(
α1
t∇ log q1t (x) + α2

t∇ log q2t (x)
))
⟩+

σ2
t

2
∆pt(x) + pt(x)ḡt(x)−

∫
∂pt
∂t

dx
(84)

=⟨∇, pt(x)
(
−ft − σ2

t

(
α1
t∇ log q1t (x) + α2

t∇ log q2t (x)
))
⟩+ σ2

t

2
∆pt(x) + pt(x)ḡt(x)− 0

(85)
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We can simulate this as

dxt =
[
−ft(xt) + σ2

t (α
1
t∇ log q1t (xt) + α2

t∇ log q2t (xt))
]
dt+ σtdwt

dwt =
[
α1
t g

1
t (x) + α2

t g
2
t (x)

]
dt

(86)

Lemma B.2 (Target Score Annealed SDE + FKC, Skreta et al., 2025a). Consider a diffusion model
qt(x) defined via the Feynman-Kac equation with the weight-field gt(x) and some parameter λ ∈
R \ {0}. The weighted SDE corresponding to the annealed marginals pt(x) ∝ qt(x)

λ can be
performed by simulating the following weighted SDE

dxt =
[
−ft(xt) + σ2

t λ∇ log qt(xt)
]
dt+ σtdwt

dwt =

[
(λ− 1)⟨∇, ft(x)⟩+ λ(λ− 1)

σ2
t

2
∥∇ log qt(x)∥2 + λg(x)

]
dt

(87)

Proof. We follow the proofs of Skreta et al. (2025a).

We aim to find the partial derivative of the density pt(x) =
qt(x)

λ∫
qt(x)λdx

over time ∂pt(x)
∂t , where

∂qt(x)

∂t
= −⟨∇, qt(x)(−ft + σ2

t∇ log qt(x))⟩+
σ2
t

2
∆qt(x) + qt(x) [ḡt(x)] .

Then we have

∂ log qt(x)

∂t
=

1

qt(x)

∂qt(x)

∂t
(88)

= − 1

qt(x)
⟨∇, qt(x)(−ft + σ2

t∇ log qt(x))⟩+
σ2
t

2

∆qt(x)

qt(x)
+ ḡ(x) (89)

= − 1

qt(x)
⟨∇, qt(x)(−ft + σ2

t∇ log qt(x))⟩+
σ2
t

2
(∆ log qt + ∥∇ log qt∥2) + ḡ(x)

(90)

= −⟨∇, −ft + σ2
t∇ log qt⟩ − ⟨−ft + σ2

t∇ log qt,∇ log qt⟩

+
σ2
t

2
(∆ log qt + ∥∇ log qt∥2) + ḡ(x) (91)

= ⟨∇, ft⟩+ ⟨ft,∇ log qt⟩ − σ2
t ∆ log qt − σ2

t ∥∇ log qt∥2

+
σ2
t

2
(∆ log qt + ∥∇ log qt∥2) + ḡ(x) (92)

= ⟨∇, ft⟩+ ⟨ft,∇ log qt⟩ −
σ2
t

2

(
∆ log qt + ∥∇ log qt∥2

)
+ ḡ(x). (93)
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and can now compute

∂ log pt(x)

∂t
= λ

∂ log qt(x)

∂t
−

∫
λ pt(x)

∂ log qt(x)

∂t
dx (94)

= λ

[
⟨∇, ft⟩+ ⟨ft,∇ log qt⟩ −

σ2
t

2

(
∆log qt + ∥∇ log qt∥2

)
+ ḡ

]
−∫

λ pt(x)
∂ log qt(x)

∂t
dx

(95)

= λ⟨∇, ft⟩+ λ⟨ft,∇ log qt⟩ −
λσ2

t

2

(
∆log qt + ∥∇ log qt∥2

)
+ λḡ−∫

λ pt(x)
∂ log qt(x)

∂t
dx

(96)

= ⟨∇, λft⟩+ ⟨ft,∇ log pt⟩ −
λσ2

t

2

(
∆log qt + ∥∇ log qt∥2

)
+ λḡ−∫

λ pt(x)
∂ log qt(x)

∂t
dx

(97)

= ⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ − (1− λ)⟨∇, ft⟩ −
λσ2

t

2

(
∆log qt + ∥∇ log qt∥2

)
+ λḡ−∫

pt

[
⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ − (1− λ)⟨∇, ft⟩ −

λσ2
t

2

(
∆log qt + ∥∇ log qt∥2

)
+ λḡ

]
dx

(98)

= ⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ − (1− λ)⟨∇, ft⟩ −
λσ2

t

2

(
∆log qt + ∥∇ log qt∥2

)
+ λg

−
∫

pt

[
−(1− λ)⟨∇, ft⟩ −

λσ2
t

2

(
∆log qt + ∥∇ log qt∥2

)
+ λg

]
dx

(99)

= ⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ − (1− λ)⟨∇, ft⟩ −
σ2
t

2
∆ log pt −

σ2
t

2λ
∥∇ log pt∥2 + λg

−
∫

pt

[
−(1− λ)⟨∇, ft⟩ −

σ2
t

2
∆ log pt −

σ2
t

2λ
∥∇ log pt∥2 + λg

]
dx

(100)

= ⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ − (1− λ)⟨∇, ft⟩ −
σ2
t

2
∆ log pt −

σ2
t

2
∥∇ log pt∥2+(

1− 1

λ

)σ2
t

2
∥∇ log pt∥2 + λg −

∫
pt
[
− (1− λ)⟨∇, ft⟩ −

σ2
t

2
∆ log pt −

σ2
t

2
∥∇ log pt∥2+(

1− 1

λ

)σ2
t

2
∥∇ log pt∥2 + λg

]
dx

(101)

= ⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ − (1− λ)⟨∇, ft⟩ −
σ2
t

2
∆ log pt −

σ2
t

2
∥∇ log pt∥2+(

1− 1

λ

)σ2
t

2
∥∇ log pt∥2 + λg −

∫
pt
[
− (1− λ)⟨∇, ft⟩+(

1− 1

λ

)σ2
t

2
∥∇ log pt∥2 + λg

]
dx.

(102)

With this, defining g′ = −(1− λ)⟨∇, ft⟩+ (1− 1
λ )

σ2
t

2 ∥∇ log pt∥2 + λg we finally have

∂ log pt
∂t

=⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ −
σ2
t

2
∆ log pt −

σ2
t

2
∥∇ log pt∥2 + g′ −

∫
pt(x)g

′dx (103)
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∂pt
∂t

= pt
∂ log pt

∂t
(104)

= pt

[
⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ −

σ2
t

2
∆ log pt −

σ2
t

2
∥∇ log pt∥2 + g′(x)− Eptg

′(x)

]
(105)

= −⟨∇,−ftpt⟩+ pt

[
−σ2

t

2
∆ log pt −

σ2
t

2
∥∇ log pt∥2 + g′(x)− Eptg

′(x)

]
(106)

= −⟨∇,−ftpt⟩+ pt

[
−σ2

t

2

∆pt
pt

+
σ2
t

2
∥∇ log pt∥2 −

σ2
t

2
∥∇ log pt∥2 + g′(x)− Eptg

′(x)

]
(107)

= −⟨∇, pt(−ft + σ2
t∇ log pt)⟩+

σ2
t

2
∆pt + pt [g

′(x)− Ept
g′(x)] (108)

And finally, we can reexpress this as

∂pt
∂t

= −⟨∇, pt(−ft + σ2λ∇ log qt)⟩+
σ2
t

2
∆pt + pt [g

′(x)− Ept
g′(x)] (109)

And for λ > 0 we can simulate this as

dxt =
[
−ft(xt) + σ2

t λ∇ log qt(xt)
]
dt+ σtdwt

dwt = g′t(x)dt =

[
−(1− λ)⟨∇, ft(x)⟩+ λ(λ− 1)

σ2
t

2
∥∇ log qt∥2 + λg

]
dt

(110)

Proposition 6.1 (Referenced Negation as CFG+FKC, Skreta et al., 2025a). Consider two diffusion
models q1t (x), q

2
t (x) defined via the Fokker-Planck equation in Equation (2). The weighted SDE

corresponding to the referenced negation of pt(x) ∝ ¬q2t (x)
q1t (x) is, with dwt(x) = gt(x)dt

dxt =
[
−ft(xt) + σ2

t (2∇ log q2t (xt)−∇ log q1t (xt))
]
dt+ σtdwt

gt(x) = σ2
t ∥∇ log q1t (xt)−∇ log q2t (xt)∥2 + 2g2t (x)− g1t (x),

(14)
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Proof. We start with the annealed distribution q2t (x)
2 and the annealed pseudo-distribution q1t (x)

−1.
We now try to find

∂ log pt
∂t

=2
∂ log q2t

∂t
− ∂ log q1t

∂t
−

∫
pt

[
2
∂ log q2t

∂t
− ∂ log q1t

∂t

]
(111)

=2
∂ log q2t

∂t
− ∂ log q1t

∂t
−

∫
pt

[
2
∂ log q2t

∂t
− ∂ log q1t

∂t

]
(112)

=2

[
⟨∇, ft⟩+ ⟨ft,∇ log q2t ⟩ −

σ2
t

2

(
∆log q2t + ∥∇ log q2t ∥2

)
+ ḡ2(x)

]
−[

⟨∇, ft⟩+ ⟨ft,∇ log q1t ⟩ −
σ2
t

2

(
∆log q1t + ∥∇ log q1t ∥2

)
+ ḡ1(x)

]
−∫

pt(x)

[
2
∂ log q2t (x)

∂t
− ∂ log q1t (x)

∂t

]
dx

(113)

=⟨∇, ft⟩+ ⟨ft, 2∇ log q2t ⟩ − ⟨ft,∇ log q1t ⟩+ 2

[
−σ2

t

2

(
∆log q2t + ∥∇ log q2t ∥2

)
+ ḡ2(x)

]
−[

−σ2
t

2

(
∆log q1t + ∥∇ log q1t ∥2

)
+ ḡ1(x)

]
−

∫
pt(x)

[
2
∂ log q2t (x)

∂t
− ∂ log q1t (x)

∂t

]
dx

(114)

=⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ −
σ2
t

2

(
2(∆ log q2t + ∥∇ log q2t ∥2)− (∆ log q1t + ∥∇ log q1t ∥2)

)
+

2ḡ2(x)− ḡ1(x)−
∫

pt(x)

[
2
∂ log q2t (x)

∂t
− ∂ log q1t (x)

∂t

]
dx

(115)

=⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ −
σ2
t

2

(
∆log pt + ∥∇ log pt∥2 − 2∥∇ log q2t −∇ log q1t ∥2

)
+

2ḡ2(x)− ḡ1(x)−
∫

pt(x)

[
2
∂ log q2t (x)

∂t
− ∂ log q1t (x)

∂t

]
dx

(116)

=⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ −
σ2
t

2

(
∆log pt + ∥∇ log pt∥2) + σ2

t ∥∇ log q2t −∇ log q1t ∥2+

2g2(x)− g1(x)− Ept

[
σ2
t ∥∇ log q2t −∇ log q1t ∥2 + 2g2(x)− g1(x)

] (117)

And with g(x) = σ2
t ∥∇ log q2t −∇ log q1t ∥2 + 2g2(x)− g1(x)

∂pt
∂t

= pt
∂ log pt

∂t
(118)

= pt

[
⟨∇, ft⟩+ ⟨ft,∇ log pt⟩ −

σ2
t

2

(
∆log pt + ∥∇ log pt∥2)

]
+ pt [g(x)− Eptg(x)] (119)

= −⟨∇, pt(x)(−ft +∇ log pt)⟩+
σ2
t

2
∆pt + pt [g(x)− Eptg(x)] , (120)

which we can simulate with
dxt =

[
−ft(xt) + σ2

t (2∇ log q2t (xt)−∇ log q1t (xt))
]
dt+ σtdwt

gt(x) = σ2
t ∥∇ log q1t (xt)−∇ log q2t (xt)∥2 + 2g2t (x)− g1t (x).

(121)

Theorem 6.2. Consider two weighted diffusion models q1t (x), q
2
t (x) defined via the Feynman-Kac

equation with weights g1t (x), g
2
t (x), and a parameter λ ∈ R\{0}. The weighted SDE corresponding

to pt(x) ∝
(
q1t (x)

λ + q2t (x)
λ
)1/λ

, with αi
t =

qit(x)
λ

q1t (x)
λ+q2t (x)

λ ∈ (0, 1), and dwt = gt(x)dt is

dxt =
[
−ft(xt) + σ2

t (α
1
t∇ log q1t (xt) + α2

t∇ log q2t (xt))
]
dt+ σtdwt

gt(x) = (1− λ)
σ2

2


∥∥∥∥∥∥
∑

i∈{1,2}

αi
t∇ log qit(xt)

∥∥∥∥∥∥
2

−
∑

i∈{1,2}

αi
t∥∇ log qit(xt)∥2

+
∑

i∈{1,2}

αi
tg

i
t(xt).

(15)
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Proof of Theorem 6.2. We now use our two lemmas to show the main result. We begin with

dxt =
[
−ft(xt) + σ2

t λ∇ log qit(xt)
]
dt+ σtdwt

dwt = (λ− 1)

(
⟨∇, ft(xt)⟩+

σ2

2
λ∥∇ log qit(xt)∥2

)
dt+ λgit(x)

(122)

for both annealed distributions, according to Lemma B.2. Then, by Lemma B.1, we have a mixture
of these distributions with

dxt =
[
−ft(xt) + σ2

t λ(α
1
t∇ log q1t (xt) + α2

t∇ log q2t (xt))
]
dt+ σtdwt

dwt =α1
t

[
(λ− 1)

(
⟨∇, ft(xt)⟩+

σ2

2
λ∥∇ log q1t (xt)∥2

)
dt+ λg1t (x)

]
+

α2
t

[
(λ− 1)

(
⟨∇, ft(xt)⟩+

σ2

2
λ∥∇ log q2t (xt)∥2

)
dt+ λg2t (x)

] (123)

which simplifies to

dwt = (λ− 1)⟨∇, ft(xt)⟩dt+ λ

 ∑
i∈{1,2}

αi
t

(
(λ− 1)

σ2

2
∥∇ log qit(xt)∥2dt+ git(xt)

) . (124)

Finally, we apply Lemma B.2 to the resulting mixture with 1/λ. This then results in

dxt =
[
−ft(xt) + σ2

t (α
1
t∇ log q1t (xt) + α2

t∇ log q2t (xt))
]
dt+ σtdwt, (125)

which is the target score as desired. For our weight-field we then have

dwt =

(
1

λ
− 1)

(
⟨∇, ft(xt)⟩+

σ2

2

1

λ
∥α1

tλ∇ log q1t (xt) + α2
tλ∇ log q2t (xt)∥2

)
dt+

1

λ

(λ− 1)⟨∇, ft(xt)⟩+ λ

 ∑
i∈{1,2}

αi
t

(
(λ− 1)

σ2

2
∥∇ log qit(xt)∥2 + git(xt)

) dt

(126)

=

1− λ

λ
⟨∇, ft(xt)⟩dt+

1− λ

λ

σ2

2

1

λ
∥α1

tλ∇ log q1t (xt) + α2
tλ∇ log q2t (xt)∥2dt+

λ− 1

λ
⟨∇, ft(xt)⟩dt+

∑
i∈{1,2}

αi
t

(
(λ− 1)

σ2

2
∥∇ log qit(xt)∥2 + git(xt)

)
dt

(127)

=

(1− λ)
σ2

2

∥∥∥∥∥∥
∑

i∈{1,2}

αi
t∇ log qit(xt)

∥∥∥∥∥∥
2

dt+

∑
i∈{1,2}

αi
t

(
(λ− 1)

σ2

2
∥∇ log qit(xt)∥2 + git(xt)

)
dt

(128)

= (1− λ)
σ2

2

∥∥∥∥∥∥
∑

i∈{1,2}

αi
t∇ log qit(xt)

∥∥∥∥∥∥
2

−
∑

i∈{1,2}

αi
t∥∇ log qit(xt)∥2

 dt+
∑

i∈{1,2}

αi
tg

i
t(xt)dt

(129)

We can see that, as expected, for λ = 1 we are left with the unweighted mixture of distributions. For
more complex compositions, the weight fields just propagate as well, we can see that the statement
trivially generalizses to more than two diffusion models, so we maintain associativity.
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(a) (p1 ∨ p2)∧ (¬p1 ∨¬p2)∧ p3 (b) (p1∨p2)∧(¬p1∨¬p2)∧¬p3 (c) (p2 ∨ p3)∧ (¬p2 ∨¬p3)∧ p1

(d) (p2∨p3)∧(¬p2∨¬p3)∧¬p1 (e) p3 ∧ ¬p1 ∧ ¬p2 (f) p1 ∧ p2 ∧ p3

Figure 6: Generated MNIST score compositions.

C EXPERIMENTS

All our experiments on stable diffusion and SBDD were performed on unmodified, pretrained mod-
els. We performed inference on Nvidia v100 and a100 GPUs.

C.1 MNIST EXPERIMENTS

We reproduce the setup of (Garipov et al., 2023), and generate images from the score composition of
the three toy mnist models. The code to training the models can be obtained from the code repository
and training was performed on a Nvidia GTX 3080 desktop within 10 minutes.

We show image collages for non-trivial example formulas in Figure 6. For each formula we gener-
ated a batch of 1024 images.

C.2 STABLE DIFFUSION IMAGE GENERATION

We reproduce the stable diffusion experimental setup of (Skreta et al., 2025b)
with Stable Diffusion v1-4 available pretrained publically at huggingface:
https://huggingface.co/CompVis/stable-diffusion-v1-4. We then report,
PoE, superdiffs and as well as joint prompts.

We use 20 pairs of conjunctive prompt-pairs and generate 20 images each. We provide a batch of the
generated images in the supplementary material. and list the prompts here, also reused from (Skreta
et al., 2025b):

• "a mountain landscape" ∧ "silhouette of a dog"

• "a flamingo" ∧ "a candy cane"

• "a dragonfly" ∧ "a helicopter"

• "dandelion" ∧ "fireworks"

• "a sunflower" ∧ "a lemon"
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• "a rocket" ∧ "a cactus"

• "moon" ∧ "cookie"

• "a snail" ∧ "a cinnamon roll"

• "an eagle" ∧ "an airplane"

• "zebra" ∧ "barcode"

• "chess pawn" ∧ "bottle cap"

• "a pineapple" ∧ "a beehive"

• "a spider web" ∧ "a bicycle wheel"

• "a waffle cone" ∧ "a volcano"

• "a cat" ∧ "a dog"

• "a chair" ∧ "an avocado"

• "a donut" ∧ "a map"

• "otter" ∧ "duck"

• "pebbles on a beach" ∧ "a turtle"

• "teddy bear" ∧ "panda"

For the contrastive Prompts, we partially use our own prompts and partially use the prompts from
(Dong et al., 2023). We provide a batch of the generated images in the supplementary material. and
list the prompts here:

• "A night sky with stars and a crescent moon, reminiscent of
Van Gogh’s ’Starry Night’." ∧¬ "Van Gogh"

• "A night sky with stars and a crescent moon, reminiscent of
Van Gogh’s ’Starry Night’." ∧¬ "Picasso’s Cubist style"

• "A portrait of a man with a distorted and fragmented face
painted in Picasso’s Cubist style." ∧¬ "Picasso’s Cubist
style"

• "A cat and a ball on the shelf" ∧¬ "cat, ball"

• "There are a bicycle and a car in front of the house" ∧¬ "a
bicycle and a car"

• "orange fruit" ∧¬ "orange color palette"

• "a banana" ∧¬ "yellow color palette"

• "an ocean" ∧¬ "blue color palette"

• "strawberry" ∧¬ "red color palette"

• "round shape" ∧¬ "circle"

C.2.1 ADDITIONAL RESULTS

We provide additional plots illustrating the behaviour of composition under varying values of λ in
Figure 7.

C.3 ADDITIONAL RESULTS ON SBDD MOLECULE GENERATION

We report a sweep across three values of λ for the molecule generation task in Table 2. As the
variance in this experiment is high, none of the differences can be considered significant.
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(b) Absolute difference in likelihood during generation
Figure 7: Mixture Stability vs Likelihood Bias in SD experiment. Figure 7a shows the absolute
changerate of αi, Figure 7b shows the median absolute log-density ratio. PoE (or geometric mean)
has constant mixture coefficients, but log-likelihoods diverge during the diffusion process. Superdiff
forces equal likelihoods as the cost of a highly variable mixture, especially early during the diffusion
process. Dombi composition (ours.[λ]) provides a tradeoff, depending on λ.

Table 2: Docking Scores of generated ligands for 14 protein target pairs (P1, P2), in batches of 32
ligands for 5 molecule lengths each. Extended runs across temperatures γ ∈ {1, 2}. We compare
conjunction with Dombi with various λ with and without FKC with annealed base distribution and
also report TargetDiff from (Guan et al., 2023) as baseline.

Method Temp. γ λ FKC? (P1 * P2) (↑) max(P1, P2) (↓) Better than ref. (↑) Div. (↑) Val. & Uniq. (↑) QED (↑) SA (↓)

TargetDiff – – – 62.19± 27.08 −7.24± 2.35 0.32± 0.37 0.89± 0.01 0.95± 0.07 0.57± 0.14 0.59± 0.09

Dombi 1 0.3 ✗ 68.12± 27.38 −7.37± 2.51 0.26± 0.32 0.88± 0.02 0.96± 0.10 0.58± 0.12 0.59± 0.10
Dombi 1 1 ✗ 68.60± 28.09 −7.42± 2.57 0.28± 0.34 0.88± 0.02 0.96± 0.09 0.58± 0.13 0.59± 0.10
Dombi 1 3 ✗ 67.92± 28.17 −7.33± 2.61 0.28± 0.34 0.88± 0.01 0.96± 0.09 0.57± 0.13 0.59± 0.10
Dombi 1 0.3 ✓ 72.09± 31.16 −7.51± 2.64 0.31± 0.37 0.87± 0.02 0.95± 0.12 0.56± 0.13 0.59± 0.11
Dombi 1 1 ✓ 72.83± 22.42 −7.71± 1.65 0.27± 0.35 0.86± 0.03 0.95± 0.08 0.57± 0.13 0.59± 0.11
Dombi 1 3 ✓ 70.01± 27.94 −7.50± 2.50 0.28± 0.33 0.86± 0.02 0.96± 0.10 0.58± 0.13 0.61± 0.09

Dombi 2 0.3 ✗ 72.54± 29.03 −7.67± 2.41 0.32± 0.35 0.88± 0.02 0.93± 0.16 0.59± 0.13 0.61± 0.10
Dombi 2 1 ✗ 71.36± 29.44 −7.59± 2.48 0.30± 0.34 0.88± 0.01 0.93± 0.16 0.59± 0.12 0.62± 0.09
Dombi 2 3 ✗ 72.92± 29.50 −7.74± 2.46 0.31± 0.36 0.88± 0.02 0.94± 0.16 0.60± 0.12 0.62± 0.09
Dombi 2 0.3 ✓ 78.75± 33.36 −7.98± 2.51 0.37± 0.40 0.87± 0.03 0.94± 0.15 0.59± 0.12 0.61± 0.10
Dombi 2 1 ✓ 81.63± 25.91 −8.25± 1.56 0.38± 0.40 0.85± 0.11 0.93± 0.17 0.59± 0.12 0.62± 0.10
Dombi 2 3 ✓ 83.06± 27.02 −8.40± 1.61 0.40± 0.41 0.85± 0.03 0.94± 0.12 0.57± 0.13 0.62± 0.09
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D SAT-EXPERIMENT

D.1 SETUP

We illustrate the capability of Dombi compositions to adhere to combinatorial constraints by sam-
pling uniformly from satisfying variable assignments of propositional formulas. For a formula with
k propositional variables Pi, for i ∈ [1, k], we set up our diffusion ensemble as follows: In Rk, we
place 2k Guassian modes, one for each possible variable assignment. Then, in our ensemble, each
of k score models simulates one propositional variable. For i ∈ [1, k], we have access to si, which
defines a denoising process to a uniform mixture of the 2k−1 Gaussian modes, where the Pi is true.
Additionally, a reference model defines a denoising process uniformly to all 2k Gaussian modes.
For k = 2, this setup is visualized in Figure 8a.

4 2 0 2 4
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3
4

P1 P2

initial
Dombi
Product

4 2 0 2 4
4
3
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P1 XOR P2

initial
Dombi
Product

(a) SAT experiment in R2.

k = 2 k = 5 k = 10

Formula Method ηcorr ηall PPL↑ ηcorr ηall PPL↑ ηcorr ηall PPL↑

Majk
Dombi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Prod 1.00 1.00 0.82 1.00 1.00 0.09 0.00 0.00 0.00

XORk
Dombi 0.97 1.00 1.00 0.95 1.00 1.00 0.91 1.00 0.98
Prod 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

OneHotk
Dombi 0.97 1.00 1.00 0.59 1.00 1.00 0.09 1.00 0.99
Prod 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) Overview of SAT experiment for three formulas.
Figure 8: Figure 8a shows the SAT experiment in R2, with squares corresponding to satisfying
assignments. The corresponding numerical overview for k ∈ {2, 5, 10} in Figure 8b. Best are bold.

Our objective is then to use score-composition to uniformly sample from all satisfying variable as-
signments. We repeat this setup for the Dombi operators, as well as PoE/MoE composition for three
formulas for k ∈ [1, 10], and report mode coverage, uniformity, and stability of the composition.

D.1.1 SAT FORMULAS

We use three different propositional formulas: majority, xor, and one-hot. The formulations of these
formulas are designed to test different aspects of the score composition.

Majority We define the formula over k variables as

Majk(P1, . . . , Pk) ≡
∧

S⊆{P1,...,Pk}
|S|=⌈k/2⌉

∨
P∈S

.

This formula is negation-free, but might lead to mode dropping for variable assignments with fewer
positive variables.

One-Hot We define a formula where exactly one variable has to be true as

OneHotk(P1, . . . , Pk) ≡
( k∨
i=1

Pi

)
∧
( ∧

1≤i<j≤k

(¬Pi ∨ ¬Pj)
)
.

It is only quadratic in the length of the variables, but it contains many clauses without positive
literals, requiring precise handling of explicit negation.

Exclusive Or We define xor as a parity function over k variables as

XORk(P1, . . . , Pk) ≡
∧

v∈{0,1}k∑
i vi≡0 (mod 2)

k∨
i=1

(
vi?¬Pi : Pi

)
.
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This formula can only be expressed in exponential length with 2k−1 clauses, which explicitly ex-
clude one assignment with even parity.

D.2 SCORE MODEL SETUP

We translate each of the 2k propositional variable assignments to a Gaussian mode in Rk as

p(x) =
1

2k

∑
v∈{0,1}k

Nk(x|4v − 2, σ2).

We then define “directional” diffusion models

∀i ∈ [1, k] : pi(x) =
1

2k−1

∑
v∈{0,1}k

vi=1

Nk(x|4v − 2, σ2).

In this setup, each distribution plays the role of one propositional variable. The distributions pi
can then be composed to mirror a propositional formula, with the goal that particles converge only
to modes that correspond to satisfying variable assignments. We use p as an additional stabilizing
model to guide particles to any location that corresponds to an assignment.

As these models are mixtures of Gaussians, we derive optimal scores and energy functions from the
standard Gaussian to our distributions in closed form.

We then model each type of formula for k ∈ [1, 10] as direct composition and simulate 214 particles
over 100 denoising steps.

For each mode, when then check a L∞ bounding box around its mean of sidelength 3σ and consider
all particles within that radius to be valid assignments.

In Figure 8b we show the most important metrics: ηcorr, the fraction of particles within bounding
boxes of satisfying modes, ηall, the fraction of particles converging to any mode. Additionally, we
measure the normalized perplexity in the particle distributions across as PPL. In this experiment,
PPL measures mode uniformity, where a higher number indicates more uniform samples from sat-
isfying modes of the formula. In a formula with K satisfying variable assignments, for a batch of n
particles, with nηcorr particles within satisfying modes, we denote the fraction of particles within the
bounding box of the assignment index i ∈ [1,K] as ηi with

∑
i ηi = ηcorr. We then calculate PPL

for mode confusion as

PPL = 2(−
∑K

i=1
ηi

ηcorr
log2

ηi
ηcorr )/K.

D.3 RESULTS

Figure 8a shows samples of formulas in R2. An overview of the experimental results is provided
in Figure 8b. We can see multiple shortcomings of products in our experimental results. On the
negation-free Majk, PoE drastically reduces the per-mode variance, as seen in Figure 8a, drops most
of the modes for k = 5, and completely breaks down for k = 10. In contrast to this, the dombi
Operators do not drop modes and maintain a close-to-uniform distribution over modes in high di-
mensions. For XORk and OneHotk PoE breaks down for k = 2 already, due to the negated literals.
In Figure 8a, the modes of the PoE sample appear drastically biased by the negated clause. Some-
what surprisingly, the Dombi composition can sample comparatively well from the exponentially
sized XOR10, and struggles much more for OneHot, which is comprised of many purely negative
clauses.
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