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ABSTRACT

Over the last decade, deep learning models have been widely used for automatic
feature extraction and classification in various Brain-Computer Interface (BCI)
tasks. However, their performance and generalization capabilities are often not ad-
equately assessed, as these models are frequently trained and tested under flawed
setups and / or influenced by spurious correlations. Recently, these limitations
have also been observed in the training and evaluation of Large Brainwave Foun-
dation Models (LBMs). In this work, we employ causal reasoning and careful
consideration for task-discriminative artifacts in various EEG datasets covering
diverse BCI paradigms and propose a benchmarking protocol to properly eval-
uate the decoding performance and generalization capabilities of LBMs. Utilis-
ing a subject-independent cross-validation approach for each curated benchmark
dataset, we showcase that LBMs achieve marginal performance gains over con-
ventional deep learning baselines.

1 INTRODUCTION

Brain-Computer Interfaces (BCIs) promise a new way to interact with machines by establishing
direct communication between the human brain and computers. This technology is based on the
analysis of brainwaves from electroencephalogram (EEG) recordings and finds application in vari-
ous areas like emotion recognition [Torres et al.| (2020);  Xu et al. (2018)), epileptic seizure detection
Alkawadri| (2019) and motor-imagery Rezaeitabar & Halici| (2017). BCIs can also augment human
abilities and have the potential to transform how we interact with our environment and each other,
offering hope to people with disabilities to regain lost functions |Chaudhary et al.| (2016)); Luu et al.
(2017)); Biasiucci et al.| (2018).

Human experts and manual feature extraction were at the center of of brainwave analysis for many
years |Bashashati et al.|(2007); |[Handy| (2009); McFarland et al.|(2006). Recently however, extensive
research has been conducted to replace them with data-driven deep learning models Lawhern et al.
(2018)); Santamaria-Vazquez et al.| (2020); |Song et al.| (2023); Barmpas et al.| (2023a)); |Bakas et al.
(2022). Although deep learning models have demonstrated impressive results, they generally require
substantial supervision and task-specific data collection, making the process both time-consuming
and resource-intensive. Inspired by the tremendous progress of Foundation Models in various fields
of Computer Science, Large Brainwave Foundation Models (LBMs) in the domain of BCIs have
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been recently introduced Jiang et al.|(2024);|Cui et al.|(2024)). These large models leverage extensive
self-supervised pre-training on diverse unlabeled EEG datasets in order to identify complex patterns.
This enables them to generalize effectively and reduce the need for task-specific data collection. The
increased generalisation potential fuels the expectation that LBMs will be more robust and adaptable
to different users, tasks and environments Barmpas et al.| (2024a).

Despite the tremendous progress in the development of brainwave decoding architectures, there
is a lack of understanding how LBMs could be effectively used in brainwave decoding and how
properly compare these models. Faulty evaluation setups could potentially misrepresent the model
performance while their reliance on task-discriminative artifacts (e.g. eye activity) hinders their
generalization capabilities. In this work:

1. Building on previous works Barmpas et al.|(2024b)) and |Barmpas et al.| (2024a) in causal
reasoning within the domain of BCIs and incorporating insights from Bakas et al.| (2025)
regarding task-discriminative artifacts, we propose a benchmarking protocol designed to
evaluate both the performance and generalization capabilities of LBMs as well as other
traditional deep learning architectures for brainwave decoding.

2. Using this benchmarking protocol, we evaluate the performance of state-of-the-art LBMs
against standard deep learning models for brainwave decoding, providing a comprehensive
analysis of their strengths and limitations.

2 PREMILINARIES

2.1 CAUSAL REASONING IN BCIs

Causal reasoning is the analysis of a task/problem in terms of cause-effect relationships between
the different variables of interest |Castro et al.| (2020): if a variable A is a direct cause of variable
B, we express it as A — B. The work in|Barmpas et al.| (2024b)) introduces a causal framework to
analyze BCI paradigms by decomposing them into independent variables, following the Principle of
Independent Causal Mechanism Reichenbach| (1956). The framework relies on two core properties:

* The presence of task stimulus: if the brain activity is modulated by the presence of exter-
nal stimuli (Exogenous) or without any external stimulus (Endogenous)

* The voluntary engagement of the subject: when the subject willingly generates a partic-
ular brain activation or coactivation pattern (Voluntarily Engaged) or when the subject has
no control of the generated brain activation pattern (Involuntarily Engaged)

According to Barmpas et al.| (2024b)), this categorization allows all BCI paradigms to be classified
based on these factors. The identified variables of interests in a BCI task are: the observed EEG
brainwave signal X, the labelled task Y, the true underlying unobserved BCI-relevant brain activity
Z, the stimulus S, the intention | of the subject and the environment E. For each category, there is
a specific directed acyclic graph (DAG) that represents the causal relations between the identified
variables of interests:

* Voluntarily Engaged - Exogenous: Y —+S — Z — X

* Involuntarily Engaged - Exogenous: (Y,S) —» Z — X

¢ Involuntarily Engaged - Endogenous: E - Y — Z — X

* Voluntarily Engaged - Endogenous: | =Y — Z — X

Distribution shifts affecting brainwave decoding systems can arise from (see Appendix [A):

 Experimental settings that leads to shifts in stimuli (P(S)), intentions (P(l)) or environ-
mental conditions (P(E))

* EEG data quality and acquisition that affects the relationship between brain activity and
EEG signals (P(X|Z))

* Subject variability that impacts brain activity distributions (P(Z|-))
* Class imbalances in task labels (P(Y))
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Each type of shift influences specific causal sub-modules and can negatively impact model perfor-
mance. Understanding these shifts is essential for designing robust models for brainwave analysis.

2.2  SIGNAL ARTIFACTS

Signal artifacts, such as ocular activity, pose a significant challenge in decoding brainwaves, as they
can substantially affect model performance. These artifacts not only reduce the signal-to-noise ratio
but can also become class-informative, causing models to overfit to spurious patterns in the data
rather than the true neural signals |[Frglich et al.| (2015). This issue is particularly problematic in
EEG-based brainwave decoding, where noise from eye movements, blinks and other physiological
sources is extensive.

Artifact removal techniques, such as Independent Component Analysis (ICA), have been shown to
mitigate the impact of these unwanted signals|Uriglien & Garcia-Zapirain|(2015); Jiang et al.|(2019).
However, a large portion of the deep learning brainwave models fails to incorporate these prepro-
cessing steps into their architectural designs Craik et al.|(2019). This omission can lead to artificially
inflated model performance, as demonstrated in [Bakas et al.|(2025)), where the choice of input win-
dow was shown to significantly influence results by capturing class-informative artifacts. Without
careful consideration, both deep learning and large models risk overfitting to artifacts or unintended
brain signals, compromising their reliability and generalizability in practical applications.

3  PROPOSED PrOTOCOL

3.1 CAUSAL CONSIDERATIONS

In this section, taking into consideration the insights from the causal framework as well as artifact
concerns described in section 2, we propose a benchmarking protocol for both deep learning models
and LBMs for brainwave decoding.

Assessing the generalization capabilities of brainwave models coincides with the subject activity
shift (P(Z|-)). As it is highlighted in previous works |[Barmpas et al.| (2023b; [2022), a proper evalu-
ation setup keeps all the identified distribution shifts intact but inter-subject variability, unlike other
works which claim improved generalized performance and often utilize a mixture of techniques
like data augmentation (which can affect also other causal variables of interest). Therefore, in our
benchmarking protocol:

1. Subject-independent cross-validation is utilized for each benchmark dataset

2. Each benchmark dataset contains trials recorded from a single EEG device, preserving
P(X|Z). Additionally, whenever task-feasible, we selected class-balanced datasets, main-
taining P(Y)

3.2 ARTIFACT CONSIDERATIONS

Choosing the right benchmark datasets is also crucial. The rationale between the selection of the
benchmark datasets is twofold:

1. Select downstream tasks that capture a diverse range of BCI paradigms

2. Select datasets with control trials and minimal task-discriminative artifacts

While the first objective is led primarily by the trends in BCI applications (Table [2] offers a wide
range of popular downstream BCI tasks), the second objective demands deeper consideration. In-
spired by Bakas et al.| (2025) our goal is to include datasets with minimal class-discriminative arti-
facts. In this way, we can ensure that the model is classifying meaningful task-related brain activity
and not overfitting on background dynamics or artifacts due to the experimental design. Control
trials should also be preferred over inter-trial resting states to minimise ocular artifacts and evoked
responses caused by the presented stimulus. In this subsection, we will elaborate on the selection
of a dataset that captures a subject’s movement using EEG signals. However, similar considerations
have been applied to the other benchmark datasets as well.
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Capturing a subject’s movement using EEG data is one of the most widely used paradigms in Brain-
Computer Interface (BCI) research. To select an appropriate benchmark dataset, we first analyzed
potential candidates, namely High Gamma dataset|Schirrmeister et al.|(2017) and PhysioNet dataset
Schalk et al.| (2004), for the presence of discriminative artifacts, using the methodology of averaged
EEG signals and the spatial filters of trained models described in |Bakas et al.[(2025).

To this end, we first extracted averaged EEG signals on selected electrodes potentially capturing
occular artifacts. The brainwave signals were filtered using a bandpass filter in the 1-8Hz frequency
range. As it is shown in Figure[T} there is a clear artifact difference between the task-classes during
the first second of the trial after the cue appears on the screen on the PhysioNet dataset, with a
distinct reverse polarity of the eye movement artifact in F7 and F8 between the left and right hand
trials. These clear differences hinder the model’s training in the first second, increasing the risk
of overfitting and causing it to miss crucial motor-related dynamics at the onset of movement. In
contrast, no major time-locked differences between classes can be observed at any point during the
trials in the selected electrodes on the High Gamma dataset.
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Figure 1: Artifact investigation in motor execution trials in the PhysioNet and High Gamma datasets.
a) Grand average EEG amplitude across subjects and trials for frontal electrodes on PhysioNet (left
column) and High Gamma (right column). For the PhysioNet dataset, distinct differences in eye
activity between the classes are clearly observable in the first second of the trial following the ap-
pearance of the cue on the screen. For the High Gamma dataset, no major differences between the
classes due to eye activity can be observed at any point during the trial. b) Topographic represen-
tation of the respective trained spatial filter layer for classifying motor execution in PhysioNet(left
column) and High Gamma (right column), with models trained on different parts of the trial. For
PhysioNet, models trained on the first second focus on the F7, F8 and Fpz electrodes, indicating
overfitting on occular artifacts caused by the cue presentation. Models trained on the rest of the trial
focus on the expected motor-related central electrodes. For High Gamma, models focus on motor-
related central electrodes regardless of the selected part of the trial. Spatial filter representations
show mean absolute values of the filter weights averaged across filter channels and cross-validation
folds to display the electrode relevance.

To further ensure the lack of exploitable artifacts in the selected dataset, we employed the well-
established deep learning model EEGNet [Lawhern et al (2018)) to classify motor execution based
on different parts of the trials and examined the resulting trained spatial filters. The model was
trained for 20 epochs while the input signals were filtered using a bandpass filter in the 4-40 Hz
frequency range (hyper-parameters were selected based on the original implementation). Figure
[T] shows the averaged across folds and filter channels learned spatial filters for models trained on
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the first second of the trial, the whole trial and excluding the first second for the selected High
Gamma (right column) and PhysioNet (left column) datasets. Models trained on the first second
in the PhysioNet dataset place a focus on F7, F8 and Fpz electrodes confirming the class relevant
information of the eye activity artifacts. Models trained on the remaining uncontaminated part of
the trial focus on the expected central electrodes over the motor cortex. In direct contrast, models
trained on the High Gamma dataset focus primarily on central electrodes regardless of the selected
input time window affirming the lack of eye-related class-discriminative artifacts in the dataset.

In summary, the design principles of our proposed benchmark protocol, which take into account
causal reasoning and artifact considerations, can be summarized in the following step-by-step guide-
lines.

Table 1: Step-by-step guidelines for designing benchmarks to properly evaluate both the perfor-
mance and generalization capabilities of brainwave decoders

1. Choose a diverse range of downstream BCI tasks

2. Select a dataset for each downstream BCI task with control trials and assess the existence or
absence of artifacts to avoid spurious performance correlations ( )

3. Accounting for the causal factorization of each task, perform a subject-independent cross-
validation for each benchmark task (Causal Reasoning)

In this work, following the above mentioned guidelines, we utilize the following benchmark BCI
datasets, shown in Table 2]

Table 2: Selected Benchmark Datasets in our Proposed Protocol

DATASET \ PARADIGM NUMBER OF CLASSES
HIGH GAMMA [SCHIRRMEISTER ET AL.|(2017) | EXECUTED MOVEMENT 4
OPENBMI-ERP|HONG-KYUNG ET AL.|(2019) ERP 2
PAvLOV 2022 |PAVLOV ET AL.[(2022) WORKING MEMORY 2
SLEEP-EDF|KEMP ET AL.|[(2000) SLEEP 6
PHYSIONET|SCHALK ET AL.[(2004) EYES OPEN-CLOSED 2

4 EXPERIMENTS

Using the proposed benchmarking protocol, we evaluated the performance of state-of-the-art LBMs,
specifically LaBraM Jiang et al.|(2024) and NeuroGPT|Cui et al.|(2024), against standard deep learn-
ing models, namely EEGNet |Lawhern et al.| (2018) and EEGInception |Santamaria-Vazquez et al.
(2020). This comparison aims to highlight the advantages and limitations of LBMs in comparison
to well-established techniques.

For each of the baseline Large Brainwave Models, benchmark data was preprocessed to match the
input data structure used during pre-training:

1. For the LaBraM model, a sampling frequency of 200Hz was used, along with a bandpass
filter between 0.5-45Hz. Notch filters were applied at SOHz, 60Hz, and 100Hz to eliminate
powerline noise. The trials were divided into 1-second segments, producing 256 patches
per sample across all channels. In addition to the EEG trial data, each sample included
temporal and spatial embeddings. Temporal embeddings represent the patch’s position
within the trial’s duration, while spatial embeddings indicate the channel’s position relative
to a global electrode list. Only data from electrodes in the international 10-20 system are
used.

2. For the NeuroGPT model, the data were resampled to 250Hz, with a 0.05-100Hz bandpass
filter applied. Similar to LaBraM, notch filters at SOHz, 60Hz, and their harmonics were
used. NeuroGPT requires input data to consist of a specific set of channels in a fixed order.
Consequently, for each benchmark dataset, only the channels included in the pre-training
data were used. If any expected channels were missing, data from the nearest available



Published as an SCSL Workshop Paper at ICLR 2025

electrode (within a few centimeters) was used, and for any missing channels not within
range, the data were set to zero.

For each of the baseline LBM, Common Average Re-referencing (CAR) was applied across all chan-
nels to reduce noise. In addition, un-trained classification heads were added to the pre-trained LBMs
during the finetuning step. The size and structure of the classifier depend on the latent dimension of
the model and the number of target classes on the given benchmark. The exact architecture of the
classifiers is given in Table [3}

Table 3: Classification heads for each model configuration where n_cls is the number of classes for
each benchmark task

MODEL CLASSIFIER

LABRAM Linear (200, n_cls), Dropout (0.5)

NEUROGPT FULL Linear (1024,256), ELU, Dropout (0.5), Linear (256,32), ELU, Dropout (0.3),
MODEL Linear (32, n_cls)

NEUROGPT Linear (2160,256), ELU, Dropout (0.5), Linear (256,32), ELU, Linear (32, n_cls)
ENCODER

We finetuned three LBM configurations: the pre-trained LaBraM base model, the pre-trained Neu-
roGPT model, and the encoder-only module of the pre-trained NeuroGPT model (as suggested by
the authors in|Cui et al.| (2024)). Each configuration was trained for 20 epochs to prevent overfitting
and evaluated using 10-fold subject-independent cross-validation as described in Section 3.1. For
fair comparison, using the same fine-tuning setup, we performed a similar training (from scratch)
process for the EEGNet and EEGInception models to provide a basis for comparison.

Table 4: Classification accuracy of finetuned foundation models and classic architectures. Each
trained/finetuned for 20 epochs with 10 fold cross-validation.

MODEL (TRAINABLE MOVEMENT ERP MEMORY SLEEP EYES | MEAN ACCURACY

PARAMETERS)

(717,958)

EEGNET (2,394) ‘ 0.657 0.912 0.660 0.624 0.803 ‘ 0.731
EEGINCEPTION (22,366) \ 0.590 0.896 0.669 0.688 0.823 \ 0.733
LABRAM (5,854,288) \ 0.614 0911 0.643 0.704 0.840 \ 0.742
NEUROGPT (FULL MODEL) ‘ 0.682 0.904 0.610 0.665 0.821 ‘ 0.736
(78,536,146)

NEUROGPT (ENCODER) ‘

0.695 0.908 0.634 0.647 0.843 ‘ 0.745

Table [4] highlights that standard deep learning baselines can match or outperform some large mod-
els on specific benchmark tasks. In addition, it is evident that the performance margin over the
next-best baseline (which has considerable less trainable parameters) is about 1.0%, indicating that
while LBMs show promise, their full potential over standard methods remains unrealized under the
proposed benchmarking protocol.

5 CONCLUSION

In this work, we propose a benchmarking protocol based on careful considerations for task-
discriminative artifacts and causal reasoning principles. To the best of our knowledge, this is the
first work that proposes such a framework that captures a diverse range of BCI paradigms and is
set properly to evaluate the performance and generalization capabilities of the recently introduced
LBMs. We hope that the proposed benchmarking protocol will be adapted by the research com-
munity to assess the capabilities of LBMs. Using this benchmarking protocol, we also evaluated
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the performance of state-of-the-art LBMs against standard deep learning models showcasing that
although there are marginal performance gains, LBMs have yet to show their promised substantial
benefits.
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A CAUSAL DISTRIBUTION SHIFTS IN BCIs

According to Barmpas et al.| (2024b)), there are many shifts associated with the identified causal
variables of interest. Table [5|summarizes some of the various shifts in brainwave decoding as well
as the causal sub-module they usually affect.

Type

Related with

| Causal Shift to | Affects

Stimulus Shift

Experimental Settings

P(S) Involuntarily Engaged
and Exogenous

Shifts on Subject’s Intention

Experimental Settings

P(l) Voluntarily Engaged
and Endogenous

Shifts on Environmental Conditions

Experimental Settings

P(E) Involuntarily Engaged
and Endogenous

Acquisition Shift EEG Data |  P(X|Z) | All Cases
Subject Shift Subjects | P(Z]") | All Cases
Class Imbalance Associated Labels | P(Y) | Exogenous

Table 5: All possible shifts in brainwave decoding for all causal BCI factorization scenarios. Table

adapted from Barmpas et al.[(2024b)).
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