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ABSTRACT

Large language models (LLMs) have recently received considerable attention as
alternative solutions for task planning. However, comparing the performance of
language-oriented task planners becomes difficult, and there exists a dearth of de-
tailed exploration regarding the effects of various factors such as pre-trained model
selection and prompt construction. To address this, we propose a benchmark sys-
tem for automatically quantifying performance of task planning for home-service
embodied agents. Task planners are tested on two pairs of datasets and simula-
tors: 1) ALFRED and AI2-THOR, 2) an extension of Watch-And-Help and Vir-
tualHome. Using the proposed benchmark system, we perform extensive experi-
ments with LLMs and prompts, and explore several enhancements of the baseline
planner. We expect that the proposed benchmark tool would accelerate the devel-
opment of language-oriented task planners.

1 INTRODUCTION

The ability of embodied agents to comprehend natural language instructions and perform the desired
tasks has been a long-standing goal in the field of AI and robotics. When the agent has a sufficiently
diverse skill set, decomposing high-level tasks into sequences of executable skills becomes particu-
larly important. Conventional approaches have addressed this challenge through symbolic planning
in predefined domains (Fikes & Nilsson, 1971; Garrett et al., 2020) or through learning-based task
and motion planning (Silver et al., 2023; Shah et al., 2022; Li et al., 2022). Recently, large language
models (LLMs) have emerged as a promising alternative. These models, pre-trained on extensive
corpora, seem to have semantic knowledge about the world (Brown et al., 2020; Chowdhery et al.,
2023; Thoppilan et al., 2022; Zhang et al., 2022). This knowledge can be effectively leveraged for
high-level task planning through in-context learning without any additional training (Huang et al.,
2022; Singh et al., 2023; Liang et al., 2023a; Ahn et al., 2023; Huang et al., 2023; Yao et al., 2023).

However, the evaluation frameworks for LLM-based task planning remain underdeveloped. Most
existing studies rely on human evaluation, which is not only time-consuming but also expensive.
These evaluations often occur in custom environments, which also makes them difficult to repro-
duce. Although some research (Huang et al., 2023; Liang et al., 2023a) has utilized simulators for
automated evaluation, these efforts are typically confined to simple tabletop manipulation tasks. Fur-
thermore, there is a noticeable absence of in-depth investigation into various influential factors, such
as the type and size of pre-trained model, the number and select strategy of in-context examples, the
capability for replanning based on natural language feedback, and the impact of fine-tuning.

To address the limitations, we introduce LoTa-Bench, a benchmark for language-oriented task plan-
ning for embodied agents. Our system aims to automatically quantify planning performance, en-
abling easier, fair, and reproducible comparison between systems. The framework consists of a
baseline task planner, a dataset, and a simulator, as illustrated in Figure 1. The baseline task plan-
ner capitalizes on the in-context learning ability of LLMs. It constructs a prompt using a prefix,
in-context examples (comprising pairs of natural language instructions and corresponding skill se-
quences to accomplish the instruction), and a user-provided natural language instruction. With this
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Figure 1: Overall benchmarking con�guration for LLM-based task planners. NL stands for Natural
Language. We used two setups: 1) ALFRED dataset with AI2-THOR simulator and 2) WAH-NL
dataset with VirtualHome simulator. Exemplary prompt and skill set are presented on the left side.

prompt, the LLM calculates the probabilities of all executable skills to complete a task. The skill
with the highest probability is selected and appended to the prompt for the next step in an autore-
gressive manner. In the proposed benchmark suite, we evaluate the planner on two dataset-simulator
pairs: 1) ALFRED dataset (Shridhar et al., 2020) with AI2-THOR simulator (Kolve et al., 2017),
and 2) our extension of Watch-And-Help (WAH) dataset (Puig et al., 2021), WAH-NL, paired with
VirtualHome simulator (Puig et al., 2018). Each dataset sample furnishes the planner with both a
natural language instruction and an environment context. The simulator executes the planned ac-
tions, and the performance of task planning is automatically assessed by comparing the �nal state of
the simulator with prede�ned goal conditions.

In addition to the introduction of the benchmark suite, we provide extensive experimental results
to further understand LLM-based task planning. Our baseline experiments explore the in�uence
of various pre-trained models and their sizes. Given the critical impact of in-context examples
on the performance of LLM-based task planners, we investigate the effect of number of examples
and selection strategies. Additionally, we probe into other in�uential factors such as replanning
according to the failure of a previous step and the effectiveness of model �ne-tuning in the task
planning domain.

Our contribution is fourfold: 1) �rst proposal of a benchmark suite that enables automatic evaluation
of LLM-based task planners for home-service agents, 2) extensive experiments of a baseline task
planner, 3) exploring possible extensions of the baseline planner and its validation with the proposed
benchmark, and 4) public release of benchmark code and extended dataset (WAH-NL); they are
available athttps://github.com/lbaa2022/LLMTaskPlanning .

2 RELATED WORK

LLMs have demonstrated remarkable generalization capabilities through zero-shot or few-shot
prompting (Brown et al., 2020), leading to a transformative impact on task planning. Traditional
task planning methods predominantly focused on searching within prede�ned domains (Fikes &
Nilsson, 1971; Garrett et al., 2020; Hoffmann, 2001) or learning trajectories (Silver et al., 2023;
Shah et al., 2022; Li et al., 2022; Ichter et al., 2022; Nair & Finn, 2020; Eysenbach et al., 2019;
Xu et al., 2019). However, thanks to LLMs, new language-oriented task planning methods have
emerged. Huang et al. (2022) proposed a method where an LLM directly generates task plans via
prompt engineering, with each generated step translated into an executable action using another
language model. SayCan (Ahn et al., 2023) employed an LLM to score all predi�ned admissi-
ble actions, concurrently considering skill affordance through learned vision-based value functions.
LLMs have also been adopted to generate executable robot codes using program-style inputs such as
function descriptions (Liang et al., 2023a; Singh et al., 2023; Zelikman et al., 2023). Moreover, inte-
grating context into LLM-based task planners has been shown to enhance planning ef�cacy (Huang
et al., 2023; Yao et al., 2023; Chen et al., 2023; Lin et al., 2023; Wu et al., 2023).

Although numerous LLM-based task planners have emerged, standardized automatic performance
evaluation methods are still scarce. Real robot experiments typically require time-intensive human

2



Published as a conference paper at ICLR 2024

evaluations. In these setups, human raters determine the success or failure of planning (Ahn et al.,
2023; Huang et al., 2023; Chen et al., 2023). When using simulators and datasets for evaluations,
each task requires the goal condition and the natural language instruction. If a dataset lacks goal con-
ditions, such as ActivityPrograms (Puig et al., 2018), human evaluation remains necessary (Huang
et al., 2022; Zelikman et al., 2023). Similarly, datasets without natural language instruction, like
Watch-And-Help (Puig et al., 2021), or simulators not offering high-level APIs, such as Behavior-
1k (Li et al., 2023), cannot support language-oriented task planning. Only a few studies, akin to our
benchmark suite, have incorporated automated evaluations. For instance, ReAct (Yao et al., 2023)
utilized the ALFWorld (Shridhar et al., 2021) text-based game and the ALFRED dataset (Shridhar
et al., 2020). ProgPrompt (Singh et al., 2023) engaged with the VirtualHome simulator and a cus-
tomized dataset. Nevertheless, these assessments were conducted in restricted settings, hindering
insights into comprehensive potential of LLM-based task planners.

3 BASELINE LLM- BASED TASK PLANNER

Problem Statement. In our proposed framework, a task planner receives a natural language in-
structioni from the user, e.g., “bring an apple and a cupcake and put them on the coffee table.” The
planner also has access to a prede�ned skill setS, where each skills2S represents an atomic action
the agent can perform, such as “pick up the apple,” “�nd a wine glass,” or “open the fridge.” We
assume that these skills are coupled with corresponding language-conditioned low-level controllers
(Jang et al., 2022; Brohan et al., 2023). The objective of the task planner is to select the skillst at
time stept by maximizing the likelihood of completing the given instructioni as follows:

st = arg max
s2 S

p(sji; s0; � � � ; st � 1); (1)

wheres0; � � � ; st � 1 are previously executed skills ands0 = ; . Exemplary step sequences for the
instruction we mentioned above could be (1. �nd an apple, 2. pick up the apple, 3. �nd a coffee
table, 4. put down the apple, 5. �nd a cupcake, 6. pick up the cupcake, 7. �nd a coffee table, 8. put
down the apple, 9. done).

Baseline Task Planner. Our baseline task planner leverages the in-context learning capabilities
of large language models (LLMs), resonating with recent research (Huang et al., 2022; Liang et al.,
2023a; Ahn et al., 2023). To estimate the probability expressed in Equation 1, we construct a prompt
P, which consists of a pre�x, in-context examples, the instructioni , and a history of previously ex-
ecuted skills. For a skills, described byns subword tokenss = ( ws

1; � � � ; ws
n s

), the LLM computes
the conditional probability as follows:

p(sji; s1; � � � ; st � 1) = pLLM (sjP) =
n sY

n =1

pLLM (ws
n jP; ws

0; � � � ; ws
n � 1); (2)

wherepLLM is the pre-trained LLM andws
0 = ; . Instead of iterating every skill to �nd the best next

skill to perform (Equation 1), which requires extensive computation, we employ a greedy search
strategy, but with constraints on the next token selection to match with one of the skills using Guid-
ance tool (Microsoft, 2023); see Appendix B for details. Once a skill is selected, it is appended to
the promptP, and the planner continues to use the updated prompt to select the next skill. This au-
toregressive process continues until either the terminal skill (“done”) is selected or the skill sequence
reaches a prede�ned maximum length.

4 BENCHMARK SETUP

To rigorously evaluate LLM-based task planners, we introduce a comprehensive evaluation frame-
work, described in Figure 1. The framework integrates three key components: a task planner, a
dataset, and a simulator. The baseline task planner elaborated in Section 3 is employed for compar-
ative benchmarking. Then we offer two distinct dataset-simulator pairings: 1) the ALFRED dataset
(Shridhar et al., 2020) built on the AI2-THOR simulator (Kolve et al., 2017), and 2) an extended
version of the Watch-And-Help (WAH) dataset (Puig et al., 2021), named WAH-NL, incorporated
with the VirtualHome simulator (Puig et al., 2018). Further details of the dataset and the simulator
are described in the following subsections.
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4.1 DATASET

Our benchmark employs two datasets, the ALFRED dataset (Shridhar et al., 2020) and our extension
of the WAH dataset (Puig et al., 2021). Both datasets include sets of a natural language (NL)
instruction, an initial environment state, and a goal condition for home environments. The NL
instructions are user-provided and serve as inputs to the task planner of an autonomous agent. The
initial environment states, containing object locations and states, are used for initialization of the
simulator and for skill set construction in the task planning. The goal condition speci�es the criteria
for task completion. Planning performance is assessed by comparing the �nal state of the simulator
with this goal condition after the execution of the last skill generated by the task planner.

ALFRED. It is a benchmark dataset for embodied AI agents that plan and execute primitive actions
to perform household tasks, such as heating a mug cup, placing a salt shaker in a drawer, or putting
vegetables in the fridge. This dataset was built on the AI2-THOR simulation environment. There are
7 task types ofPick & Place, Stack & Place, Pick Two & Place, Clean & Place, Heat & Place, Cool
& Place, andExamine in Light. Among them, we excludedPick Two & Placetype in the evaluation
because of missing capability of object instance recognition, which is required to accomplish this
task type, in the LLM-based task planner.

WAH-NL. The original WAH dataset focuses on the challenges of AI agents assisting humans in
household tasks. It consists of aWatchstage where agents observe human demonstrations to infer
goals, and aHelpstage where agents assist human in achieving those goals with minimal time steps.
The dataset includes 5 task types ofSetup a dinner table, Put groceries, Prepare a meal, Wash dishes,
andRead a book. The goal condition of each task consists of multiple subgoals. For example, the
goal condition ofPut groceriestask can be “INSIDE(cupcake, fridge): 2” and “INSIDE(apple,
fridge): 1”, where the numeric values indicate the number of objects.

Our extended version, WAH-NL, introduced two signi�cant modi�cations on theHelp stage of the
original WAH dataset. First, we adjust the goal conditions, originally designed for human-AI collab-
orations, to suit autonomous agents. Additionally, we set the number of objects for all subgoals to 1,
for similar reasons as with the ALFRED dataset (the lack of object instance recognition capability
in our LLM-based task planner). Second, since the original dataset lacks NL instructions, which is
must-needed element for language-oriented task planners, we collected them via the Proli�c crowd-
sourcing platform. The �nal dataset includes 416 instructions for thetrain set and 195 for thetest
set. More details about WAH-NL are described in Appendix E.

4.2 SIMULATOR

The simulator serves as an interactive environment that enacts the skills generated by the task plan-
ner. We �rst de�ne a skill set for the task planner by combining available actions with optional
parameters like target objects or receptacles. The skill set includes, for example, “�nd an apple,”
“turn on the faucet,” “open the fridge”, and “put down the pillow.” Then, we simulated language-
conditioned low-level controllers by mapping the skills to executable agent action APIs of the sim-
ulators.

Our approach primarily employs two types of skills: object navigation (ObjNav) and object inter-
action. We opted for ObjNav over low-level move actions (such as move forward and rotate) as
ObjNav is well studied and would be considered as a unit capability of home-service agents (Duan
et al., 2022). We assume that the agent is fully aware of object locations in the scene (practically, it
can be accomplished by scene exploration with object map building). Object interaction skills are
executable only when the interacting object is close to the agent. For example, “pick up the plate” is
successful when the distance between the plate and agent is less than a prede�ned distance. We had
some other assumptions for the object interaction skill. For the “put down” skill, the agent always
put a holding object on a receptacle last visited. If there are multiple objects with the same class, the
object closest to the agent is selected. The agent can hold one object in AI2-THOR and two objects
in VirtualHome.

AI2-THOR. There are seven interaction actions–“pick up,” “open,” “close,” “turn on,” “turn off,”
“slice,” and “put down”–and one navigation action “�nd.” Among all combinations of action and
optional parameters such as target objects or receptacles, we used 214 skills that were used at least
once in the ground-truth trajectories in thetrain set.
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(a) ALFRED (b) WAH-NL
Figure 2: Baseline results on (a) ALFRED and (b) WAH-NL. We report task success rates (%) on the
ALFRED dataset and average subgoal success rate (%) on the WAH-NL datset for language models
in different model classes and sizes (number of parameters). Base language models are represented
as solid lines. Fine-tuned models (by either instruction or chat data) were shown in a dashed line
with a triangle maker.

VirtualHome. This simulator supports �ve interaction actions – “pick up,” “open,” “close,” “switch
on,” and “put down” – and one navigation action “�nd.” In VirtualHome, due to the extensive total
number of skills, we constructed a skill set by considering all possible combinations of actions and
optional parameters for each environment. On average, we utilized 351.89 skills.

5 BASE EXPERIMENTS

We conducted experiments to measure the performance of the baseline LLM-based task planners
by using the proposed benchmark. We tested various settings including LLMs in different model
classes and sizes and the impact of the number of in-context examples.

5.1 EVALUATION PROTOCOL

Test Setup. We used the ALFRED and WAH-NL datasets, as introduced in Section 4.1. The
ALFRED dataset consists of three sets:train, valid-seen, andvalid-unseen. Thevalid-seenwas used
to evaluate planning performance; thetrain set was only used to take examples to construct prompts.
We used a small set ofvalid-seen, which has 208 samples (30% of thevalid-seenset), to accelerate
the evaluation of various con�gurations (see Appendix C for the results with the full set). The
WAH-NL dataset comprises atrain set and atestset with 250 and 100 samples, respectively. The
train set was used to construct in-context examples, and thetestset was used to evaluate planning
performance.

The prompt comprises a pre�x, describing the role of a home-service embodied agents, and a number
of in-context examples, which adhere to the template de�ned in SayCan (Ahn et al., 2023). Each
example is a pair of an input query (task instructions) and the corresponding output step sequences
to accomplish the task. See Appendix F for a complete prompt sample. The in-context examples
were randomly selected from thetrain sets, and we tried to use the same number of examples per
task type. The default setup is to include six examples in ALFRED and �ve examples in WAH-NL
(one example per task type).

Evaluation Metrics. We measured planning performance using the task success rates for ALFRED.
Task success was determined based on whether the �nal state after executing the step sequence
generated by the task planner satis�es the expected goal condition. For WAH-NL, we measured
the average subgoal success rate. Each WAH-NL task has multiple subgoals. We calculate the
individual subgoal success rate as the ratio of successfully completed subgoals to the total number
of subgoals for each task. The average subgoal success rate across atestset is reported.

5.2 BENCHMARK RESULTS OFBASELINE TASK PLANNER

We evaluated the planning performance of the baseline planner described in Section 3. Figure
2 shows the results on ALFRED and WAH-NL for different pre-trained LLMs: GPT (Brown
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et al., 2020), GPT-Neo series (Black et al., 2021; Wang & Komatsuzaki, 2021; Black et al.,
2022), OPT (Zhang et al., 2022), MPT (Team, 2023b;a), LLaMA 1 (Touvron et al., 2023a), and
LLaMA 2 (Touvron et al., 2023b) (see Appendix A for the list). A few �ne-tuned models on instruc-
tions or chat data were also tested.

Overall, task success rates increased with the size of the language model, but this was not always the
case. For example, GPT-J 6B model performed better than GPT-NeoX 20B and OPT 2.7B was better
than OPT 6.7B in the WAH-NL experiment. Such results, that a smaller model performs better than
a larger model, were also observed in HELM evaluation (Liang et al., 2023b), especially in reasoning
tasks. GPT-3 (text-davinci-003) showed the best success rate of 21.36% on ALFRED and the best
subgoal success rate of 40.82% on WAH-NL. LLaMA 2 and MPT performed well considering their
model sizes. Instruction- and chat-tuned models (dashed lines in Figure 2) did not perform better
than their base models. We also tested on GPT-4, the state-of-the-art LLM. As OpenAI provides
only chat-style APIs for GPT-4 unlike other base models such as GPT-3, we were unable to directly
compare GPT-4 in the same con�guration. We modi�ed experimental con�gurations and assessed
GPT-4's performance. GPT-4 performed well in ALFRED, showing a 40.38% success rate, a 19%
improvement over GPT-3. However, in WAH-NL, GPT-4 showed a lower success rate of 34.17%
compared to GPT-3. More details in Appendix D.

We conducted a further analysis of the task types. For ALFRED, we found that the small model
such as GPT-J 6B succeeded only for simplePick & Placetasks and failed in complex tasks such as
heating and cooling tasks, which require longer steps than simple tasks. The largest model, GPT-3
175B, succeeded similarly in both simple and complex tasks (20-30% success rates), except for the
task typeStack & Placewhere the agent needs to stack multiple objects in order. Additional results
are shown in Table 7 in Appendix. For WAH-NL, all task types have a similar level of complexity,
generally requiring the �nding and placement of multiple objects. This resulted in a more balanced
performance across task types when compared to ALFRED. Using our GPT-3 175B model,Put
Fridge tasks yielded the highest average subgoal success rate at 54.50%, whilePrepare Snacktasks
registered the lowest average subgoal success rate of 25.00%. See Figure 4 for the success samples
(more results in Appendix H).

Failure category # Failures

Action planning failure 46 (28.4%)
Object selection failure 51 (31.5%)
Absence of visual grounding 21 (13.0%)
Lack of physical understanding15 (9.3%)
Misunderstanding inst. 10 (6.2%)
Ambiguous/incorrect inst. 19 (11.7%)

Table 1: The number of failure cases of the
ALFRED results using GPT-3.

We also examined the detailed reasons for the
failure cases of the ALFRED results using GPT-
3 model, which showed the highest performance.
Out of 162 failure cases, the reasons were catego-
rized into six classes: 1) Action planning failures,
such as performing `Pick' instead of `Slice' when
a tomato needs to be sliced. 2) Object selection
failures, like grabbing a pan instead of a pot. 3)
Absence of visual grounding, for instance, trying
to grab an object inside a closed drawer, 4) Lack of
physical understanding, such as failing to put down
an object on the already occupied table. 5) Misunderstanding user instructions, failing to distinguish
between a desk lamp and a �oor lamp when the user speci�ed `Lamp'. 6) Ambiguous or incorrect
user instructions, like confusing `Glass' for `Cup' in an instruction. The results are presented in
Table 1. Most failures (about 60%) stemmed from high-level planning (classes 1 and 2). Challenges
in visual and physical grounding (classes 3 and 4) highlight the importance of integrating context in
planning, as discussed in Section 7. Furthermore, the role of clarity in user instructions (classes 5
and 6) opens up a new research direction for interactive clari�cation of an ambiguous tasks.

Figure 3: (Subgoal) success rates for
the different number of examples for in-
context learning.

We have investigated the impact of the number of exam-
ples in prompt with LLaMA 2 13B model that supports a
longer context length of 4096. The success rate mostly in-
creased when there are 0 to 30 examples on ALFRED and
0 to 15 examples on WAH-NL (see Figure 3). It was not
able to test more than 15 examples on WAH-NL because
of the maximum token limitation. Note that the pool of
examples was �xed, which means that, for example, 6
and 12 examples share the same 6 examples. An addi-
tional experiment was performed to see whether different
sets of examples matter for the same number of examples.
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