

000 001 002 003 004 005 HOT FUZZ: TEMPERATURE-TUNABLE COMPOSITION 006 OF DIFFUSION MODELS WITH FUZZY LOGIC 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 Composing pretrained diffusion models provides a cost-effective mechanism to
031 encode constraints and unlock complex generative capabilities. Prior work re-
032 lies on crafting compositional operators that seek to extend set-theoretic notions
033 such as union and intersection to diffusion models, e.g., using a product or mix-
034 ture of the underlying energy functions. We expose the inadequacy and incon-
035 sistency of combining these operators in terms of limited mode coverage, biased
036 sampling, instability under negation queries, and failure to satisfy basic compo-
037 sitional laws such as idempotency and distributivity. We introduce a principled
038 calculus grounded in fuzzy logic that resolves these issues. Specifically, we define
039 a general class of conjunction, disjunction, and negation operators that general-
040 ize the classical mixtures, illustrating how they circumvent various pathologies
041 and enable precise combinatorial reasoning with score models. Beyond exist-
042 ing methods, the proposed *Dombi* operators afford complex generative outcomes
043 such as Exclusive-Union (XOR) of individual scores. We establish rigorous the-
044 oretical guarantees on the stability and temperature scaling of Dombi composi-
045 tions, and derive Feynman-Kac correctors to mitigate the sampling bias in score
046 composition. Empirical results on image generation with stable diffusion and
047 multi-objective molecular generation substantiate the conceptual, theoretical, and
048 methodological benefits. Overall, this work lays the foundation for systematic
049 design, analysis, and deployment of diffusion ensembles.

1 INTRODUCTION

050 Pretrained general-purpose generative machine learning models (Devlin et al., 2019; Brown et al.,
051 2020) have become practically synonymous with the term artificial intelligence itself. Their vast
052 capabilities (Bommasani, 2021; Wei et al., 2022), however, come at the cost of an excessive need
053 for growing datasets (Kaplan et al., 2020; Villalobos et al., 2022), and yet additional techniques
054 are needed to reach adequate performance in downstream tasks. Finetuning (Devlin et al., 2019),
055 human-feedback-based reinforcement learning (Christiano et al., 2017; Ouyang et al., 2022; Zhang
056 et al., 2023), retrieval augmented generation (Lewis et al., 2020), or even specialized prompting
057 techniques (Brown et al., 2020) are then used to retrofit models to specialized tasks and domains.

058 As an alternative to monolithic general models, compositional generation (Jordan & Jacobs, 1994;
059 Hinton, 1999; 2002; Yuksel et al., 2012; Vedantam et al., 2018; Du et al., 2020) seeks to combine
060 the domain knowledge from different models to solve a task at hand. As many models follow proba-
061 bilistic formulations, using probabilistic language for composition is a natural approach. Products of
062 Experts (PoEs) (Hinton, 1999; 2002; Liu et al., 2022; Du et al., 2023; Skreta et al., 2025a) have been
063 devised and widely used as a mechanism to enforce conjunctive constraints, with the idea that their
064 product is only large when all components are large. The assumption underlying this approach to
065 model joint distributions, statistical independence of the factors, however, does not in general hold.

066 Often tackled as a separate problem is the concept *avoidance* in generation. Similar to other tasks,
067 *unlearning* (Ginart et al., 2019; Nguyen et al., 2022; Wang et al., 2024) as a specific form of fine-
068 tuning or post-training *avoidance* and steering methods (Dhariwal & Nichol, 2021; Ho & Salimans,
069 2021; Dong et al., 2023; Garipov et al., 2023; Kirchhof et al., 2025) have been proposed, which often
070 utilize PoE with inverse probability densities for avoidance or rely on training additional models.

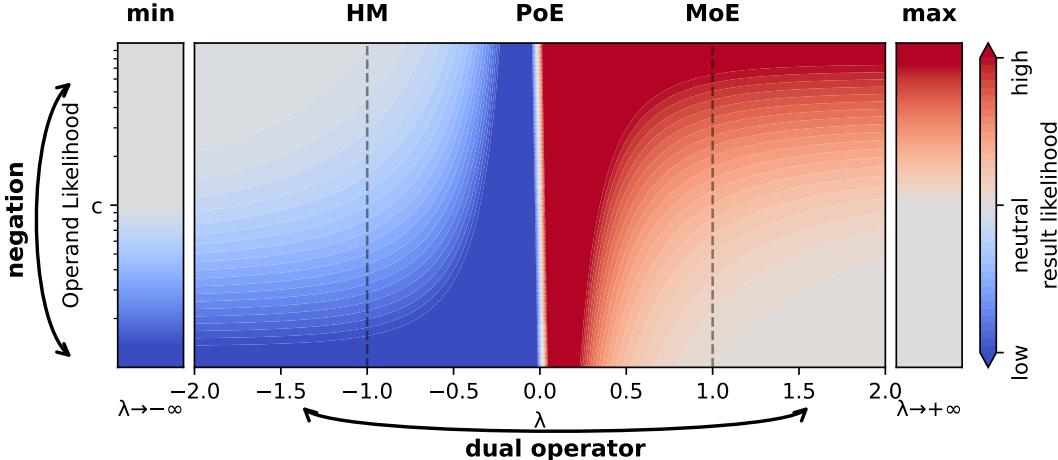


Figure 1: Visualisation of Dombi Composition $p(\mathbf{x}) \circ_\lambda q(\mathbf{x})$ with $q(\mathbf{x})$ fixed. Flipping the sign of λ gives the DeMorgan dual operator. For the negation $\neg_c p(\mathbf{x}) \wedge q(\mathbf{x})$, the y-axis of the figure flips. Different choices of λ correspond to known operators.

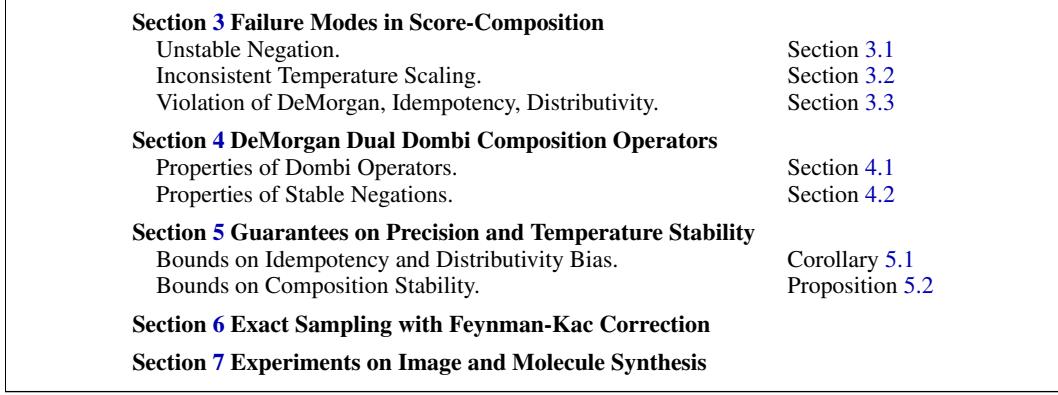


Figure 2: Overview of the main contributions in this work.

In this paper, we investigate compositions of diffusion models from the viewpoint of fuzzy set theory and fuzzy logic. We propose a procedure to derive sets of well-behaved composition operators, and among them, propose *Dombi operators* in Section 4 as a one-parameter family, extending and uniting commonly used operations such as mixture of experts (Jordan & Jacobs, 1994) (MoE), harmonic mean (Garipov et al., 2023) (HM), and as a special case, the geometric mean—a tempered Product of Experts (Hinton, 1999) (PoE), as visualized in Figure 1. In contrast to many existing effective methods, our approach is purely online and utilizes pre-trained diffusion models. An overview of our main contributions is provided in Figure 2.

2 BACKGROUND AND RELATED WORK

2.1 SCORE-BASED MODELS

We want to approximate a probability distribution p defined over \mathbb{R}^d to sample from it. In the context of score-based modelling, we first recast p as a Boltzmann distribution, and let the model learn the *score function* $s_\theta(\mathbf{x}) \approx \nabla \log p(\mathbf{x})$, avoiding the unknown partition function. To facilitate sampling via MCMC, the data distribution p is gradually destroyed according to the forward noising SDE (Øksendal, 2003)

$$d\mathbf{x}_\tau = f_\tau(\mathbf{x})d\tau + \sigma_\tau d\bar{\mathbf{w}}_\tau, \quad \mathbf{x}_0 \sim p(\mathbf{x}_0).$$

Here $f_\tau : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is some, usually linear, drift function and $\sigma_\tau : \mathbb{R} \rightarrow \mathbb{R}$ is a time-dependent diffusion coefficient and $\bar{\mathbf{w}}_\tau$ is the Wiener process. These functions are chosen such that $\mathbf{x}_{\tau=1} \sim$

108 $\mathcal{N}(0, \mathbf{I}_d)$, the standard Gaussian. For sampling, we simulate the backward process with $t = 1 - \tau$ as
 109

$$110 \quad d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)] dt + \sigma_t d\mathbf{w}_t. \quad (1)$$

111 which satisfies the Fokker-Planck equation
 112

$$113 \quad \frac{\partial p_t(\mathbf{x})}{\partial t} = -\langle \nabla, p_t(\mathbf{x})(-f_t + \sigma_t^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}), \quad (2)$$

115 where Δp_t^i denotes the Laplacian of p_t and $\langle \nabla, \cdot \rangle$ is the divergence operator. For the rest of
 116 this paper, we assume we are given a set of pre-trained score models $\{s_t^i\}_{i=1}^k$, which model the
 117 respective probability distributions $\{p_t^i\}_{i=1}^k$. For statements about the $t = 1$, we omit the index.
 118

119 To translate the theory developed in this paper to practice, we rely on efficient density estimation to
 120 assign responsibility to score functions. We can efficiently estimate densities during inference with
 121 Ito's Lemma (Karczewski et al., 2025a; Skreta et al., 2025b) as
 122

$$123 \quad d \log p_t(\mathbf{x}_t) \approx \langle d\mathbf{x}_t, s_t(\mathbf{x}_t) \rangle + \left(\langle \nabla, f_t(\mathbf{x}_t) \rangle + \langle f_t(\mathbf{x}_t), s_t(\mathbf{x}_t) \rangle - \frac{\sigma_t^2}{2} \|s_t(\mathbf{x}_t)\|^2 \right) dt. \quad (3)$$

124 2.2 COMPOSITION OF SCORE FIELDS

125 There is a quickly growing body of work on compositions, mixtures, and products of energy-based
 126 models (EBMs), as well as flow and diffusion models. We explicitly focus on *training-free* mixtures
 127 of score functions in diffusion. Prior work (Du et al., 2020; Ho & Salimans, 2021; Skreta et al.,
 128 2025a;b; Gaudi et al., 2025) mainly bases composition on probabilistic operations on the underlying
 129 distributions. As the interpretation of these operations is often logical or set-theoretic, we will use
 130 the symbols $\{\vee, \wedge, \neg\}$ to denote them, for both probability densities and their scores. In score-based
 131 modelling, conjunctions are then usually represented by (sometimes geometric) products
 132

$$133 \quad p^1(\mathbf{x}) \wedge_{\times} p^2(\mathbf{x}) := p^1(\mathbf{x})p^2(\mathbf{x}) \implies s^1(\mathbf{x}) \wedge_{\times} s^2(\mathbf{x}) = s^1(\mathbf{x}) + s^2(\mathbf{x}) \quad (4)$$

135 and disjunctions by mixtures, where we use the weighting $\alpha^i = \frac{p^i(\mathbf{x})}{p^1(\mathbf{x}) + p^2(\mathbf{x})}$, with
 136

$$137 \quad p^1(\mathbf{x}) \vee_{+} p^2(\mathbf{x}) := \frac{1}{2}p^1(\mathbf{x}) + \frac{1}{2}p^2(\mathbf{x}) \implies s^1(\mathbf{x}) \vee_{+} s^2(\mathbf{x}) = \alpha^1 s^1(\mathbf{x}) + \alpha^2 s^2(\mathbf{x}). \quad (5)$$

139 Two noteworthy exceptions from product-based conjunctions are Garipov et al. (2023), who model
 140 conjunctions with the *harmonic mean* $p^1(\mathbf{x})p^2(\mathbf{x}) / (p^1(\mathbf{x}) + p^2(\mathbf{x}))$ and Skreta et al. (2025b), who
 141 reweigh individual scores to steer towards equal density directly.

142 Importantly, under the usual dynamics of diffusion processes, for $t \neq 1$, nonlinear compositions do
 143 not commute with the noising operator, i.e., $p_t^1 \vee_{+} p_t^2 = (p^1 \vee_{+} p^2)_t$ but $p_t^1 \wedge_{\times} p_t^2 \neq (p^1 \wedge_{\times} p^2)_t$.
 144 This means that naive composition of perturbed score models leads to a bias that can be corrected
 145 with methods like sequential Monte Carlo (SMC) (Skreta et al., 2025a; Thornton et al., 2025). The
 146 typical formulation of Equations (1) and (2) is then extended to *weighted* SDEs, where samples have
 147 time-dependent log-weights w_t which are defined via the weight field $g_t(\mathbf{x})$ as

$$148 \quad dw_t = \bar{g}(\mathbf{x}_t) dt \implies \frac{\partial p_t(\mathbf{x})}{\partial t} = \bar{g}_t(\mathbf{x})p_t(\mathbf{x}), \quad \text{with} \quad \bar{g}(\mathbf{x}) := g_t(\mathbf{x}) - \int g_t(\mathbf{x})p_t(\mathbf{x}) dt.$$

151 These weighted SDEs with $g_t(\mathbf{x})$ then must satisfy the Feynman-Kac PDE

$$153 \quad \frac{\partial p_t(\mathbf{x})}{\partial t} = -\langle \nabla, p_t(\mathbf{x})(-f_t + \sigma_t^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + \bar{g}_t(\mathbf{x})p_t(\mathbf{x}). \quad (6)$$

155 For nonlinear score operations like annealing, CFG, or PoE, Skreta et al. (2025a) then explicitly
 156 derive the biases incurred by approximating the true composed distribution with the composition of
 157 noisy scores, collect the “left-over” terms in g , and use additional correction methods. We adapt
 158 their formalism to improve the simulation of our operators in Section 4.

159 To *avoid* certain distributions, EBM's and score models are usually only negated *relative* to others
 160 (Vedantam et al., 2018; Du et al., 2020; 2023; Garipov et al., 2023; Dong et al., 2023; Skreta et al.,
 161 2025a; Gaudi et al., 2025), as also done in classifier-free guidance (Ho & Salimans, 2021) (CFG). In
 these settings, independent concept negation (ICN) for a concept y is often defined, for $0 < \gamma < 1$

162 as $p(\mathbf{x}|\neg y) \propto p(\mathbf{x})/p(\mathbf{x}|y)^\gamma$ in the EBM context (Hinton, 2002; Du & Kaelbling, 2024). In
 163 more recent work (Liu et al., 2022; Du et al., 2020; Ho & Salimans, 2021), often the formulation
 164 $p(\mathbf{x}|\neg) \propto p(\mathbf{x})^{1+\gamma} p(\mathbf{x}|y)^{-\gamma}$ used instead, derived via Bayes rule.

165 From a perspective of logic, these variants make use of the reciprocal as pseudo-inverse $\neg p(\mathbf{x}|y) =$
 166 $1/p(\mathbf{x}|y)$, but to our knowledge, explicit negations in score-models are not often explored or theo-
 167 retically justified, and alternatives (Chang et al., 2024) also lack clear theoretical interpretation.

169 2.3 FUZZY LOGIC 170

171 Our proposed method directly draws from the theory of fuzzy logic. Fuzzy logic relaxes classical
 172 logic from a binary domain to real-valued *memberships* in $[0, 1]$. We follow the definitions and
 173 notation from Klement et al. (2013) for the following concepts. We define a *t-norm*, a generalization
 174 of conjunction or intersection operations, as a function $T : [0, 1]^2 \rightarrow [0, 1]$ which is commutative,
 175 associative, monotonously increasing, and fulfills the boundary condition $\forall x \in [0, 1] : T(x, 1) = x$.
 176 Under the standard negation $N(x) = 1 - x$, we can define the *dual t-conorm* $S : [0, 1]^2 \rightarrow [0, 1]$,
 177 the corresponding disjunction, via DeMorgan’s law as $S(x, y) = N(T(N(x), N(y)))$.

178 T-norms that are *strict*, i.e., continuous and strictly increasing, can be *generated* (Dombi, 1982;
 179 Klement et al., 2013) by a continuous, strictly decreasing function $f : [0, 1] \rightarrow [0, \infty]$ with $f(1) = 0$,
 180 as so-called *additive generator*, i.e., $T(x, y) := f^{-1}(f(x) + f(y))$. For this work, the parametrised
 181 Dombi t-norm is the most important representative, generated by $f_\lambda(x) = (\frac{1}{x} - 1)^\lambda$. A favorable
 182 property of the Dombi t-norm is that $\lim_{\lambda \rightarrow \infty} T_\lambda = T_M = \min$. The min t-norm T_M together
 183 with $S_M = \max$ is the *only* continuous DeMorgan dual that is idempotent with $T_M(x, x) = x$ and
 184 distributive with $T_M(x, S_M(y, z)) = S_M(T_M(x, y), T_M(x, z))$ (Klement et al., 2013). To make the
 185 domain of probability densities compatible with the theory of fuzzy logic, we utilize some bijective,
 186 order-preserving function $\phi : \mathbb{R}_{\geq 0} \cup \{\infty\} \rightarrow [0, 1]$ which converts densities into fuzzy membership.

187 3 FAILURE MODES IN SCORE COMPOSITION 188

190 We provide further motivation for our approach with a brief illustration of the mismatch between ex-
 191 pectation and true behaviour for score composition using PoE and MoE methods. Existing operators
 192 do not carry the well-understood and favorable properties of fuzzy set operators. This makes them
 193 ill-equipped to deal with more complex compositions of models or to encode model constraints.

194 3.1 UNSTABLE NEGATION 195

196 We first discuss the EBM-style negation $p^1(\mathbf{x})/p^2(\mathbf{x})^\gamma$. While widespread, this negation seems to
 197 have seen only limited theoretical investigation. While the score operation is straightforward, nega-
 198 tive prompts tend to shift the target distribution (Garipov et al., 2023; Chang et al., 2024; Ban et al.,
 199 2024) and require careful calibration of the γ parameter. For the simplest case $p^1(\mathbf{x})/p^2(\mathbf{x})$, normal-
 200 ization can generally not be guaranteed, unless $p^1(\mathbf{x})$ decays much faster in the tails than $p^2(\mathbf{x})$.

201 The common CFG-style negation in diffusion, $p^1(\mathbf{x})^{1+\gamma}/p^2(\mathbf{x})^\gamma$, has more favorable properties in
 202 terms of stability. However, theoretical arguments for its use are still limited in the relevant the-
 203 ory. In Section 4.2, we explore this formalism for negations more in depth, without the context of
 204 conditional generation. While better behaved, CFG-style negation still exhibits unfavorable proper-
 205 ties, like *overaccentuation* of $p^1(\mathbf{x})$ where $p^2(\mathbf{x})$ vanishes (Chidambaram et al., 2024), leading to a
 206 similar bias as the one depicted in Figure 3c.

208 3.2 INCONSISTENT TEMPERATURE SCALING 209

210 PoE uses the score calculus $s^1 \wedge_X s^2 := s^1 + s^2$. This leads to a scaling of scores depending
 211 on their alignment: $\|s^1 \wedge_X s^2\| = \sqrt{\|s^1\|^2 + \|s^2\|^2 + 2\|s^1\|\|s^2\| \cos \theta}$, where θ is the angle be-
 212 tween s^1, s^2 . In diffusion, temperature scaling is one of the main methods to control the behavior
 213 of the model (Guo et al., 2017; Karczewski et al., 2025b;a). As the alignment of scores can gen-
 214 erally be assumed to be arbitrary, PoE arbitrarily changes temperature-scaling behavior. In regions
 215 with high score alignment (small θ), temperature is decreased, and the composition is biased to-
 216 wards higher density regions than what is dictated by any component. Conversely, in regions with

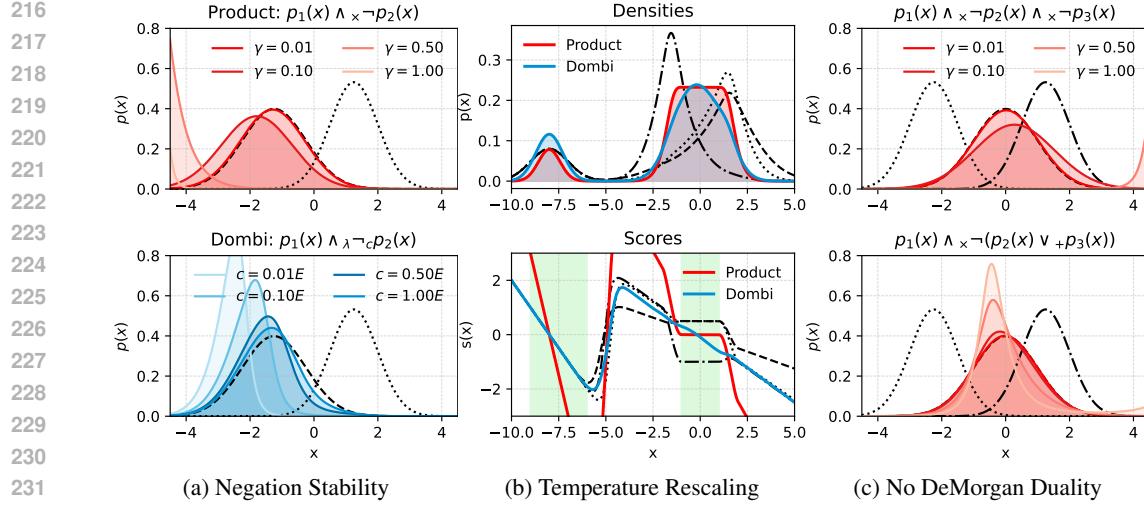


Figure 3: Failure Modes of PoE composition in combinatorial settings. a illustrates that ICN can lead to unstable behaviour, compared to [referenced Dombi negation](#). b shows an intersection, where [the product](#) can lead to locally underscaled *and* overscaled temperatures simultaneously (green), in contrast to [Dombi composition](#). c shows that logically equivalent formulas result in different PoE/MoE compositions.

low alignment between scores ($\theta > \pi$), the temperature is increased, *discouraging* higher density regions. Figure 3b illustrates this behavior in contrast to the Dombi operators, which guarantee $\|s^1 \wedge_X s^2\| \leq \max\{\|s^1\|, \|s^2\|\}$. Moving from the usual PoE to a geometric mean with $s^1(\mathbf{x})/2 + s^2(\mathbf{x})/2$, this problem does not disappear, rather shift: While the geometric mean does not overscale scores, the effective temperature of the composition is higher than intended, for the same reason as in classic PoE.

3.3 COMPOSITION PROPERTIES

Model composition is often interpreted as a *logical* operation over the underlying models. This interpretation leads to pitfalls, as MoE and PoE do not exhibit the favourable properties expected of logical or set operations. An important example of this is avoiding *multiple* distributions p_2, p_3 *individually*. Intuitively, one might use a conjunction over multiple negated distributions. The [resulting operation](#), however, does not match the [expected result](#), as negations and conjunctions commute:

$$p^1 \wedge_X \sim p^2 \wedge_X \sim p^3 = p^1 \wedge_X \sim (p^2 \wedge_X p^3) = \frac{p^1}{p^2 p^3} \neq p^1 \wedge_X \sim (p^2 \vee p^3) = \frac{p^1}{p^2 + p^3}.$$

This pitfall is a manifestation of failure to adhere to DeMorgan's law and shown in Figure 3c. In a more general sense, PoE is also neither idempotent, as $p \wedge_X p = p^2 \neq p$ and distributes only in one direction, i.e., $(p^1 \wedge_X p^2) \vee p^3 \neq (p^1 \vee p^3) \wedge_X (p^2 \vee p^3)$. This severely restricts the options for rewriting compositions for different purposes, such as collecting terms.

4 DOMBI OPERATORS

In this section, we extend the definition of T-norm-conorm pairs to obtain DeMorgan dual density and score operators. Appendix A describes the exact requirements to generate a set of DeMorgan dual operators. As a special class we propose and investigate the DeMorgan operators generated by $f_\lambda(x) = (\frac{1}{x} - 1)^{-\lambda}$ and map between densities and membership with $\phi_c(x) = \frac{x}{x+c}$ for $\lambda, c \in \mathbb{R}_{\geq 0}$. This choice of f not only recovers the Dombi t-norm, but ϕ_c expresses negation with [reference](#) to some constant c . [This constant can be interpreted as a normalising factor and serves as a neutral element in negations](#). As our composition properties act at each \mathbf{x} independently, we can choose a [different constant](#) for each value: $c(\mathbf{x})$. In the context of distributions, this normalization by a reference

270 distribution $c(\mathbf{x})$ is analogous to the probability ratios used in CFG, or the PoE conjunction, e.g., presented by Liu et al. (2022). With abuse of notation, we will write $\phi_c(p(\mathbf{x})) := \phi_c(p; \mathbf{x}) = \frac{p(\mathbf{x})}{p(\mathbf{x}) + c(\mathbf{x})}$.

273 **Definition 4.1** (Dombi Operators). *Choose $\lambda \in \mathbb{R}_{>0}$ and a continuously differentiable function*
 274 *$c : \mathbb{R}^d \rightarrow \mathbb{R}_{\geq 0}$ with $s_c = \nabla_{\mathbf{x}} \log c$. For $f_{\lambda}(x) = \left(\frac{1}{x} - 1\right)^{\lambda}$ and $\phi_c(p(\mathbf{x})) = \frac{p(\mathbf{x})}{p(\mathbf{x}) + c(\mathbf{x})}$, let $\alpha_{\lambda}^i =$*
 275 *$\frac{\exp(\lambda \log p^i(\mathbf{x}))}{\sum_{j \in \{1, 2\}} \exp(\lambda \log p^j(\mathbf{x}))}$. The Dombi operators are the DeMorgan dual operators induced by f_{λ}, ϕ_c :*

$$277 \quad \neg_c p(\mathbf{x}) := \frac{c(\mathbf{x})^2}{p(\mathbf{x})} \implies \neg_c s(\mathbf{x}) = 2s_c(\mathbf{x}) - s(\mathbf{x}) \quad (7)$$

$$280 \quad p^1(\mathbf{x}) \wedge_{\lambda} p^2(\mathbf{x}) := \frac{p^1(\mathbf{x})p^2(\mathbf{x})}{(p^1(\mathbf{x})^{\lambda} + p^2(\mathbf{x})^{\lambda})^{1/\lambda}} \implies s^1(\mathbf{x}) \wedge_{\lambda} s^2(\mathbf{x}) = \alpha_{-\lambda}^1 s^1(\mathbf{x}) + \alpha_{-\lambda}^2 s^2(\mathbf{x}) \quad (8)$$

$$282 \quad p^1(\mathbf{x}) \vee_{\lambda} p^2(\mathbf{x}) := (p^1(\mathbf{x})^{\lambda} + p^2(\mathbf{x})^{\lambda})^{1/\lambda} \implies s^1(\mathbf{x}) \vee_{\lambda} s^2(\mathbf{x}) = \alpha_{\lambda}^1 s^1(\mathbf{x}) + \alpha_{\lambda}^2 s^2(\mathbf{x}) \quad (9)$$

284 A detailed derivation of this result can be found in Appendix A.

286 This definition bears multiple remarkable properties. While being constructed to adhere to DeMorgan duality, we can see many similarities to the existing body of work.

289 4.1 PROPERTIES OF DOMBI OPERATORS

291 First, dombi compositions over distributions are power norms, and with different choices for the
 292 exponent λ , we recover well-known operators, such as min for $\lambda \rightarrow -\infty$, the harmonic mean for
 293 $\lambda = -1$, the conventional mixture for $\lambda = 1$, and max for $\lambda \rightarrow \infty$. For $\lambda \rightarrow 0$, Dombi composition
 294 is undefined on densities and log-densities, yet the score calculus for $\lambda \rightarrow 0$ is equivalent to the
 295 geometric mean. These relations are visualized in Figure 1. This resemblance is consistent with
 296 *power means* (Amari, 2007), which differ from the Dombi operators by a constant factor of $1/2^{\lambda}$,
 297 resulting in equivalent score operators, and tying Dombi composition closely to α -divergence. While
 298 derived score operators are equivalent, power means are not associative and cannot form a logic that
 299 allows for nesting of operations.

300 4.2 PROPERTIES OF REFERENCED NEGATION

302 Under our definition, referenced negation results in an expression equivalent to CFG-style negation
 303 for $\gamma = 1$. We argue that this is favorable from both the perspectives of fuzzy logic and probability
 304 theory. The reference (unconditional) distribution $c(\mathbf{x})$ forms a *neutral element* for negation, i.e.,
 305 $\neg_c c(\mathbf{x}) = c(\mathbf{x})$, which is semantically intuitive for conditional generation. From a perspective of
 306 probability theory, we know that a negated distribution results in a normalizable distribution under
 307 bounded χ^2 divergence. We have, per definition (Nishiyama & Sason, 2020)

$$308 \quad \chi^2(p||q) := \int \frac{(p(\mathbf{x}) - q(\mathbf{x}))^2}{q(\mathbf{x})} dx = \int \frac{p(\mathbf{x})^2}{q(\mathbf{x})} - 1 < \infty. \quad (10)$$

310 Negation with other γ violates properties of the logic: $\neg_{c, \gamma} p(\mathbf{x}) := c(\mathbf{x})^{1+\gamma}/p(\mathbf{x})^{\gamma}$ is not involutive
 311 for positive $\gamma \neq 1$. In practice, this might not be problematic if compositions are in negation normal
 312 form (NNF).

314 Combined, our composition and negation show strong grounding in existing theory and are, by
 315 definition, equipped for model composition far beyond the simple use cases of MoE and PoE. In the
 316 next section, we describe how their behaviour in score composition changes for different values of λ .

317 5 INFLUENCE OF λ ON DISTRIBUTIVITY AND MIXTURE STABILITY

320 Besides the connection to prior work, the parameter λ from the Dombi operators naturally appears
 321 as inverse temperature in the score composition. For $\lambda \rightarrow \infty$, the Dombi operators recover the exact
 322 $\{\min, \max\}$ lattice and with it distributive and idempotent behavior. For finite λ , the simple bounds
 323 in Proposition A.3 can be used to quantify biases in density compositions. We use this to present a
 simple bound for the maximal density bias we introduce when applying distributive laws.

324 **Corollary 5.1** (Idempotency and Distributivity Bias). *Let $\wedge_\lambda, \vee_\lambda$ be the Dombi density operators.*
 325 *From Proposition A.3 it follows that*

$$327 \quad \forall x \in \mathbb{R}_{\geq 0} : \quad x \vee_\lambda x = 2^{1/\lambda} x, \quad x \wedge_\lambda x = 2^{-1/\lambda} x \quad (11)$$

$$328 \quad \forall x, y, z \in \mathbb{R}_{\geq 0} : \quad x \vee_\lambda (y \wedge_\lambda z) \in ((x \vee_\lambda y) \wedge_\lambda (x \vee_\lambda z)) 2^{\pm 2/\lambda} \quad (12)$$

$$330 \quad \forall x, y, z \in \mathbb{R}_{\geq 0} : \quad x \wedge_\lambda (y \vee_\lambda z) \in ((x \wedge_\lambda y) \vee_\lambda (x \wedge_\lambda z)) 2^{\pm 2/\lambda}$$

332 These easily obtainable bounds trivially generalize to arbitrary compositions, allowing us to make
 333 immediate statements about the stability of our composition. As our score coefficients vary during
 334 the inference process, we would naturally be interested in the rate of change of these coefficients, as
 335 drastic change rates might cause the composite model to “oscillate” between two scores, especially
 336 in conjunctions. As before, the statement can be extended to more complex formulas trivially.

337 **Proposition 5.2** (Mixture Stability). *Let $\alpha_t = \text{softmax}_1(\lambda \log p^1, \lambda \log p^2)$, for a dombi composition*
 338 *$p^1 \circ_\lambda p^2$. Then it holds for the scores s_t^1, s_t^2*

$$340 \quad \mathbb{E}[d\alpha_t \mid \mathbf{x}_t] \leq \frac{\sigma_t^2}{8} \|\lambda s^1 - \lambda s^2\| (\|s^1\| + \|s^2\| + \frac{1}{2} \|\lambda s^1 - \lambda s^2\|) dt \quad (13)$$

342 Together, Corollary 5.1 and proposition 5.2 quantify the tradeoff between compositional precision
 343 and mixture stability. High λ results in small biases over the ground truth of the composition, but
 344 for large differences between the component scores $\|s_t^1 - s_t^2\|$, the mixing coefficients α^i might
 345 drastically oscillate. When λ is chosen smaller, the volatility of the mixture is naturally bounded.

348 6 PRECISE SAMPLING WITH FEYNMAN-KAC CORRECTION

350 While Definition 4.1 explicitly states how the densities and consequently the scores of our target
 351 distribution look, simulation with, e.g., $d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2(s_1(\mathbf{x}) \wedge_\lambda s_1(\mathbf{x}))] dt + \sigma_t d\bar{\mathbf{w}}$ will not
 352 not sample from the desired marginals during the reverse process and consequently not from the
 353 correct target distribution $p_1(\mathbf{x}) \wedge_\lambda p_2(\mathbf{x})$. Skreta et al. (2025a) introduce *Feynman-Kac Correctors*
 354 (FKCs) for diffusion, which correct for the biases of score composition. We recast the composition
 355 with Dombi operators as weighted SDEs, then collect all terms that are missing from our score
 356 proposal into the weight field g . At inference time, SMC methods like systematic sampling can be
 357 used to correct for these biases.

358 In this section, we extend the FKC terms to our Dombi operators, and refer to Appendix B.1 for
 359 proofs. As the Dombi-composition just reduces to “power norms” of our densities, as well as a spe-
 360 cial case of geometric averages in the case of referenced negation, we present these two correction
 361 terms here. More complex compositions then propagate the weight-fields $g_t(\mathbf{x})$ of components.

362 **Proposition 6.1** (Referenced Negation as CFG+FKC, Skreta et al., 2025a). *Consider two diffusion*
 363 *models $q_t^1(\mathbf{x}), q_t^2(\mathbf{x})$ defined via the Fokker-Planck equation in Equation (2). The weighted SDE*
 364 *corresponding to the referenced negation of $p_t(\mathbf{x}) \propto \neg_{q_t^2(\mathbf{x})} q_t^1(\mathbf{x})$ is, with $dw_t(\mathbf{x}) = g_t(\mathbf{x}) dt$*

$$366 \quad d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2(2\nabla \log q_t^2(\mathbf{x}_t) - \nabla \log q_t^1(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t \quad (14)$$

$$367 \quad g_t(\mathbf{x}) = \sigma_t^2 \|\nabla \log q_t^1(\mathbf{x}_t) - \nabla \log q_t^2(\mathbf{x}_t)\|^2 + 2g_t^2(\mathbf{x}) - g_t^1(\mathbf{x}),$$

369 As stated in Equation (10), $p_t(\mathbf{x})$ is then a normalizable probability distribution, if and only if
 370 $\chi^2(q_t^1 || q_t^2) < \infty$. We might also want to anneal q^2 to tune the “narrowness” of the concept we avoid.
 371 We propose a combined annealing of the form $q^2(\mathbf{x})^{1+\gamma} / q^1(\mathbf{x})^\gamma$ to allow tuning the two distribu-
 372 tions in relation to each other, while still maintaining slightly improved normalizability compared
 373 to the standard CFG, and maintaining an unbiased energy estimate for further composition.

374 Next, we state how FKC terms propagate through connectives. As both our connectives are essen-
 375 tially power-norms with positive or negative exponent, both cases can be handled at once.

377 **Theorem 6.2.** *Consider two weighted diffusion models $q_t^1(\mathbf{x}), q_t^2(\mathbf{x})$ defined via the Feynman-Kac*
 378 *equation with weights $g_t^1(\mathbf{x}), g_t^2(\mathbf{x})$, and a parameter $\lambda \in \mathbb{R} \setminus \{0\}$. The weighted SDE correspond-*

378 to $p_t(\mathbf{x}) \propto (q_t^1(\mathbf{x})^\lambda + q_t^2(\mathbf{x})^\lambda)^{1/\lambda}$, with $\alpha_t^i = \frac{q_t^i(\mathbf{x})^\lambda}{q_t^1(\mathbf{x})^\lambda + q_t^2(\mathbf{x})^\lambda} \in (0, 1)$, and $dw_t = g_t(\mathbf{x})dt$ is
 379
 380 $d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2(\alpha_t^1 \nabla \log q_t^1(\mathbf{x}_t) + \alpha_t^2 \nabla \log q_t^2(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t$
 381
 382 $g_t(\mathbf{x}) = (1 - \lambda) \frac{\sigma^2}{2} \left[\left\| \sum_{i \in \{1, 2\}} \alpha_t^i \nabla \log q_t^i(\mathbf{x}_t) \right\|^2 - \sum_{i \in \{1, 2\}} \alpha_t^i \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 \right] + \sum_{i \in \{1, 2\}} \alpha_t^i g_t^i(\mathbf{x}_t).$
 383
 384
 385
 386
 387
 388 Proposition 6.1 and theorem 6.2 are presented in a modular form. This allows us to use arbitrary
 389 combinations of operators and propagate the log-weights of components.
 390
 391 **6.1 INFERENCE PROCEDURE**
 392
 393 Together, Definition 4.1, proposition 6.1, and theorem 6.2 define our theoretical basis for arbitrarily
 394 nested model composition. During the sampling process, we keep track of the evolution of
 395 loglikelihoods with the Itô density estimator from Equation (3). This efficient density estimation
 396 method enables us to perform complex model compositions with minimal overhead. During
 397 composition, we can then compose our scores, log-likelihoods, and FKC terms with the procedure
 398 described in Algorithm 1. To improve sampling, we can use SMC techniques during the simulation
 399 trajectories (Næsseth et al., 2019). In our experiments, we use systematic sampling proportional to
 400 the exponentially weighted momentary weight-field $\exp\{g_t(\mathbf{x})dt\}$ (Douc & Cappé, 2005).
 401

Algorithm 1: DOMBI COMPOSITION over arbitrary formulas

402 **Input :** scores $\{s^i\}_{i=1}^k$, log-likelihoods $\{\log q^i\}_{i=1}^k$, weights $\{g^i\}_{i=1}^k$, formula $F := i \mid \neg_j i \mid F_1 \circ F_2$
 403
 404 **Output:** Composite score s , Composite density $\log q$, Composite weight g

```

 1 if  $F = i$  then return  $s^i, \log q^i, g^i$ 
 2 else if  $F = \neg_j i$  then return  $2s^j - s^i, 2\log q^j - \log q^i, \sigma_t^2 \|s^j - s^i\|^2 + 2g^j - g^i$  // Prop. 6.1
 3
 4 else if  $F = F_1 \wedge_\lambda F_2$  then  $\lambda \leftarrow -\lambda$  // Conjunction is a negative power norm
 5
 6 /* Case  $F = F_1 \wedge_\lambda F_2 \mid F_1 \vee_\lambda F_2$ : evaluate subformulas first */
 7  $\bar{s}^1, \bar{\log q}^1, \bar{g}^1 \leftarrow \text{DOMBI COMPOSITION}(\{s^i\}_{i=1}^k, \{\log q^i\}_{i=1}^k, \{g^i\}_{i=1}^k, F_1)$ 
 8  $\bar{s}^2, \bar{\log q}^2, \bar{g}^2 \leftarrow \text{DOMBI COMPOSITION}(\{s^i\}_{i=1}^k, \{\log q^i\}_{i=1}^k, \{g^i\}_{i=1}^k, F_2)$ 
 9  $\alpha^1 \leftarrow \text{softmax}_1(\lambda \bar{\log q}^1, \lambda \bar{\log q}^2); \alpha^2 \leftarrow 1 - \alpha^1$ 
10  $\bar{g} \leftarrow (1 - \lambda) \frac{\sigma^2}{2} \left[ \|\alpha^1 \bar{s}^1 + \alpha^2 \bar{s}^2\|^2 - (\alpha^1 \|\bar{s}^1\|^2 + \alpha^2 \|\bar{s}^2\|^2) \right]$  // Theorem 6.2
11 return  $\alpha^1 \bar{s}^1 + \alpha^2 \bar{s}^2, \frac{1}{\lambda} \text{LogSumExp}(\lambda \bar{\log q}^1, \lambda \bar{\log q}^2), \bar{g} + \alpha^1 \bar{g}^1 + \alpha^2 \bar{g}^2$ 

```

7 EXPERIMENTS

7.1 COMBINATORIAL BIAS IN COMPOSITION SAMPLES

We first test the ability of our method to sample from complex compositions of diffusion models. We compose three pretrained models that generate colored MNIST digits (LeCun, 1998). Our three models are defined as follows: Model p_1 generates the digits $\{0, 1, 2, 3\}$ in cyan, p_2 generates digits smaller 2: $\{0, 1, 0, 1\}$ in cyan or beige and p_3 generates the even digits $\{0, 2, 0, 2\}$ in cyan or beige. We would now like to perform set operations on these 7 unique digits, similar to Garipov et al. (2023), but with general operations. Figure 4 shows a set of chosen set operations on our models. Beyond the intersection $p_{\cap} = p_1 \wedge p_2 \wedge p_3$ and the union $p_{\cup} = p_1 \vee p_2 \vee p_3$ we show results for the exclusive-or operation $p_{\text{xor}} = (p_1 \vee p_2) \wedge (\neg p_1 \vee \neg p_2)$, that samples digits from either p_1 or p_2 but not from their intersection. We then show $p_{\text{xor}} \wedge p_3 = \{2, 0\}$ as well as $p_{\text{xor}} \wedge \neg p_3 = \{3, 1\}$.

Figure 4: Generated Image Compositions with MNIST ($\lambda \in \{5 \cdot 10^{-3}, 5 \cdot 10^{-2}\}$) and Stable Diffusion ($\lambda = 10$).

As we have no baseline model, we express negation by the mixture of all three models. With few exceptions, we can see that our approach lets us sample from complex compositions like p_{xor} , solely by score-composition of the pretrained diffusion models.

7.2 MULTI-PROMPT IMAGE GENERATION AND AVOIDANCE

To show the performance of Dombi composition in production scale diffusion models, we compare its ability to generate images that interpolate between or avoid concepts using Stable Diffusion (SD) v1-4. For all our compositions, we choose two prompts c_1, c_2 , e.g., "a mountain landscape" and "a silhouette of a dog". We then evaluate twenty pairs of images composed conjunctively, as $p(\mathbf{x}|c_1) \wedge p(\mathbf{x}|c_2)$, and compare against and Skreta et al. (2025b) and scaled PoE, i.e. unweighted averaging of scores (Liu et al., 2022). We further investigate $p(\mathbf{x}|c_1) \wedge \neg_{p(\mathbf{x})} p(\mathbf{x}|c_2)$ on ten pairs of prompts to illustrate the ability of our model to avoid concepts. As baselines for contrastive prompting, we use ICN (Ho & Salimans, 2021) and the conjunction of (Skreta et al., 2025b), combined with our referenced negation. We use the composed scores in the usual CFG pipeline of SD and measure for all prompts the min. CLIP score (Radford et al., 2021), which measures cosine similarity between image embedding and prompt embedding, and the minimum ImageReward value (Xu et al., 2023), which estimates how closely generated images align with human preferences. For contrastive prompts, we report the difference of each metric between c_1 and c_2 .

Dombi Composition shows improvement beyond state-of-the-art methods in both CLIP and ImageReward scores, as shown in Tables 5a and 5b, with an example of generated images in Figure 4. For the full list of used prompts, we refer to Appendix C.2. A stark contrast between our method and SuperDiff can be seen in Figure 3b, depicting the mixture stability during the first 100 iterations of the generation process. The batch variances of the mixture coefficient α are shown to correspond nicely to λ , with an increase over time caused by different equilibrium points per batch. Superdiffs and shows strong fluctuations in mixing coefficients, especially during the initial iterations. This effect is more pronounced when we retrofit and to contrastive settings with our negation definition.

7.3 MULTI-TARGET PROTEIN SYNTHESIS WITH FKC CORRECTION

As a final experiment, we test Dombi composition combined with FKC in the setting of structure-based drug design (SBDD). The goal here is to generate molecules (ligands) using the structure of a protein as a guide and evaluate their binding energy (Anderson, 2003). In our experiments, we investigate the impact of FKC from Theorem 6.2 on the quality of Dombi composed results. We generated 32 ligands of sizes $\{15, 19, 23, 27, 35\}$ each, for 14 protein pairs, and evaluated their docking scores using Autodock Vina (Eberhardt et al., 2021) and reproduced the experimental setup of (Skreta et al., 2025a). In this experiment, we use annealing on the base distributions: We evaluate $p(\mathbf{x}|\mathbb{P}_1)^\gamma \wedge p(\mathbf{x}|\mathbb{P}_2)^\gamma$ as well as $p(\mathbf{x}|\mathbb{P}_1)^\gamma p(\mathbf{x}|\mathbb{P}_2)^\gamma$, and propagate the FKC term of the annealed base distributions to our dombi operator as in Algorithm 1. Per batch, we report the average joint docking perfor-

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 196

540 9 REPRODUCIBILITY STATEMENT
541

542 Detailed proofs are provided in the Appendix for all our theoretical results. We also provide a link
543 to an anonymous github repository containing all the code used to reproduce the results in this
544 manuscript¹. The Repository contains the details required to reproduce the empirical results includ-
545 ing our hyperparameter settings. We will make our code public under MIT License upon acceptance.
546

547 REFERENCES
548

549 Shun-ichi Amari. Integration of stochastic models by minimizing α -divergence. *Neural computa-*
550 *tion*, 19(10):2780–2796, 2007.

551 Amy C Anderson. The process of structure-based drug design. *Chemistry & biology*, 10(9):787–
552 797, 2003.

553 Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Minhao Cheng, Boqing Gong, and Cho-Jui Hsieh.
554 Understanding the impact of negative prompts: When and how do they take effect? In *european*
555 *conference on computer vision*, pp. 190–206. Springer, 2024.

556 G Richard Bickerton, Gaia V Paolini, Jérémie Besnard, Sorel Muresan, and Andrew L Hopkins.
557 Quantifying the chemical beauty of drugs. *Nature chemistry*, 4(2):90–98, 2012.

558 Rishi Bommasani. On the opportunities and risks of foundation models. *arXiv preprint*
559 *arXiv:2108.07258*, 2021.

560 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
561 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
562 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

563 Jinho Chang, Hyungjin Chung, and Jong Chul Ye. Contrastive cfg: Improving cfg in diffusion
564 models by contrasting positive and negative concepts. *arXiv preprint arXiv:2411.17077*, 2024.

565 Muthu Chidambaram, Khashayar Gatmiry, Sitan Chen, Holden Lee, and Jianfeng Lu. What does
566 guidance do? a fine-grained analysis in a simple setting. *Advances in Neural Information Pro-*
567 *cessing Systems*, 37:84968–85005, 2024.

568 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
569 reinforcement learning from human preferences. *Advances in neural information processing sys-*
570 *tems*, 30, 2017.

571 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
572 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
573 *the North American chapter of the association for computational linguistics: human language*
574 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

575 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
576 *in neural information processing systems*, 34:8780–8794, 2021.

577 J. Dombi. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness
578 measures induced by fuzzy operators. *Fuzzy Sets and Systems*, 8(2):149–163, August 1982. ISSN
579 0165-0114. doi: 10.1016/0165-0114(82)90005-7.

580 Peiran Dong, Song Guo, Junxiao Wang, Bingjie Wang, Jiewei Zhang, and Ziming Liu. Towards
581 test-time refusals via concept negation. In *Proceedings of the 37th International Conference on*
582 *Neural Information Processing Systems*, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates
583 Inc.

584 Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering. In *ISPA*
585 *2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Anal-*
586 *ysis, 2005.*, pp. 64–69. Ieee, 2005.

587 588 589 590 591 592 593 ¹Anonymous Repository

594 Yilun Du and Leslie Pack Kaelbling. Compositional generative modeling: A single model is not all
 595 you need. *CoRR*, abs/2402.01103, 2024. URL <https://doi.org/10.48550/arXiv.2402.01103>.
 596

597 Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based mod-
 598 els. *Advances in Neural Information Processing Systems*, 33:6637–6647, 2020.

599 Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
 600 Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
 601 Compositional generation with energy-based diffusion models and mcmc. In *International con-
 602 ference on machine learning*, pp. 8489–8510. PMLR, 2023.

603 Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina
 604 1.2. 0: new docking methods, expanded force field, and python bindings. *Journal of chemical
 605 information and modeling*, 61(8):3891–3898, 2021.

606 Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
 607 molecules based on molecular complexity and fragment contributions. *Journal of cheminfor-
 608 matics*, 1(1):8, 2009.

609 Timur Garipov, Sebastiaan De Peuter, Ge Yang, Vikas Garg, Samuel Kaski, and Tommi Jaakkola.
 610 Compositional Sculpting of Iterative Generative Processes. *Advances in neural information pro-
 611 cessing systems*, 36:12665–12702, 2023.

612 Sachit Gaudi, Gautam Sreekumar, and Vishnu Boddeti. Coind: Enabling logical compositions in
 613 diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 614 URL <https://openreview.net/forum?id=cCRIEvjrx4>.

615 Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
 616 deletion in machine learning. *Advances in neural information processing systems*, 32, 2019.

617 Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equiv-
 618 ariant diffusion for target-aware molecule generation and affinity prediction. *arXiv preprint
 619 arXiv:2303.03543*, 2023.

620 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 621 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

622 Geoffrey E Hinton. Products of experts. In *Proceedings of the Ninth International Conference on
 623 Artificial Neural Networks*, volume 1, pp. 1–6. IET, 1999.

624 Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural
 625 Computation*, 14(8):1771–1800, 2002.

626 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop
 627 on Deep Generative Models and Downstream Applications*, 2021. URL [https://openreview.net/forum?id=qw8AKxfYbI](https://openreview.net/

 628 forum?id=qw8AKxfYbI).

629 Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the EM algorithm.
 630 *Neural Computation*, 6(2):181–214, 1994.

631 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 632 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 633 models. *arXiv preprint arXiv:2001.08361*, 2020.

634 Rafal Karczewski, Markus Heinonen, and Vikas Garg. Diffusion models as cartoonists: The curious
 635 case of high density regions. In *The Thirteenth International Conference on Learning Represen-
 636 tations*, 2025a. URL <https://openreview.net/forum?id=RiS2cpxENN>.

637 Rafal Karczewski, Markus Heinonen, and Vikas K Garg. Devil is in the details: Density guidance for
 638 detail-aware generation with flow models. In *Forty-second International Conference on Machine
 639 Learning (ICML)*, 2025b. URL <https://openreview.net/forum?id=C8pGYyfhoF>.

640 Michael Kirchhof, James Thornton, Louis Béthune, Pierre Ablin, Eugene Ndiaye, and Marco Cuturi.
 641 Shielded Diffusion: Generating Novel and Diverse Images using Sparse Repellency, May 2025.

648 Erich Peter Klement, Radko Mesiar, and Endre Pap. *Triangular norms*, volume 8. Springer Science
 649 & Business Media, 2013.

650

651 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

652

653 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 654 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 655 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 656 9459–9474, 2020.

657

658 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B. Tenenbaum. Compositional Visual
 659 Generation with Composable Diffusion Models. In Shai Avidan, Gabriel Brostow, Moustapha
 660 Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), *Computer Vision – ECCV 2022*, pp.
 661 423–439, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-19790-1. doi: 10.1007/
 662 978-3-031-19790-1_26.

663

664 Christian A Næsseth, Fredrik Lindsten, Thomas B Schön, et al. Elements of sequential monte carlo.
Foundations and Trends® in Machine Learning, 12(3):307–392, 2019.

665

666 Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
 667 Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. *ACM Transac-
 668 tions on Intelligent Systems and Technology*, 2022.

669

670 Tomohiro Nishiyama and Igal Sason. On relations between the relative entropy and chi-square-
 671 divergence, generalizations and applications. *Entropy*, 22(5):563, May 2020. ISSN 1099-4300.
 doi: 10.3390/e22050563. URL <http://dx.doi.org/10.3390/e22050563>.

672

673 Bernt Øksendal. Stochastic differential equations. In *Stochastic differential equations: an introduc-
 674 tion with applications*, pp. 38–50. Springer, 2003.

675

676 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 677 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 678 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.

679

680 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 681 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 682 models from natural language supervision. In *International conference on machine learning*, pp.
 683 8748–8763. PMLR, 2021.

684

685 Marta Skreta, Tara Akhoun-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alán Aspuru-Guzik,
 686 Arnaud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-Kac Correc-
 687 tors in Diffusion: Annealing, Guidance, and Product of Experts, June 2025a.

688

689 Marta Skreta, Lazar Atanackovic, Avishek Joey Bose, Alexander Tong, and Kirill Neklyudov. The
 690 Superposition of Diffusion Models Using the Itô Density Estimator, February 2025b.

691

692 James Thornton, Louis Bethune, Ruixiang Zhang, Arwen Bradley, Preetum Nakkiran, and
 693 Shuangfei Zhai. Composition and Control with Distilled Energy Diffusion Models and Sequential
 694 Monte Carlo, February 2025.

695

696 Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative models of
 697 visually grounded imagination. In *International Conference on Learning Representations*, 2018.
 698 URL <https://openreview.net/forum?id=HkCsm6lRb>.

699

700 Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbahn, and Anson Ho.
 701 Will we run out of data? an analysis of the limits of scaling datasets in machine learning. *arXiv
 702 preprint arXiv:2211.04325*, 1:1, 2022.

703

704 Wenhao Wang, Yifan Sun, Zongxin Yang, Zhengdong Hu, Zhentao Tan, and Yi Yang. Replication
 705 in visual diffusion models: A survey and outlook. *arXiv preprint arXiv:2408.00001*, 2024.

702 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
703 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
704 models. *arXiv preprint arXiv:2206.07682*, 2022.

705
706 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
707 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
708 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

709
710 Seniha Esen Yuksel, Joseph N. Wilson, and Paul D. Gader. Twenty Years of Mixture of Experts.
711 *IEEE Transactions on Neural Networks and Learning Systems*, 23(8):1177–1193, August 2012.
712 ISSN 2162-2388. doi: 10.1109/TNNLS.2012.2200299.

713 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
714 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
715 pp. 3836–3847, 2023.

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A FUZZY LOGIC OPERATORS
757
758

759 In this section, we define the class of DeMorgan dual density and score operators, and investigate one
760 example, the Dombi operators, in detail. We show that they generalize probabilistic mixtures and
761 the harmonic mean, and discuss methods to stabilize explicitly used negations with these operators.
762 We first extend the definition of fuzzy logic operators to the domain of probability densities.

763 **Definition A.1** (DeMorgan Density Operators). *Let $\phi : [0, \infty] \rightarrow [0, 1]$ be an order-isomorphism
764 and $f : [0, 1] \rightarrow [0, \infty]$ be a continuous, strictly decreasing function with $f(0) = \infty$. For $g = f \circ \phi$,
765 we define*

$$768 \quad \neg p(\mathbf{x}) := \phi^{-1}(1 - \phi(p(\mathbf{x}))) \quad (16)$$

$$769 \quad p_1(\mathbf{x}) \wedge p_2(\mathbf{x}) := g^{-1}(g(p_1(\mathbf{x})) + g(p_2(\mathbf{x}))) \quad (17)$$

$$771 \quad p_1(\mathbf{x}) \vee p_2(\mathbf{x}) := \neg(\neg p_1(\mathbf{x}) \wedge \neg p_2(\mathbf{x})) \quad (18)$$

772 For differentiable f and ϕ , the application to scores follows directly:

773 **Proposition A.2** (DeMorgan score calculus). *Let ϕ and f be fully differentiable functions that gen-
774 erate the DeMorgan density operators $\{\wedge, \vee, \neg\}$. Then with $g = f \circ \phi$, $h : x \mapsto f(1 - \phi(x))$,
775 $w(x) := x g'(x)$ and $\bar{w}(x) := x h'(x)$ the corresponding operations on the energies and scores are
776 defined as*

$$781 \quad \neg s(\mathbf{x}) = - \frac{\phi'(p(\mathbf{x}))p(\mathbf{x})}{\phi'(\neg p(\mathbf{x}))\neg p(\mathbf{x})} s(\mathbf{x}) \quad (19)$$

$$784 \quad s_1(\mathbf{x}) \wedge s_2(\mathbf{x}) = \frac{w(p_1(\mathbf{x}))s_1(\mathbf{x}) + w(p_2(\mathbf{x}))s_2(\mathbf{x})}{w(p_1(\mathbf{x}) \wedge p_2(\mathbf{x}))} \quad (20)$$

$$786 \quad s_1(\mathbf{x}) \vee s_2(\mathbf{x}) = \frac{\bar{w}(p_1(\mathbf{x}))s_1(\mathbf{x}) + \bar{w}(p_2(\mathbf{x}))s_2(\mathbf{x})}{\bar{w}(p_1(\mathbf{x}) \vee p_2(\mathbf{x}))}. \quad (21)$$

792 *Proof.* See Appendix B. □

793 This result shows that score operations are, in essence, just responsibility-weighted combinations of
794 the component scores. It is then easy to see that bounds on $\frac{w(p_1(\mathbf{x})) + w(p_2(\mathbf{x}))}{w(p_1(\mathbf{x}) \circ p_2(\mathbf{x}))}$ for $\circ \in \{\wedge, \vee\}$ can
795 serve as stability guarantees on ours operators.

804 A.1 DERIVATION OF DOMBI OPERATORS
805

806 We now define the dombi operators with $\phi_c(x) = \frac{x}{x+c} = \frac{1}{\frac{c}{x}+1}$ and $f_\lambda(x) = \left(\frac{1}{x} - 1\right)^\lambda$, and derive
807 their corresponding score calculus here. First, we can see here that $\phi_c^{-1}(x) = \frac{cx}{1-x} = \frac{c}{\frac{1}{x}-1}$, $g(x) =$
808 $f_\lambda(\phi_c(x)) = \left(\frac{c}{x}\right)^\lambda$, $h(x) = f_\lambda(1 - \phi_c(x)) = f_\lambda\left(\frac{c}{x+c}\right) = f_\lambda\left(\frac{1}{\frac{c}{x}+1}\right) = \left(\frac{x}{c}\right)^\lambda$. Further $g^{-1}(x) =$
809

810 $cx^{-1/\lambda}$. With this we can derive Definition 4.1 as:

$$812 \quad \neg p(\mathbf{x}) = \phi_c^{-1}(1 - \phi_c(p(\mathbf{x}))) = \phi_c^{-1}\left(\frac{c(\mathbf{x})}{c(\mathbf{x}) + p(\mathbf{x})}\right) = \frac{c(\mathbf{x})^2}{p(\mathbf{x})} \quad (22)$$

$$814 \quad p_1(\mathbf{x}) \wedge_\lambda p_2(\mathbf{x}) := g^{-1}(g(p_1(\mathbf{x})) + g(p_2(\mathbf{x}))) \quad (23)$$

$$816 \quad = c(\mathbf{x}) \left(\left(\frac{c(\mathbf{x})}{p_1(\mathbf{x})} \right)^\lambda + \left(\frac{c(\mathbf{x})}{p_2(\mathbf{x})} \right)^\lambda \right)^{-1/\lambda} \quad (24)$$

$$818 \quad = \left(\left(\frac{1}{p_1(\mathbf{x})} \right)^\lambda + \left(\frac{1}{p_2(\mathbf{x})} \right)^\lambda \right)^{-1/\lambda} \quad (25)$$

$$821 \quad = (p_1(\mathbf{x})^{-\lambda} + p_2(\mathbf{x})^{-\lambda})^{-1/\lambda} \quad (26)$$

$$823 \quad p_1(\mathbf{x}) \vee_\lambda p_2(\mathbf{x}) := \neg_c(\neg_c p_1(\mathbf{x}) \wedge_\lambda \neg_c p_2(\mathbf{x})) \quad (27)$$

$$824 \quad = \frac{c(\mathbf{x})^2}{\frac{c(\mathbf{x})^2}{p_1(\mathbf{x})} \wedge_\lambda \frac{c(\mathbf{x})^2}{p_2(\mathbf{x})}} \quad (28)$$

$$827 \quad = \frac{1}{\frac{1}{p_1(\mathbf{x})} \wedge_\lambda \frac{1}{p_2(\mathbf{x})}} \quad (29)$$

$$830 \quad = \frac{1}{(p_1(\mathbf{x})^\lambda + p_2(\mathbf{x})^\lambda)^{-1/\lambda}} \quad (30)$$

$$832 \quad = (p_1(\mathbf{x})^\lambda + p_2(\mathbf{x})^\lambda)^{1/\lambda} \quad (31)$$

834 In log-likelihoods and scores, the negation is straightforward. For a power-mixture
 835 $(p_1(\mathbf{x})^\lambda + p_2(\mathbf{x})^\lambda)^{1/\lambda}$, the log-likelihood and score operations are familiar. We investigate dis-
 836 junction and conjunction at the same time and state for all $\lambda \neq 0$:

$$838 \quad q(\mathbf{x}) = (p_1(\mathbf{x})^\lambda + p_2(\mathbf{x})^\lambda)^{1/\lambda} \quad \Rightarrow \quad (32)$$

$$840 \quad \log q(\mathbf{x}) = \frac{1}{\lambda} \log (p_1(\mathbf{x})^\lambda + p_2(\mathbf{x})^\lambda) \quad (33)$$

$$843 \quad = \frac{1}{\lambda} \log (\exp(\lambda \log p_1(\mathbf{x})) + \exp(\lambda \log p_2(\mathbf{x}))) \quad (34)$$

$$844 \quad = \frac{1}{\lambda} \text{LogSumExp}(\lambda \log p_1(\mathbf{x}), \lambda \log p_2(\mathbf{x})) \quad \Rightarrow \quad (35)$$

$$846 \quad \nabla_{\mathbf{x}} \log q(\mathbf{x}) = \sum_{i \in \{1, 2\}} (\text{softmax}_i(\lambda \log p_1(\mathbf{x}), \lambda \log p_2(\mathbf{x})) \nabla_{\mathbf{x}} \log p_i(\mathbf{x})) \quad (36)$$

$$849 \quad = \sum_{i \in \{1, 2\}} \left(\frac{p_i(\mathbf{x})^\lambda}{p_1(\mathbf{x})^\lambda + p_2(\mathbf{x})^\lambda} \nabla_{\mathbf{x}} \log p_i(\mathbf{x}) \right) \quad (37)$$

852 In terms of score calculus, or Dombi Operators, end up being softmax-weighted, convex combina-
 853 tions of the component scores.

A.2 DOMBI ERROR BOUNDS

856 For a given value of λ , the maximal difference between the Dombi operators and the min / max
 857 functions can be easily bounded as an additive term in log-likelihood:

859 **Proposition A.3.** *Let $\wedge_\lambda, \vee_\lambda$ be the Dombi density operators. Then it holds that*

$$860 \quad \forall x, y \in \mathbb{R}_{\geq 0} : \quad \min\{x, y\} 2^{-1/\lambda} \leq x \wedge_\lambda y \leq \min\{x, y\} \quad (38)$$

$$862 \quad \forall x, y \in \mathbb{R}_{\geq 0} : \quad \max\{x, y\} \leq x \vee_\lambda y \leq \max\{x, y\} 2^{1/\lambda} \quad (39)$$

863 *Proof.* See Appendix B □

864 **B PROOFS**
865

866 **Proposition A.2** (DeMorgan score calculus). *Let ϕ and f be fully differentiable functions that gen-
867 erate the DeMorgan density operators $\{\wedge, \vee, \neg\}$. Then with $g = f \circ \phi$, $h : x \mapsto f(1 - \phi(x))$,
868 $w(x) := x g'(x)$ and $\bar{w}(x) := x h'(x)$ the corresponding operations on the energies and scores are
869 defined as*

$$870 \neg s(\mathbf{x}) = - \frac{\phi'(p(\mathbf{x}))p(\mathbf{x})}{\phi'(\neg p(\mathbf{x}))\neg p(\mathbf{x})} s(\mathbf{x}) \quad (19)$$

$$873 s_1(\mathbf{x}) \wedge s_2(\mathbf{x}) = \frac{w(p_1(\mathbf{x}))s_1(\mathbf{x}) + w(p_2(\mathbf{x}))s_2(\mathbf{x})}{w(p_1(\mathbf{x}) \wedge p_2(\mathbf{x}))} \quad (20)$$

$$875 s_1(\mathbf{x}) \vee s_2(\mathbf{x}) = \frac{\bar{w}(p_1(\mathbf{x}))s_1(\mathbf{x}) + \bar{w}(p_2(\mathbf{x}))s_2(\mathbf{x})}{\bar{w}(p_1(\mathbf{x}) \vee p_2(\mathbf{x}))}. \quad (21)$$

877 *Proof.* \neg

$$879 \neg s_1(\mathbf{x}) = \nabla_{\mathbf{x}} \log \neg p(\mathbf{x}) \quad (40)$$

$$881 = \frac{\nabla_{\mathbf{x}} \neg p(\mathbf{x})}{\neg p(\mathbf{x})} \quad (41)$$

$$883 = \frac{\nabla_{\mathbf{x}} \phi^{-1}(1 - \phi(p(\mathbf{x})))}{\phi^{-1}(1 - \phi(p(\mathbf{x})))} \quad (42)$$

$$885 = \frac{\nabla_{\mathbf{x}}(1 - \phi(p(\mathbf{x})))}{\phi'(\phi^{-1}(1 - \phi(p(\mathbf{x})))) \phi^{-1}(1 - \phi(p(\mathbf{x})))} \quad (43)$$

$$888 = \frac{-\phi'(p(\mathbf{x}))p(\mathbf{x})}{\phi'(\phi^{-1}(1 - \phi(p(\mathbf{x}))) \phi^{-1}(1 - \phi(p(\mathbf{x})))} s(\mathbf{x}) \quad (44)$$

$$890 = \frac{-\phi'(p(\mathbf{x}))p(\mathbf{x})}{\phi'(\neg p(\mathbf{x})) \neg p(\mathbf{x})} s(\mathbf{x}) \quad (45)$$

892 \wedge

$$894 s_1(\mathbf{x}) \wedge s_2(\mathbf{x}) = \nabla_{\mathbf{x}} \log(p_1(\mathbf{x}) \wedge p_2(\mathbf{x})) \quad (46)$$

$$895 = \frac{\nabla_{\mathbf{x}}(p_1(\mathbf{x}) \wedge p_2(\mathbf{x}))}{p_1(\mathbf{x}) \wedge p_2(\mathbf{x})} \quad (47)$$

$$898 = \frac{\nabla_{\mathbf{x}} g^{-1}(g(p_1(\mathbf{x})) + g(p_2(\mathbf{x})))}{p_1(\mathbf{x}) \wedge p_2(\mathbf{x})} \quad (48)$$

$$900 = \frac{g'(p_1(\mathbf{x}))p_1(\mathbf{x})s_1(\mathbf{x}) + g'(p_2(\mathbf{x}))p_2(\mathbf{x})s_2(\mathbf{x})}{g'(p_1(\mathbf{x}) \wedge p_2(\mathbf{x})) (p_1(\mathbf{x}) \wedge p_2(\mathbf{x}))} \quad (49)$$

903 \vee Symmetric derivation with h instead of g .

904 We note that, if we can relate the ratios of the weights, we can give upper *and* lower bounds on the
905 norm of the scores of compositions. \square
906

907 **Proposition A.3.** *Let $\wedge_{\lambda}, \vee_{\lambda}$ be the Dombi density operators. Then it holds that*

$$908 \forall x, y \in \mathbb{R}_{\geq 0} : \min\{x, y\} 2^{-1/\lambda} \leq x \wedge_{\lambda} y \leq \min\{x, y\} \quad (38)$$

$$909 \forall x, y \in \mathbb{R}_{\geq 0} : \max\{x, y\} \leq x \vee_{\lambda} y \leq \max\{x, y\} 2^{1/\lambda} \quad (39)$$

912 *Proof.* We show the case for $p \vee_{\lambda} q = (p^{\lambda} + q^{\lambda})^{1/\lambda}$ first. The definition of \vee_{λ} is equivalent to that
913 of a P-norm over two components. We have the standard inequality (w.l.o.g. for $p \geq q$)

$$914 p \vee_{\lambda} q = (p^{\lambda} + q^{\lambda})^{1/\lambda} \leq (2p^{\lambda})^{1/\lambda} = 2^{1/\lambda} \max\{p, q\} \quad (50)$$

916 The lower bound similarly follows from

$$917 p \vee_{\lambda} q = (p^{\lambda} + q^{\lambda})^{1/\lambda} \geq (p^{\lambda})^{1/\lambda} = \max\{p, q\} \quad (51)$$

918 For \wedge_λ , we can use DeMorgan to obtain the symmetric bounds. We can note that the upper bound
 919 is tight for $p = q$ and the lower bound is tight for $q = 0$. \square
 920

921 **Proposition 5.2** (Mixture Stability). *Let $\alpha_t = \text{softmax}_1(\lambda \log p^1, \lambda \log p^2)$, for a dombi composition
 922 $p^1 \circ_\lambda p^2$. Then it holds for the scores s_t^1, s_t^2*

$$924 \quad \mathbb{E}[d\alpha_t \mid \mathbf{x}_t] \leq \frac{\sigma_t^2}{8} \|\lambda s^1 - \lambda s^2\| (\|s^1\| + \|s^2\| + \frac{1}{2} \|\lambda s^1 - \lambda s^2\|) dt \quad (13)$$

927 *Proof.* First, we can show easily that $|\frac{\lambda}{4} d(\log p^1 - \log p^2)| + \frac{\lambda\sqrt{3}}{36} d[\log p^1 - \log p^2]$.
 928

$$929 \quad \alpha = \text{softmax}_1(\lambda \log p^1, \lambda \log p^2) \quad (52)$$

$$930 \quad = \text{sigmoid}(\lambda \log p^1 - \lambda \log p^2) \quad (53)$$

932 Now, by Itô's Lemma we have, for $\phi = \text{sigmoid}(\lambda \log p^1 - \lambda \log p^2)$
 933

$$934 \quad d\alpha = \phi(1 - \phi)\lambda d(\log p^1 - \log p^2) + \frac{1}{2}\phi''\lambda^2 d[\log p^1 - \log p^2] \quad (54)$$

937 We know that, as ϕ is sigmoid, we can bound its derivative with $\frac{1}{4}$, and second derivative with $\frac{\sqrt{3}}{18}$.
 938

$$939 \quad |d\alpha| \leq \left| \frac{\lambda}{4} d(\log p^1 - \log p^2) \right| + \frac{\lambda\sqrt{3}}{36} d[\log p^1 - \log p^2] \quad (55)$$

942 Now, we derive a bound for $|\mathbb{E}[d \log p_t^1 - d \log p_t^2 \mid x_\tau]|$ using Equation (3), defining $\ell = \log p_t^1 -$
 943 $\log p_t^2$, $s = \alpha s^1 + (1 - \alpha)s^2$ and $u_t(\mathbf{x}) = -f_t(\mathbf{x}) + \frac{\sigma^2}{2} s_t(\mathbf{x})$.
 944

945 We then have

$$947 \quad d\ell_t = \langle s_t^1 - s_t^2, u_t \rangle dt + \langle s_t^1 - s_t^2, f_t \rangle dt - \frac{\sigma_t^2}{2} (\|s_t^1\|^2 - \|s_t^2\|^2) dt + \sigma_t \langle s^1 - s^2, d\bar{\mathbf{w}} \rangle \quad (56)$$

$$949 \quad = \frac{\sigma_t^2}{2} \langle s_t^1 - s_t^2, s_t - (s_t^1 + s_t^2) \rangle dt + \sigma_t \langle s^1 - s^2, d\bar{\mathbf{w}} \rangle \quad (57)$$

951 If we condition on \mathbf{x}_t , the stochastic part vanishes in expectation, we are left with
 952

$$954 \quad d\ell = \frac{\sigma_t^2}{2} \langle s_t^1 - s_t^2, s_t - (s_t^1 + s_t^2) \rangle dt \quad (58)$$

$$956 \quad \leq \frac{\sigma_t^2}{2} \|s^1 - s^2\| \|s_t - (s_t^1 + s_t^2)\| dt \quad (59)$$

$$958 \quad \leq \frac{\sigma_t^2}{2} \|s^1 - s^2\| \|((1 - \alpha)s_t^1 + \alpha s_t^2)\| dt \quad (60)$$

$$961 \quad \leq \frac{\sigma_t^2}{2} \|s^1 - s^2\| \frac{1}{2} (\|s^1 + s^2\| + \|s^1 - s^2\|) dt \quad (61)$$

$$963 \quad \leq \frac{\sigma_t^2}{2} \|s^1 - s^2\| (\|s^1\| + \|s^2\|) dt \quad (62)$$

$$965 \quad (63)$$

966 Furthermore, we have
 967

$$968 \quad d[\ell]_t = \sigma_t^2 \|s_t^1 - s_t^2\|^2 dt \quad (64)$$

$$969 \quad \mathbb{E}[d[\ell]_t \mid \mathbf{x}_t] = \sigma^2 \|s_t^1 - s_t^2\|^2 dt \quad (65)$$

971 Finally, we have

972

973

974

975

$$|d\alpha| \leq \left| \frac{\lambda}{4} (d \log p^1 - d \log p^2) \right| + \frac{\lambda^2 \sqrt{3}}{36} d[\log p^1 - \log p^2] \quad (66)$$

976

977

$$|\mathbb{E}[d\alpha | \mathbf{x}_t] \leq \left| \frac{\lambda}{4} \mathbb{E}[d\ell | \mathbf{x}_t] + \frac{\lambda^2 \sqrt{3}}{36} \mathbb{E}[d[\ell]_t | \mathbf{x}_t] \right| \quad (67)$$

978

979

$$\leq \left| \frac{\lambda \sigma_t^2}{8} \|s^1 - s^2\| (\|s^1\| + \|s^2\|) dt + \frac{\lambda^2 \sigma^2 \sqrt{3}}{36} \|s^1 - s^2\|^2 dt \right| \quad (68)$$

980

981

$$\leq \frac{\sigma_t^2}{8} \|\lambda s^1 - \lambda s^2\| (\|s^1\| + \|s^2\| + \frac{1}{2} \|\lambda s^1 - \lambda s^2\|) dt \quad (69)$$

982

983

984

985

986

987 B.1 FEYNMAN-KAC CORRECTION

988

989 The reweighting equation

990

991

$$dw_t = \bar{g}(\mathbf{x}) dt \implies \frac{\partial p_t(\mathbf{x})}{\partial t} = \bar{g}_t(\mathbf{x}) p_t(\mathbf{x}) \quad (70)$$

992

993

994 describes how the log-weight-field influences the marginals of the weighted SDE. The translation of
995 continuity (drift) terms and diffusion terms into log-weights is then given by the following schemes:

996

997

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = -\langle \nabla, p_t(\mathbf{x}) v_t(\mathbf{x}) \rangle = \left(\frac{-1}{p_t(\mathbf{x})} \langle \nabla, p_t(\mathbf{x}) v_t(\mathbf{x}) \rangle \right) p_t(\mathbf{x}) \implies \quad (71)$$

998

$$dw_t = (-\langle \nabla, v_t(\mathbf{x}) \rangle - \langle \nabla \log p_t(\mathbf{x}), v_t(\mathbf{x}) \rangle)$$

999

1000

1001 for drift terms and

1002

1003

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = \frac{\sigma^2}{2} \Delta p_t(\mathbf{x}) = \frac{\sigma^2}{2} p_t(\mathbf{x}) (\Delta \log p_t(\mathbf{x}) + \|\nabla \log p_t(\mathbf{x})\|^2) \implies \quad (72)$$

1004

1005

$$dw_t = \frac{\sigma^2}{2} (\Delta \log p_t(\mathbf{x}) + \|\nabla \log p_t(\mathbf{x})\|^2)$$

1006

1007

1008 for diffusion terms.

1009

1010 Dombi Composition is equivalent to applying a power-norm to probability distributions. We recast
1011 this as annealing, a case shown by [Skreta et al. \(2025a\)](#), then taking an (unweighted) mixture and
1012 then inverse annealing of the mixture of annealed distributions.

1013

1014 We state the following results before proceeding with the main proofs.

1015

1016

1017

1018 **Lemma B.1** (Mixture of SDEs + FKC). *Consider two weighted diffusion models $q_t^1(\mathbf{x}), q_t^2(\mathbf{x})$ defined via the Feynman-Kac equation with corresponding weights $g_t^1(\mathbf{x}), g_t^2(\mathbf{x})$. The weighted SDE corresponding to the sum of the marginals $p_t(\mathbf{x}) \propto q_t^1(\mathbf{x}) + q_t^2(\mathbf{x})$, with $\alpha_t^i = \frac{q_t^i(\mathbf{x})}{q_t^1(\mathbf{x}) + q_t^2(\mathbf{x})} \in (0, 1)$*

1019

1020

1021

1022

1023

1024

1025

1024 *Proof.* The proof in this case is straightforward.1025 We have, for $\bar{g}_t(\mathbf{x}) = \alpha_t^1 \bar{g}_t^1(\mathbf{x}) + \alpha_t^2 \bar{g}_t^2(\mathbf{x})$

1026
 1027
 1028
 1029
 1030
$$\frac{\partial p_t}{\partial t} = \frac{\partial q_t^1}{\partial t} + \frac{\partial q_t^2}{\partial t} - \int \frac{\partial q_t^1}{\partial t} + \frac{\partial q_t^2}{\partial t} d\mathbf{x} \quad (74)$$

 1031

1032
$$= \langle \nabla, q_t^1(\mathbf{x})(-f_t - \sigma_t^2 \nabla \log q_t^1(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \Delta q_t^1(\mathbf{x}) + q_t^1(\mathbf{x}) [\bar{g}_t^1(\mathbf{x})] +$$

 1033
 1034
$$\langle \nabla, q_t^2(\mathbf{x})(-f_t - \sigma_t^2 \nabla \log q_t^2(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \Delta q_t^2(\mathbf{x}) + q_t^2(\mathbf{x}) [\bar{g}_t^2(\mathbf{x})] - \int \frac{\partial q_t^1}{\partial t} + \frac{\partial q_t^2}{\partial t} d\mathbf{x} \quad (75)$$

 1035
 1036

1037
 1038
$$= \langle \nabla, q_t^1(\mathbf{x})(-f_t - \sigma_t^2 \frac{1}{q_t^1(\mathbf{x})} \nabla q_t^1(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \Delta q_t^1(\mathbf{x}) + q_t^1(\mathbf{x}) [\bar{g}_t^1(\mathbf{x})] +$$

 1039
 1040
$$\langle \nabla, q_t^2(\mathbf{x})(-f_t - \sigma_t^2 \frac{1}{q_t^2(\mathbf{x})} \nabla q_t^2(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \Delta q_t^2(\mathbf{x}) + q_t^2(\mathbf{x}) [\bar{g}_t^2(\mathbf{x})] - \int \frac{\partial q_t^1}{\partial t} + \frac{\partial q_t^2}{\partial t} d\mathbf{x} \quad (76)$$

 1041
 1042

1043
$$= \langle \nabla, q_t^1(\mathbf{x})(-f_t - \sigma_t^2 \frac{1}{q_t^1(\mathbf{x})} \nabla q_t^1(\mathbf{x})) + q_t^2(\mathbf{x})(-f_t - \sigma_t^2 \frac{1}{q_t^2(\mathbf{x})} \nabla q_t^2(\mathbf{x})) \rangle +$$

 1044
 1045
$$\frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (77)$$

 1046
 1047
 1048
$$= \langle \nabla, (q_t^1(\mathbf{x}) + q_t^2(\mathbf{x}))(-f_t) + q_t^1(\mathbf{x})(-\sigma_t^2 \frac{1}{q_t^1(\mathbf{x})} \nabla q_t^1(\mathbf{x})) + q_t^2(\mathbf{x})(-\sigma_t^2 \frac{1}{q_t^2(\mathbf{x})} \nabla q_t^2(\mathbf{x})) \rangle +$$

 1049
 1050
$$\frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (78)$$

 1051
 1052

1053
$$= \langle \nabla, (q_t^1(\mathbf{x}) + q_t^2(\mathbf{x}))(-f_t) + (-\sigma_t^2 \nabla (q_t^1(\mathbf{x}) + q_t^2(\mathbf{x}))) \rangle +$$

 1054
 1055
$$\frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (79)$$

 1056

1057
$$= \langle \nabla, (q_t^1(\mathbf{x}) + q_t^2(\mathbf{x}))(-f_t) + p_t(\mathbf{x}) \left(-\sigma_t^2 \left(\frac{\nabla q_t^1(\mathbf{x})}{p_t(\mathbf{x})} + \frac{\nabla q_t^2(\mathbf{x})}{p_t(\mathbf{x})} \right) \right) \rangle +$$

 1058
 1059
$$\frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (80)$$

 1060

1061
$$= \langle \nabla, p_t(\mathbf{x})(-f_t) + p_t(\mathbf{x}) \left(-\sigma_t^2 \left(\frac{\nabla q_t^1(\mathbf{x})}{p_t(\mathbf{x})} + \frac{\nabla q_t^2(\mathbf{x})}{p_t(\mathbf{x})} \right) \right) \rangle +$$

 1062
 1063

1064
$$\frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (81)$$

 1065
 1066
$$= \langle \nabla, p_t(\mathbf{x}) \left(-f_t - \sigma_t^2 \left(\frac{\nabla q_t^1(\mathbf{x})}{p_t(\mathbf{x})} + \frac{\nabla q_t^2(\mathbf{x})}{p_t(\mathbf{x})} \right) \right) \rangle + \frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (82)$$

 1067
 1068

1069
$$= \langle \nabla, p_t(\mathbf{x}) \left(-f_t - \sigma_t^2 \left(\frac{q_t^1(\mathbf{x})}{p_t(\mathbf{x})} \nabla \log q_t^1(\mathbf{x}) + \frac{q_t^2(\mathbf{x})}{p_t(\mathbf{x})} \nabla \log q_t^2(\mathbf{x}) \right) \right) \rangle +$$

 1070
 1071
$$\frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (83)$$

 1072

1073
$$= \langle \nabla, p_t(\mathbf{x}) (-f_t - \sigma_t^2 (\alpha_t^1 \nabla \log q_t^1(\mathbf{x}) + \alpha_t^2 \nabla \log q_t^2(\mathbf{x}))) \rangle +$$

 1074
 1075
$$\frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - \int \frac{\partial p_t}{\partial t} d\mathbf{x} \quad (84)$$

 1076

1077
$$= \langle \nabla, p_t(\mathbf{x}) (-f_t - \sigma_t^2 (\alpha_t^1 \nabla \log q_t^1(\mathbf{x}) + \alpha_t^2 \nabla \log q_t^2(\mathbf{x}))) \rangle + \frac{\sigma_t^2}{2} \Delta p_t(\mathbf{x}) + p_t(\mathbf{x}) \bar{g}_t(\mathbf{x}) - 0 \quad (85)$$

 1078
 1079

1080 We can simulate this as
 1081

$$1082 \quad d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2(\alpha_t^1 \nabla \log q_t^1(\mathbf{x}_t) + \alpha_t^2 \nabla \log q_t^2(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t \\ 1083 \quad dw_t = [\alpha_t^1 g_t^1(\mathbf{x}) + \alpha_t^2 g_t^2(\mathbf{x})] dt \\ 1084 \\ 1085$$

□

1086
 1087
 1088
 1089
 1090
 1091
 1092 **Lemma B.2** (Target Score Annealed SDE + FKC, [Skreta et al., 2025a](#)). *Consider a diffusion model*
 1093 *$q_t(\mathbf{x})$ defined via the Feynman-Kac equation with the weight-field $g_t(\mathbf{x})$ and some parameter $\lambda \in$*
 1094 *$\mathbb{R} \setminus \{0\}$. The weighted SDE corresponding to the annealed marginals $p_t(\mathbf{x}) \propto q_t(\mathbf{x})^\lambda$ can be*
 1095 *performed by simulating the following weighted SDE*

$$1096 \\ 1097 \\ 1098 \quad d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2 \lambda \nabla \log q_t(\mathbf{x}_t)] dt + \sigma_t d\bar{\mathbf{w}}_t \\ 1099 \\ 1100 \quad dw_t = \left[(\lambda - 1) \langle \nabla, f_t(\mathbf{x}) \rangle + \lambda(\lambda - 1) \frac{\sigma_t^2}{2} \|\nabla \log q_t(\mathbf{x})\|^2 + \lambda g(\mathbf{x}) \right] dt \\ 1101 \\ 1102$$

1103
 1104
 1105
 1106 *Proof.* We follow the proofs of [Skreta et al. \(2025a\)](#).

1107
 1108 We aim to find the partial derivative of the density $p_t(\mathbf{x}) = \frac{q_t(\mathbf{x})^\lambda}{\int q_t(\mathbf{x})^\lambda d\mathbf{x}}$ over time $\frac{\partial p_t(\mathbf{x})}{\partial t}$, where
 1109

$$1110 \\ 1111 \quad \frac{\partial q_t(\mathbf{x})}{\partial t} = -\langle \nabla, q_t(\mathbf{x})(-f_t + \sigma_t^2 \nabla \log q_t(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \Delta q_t(\mathbf{x}) + q_t(\mathbf{x}) [\bar{g}_t(\mathbf{x})]. \\ 1112 \\ 1113$$

1114
 1115 Then we have
 1116

$$1117 \quad \frac{\partial \log q_t(\mathbf{x})}{\partial t} = \frac{1}{q_t(\mathbf{x})} \frac{\partial q_t(\mathbf{x})}{\partial t} \\ 1118 \quad = \frac{1}{q_t(\mathbf{x})} \langle \nabla, q_t(\mathbf{x})(-f_t + \sigma_t^2 \nabla \log q_t(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \frac{\Delta q_t(\mathbf{x})}{q_t(\mathbf{x})} + \bar{g}(\mathbf{x}) \\ 1119 \\ 1120$$

$$1121 \quad = -\frac{1}{q_t(\mathbf{x})} \langle \nabla, q_t(\mathbf{x})(-f_t + \sigma_t^2 \nabla \log q_t(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} \frac{\Delta q_t(\mathbf{x})}{q_t(\mathbf{x})} + \bar{g}(\mathbf{x}) \\ 1122 \\ 1123 \quad = -\frac{1}{q_t(\mathbf{x})} \langle \nabla, q_t(\mathbf{x})(-f_t + \sigma_t^2 \nabla \log q_t(\mathbf{x})) \rangle + \frac{\sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \bar{g}(\mathbf{x}) \\ 1124 \\ 1125$$

$$1126 \quad = -\langle \nabla, -f_t + \sigma_t^2 \nabla \log q_t \rangle - \langle -f_t + \sigma_t^2 \nabla \log q_t, \nabla \log q_t \rangle \\ 1127 \quad + \frac{\sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \bar{g}(\mathbf{x}) \\ 1128 \\ 1129$$

$$1130 \quad = \langle \nabla, f_t \rangle + \langle f_t, \nabla \log q_t \rangle - \sigma_t^2 \Delta \log q_t - \sigma_t^2 \|\nabla \log q_t\|^2 \\ 1131 \quad + \frac{\sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \bar{g}(\mathbf{x}) \\ 1132 \\ 1133$$

$$1134 \quad = \langle \nabla, f_t \rangle + \langle f_t, \nabla \log q_t \rangle - \frac{\sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \bar{g}(\mathbf{x}). \\ 1135 \\ 1136$$

1134 and can now compute
 1135

1136

1137

$$\frac{\partial \log p_t(\mathbf{x})}{\partial t} = \lambda \frac{\partial \log q_t(\mathbf{x})}{\partial t} - \int \lambda p_t(\mathbf{x}) \frac{\partial \log q_t(\mathbf{x})}{\partial t} d\mathbf{x} \quad (94)$$

$$= \lambda \left[\langle \nabla, f_t \rangle + \langle f_t, \nabla \log q_t \rangle - \frac{\sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \bar{g} \right] - \int \lambda p_t(\mathbf{x}) \frac{\partial \log q_t(\mathbf{x})}{\partial t} d\mathbf{x} \quad (95)$$

$$= \lambda \langle \nabla, f_t \rangle + \lambda \langle f_t, \nabla \log q_t \rangle - \frac{\lambda \sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \lambda \bar{g} - \int \lambda p_t(\mathbf{x}) \frac{\partial \log q_t(\mathbf{x})}{\partial t} d\mathbf{x} \quad (96)$$

$$= \langle \nabla, \lambda f_t \rangle + \langle f_t, \nabla \log p_t \rangle - \frac{\lambda \sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \lambda \bar{g} - \int \lambda p_t(\mathbf{x}) \frac{\partial \log q_t(\mathbf{x})}{\partial t} d\mathbf{x} \quad (97)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - (1 - \lambda) \langle \nabla, f_t \rangle - \frac{\lambda \sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \lambda \bar{g} - \int p_t \left[\langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - (1 - \lambda) \langle \nabla, f_t \rangle - \frac{\lambda \sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \lambda \bar{g} \right] d\mathbf{x} \quad (98)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - (1 - \lambda) \langle \nabla, f_t \rangle - \frac{\lambda \sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \lambda g - \int p_t \left[-(1 - \lambda) \langle \nabla, f_t \rangle - \frac{\lambda \sigma_t^2}{2} (\Delta \log q_t + \|\nabla \log q_t\|^2) + \lambda g \right] d\mathbf{x} \quad (99)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - (1 - \lambda) \langle \nabla, f_t \rangle - \frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2\lambda} \|\nabla \log p_t\|^2 + \lambda g - \int p_t \left[-(1 - \lambda) \langle \nabla, f_t \rangle - \frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2\lambda} \|\nabla \log p_t\|^2 + \lambda g \right] d\mathbf{x} \quad (100)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - (1 - \lambda) \langle \nabla, f_t \rangle - \frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \left(1 - \frac{1}{\lambda}\right) \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \lambda g - \int p_t \left[-(1 - \lambda) \langle \nabla, f_t \rangle - \frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \left(1 - \frac{1}{\lambda}\right) \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \lambda g \right] d\mathbf{x} \quad (101)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - (1 - \lambda) \langle \nabla, f_t \rangle - \frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \left(1 - \frac{1}{\lambda}\right) \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \lambda g - \int p_t \left[-(1 - \lambda) \langle \nabla, f_t \rangle + \left(1 - \frac{1}{\lambda}\right) \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \lambda g \right] d\mathbf{x}. \quad (102)$$

1179

1180

1181

1182 With this, defining $g' = -(1 - \lambda) \langle \nabla, f_t \rangle + \left(1 - \frac{1}{\lambda}\right) \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + \lambda g$ we finally have
 1183

1184

1185

1186

$$\frac{\partial \log p_t}{\partial t} = \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - \frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + g' - \int p_t(\mathbf{x}) g' d\mathbf{x} \quad (103)$$

1188

1189

1190

1191

$$\frac{\partial p_t}{\partial t} = p_t \frac{\partial \log p_t}{\partial t} \quad (104)$$

$$= p_t \left[\langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - \frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + g'(\mathbf{x}) - \mathbb{E}_{p_t} g'(\mathbf{x}) \right] \quad (105)$$

$$= -\langle \nabla, -f_t p_t \rangle + p_t \left[-\frac{\sigma_t^2}{2} \Delta \log p_t - \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + g'(\mathbf{x}) - \mathbb{E}_{p_t} g'(\mathbf{x}) \right] \quad (106)$$

$$= -\langle \nabla, -f_t p_t \rangle + p_t \left[-\frac{\sigma_t^2}{2} \frac{\Delta p_t}{p_t} + \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 - \frac{\sigma_t^2}{2} \|\nabla \log p_t\|^2 + g'(\mathbf{x}) - \mathbb{E}_{p_t} g'(\mathbf{x}) \right] \quad (107)$$

$$= -\langle \nabla, p_t (-f_t + \sigma_t^2 \nabla \log p_t) \rangle + \frac{\sigma_t^2}{2} \Delta p_t + p_t [g'(\mathbf{x}) - \mathbb{E}_{p_t} g'(\mathbf{x})] \quad (108)$$

1204

1205

1206

1207 And finally, we can reexpress this as

1208

1209

1210

$$\frac{\partial p_t}{\partial t} = -\langle \nabla, p_t (-f_t + \sigma^2 \lambda \nabla \log q_t) \rangle + \frac{\sigma_t^2}{2} \Delta p_t + p_t [g'(\mathbf{x}) - \mathbb{E}_{p_t} g'(\mathbf{x})] \quad (109)$$

1213

1214

1215

1216 And for $\lambda > 0$ we can simulate this as

1217

1218

$$\begin{aligned} d\mathbf{x}_t &= [-f_t(\mathbf{x}_t) + \sigma_t^2 \lambda \nabla \log q_t(\mathbf{x}_t)] dt + \sigma_t d\bar{\mathbf{w}}_t \\ dw_t &= g'_t(\mathbf{x}) dt = \left[-(1 - \lambda) \langle \nabla, f_t(\mathbf{x}) \rangle + \lambda(\lambda - 1) \frac{\sigma_t^2}{2} \|\nabla \log q_t\|^2 + \lambda g \right] dt \end{aligned} \quad (110)$$

1223

1224

1225

1226

□

1227

1228

1229

1230

1231

1232

1233

1234

Proposition 6.1 (Referenced Negation as CFG+FKC, Skreta et al., 2025a). *Consider two diffusion models $q_t^1(\mathbf{x}), q_t^2(\mathbf{x})$ defined via the Fokker-Planck equation in Equation (2). The weighted SDE corresponding to the referenced negation of $p_t(\mathbf{x}) \propto \neg_{q_t^2(\mathbf{x})} q_t^1(\mathbf{x})$ is, with $dw_t(\mathbf{x}) = g_t(\mathbf{x}) dt$*

1235

1236

1237

1238

1239

1240

1241

$$\begin{aligned} d\mathbf{x}_t &= [-f_t(\mathbf{x}_t) + \sigma_t^2 (2 \nabla \log q_t^2(\mathbf{x}_t) - \nabla \log q_t^1(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t \\ g_t(\mathbf{x}) &= \sigma_t^2 \|\nabla \log q_t^1(\mathbf{x}_t) - \nabla \log q_t^2(\mathbf{x}_t)\|^2 + 2g_t^2(\mathbf{x}) - g_t^1(\mathbf{x}), \end{aligned} \quad (14)$$

1242 *Proof.* We start with the annealed distribution $q_t^2(\mathbf{x})^2$ and the annealed pseudo-distribution $q_t^1(\mathbf{x})^{-1}$.
1243 We now try to find

$$\frac{\partial \log p_t}{\partial t} = 2 \frac{\partial \log q_t^2}{\partial t} - \frac{\partial \log q_t^1}{\partial t} - \int p_t \left[2 \frac{\partial \log q_t^2}{\partial t} - \frac{\partial \log q_t^1}{\partial t} \right] \quad (111)$$

$$= 2 \frac{\partial \log q_t^2}{\partial t} - \frac{\partial \log q_t^1}{\partial t} - \int p_t \left[2 \frac{\partial \log q_t^2}{\partial t} - \frac{\partial \log q_t^1}{\partial t} \right] \quad (112)$$

$$= 2 \left[\langle \nabla, f_t \rangle + \langle f_t, \nabla \log q_t^2 \rangle - \frac{\sigma_t^2}{2} (\Delta \log q_t^2 + \|\nabla \log q_t^2\|^2) + \bar{g}^2(\mathbf{x}) \right] - \left[\langle \nabla, f_t \rangle + \langle f_t, \nabla \log q_t^1 \rangle - \frac{\sigma_t^2}{2} (\Delta \log q_t^1 + \|\nabla \log q_t^1\|^2) + \bar{g}^1(\mathbf{x}) \right] - \quad (113)$$

$$\int p_t(\mathbf{x}) \left[2 \frac{\partial \log q_t^2(\mathbf{x})}{\partial t} - \frac{\partial \log q_t^1(\mathbf{x})}{\partial t} \right] d\mathbf{x} = \langle \nabla, f_t \rangle + \langle f_t, 2 \nabla \log q_t^2 \rangle - \langle f_t, \nabla \log q_t^1 \rangle + 2 \left[-\frac{\sigma_t^2}{2} (\Delta \log q_t^2 + \|\nabla \log q_t^2\|^2) + \bar{g}^2(\mathbf{x}) \right] - \left[-\frac{\sigma_t^2}{2} (\Delta \log q_t^1 + \|\nabla \log q_t^1\|^2) + \bar{g}^1(\mathbf{x}) \right] - \int p_t(\mathbf{x}) \left[2 \frac{\partial \log q_t^2(\mathbf{x})}{\partial t} - \frac{\partial \log q_t^1(\mathbf{x})}{\partial t} \right] d\mathbf{x} \quad (114)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - \frac{\sigma_t^2}{2} (2(\Delta \log q_t^2 + \|\nabla \log q_t^2\|^2) - (\Delta \log q_t^1 + \|\nabla \log q_t^1\|^2)) + 2\bar{g}^2(\mathbf{x}) - \bar{g}^1(\mathbf{x}) - \int p_t(\mathbf{x}) \left[2 \frac{\partial \log q_t^2(\mathbf{x})}{\partial t} - \frac{\partial \log q_t^1(\mathbf{x})}{\partial t} \right] d\mathbf{x} \quad (115)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - \frac{\sigma_t^2}{2} (\Delta \log p_t + \|\nabla \log p_t\|^2 - 2\|\nabla \log q_t^2 - \nabla \log q_t^1\|^2) + 2\bar{g}^2(\mathbf{x}) - \bar{g}^1(\mathbf{x}) - \int p_t(\mathbf{x}) \left[2 \frac{\partial \log q_t^2(\mathbf{x})}{\partial t} - \frac{\partial \log q_t^1(\mathbf{x})}{\partial t} \right] d\mathbf{x} \quad (116)$$

$$= \langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - \frac{\sigma_t^2}{2} (\Delta \log p_t + \|\nabla \log p_t\|^2) + \sigma_t^2 \|\nabla \log q_t^2 - \nabla \log q_t^1\|^2 + 2g^2(\mathbf{x}) - g^1(\mathbf{x}) - \mathbb{E}_{p_t} [\sigma_t^2 \|\nabla \log q_t^2 - \nabla \log q_t^1\|^2 + 2g^2(\mathbf{x}) - g^1(\mathbf{x})] \quad (117)$$

1273 And with $g(\mathbf{x}) = \sigma_t^2 \|\nabla \log q_t^2 - \nabla \log q_t^1\|^2 + 2g^2(\mathbf{x}) - g^1(\mathbf{x})$
1274

$$\frac{\partial p_t}{\partial t} = p_t \frac{\partial \log p_t}{\partial t} \quad (118)$$

$$= p_t \left[\langle \nabla, f_t \rangle + \langle f_t, \nabla \log p_t \rangle - \frac{\sigma_t^2}{2} (\Delta \log p_t + \|\nabla \log p_t\|^2) \right] + p_t [g(\mathbf{x}) - \mathbb{E}_{p_t} g(\mathbf{x})] \quad (119)$$

$$= -\langle \nabla, p_t(\mathbf{x})(-f_t + \nabla \log p_t) \rangle + \frac{\sigma_t^2}{2} \Delta p_t + p_t [g(\mathbf{x}) - \mathbb{E}_{p_t} g(\mathbf{x})], \quad (120)$$

1282 which we can simulate with

$$\begin{aligned} \mathbf{dx}_t &= [-f_t(\mathbf{x}_t) + \sigma_t^2 (2 \nabla \log q_t^2(\mathbf{x}_t) - \nabla \log q_t^1(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t \\ g_t(\mathbf{x}) &= \sigma_t^2 \|\nabla \log q_t^1(\mathbf{x}_t) - \nabla \log q_t^2(\mathbf{x}_t)\|^2 + 2g_t^2(\mathbf{x}) - g_t^1(\mathbf{x}). \end{aligned} \quad (121)$$

1286 \square

1287 **Theorem 6.2.** Consider two weighted diffusion models $q_t^1(\mathbf{x}), q_t^2(\mathbf{x})$ defined via the Feynman-Kac
1288 equation with weights $g_t^1(\mathbf{x}), g_t^2(\mathbf{x})$, and a parameter $\lambda \in \mathbb{R} \setminus \{0\}$. The weighted SDE corresponding
1289 to $p_t(\mathbf{x}) \propto (q_t^1(\mathbf{x})^\lambda + q_t^2(\mathbf{x})^\lambda)^{1/\lambda}$, with $\alpha_t^i = \frac{q_t^i(\mathbf{x})^\lambda}{q_t^1(\mathbf{x})^\lambda + q_t^2(\mathbf{x})^\lambda} \in (0, 1)$, and $dw_t = g_t(\mathbf{x})dt$ is

$$d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2 (\alpha_t^1 \nabla \log q_t^1(\mathbf{x}_t) + \alpha_t^2 \nabla \log q_t^2(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t$$

$$g_t(\mathbf{x}) = (1 - \lambda) \frac{\sigma_t^2}{2} \left[\left\| \sum_{i \in \{1, 2\}} \alpha_t^i \nabla \log q_t^i(\mathbf{x}_t) \right\|^2 - \sum_{i \in \{1, 2\}} \alpha_t^i \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 \right] + \sum_{i \in \{1, 2\}} \alpha_t^i g_t^i(\mathbf{x}_t). \quad (15)$$

1296 *Proof of Theorem 6.2.* We now use our two lemmas to show the main result. We begin with
 1297

$$\begin{aligned} 1298 \quad d\mathbf{x}_t &= [-f_t(\mathbf{x}_t) + \sigma_t^2 \lambda \nabla \log q_t^i(\mathbf{x}_t)] dt + \sigma_t d\bar{\mathbf{w}}_t \\ 1299 \quad dw_t &= (\lambda - 1) \left(\langle \nabla, f_t(\mathbf{x}_t) \rangle + \frac{\sigma^2}{2} \lambda \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 \right) dt + \lambda g_t^i(\mathbf{x}) \end{aligned} \quad (122)$$

1302 for both annealed distributions, according to Lemma B.2. Then, by Lemma B.1, we have a mixture
 1303 of these distributions with

$$\begin{aligned} 1304 \quad d\mathbf{x}_t &= [-f_t(\mathbf{x}_t) + \sigma_t^2 \lambda (\alpha_t^1 \nabla \log q_t^1(\mathbf{x}_t) + \alpha_t^2 \nabla \log q_t^2(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t \\ 1305 \quad dw_t &= \alpha_t^1 \left[(\lambda - 1) \left(\langle \nabla, f_t(\mathbf{x}_t) \rangle + \frac{\sigma^2}{2} \lambda \|\nabla \log q_t^1(\mathbf{x}_t)\|^2 \right) dt + \lambda g_t^1(\mathbf{x}) \right] + \\ 1306 \quad &\quad \alpha_t^2 \left[(\lambda - 1) \left(\langle \nabla, f_t(\mathbf{x}_t) \rangle + \frac{\sigma^2}{2} \lambda \|\nabla \log q_t^2(\mathbf{x}_t)\|^2 \right) dt + \lambda g_t^2(\mathbf{x}) \right] \end{aligned} \quad (123)$$

1310 which simplifies to
 1311

$$1312 \quad dw_t = (\lambda - 1) \langle \nabla, f_t(\mathbf{x}_t) \rangle dt + \lambda \left[\sum_{i \in \{1, 2\}} \alpha_t^i \left((\lambda - 1) \frac{\sigma^2}{2} \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 dt + g_t^i(\mathbf{x}_t) \right) \right]. \quad (124)$$

1315 Finally, we apply Lemma B.2 to the resulting mixture with $1/\lambda$. This then results in
 1316

$$1317 \quad d\mathbf{x}_t = [-f_t(\mathbf{x}_t) + \sigma_t^2 (\alpha_t^1 \nabla \log q_t^1(\mathbf{x}_t) + \alpha_t^2 \nabla \log q_t^2(\mathbf{x}_t))] dt + \sigma_t d\bar{\mathbf{w}}_t, \quad (125)$$

1319 which is the target score as desired. For our weight-field we then have

$$\begin{aligned} 1321 \quad &(\frac{1}{\lambda} - 1) \left(\langle \nabla, f_t(\mathbf{x}_t) \rangle + \frac{\sigma^2}{2} \frac{1}{\lambda} \|\alpha_t^1 \lambda \nabla \log q_t^1(\mathbf{x}_t) + \alpha_t^2 \lambda \nabla \log q_t^2(\mathbf{x}_t)\|^2 \right) dt + \\ 1322 \quad dw_t &= \frac{1}{\lambda} \left[(\lambda - 1) \langle \nabla, f_t(\mathbf{x}_t) \rangle + \lambda \left[\sum_{i \in \{1, 2\}} \alpha_t^i \left((\lambda - 1) \frac{\sigma^2}{2} \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 + g_t^i(\mathbf{x}_t) \right) \right] \right] dt \end{aligned} \quad (126)$$

$$\begin{aligned} 1328 \quad &\frac{1 - \lambda}{\lambda} \langle \nabla, f_t(\mathbf{x}_t) \rangle dt + \frac{1 - \lambda}{\lambda} \frac{\sigma^2}{2} \frac{1}{\lambda} \|\alpha_t^1 \lambda \nabla \log q_t^1(\mathbf{x}_t) + \alpha_t^2 \lambda \nabla \log q_t^2(\mathbf{x}_t)\|^2 dt + \\ 1329 \quad &= \frac{\lambda - 1}{\lambda} \langle \nabla, f_t(\mathbf{x}_t) \rangle dt + \sum_{i \in \{1, 2\}} \alpha_t^i \left((\lambda - 1) \frac{\sigma^2}{2} \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 + g_t^i(\mathbf{x}_t) \right) dt \end{aligned} \quad (127)$$

$$\begin{aligned} 1333 \quad &(1 - \lambda) \frac{\sigma^2}{2} \left\| \sum_{i \in \{1, 2\}} \alpha_t^i \nabla \log q_t^i(\mathbf{x}_t) \right\|^2 dt + \\ 1334 \quad &= \sum_{i \in \{1, 2\}} \alpha_t^i \left((\lambda - 1) \frac{\sigma^2}{2} \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 + g_t^i(\mathbf{x}_t) \right) dt \end{aligned} \quad (128)$$

$$1340 \quad = (1 - \lambda) \frac{\sigma^2}{2} \left[\left\| \sum_{i \in \{1, 2\}} \alpha_t^i \nabla \log q_t^i(\mathbf{x}_t) \right\|^2 - \sum_{i \in \{1, 2\}} \alpha_t^i \|\nabla \log q_t^i(\mathbf{x}_t)\|^2 \right] dt + \sum_{i \in \{1, 2\}} \alpha_t^i g_t^i(\mathbf{x}_t) dt \quad (129)$$

1344 We can see that, as expected, for $\lambda = 1$ we are left with the unweighted mixture of distributions. For
 1345 more complex compositions, the weight fields just propagate as well, we can see that the statement
 1346 trivially generalizes to more than two diffusion models, so we maintain associativity.
 1347 \square
 1348



Figure 6: Generated MNIST score compositions.

C EXPERIMENTS

All our experiments on stable diffusion and SBDD were performed on unmodified, pretrained models. We performed inference on Nvidia v100 and a100 GPUs.

C.1 MNIST EXPERIMENTS

We reproduce the setup of (Garipov et al., 2023), and generate images from the score composition of the three toy mnist models. The code to training the models can be obtained from the code repository and training was performed on a Nvidia GTX 3080 desktop within 10 minutes.

We show image collages for non-trivial example formulas in Figure 6. For each formula we generated a batch of 1024 images.

C.2 STABLE DIFFUSION IMAGE GENERATION

We reproduce the stable diffusion experimental setup of (Skreta et al., 2025b) with Stable Diffusion v1-4 available pretrained publically at huggingface: <https://huggingface.co/CompVis/stable-diffusion-v1-4>. We then report, PoE, superdiffs and as well as joint prompts.

We use 20 pairs of conjunctive prompt-pairs and generate 20 images each. We provide a batch of the generated images in the supplementary material, and list the prompts here, also reused from (Skreta et al., 2025b):

- "a mountain landscape" \wedge "silhouette of a dog"
- "a flamingo" \wedge "a candy cane"
- "a dragonfly" \wedge "a helicopter"
- "dandelion" \wedge "fireworks"
- "a sunflower" \wedge "a lemon"

- 1404 • "a rocket" \wedge "a cactus"
- 1405 • "moon" \wedge "cookie"
- 1406 • "a snail" \wedge "a cinnamon roll"
- 1407 • "an eagle" \wedge "an airplane"
- 1408 • "zebra" \wedge "barcode"
- 1409 • "chess pawn" \wedge "bottle cap"
- 1410 • "a pineapple" \wedge "a beehive"
- 1411 • "a spider web" \wedge "a bicycle wheel"
- 1412 • "a waffle cone" \wedge "a volcano"
- 1413 • "a cat" \wedge "a dog"
- 1414 • "a chair" \wedge "an avocado"
- 1415 • "a donut" \wedge "a map"
- 1416 • "otter" \wedge "duck"
- 1417 • "pebbles on a beach" \wedge "a turtle"
- 1418 • "teddy bear" \wedge "panda"

1423 For the contrastive Prompts, we partially use our own prompts and partially use the prompts from
 1424 (Dong et al., 2023). We provide a batch of the generated images in the supplementary material, and
 1425 list the prompts here:

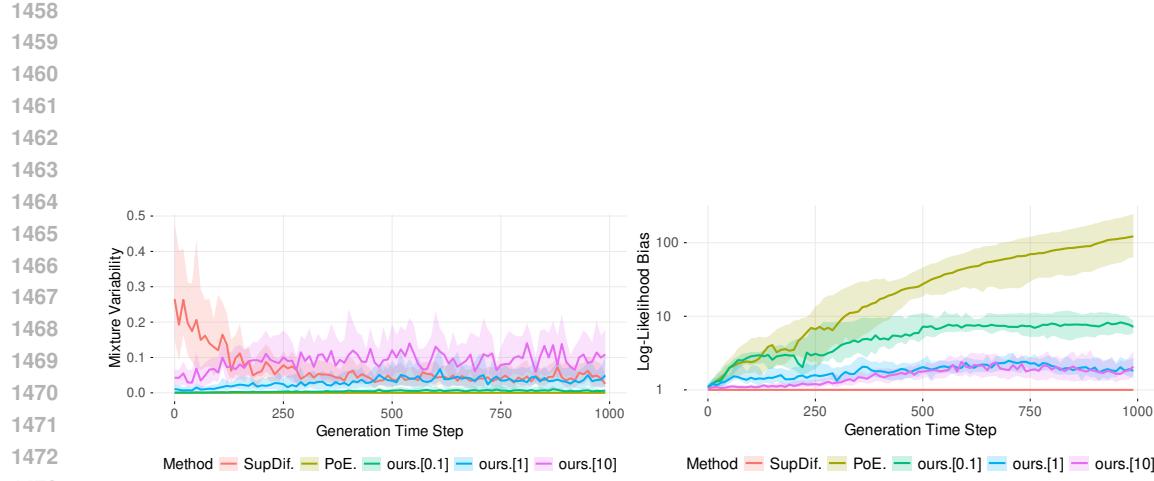
- 1427 • "A night sky with stars and a crescent moon, reminiscent of
 1428 Van Gogh's 'Starry Night'." $\wedge\neg$ "Van Gogh"
- 1429 • "A night sky with stars and a crescent moon, reminiscent of
 1430 Van Gogh's 'Starry Night'." $\wedge\neg$ "Picasso's Cubist style"
- 1431 • "A portrait of a man with a distorted and fragmented face
 1432 painted in Picasso's Cubist style." $\wedge\neg$ "Picasso's Cubist
 1433 style"
- 1434 • "A cat and a ball on the shelf" $\wedge\neg$ "cat, ball"
- 1435 • "There are a bicycle and a car in front of the house" $\wedge\neg$ "a
 1436 bicycle and a car"
- 1437 • "orange fruit" $\wedge\neg$ "orange color palette"
- 1438 • "a banana" $\wedge\neg$ "yellow color palette"
- 1439 • "an ocean" $\wedge\neg$ "blue color palette"
- 1440 • "strawberry" $\wedge\neg$ "red color palette"
- 1441 • "round shape" $\wedge\neg$ "circle"

1445 C.2.1 ADDITIONAL RESULTS

1447 We provide additional plots illustrating the behaviour of composition under varying values of λ in
 1448 Figure 7.

1450 C.3 ADDITIONAL RESULTS ON SBDD MOLECULE GENERATION

1452 We report a sweep across three values of λ for the molecule generation task in Table 2. As the
 1453 variance in this experiment is high, none of the differences can be considered significant.



(a) Variability of mixture coefficients for conjunction (b) Absolute difference in likelihood during generation
 Figure 7: Mixture Stability vs Likelihood Bias in SD experiment. Figure 7a shows the absolute change in α^i , Figure 7b shows the median absolute log-density ratio. PoE (or geometric mean) has constant mixture coefficients, but log-likelihoods diverge during the diffusion process. Superdiff forces equal likelihoods as the cost of a highly variable mixture, especially early during the diffusion process. Dombi composition (ours. $[\lambda]$) provides a tradeoff, depending on λ .

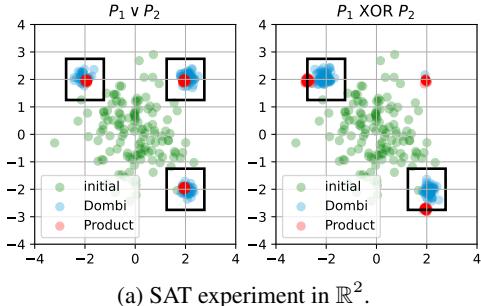
Table 2: Docking Scores of generated ligands for 14 protein target pairs (P_1, P_2), in batches of 32 ligands for 5 molecule lengths each. Extended runs across temperatures $\gamma \in \{1, 2\}$. We compare conjunction with Dombi with various λ with and without FKC with annealed base distribution and also report TargetDiff from (Guan et al., 2023) as baseline.

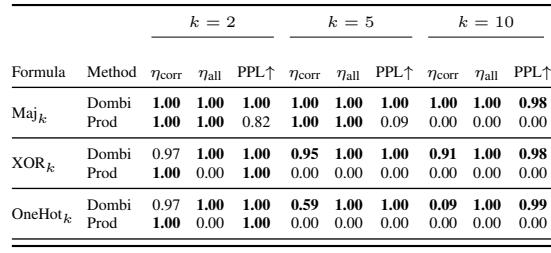
Method	Temp. γ	λ	FKC?	$(P_1 * P_2) (\uparrow)$	$\max(P_1, P_2) (\downarrow)$	Better than ref. (\uparrow)	Div. (\uparrow)	Val. & Uniq. (\uparrow)	QED (\uparrow)	SA (\downarrow)
TargetDiff	–	–	–	62.19 \pm 27.08	–7.24 \pm 2.35	0.32 \pm 0.37	0.89 \pm 0.01	0.95 \pm 0.07	0.57 \pm 0.14	0.59 \pm 0.09
Dombi	1	0.3	✗	68.12 \pm 27.38	–7.37 \pm 2.51	0.26 \pm 0.32	0.88 \pm 0.02	0.96 \pm 0.10	0.58 \pm 0.12	0.59 \pm 0.10
Dombi	1	1	✗	68.60 \pm 28.09	–7.42 \pm 2.57	0.28 \pm 0.34	0.88 \pm 0.02	0.96 \pm 0.09	0.58 \pm 0.13	0.59 \pm 0.10
Dombi	1	3	✗	67.92 \pm 28.17	–7.33 \pm 2.61	0.28 \pm 0.34	0.88 \pm 0.01	0.96 \pm 0.09	0.57 \pm 0.13	0.59 \pm 0.10
Dombi	1	0.3	✓	72.09 \pm 31.16	–7.51 \pm 2.64	0.31 \pm 0.37	0.87 \pm 0.02	0.95 \pm 0.12	0.56 \pm 0.13	0.59 \pm 0.11
Dombi	1	1	✓	72.83 \pm 22.42	–7.71 \pm 1.65	0.27 \pm 0.35	0.86 \pm 0.03	0.98 \pm 0.08	0.57 \pm 0.13	0.59 \pm 0.11
Dombi	1	3	✓	70.01 \pm 27.94	–7.50 \pm 2.50	0.28 \pm 0.33	0.86 \pm 0.02	0.96 \pm 0.10	0.58 \pm 0.13	0.61 \pm 0.09
Dombi	2	0.3	✗	72.54 \pm 29.03	–7.67 \pm 2.41	0.32 \pm 0.35	0.88 \pm 0.02	0.93 \pm 0.16	0.59 \pm 0.13	0.61 \pm 0.10
Dombi	2	1	✗	71.36 \pm 29.44	–7.59 \pm 2.48	0.30 \pm 0.34	0.88 \pm 0.01	0.93 \pm 0.16	0.59 \pm 0.12	0.62 \pm 0.09
Dombi	2	3	✗	72.92 \pm 29.50	–7.74 \pm 2.46	0.31 \pm 0.36	0.88 \pm 0.02	0.94 \pm 0.16	0.60 \pm 0.12	0.62 \pm 0.09
Dombi	2	0.3	✓	78.75 \pm 33.36	–7.98 \pm 2.51	0.37 \pm 0.40	0.87 \pm 0.03	0.94 \pm 0.15	0.59 \pm 0.12	0.61 \pm 0.10
Dombi	2	1	✓	81.63 \pm 25.91	–8.25 \pm 1.56	0.38 \pm 0.40	0.85 \pm 0.11	0.93 \pm 0.17	0.59 \pm 0.12	0.62 \pm 0.10
Dombi	2	3	✓	83.06 \pm 27.02	–8.40 \pm 1.61	0.40 \pm 0.41	0.85 \pm 0.03	0.94 \pm 0.12	0.57 \pm 0.13	0.62 \pm 0.09

1512 **D SAT-EXPERIMENT**
 1513

1514
 1515
 1516 **D.1 SETUP**
 1517

1518 We illustrate the capability of Dombi compositions to adhere to combinatorial constraints by sam-
 1519 pling uniformly from satisfying variable assignments of propositional formulas. For a formula with
 1520 k propositional variables P_i , for $i \in [1, k]$, we set up our diffusion ensemble as follows: In \mathbb{R}^k , we
 1521 place 2^k Gaussian modes, one for each possible variable assignment. Then, in our ensemble, each
 1522 of k score models simulates one propositional variable. For $i \in [1, k]$, we have access to s_i , which
 1523 defines a denoising process to a uniform mixture of the 2^{k-1} Gaussian modes, where the P_i is true.
 1524 Additionally, a reference model defines a denoising process uniformly to *all* 2^k Gaussian modes.
 1525 For $k = 2$, this setup is visualized in Figure 8a.



1529 
 1530

Formula	Method	$k = 2$			$k = 5$			$k = 10$		
		η_{corr}	η_{all}	$\text{PPL} \uparrow$	η_{corr}	η_{all}	$\text{PPL} \uparrow$	η_{corr}	η_{all}	$\text{PPL} \uparrow$
Maj_k	Dombi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98
	Prod	1.00	1.00	0.82	1.00	1.00	0.09	0.00	0.00	0.00
XOR_k	Dombi	0.97	1.00	1.00	0.95	1.00	1.00	0.91	1.00	0.98
	Prod	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
OneHot_k	Dombi	0.97	1.00	1.00	0.59	1.00	1.00	0.09	1.00	0.99
	Prod	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00

1531 (b) Overview of SAT experiment for three formulas.
 1532

1533 Figure 8: Figure 8a shows the SAT experiment in \mathbb{R}^2 , with squares corresponding to satisfying
 1534 assignments. The corresponding numerical overview for $k \in \{2, 5, 10\}$ in Figure 8b. Best are bold.
 1535

1536 Our objective is then to use score-composition to uniformly sample from all satisfying variable as-
 1537 signments. We repeat this setup for the Dombi operators, as well as PoE/MoE composition for three
 1538 formulas for $k \in [1, 10]$, and report mode coverage, uniformity, and stability of the composition.
 1539

1540 **D.1.1 SAT FORMULAS**
 1541

1542 We use three different propositional formulas: majority, xor, and one-hot. The formulations of these
 1543 formulas are designed to test different aspects of the score composition.
 1544

1545 **Majority** We define the formula over k variables as
 1546

$$\text{Maj}_k(P_1, \dots, P_k) \equiv \bigwedge_{\substack{S \subseteq \{P_1, \dots, P_k\} \\ |S| = \lceil k/2 \rceil}} \bigvee_{P \in S} .$$

1547 This formula is negation-free, but might lead to mode dropping for variable assignments with fewer
 1548 positive variables.
 1549

1550 **One-Hot** We define a formula where exactly one variable has to be true as
 1551

$$\text{OneHot}_k(P_1, \dots, P_k) \equiv \left(\bigvee_{i=1}^k P_i \right) \wedge \left(\bigwedge_{1 \leq i < j \leq k} (\neg P_i \vee \neg P_j) \right).$$

1552 It is only quadratic in the length of the variables, but it contains many clauses without positive
 1553 literals, requiring precise handling of explicit negation.
 1554

1555 **Exclusive Or** We define xor as a parity function over k variables as
 1556

$$\text{XOR}_k(P_1, \dots, P_k) \equiv \bigwedge_{\substack{v \in \{0,1\}^k \\ \sum_i v_i \equiv 0 \pmod{2}}} \bigvee_{i=1}^k (v_i ? \neg P_i : P_i).$$

1566 This formula can only be expressed in exponential length with 2^{k-1} clauses, which explicitly ex-
 1567 clude one assignment with even parity.
 1568

1569 D.2 SCORE MODEL SETUP

1570 We translate each of the 2^k propositional variable assignments to a Gaussian mode in \mathbb{R}^k as
 1571

$$1572 p(\mathbf{x}) = \frac{1}{2^k} \sum_{v \in \{0,1\}^k} \mathcal{N}_k(\mathbf{x}|4v - 2, \sigma^2).$$

1573 We then define “directional” diffusion models
 1574

$$1575 \forall i \in [1, k] : p_i(\mathbf{x}) = \frac{1}{2^{k-1}} \sum_{\substack{v \in \{0,1\}^k \\ v_i = 1}} \mathcal{N}_k(\mathbf{x}|4v - 2, \sigma^2).$$

1576 In this setup, each distribution plays the role of one propositional variable. The distributions p_i
 1577 can then be composed to mirror a propositional formula, with the goal that particles converge only
 1578 to modes that correspond to satisfying variable assignments. We use p as an additional stabilizing
 1579 model to guide particles to any location that corresponds to an assignment.
 1580

1581 As these models are mixtures of Gaussians, we derive optimal scores and energy functions from the
 1582 standard Gaussian to our distributions in closed form.
 1583

1584 We then model each type of formula for $k \in [1, 10]$ as direct composition and simulate 2^{14} particles
 1585 over 100 denoising steps.
 1586

1587 For each mode, when then check a L_∞ bounding box around its mean of sidelength 3σ and consider
 1588 all particles within that radius to be valid assignments.
 1589

1590 In Figure 8b we show the most important metrics: η_{corr} , the fraction of particles within bounding
 1591 boxes of satisfying modes, η_{all} , the fraction of particles converging to any mode. Additionally, we
 1592 measure the normalized perplexity in the particle distributions across as PPL. In this experiment,
 1593 PPL measures mode uniformity, where a higher number indicates more uniform samples from sat-
 1594 isfying modes of the formula. In a formula with K satisfying variable assignments, for a batch of n
 1595 particles, with $n\eta_{\text{corr}}$ particles within satisfying modes, we denote the fraction of particles within the
 1596 bounding box of the *assignment index* $i \in [1, K]$ as η_i with $\sum_i \eta_i = \eta_{\text{corr}}$. We then calculate PPL
 1597 for mode confusion as
 1598

$$1600 \text{PPL} = 2^{(-\sum_{i=1}^K \frac{\eta_i}{\eta_{\text{corr}} \log_2 \frac{\eta_i}{\eta_{\text{corr}}})} / K.$$

1601 D.3 RESULTS

1602 Figure 8a shows samples of formulas in \mathbb{R}^2 . An overview of the experimental results is provided
 1603 in Figure 8b. We can see multiple shortcomings of products in our experimental results. On the
 1604 negation-free Maj_k , PoE drastically reduces the per-mode variance, as seen in Figure 8a, drops most
 1605 of the modes for $k = 5$, and completely breaks down for $k = 10$. In contrast to this, the dombi
 1606 Operators do not drop modes and maintain a close-to-uniform distribution over modes in high
 1607 dimensions. For XOR_k and OneHot_k PoE breaks down for $k = 2$ already, due to the negated literals.
 1608 In Figure 8a, the modes of the PoE sample appear drastically biased by the negated clause. Some-
 1609 what surprisingly, the Dombi composition can sample comparatively well from the exponentially
 1610 sized XOR_{10} , and struggles much more for OneHot , which is comprised of many purely negative
 1611 clauses.
 1612

1613
 1614
 1615
 1616
 1617
 1618
 1619