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ABSTRACT
Knowledge Distillation is a transfer learning and compression tech-
nique that aims to transfer hidden knowledge from a teacher model
to a student model. However, this transfer often leads to poor cali-
bration in the student model. This can be problematic for high-risk
applications that require well-calibrated models to capture predic-
tion uncertainty. To address this issue, we propose a simple and
novel technique that enhances the calibration of the student net-
work by using an ensemble of well-calibrated teacher models. We
train multiple teacher models using various data-augmentation
techniques such as cutout, mixup, CutMix, and AugMix and use
their ensemble for knowledge distillation.We evaluate our approach
on different teacher-student combinations using CIFAR-10 and
CIFAR-100 datasets. Our results demonstrate that our technique
improves calibration metrics (such as expected calibration and over-
confidence errors) while also increasing the accuracy of the student
network.
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•Computingmethodologies→Machine learning; Supervised
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1 INTRODUCTION
Machine learning algorithms, particularly large deep neural net-
works (DNNs), have witnessed a surge in their adoption across
various real-life applications, driving substantial advancements
in several fields. However, despite their impressive performance,
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DNNs face a significant challenge [22][1][8][18] when it comes to
deploying them in safety-critical applications such as medical diag-
nosis, autonomous vehicles, and astronomy. The primary concern
lies in ensuring the trustworthiness of DNN predictions, as inac-
curacies or uncertainties in these high-risk applications can have
severe consequences. DNN fails to capture the uncertainty associ-
ated with its predictions and often give overconfident predictions
[7], thereby making them unreliable and limits their deployment
in high-risk domains.

To address this challenge, it is essential to improve the calibra-
tion of DNNs [8] and reduce their tendency for overconfidence.
Enhancing the calibration would enable DNN predictions to reflect
the actual likelihood of correctness and accurately quantify the
probability of misclassification. Confidence calibration ensures that
the predicted confidence aligns with the accuracy of the model
and is also important for model interpretability and explainability.
Various advanced techniques like augmentations, and deep ensem-
bles are proven to improve the calibration of the DNN while also
improving its generalizability. However, applying these techniques
incurs a computation overhead which can be a limiting factor for
their practical use. This issue is easily addressed by Knowledge
Distillation (KD) [24], which aims at distilling the dark knowledge
of the large DNNs (teachers) [5] into a compact and shallow model
(student). KD enables the training of smaller, more efficient neu-
ral networks without compromising much on accuracy, making
it feasible to deploy deep learning models on mobile devices and
in other resource-constrained environments. KD [24] has demon-
strated advantages in a wide range of scenarios.

In this paper, we propose a simple yet effective approach to over-
come the prevalent problem of poor calibration in DNN (student)
via distillation. Our approach involves leveraging a framework that
utilizes a set of well-calibrated teacher models, each trained us-
ing various data augmentation techniques, as the foundation to
create an ensemble-based knowledge distillation model [25]. This
novel approach enables the transfer of collective knowledge of
the teacher models to a single student model, resulting in signif-
icantly enhanced performance compared to the standard vanilla
knowledge distillation method. The intuition behind considering
multiple well-calibrated teachers is that each teacher has been ex-
posed to different data variations, enhancing the teachers’ ability
to generalize well to unseen examples. However, we cannot simply
apply multiple augmentation techniques to improve the general-
izability of the model. Fig 1 shows the effect of applying multiple
augmentations over images. It results in loss of crucial features of
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Figure 1: Progressive Augmentation Sequence Impact: In the
top row, we present the unaltered original images, while the
bottom row shows the outcomes after consecutive applica-
tion of Mixup, CutMix, and Cutout techniques. Regrettably,
the cumulative effect of these augmentations has resulted in
a notable deterioration of crucial image features. Contrary to
the intended regularization effect, the model’s performance
during training may adversely affect.

the image responsible for classification. Therefore, we utilize the
generalizability of these augmentation techniques via distillation.
By incorporating the collective dark knowledge of these well cali-
brated and generalized teachers, we ensure that the student model
encompasses great generalizability and calibration.

Our approach comprehensively investigates the intricate inter-
play between data augmentation, knowledge distillation, and en-
sembling techniques, while considering crucial calibration metrics
such as Expected Calibration Error (ECE) and Overconfidence Error
(OE) [17] (Refer Appendix A for details). Our empirical findings
substantiate the effectiveness of our proposed framework in sig-
nificantly improving the calibration of student models. This break-
through holds immense promise for the application of deep neural
networks (DNNs) in safety-critical domains. Our research show-
cases the potential of harnessing an ensemble of well-calibrated
teacher models in conjunction with knowledge distillation as a po-
tent methodology for enhancing the calibration of student models.
This pioneering work contributes to the advancement of calibra-
tion techniques and establishes a strong foundation for further
exploration and adoption of DNNs in critical applications.

We investigate the hypothesis that using well-calibrated teacher
models obtained through various data augmentation techniques re-
sults in improved calibration of student models through knowledge
distillation. To evaluate this hypothesis, we use a framework that
evaluates four data augmentation techniques, including Cutout [6],
Mixup [22], CutMix [26], and AugMix [10], to create teacher net-
works onWideResNet and ResNet architectures. We seek to provide
empirical evidence on the effectiveness of utilizing augmentation-
trained teacher models for improved calibration in the context of
knowledge distillation, thereby contributing to the understanding
and advancement of calibration techniques in deep learning.

Our contributions are summarized as follows:

(1) We propose an ensemble-based approach to further distill the
information obtained from well-calibrated teacher models
into an efficient and well-calibrated student model.

(2) We demonstrate the efficiency of our proposed approach in
enhancing the calibration of student models, as quantified
by key metrics such as Expected Calibration Error (ECE),
Overconfidence Error (OE), and Accuracy.

(3) We present an empirical study to demonstrate the effect of
augmentation on single model, ensembles and distillation
from a single calibrated model.

(4) We investigate the effects of weighted ensembling on the
student models across various teacher-student configura-
tions and datasets, including CIFAR-10 and CIFAR-100. Our
study sheds light on the potential advantages of employing
ensemble-based knowledge distillation with well-calibrated
teachers to enhance the calibration of student models.

2 RELATEDWORK
Data Augmentation Techniques: Deep neural networks are

prone to overfitting. A common strategy to prevent overfitting is
data augmentation, which seeks to actively add label-invariant mod-
ifications to training data. Data augmentation had greatly improved
generalization performance. For image data, random left-right flip-
ping and cropping are commonly used. Zhang et al. introduced
a data augmentation approach named mixup [29] which linearly
mixes two images with their labels combined using the same lin-
ear interpolation. In cutout [6], a selected number of randomly
sized continuous sections are removed from the image to create a
modified image for training. CutMix [26] is motivated by mixup
and cutout, where the regions in an image are randomly cut and
pasted among training images, and the ground truth labels are also
mixed proportionally to the area of the regions. AugMix [10] tries
to transform the input image and mix it with the original image
thereby improving model robustness.

Knowledge Distillation: Knowledge distillation’s primary ob-
jective is to use an effective pre-trained teacher model (or an en-
semble of teacher models) [13] to direct the training of a student
model. The fundamental concept of extracting knowledge from one
model to another was first presented by Bucilu et al. in 2006 [2],
later it was coined as knowledge distillation by Hinton et al.in 2015
[11]. [2] presented it as a fresh approach to model compression.
It operates by progressively teaching a student network to repli-
cate the actions of a larger network which is known as the teacher
network.

Depending on the training process of the teacher and student,
knowledge distillation is broadly classified into three distillation
schemes. These schemes are: online [3][9][4], offline [11][12][28]
and self-distillation [27][15][30]. Researchers have also proposed
approaches to enhance the transfer of knowledge for e.g. using
feature distance [19], similarity transfer [31], attention transfer
[28], mutual information [23], etc. In our work, we are working
with the offline distillation scheme.

Knowledge distillation with data augmentation: In the lit-
erature, various approaches have been proposed to demonstrate
the effect of data augmentation on different distillation schemes
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of knowledge distillation [27][20][14]. Wang et al. [24] proposed
an approach to boost offline distillation by training the model on
original as well as augmented inputs. In our approach, we are not
using any augmentations during the distillation process. Moreover,
we have analyzed the calibration effect of different augmentation
techniques trained teacher models on knowledge distillation. Stan-
ton et al. [21] have demonstrated the effectiveness of various data
augmentation approaches and their effect on accuracy and cali-
bration. However, they have not taken the effect of ensemble of
teachers trained on different augmentation techniques on the stu-
dent’s accuracy and calibration. Instead, they have performed data
augmentation while distilling the student network. Zhao et al. [31]
proposed an approach that enhances the accuracy of the distilled
student network by performing distillation only on the dataset gen-
erated by the augmentation techniques like Mixup and CutMix. The
approach differs fromWang et al.[24] in the number of samples used
during distillation. MixACM [16] improves the robustness of the
distilled student network using a feature-based distillation loss. [5]
have demonstrated the effect of knowledge distillation on teacher
networks trained using various data augmentation schemes. They
have concluded that distilling knowledge from these teachers may
lead to student learning example-specific features. This leads to a
loss in generalization and makes models more discriminative. Our
work also validates this statement but to tackle such situation we
proposed an approach to make the student learn from an ensemble
of well-calibrated teachers. Our methodology is fundamentally built
on top of the knowledge distillation and ensembling framework
where we are targeting the better calibration in a student model by
distilling the student model from ensemble of various calibrated
teacher models obtained by multiple data augmentation techniques.
We will describe our approach in detail in the upcoming section.

3 METHODOLOGY
Knowledge Distillation is a popular technique used to enhance
the performance of shallow deep learning models by transferring
the knowledge from a well-trained teacher network to a smaller
student network. While using a well-calibrated teacher network
trained using augmentation techniques such as Mixup, CutMix, etc.,
can improve the performance of the student network, it does not
guarantee that the student network will also be well-calibrated [5].

One of the main challenges with combining advance augmen-
tation techniques such as Mixup, Cutout, CutMix, and AugMix is
that they use different loss functions and are applied on varying
numbers of images (for example, CutMix needs atleast two im-
ages and AugMix needs only one). Moreover, applying all these
augmentations sequentially on an image results in loss of distinc-
tive features (see Figure 1), thereby affecting the performance of
the teacher model trained using a combination of these augmen-
tation techniques (Ref 4.1 for more details). To address this issue,
we propose a novel approach that leverages the dark knowledge
from teacher models trained using these advanced augmentation
techniques to enhance the calibration of the student model with-
out sacrificing accuracy. Our approach is simple yet effective and
can be easily integrated into existing knowledge distillation frame-
works. By using the dark knowledge from multiple teacher models,
we effectively capture a diverse range of information about the

input images. This enables the student model to learn from a wider
variety of perspectives, which helps in improving its calibration.
Moreover, our approach ensures that the student model retains the
important and distinctive features of the input image, since the
augmented input is not passed through the student model. Instead,
the student model is regularized with the help of multiple teachers
trained using different augmentation techniques.

In the upcoming subsection, we describe in detail the method-
ology adopted in this paper, ranging from the calibration and en-
semble distillation techniques considered for the experiments, to
the generalization measures we used to evaluate the student and
teacher networks.

3.1 Calibration of the Teachers
Here, we describe the data augmentation approach we adopted to
calibrate the teacher models, where each of these augmentation
techniques and the corresponding loss used are discussed in detail.

Mixup: Mixup generates the augmented samples and their cor-
responding labels using the equation 1. It trains the model in VRM
(Vicinal Risk Minimization) scenario. Let 𝑓1 be the teacher model
for mixup. In our training process, we have not used 𝑦𝑚𝑢 , instead,
we have used a weighted cross entropy loss over 𝑦1 and 𝑦2 using
the equation 2.

𝑥𝑚𝑢 = 𝜆 ∗ 𝑥1 + (1 − 𝜆) ∗ 𝑥2
𝑦𝑚𝑢 = 𝜆 ∗ 𝑦1 + (1 − 𝜆) ∗ 𝑦2

(1)

L𝑚𝑢 = 𝜆 ∗ L𝐶𝐸 (𝑓1 (𝑥𝑚𝑢 ), 𝑦1) + (1 − 𝜆) ∗ L𝐶𝐸 (𝑓1 (𝑥𝑚𝑢 ), 𝑦2) (2)
where 𝑥1 and 𝑥2 are two randomly sampled input points, 𝑦1 and
𝑦2 are their associated one-hot encoded labels, 𝑓1 is the mixup
model, 𝜆 (in [0, 1]) is drawn from a 𝛽 (𝛼, 𝛼) distribution and 𝛼 is a
hyperparameter.

Cutout: Cutout is a data augmentation that is inspired from the
idea of dropout. It randomly masks patches from an image using
the equation 3.

𝑥𝑐𝑜 = M ⊙ 𝑥 + (1 −M) ⊙ 𝑍 (3)

where 𝑥 is the original image from the dataset, 𝑥𝑐𝑜 is the cutout
augmented image, 𝑍 is the zero matrix (black pixels) having same
size as of input image 𝑥 , M is the binary mask that denotes which
pixels are to be replaced with black pixels. During the training, we
used the simple cross-entropy loss using the equation 4.

L𝑐𝑜 = −𝑓2 (𝑥𝑐𝑜 ) log (𝑓2 (𝑥𝑐𝑜 )) (4)

where 𝑓2 is the cutout model and 𝑥 is the input image.
CutMix: CutMix is an augmentation technique inspired from

Mixup and cutout that replaces random patches from an image.
These replaced pixels are filled using the pixels of some other image
in the dataset. This increases the number of informative pixels in
the image, thereby making the model more robust and accurate.
Mathematically, CutMix is described as follows:

𝑥𝑐𝑚 = M ⊙ 𝑥1 + (1 −M) ⊙ 𝑥2
𝑦𝑐𝑚 = 𝜆 ∗ 𝑦1 + (1 − 𝜆) ∗ 𝑦2

(5)

where 𝑥1 and 𝑥2 are two samples from the dataset, 𝑦1 and 𝑦2 are
the corresponding labels,M is the binary mask that indicates the
cutout and the fill-in regions from the two randomly drawn images
and 𝜆 ∈ [0, 1], is drawn from a 𝛽 distribution. The coordinates of
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bounding boxes are B = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑤 , 𝑟ℎ) which indicates the cutout
and fill-in regions in case of the images. The bounding box sampling
is represented by:

𝑟𝑥 ∼ 𝑈 (0,𝑊 ), 𝑟𝑤 =𝑊
√
1 − 𝜆

𝑟𝑦 ∼ 𝑈 (0, 𝐻 ), 𝑟ℎ = 𝐻
√
1 − 𝜆

(6)

Here we have used the mixup loss as shown in equation 2.
AugMix: AugMix is a data processing technique that mixes

randomly generated augmentations and improves model robust-
ness. AugMix performs data mixing using the input image itself.
It transforms (translate, shear, rotate and etc) the input image and
mixes it with the original image. AugMix prevents the degradation
of images while maintaining diversity as a result of mixing the
results of augmentation techniques in a convex combination. It is
distinguished at a high level by the combination of consistency
loss and effortless augmentation operations. Here we have used the
Jensen Shannon consistency loss along with the standard loss as
described in [10], refer equation 7.

L = L𝐶𝐸 + 𝜅 ∗ L𝐽 𝑆 (7)

where L𝐶𝐸 is the cross-entropy loss, L𝐽 𝑆 is the Jensen Shannon
loss (8) and 𝜅 is weighting hyper-parameter.

L𝐽 𝑆 (𝑝𝑎 ;𝑝𝑏 ;𝑝𝑐 ) =
1
3
(KL[𝑝𝑎 | |𝑀] + KL[𝑝𝑏 | |𝑀] + KL[𝑝𝑐 | |𝑀]) (8)

where 𝑝𝑎 , 𝑝𝑏 , 𝑝𝑐 are the probability distributions predicted by the
model for original image 𝑥 and two augmented images 𝑥𝑏 and 𝑥𝑐
and M is the mean of 𝑝𝑎 , 𝑝𝑏 and 𝑝𝑐 .

3.2 Ensembling the teachers
We present an approach that deals with an ensemble knowledge
distillation framework that improves classification performance
and model generalization of small and compact networks by dis-
tilling knowledge from multiple teacher networks into a compact
student network using an ensemble architecture. Each teacher is
trained using a different augmentation technique and uses its own
pre-defined (augmentation based) loss during the training. Our
approach is shown in Figure 2.

Let (x,y) be the sample of the original dataset𝐷 , 𝑓𝑠 be the student
model and 𝑓1, 𝑓2, 𝑓3, 𝑓4 be the teacher models trained using augmen-
tation techniques mixup, cutout, CutMix and AugMix respectively.
We form an ensemble of teacher models. Each teacher model is
trained with a different augmentation technique, enhancing their
ability to capture diverse aspects of the data. The objective function
of our approach minimizes the loss between the distribution of tem-
perature scaled class probabilities of multiple teachers (𝑧1, 𝑧2, 𝑧3, 𝑧4
where 𝑧𝑖 = P(𝑦 |𝑓𝑖 , 𝑥)) trained on different augmentation techniques
and the student (𝑧𝑠 = P(𝑦 |𝑓𝑠 , 𝑥)). This divergence loss helps the
students to gain dark knowledge from multiple teachers. Mathe-
matically,

L𝑑𝑖𝑣 =
4∑︁
𝑖=1

KL[𝑧𝑠 | |𝑧𝑖 ] (9)

where L𝑑𝑖𝑣 is the divergence loss. We also use the task-specific
loss in addition to this divergence loss (equation 9). In classification
tasks, the commonly used loss is cross-entropy loss defined as

follows:

L𝐶𝐸 (𝑓𝑠 , 𝑥,𝑦) = −
∑︁

𝑦𝑙𝑜𝑔(𝑓𝑠 (𝑥)) (10)

The overall loss is calculated as:

L = (1 − 𝛼) ∗ L𝐶𝐸 + 𝛼 ∗ L𝑑𝑖𝑣 (11)

Our approach is summarised in Algorithm 1.
We also experimented with a similar kind of approach where

weights are assigned to the divergence loss as shown in Equation
12.

L𝑑𝑖𝑣 =
4∑︁
𝑖=1

𝑤𝑖KL[𝑧𝑠 | |𝑧𝑖 ] (12)

where𝑤𝑖 is the ratio of ECE and OE of the corresponding teacher
model.

Algorithm 1 Knowledge Distillation with Ensemble Calibration
Require: A pre-trained multiple teacher model 𝑓1, 𝑓2, 𝑓3, 𝑓4 trained

using augmentation techniques mixup, cutout, CutMix and Aug-
Mix respectively

Require: The original training Dataset (X, 𝑦) ∈ 𝐷 , balancing fac-
tor 𝛼

Ensure: A compact student model S trained by all teacher models
Initialization: Student model S with parameters 𝑓𝑠
for i = 1, ... , Max_epoch do

Sample a batch (𝑥,𝑦) from the training dataset D
Generating student logits 𝑧𝑠 ← 𝑓𝑠 (𝑥)
for j=1 to 4 do
𝑧
𝑓

𝑗
← 𝑓𝑗 (𝑥)

end for
Computing divergence loss L𝐾𝐿
L𝐾𝐿 ←

∑4
𝑗=1 𝐾𝐿(𝑧

𝑓

𝑗
| |𝑧𝑠 )

Computing task-specific loss L𝐶𝐸
L𝐶𝐸 ← −𝑦 log(𝑧𝑠 )
Computing total loss:
L ← 𝛼 ∗ L𝐾𝐿 + (1 − 𝛼) ∗ L𝐶𝐸

end for

4 EXPERIMENTS AND RESULTS
4.1 Effect of multiple augmentations
In this section, we conduct a comprehensive analysis of the impact
of multiple augmentations on the performance of two deep learning
models: ResNet-32x4 and WideResNet-40-2 (WRN40-2), trained on
the CIFAR-10 dataset. The objective is to explore the effectiveness
of applying multiple augmentations in a sequential manner. Addi-
tionally, we evaluated the generalizability power of these models by
testing them on corrupted datasets. To achieve these objectives, we
focus mainly on three augmentation techniques: cutout, CutMix,
and mixup. It’s noteworthy that these augmentations were applied
subsequent to the application of standard transformations, includ-
ing normalization using mean and standard deviation, random
cropping of 32, random horizontal flipping, and random rotation of
up to 15 degrees. The experiment settings are kept uniform through-
out this experiment by keeping a batch size of 128 and using SGD
optimizer with initial learning rate of 0.05, momentum of 0.9 and
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Figure 2: It illustrates our framework, which comprises one shallow student network and four pre-trained teacher networks of
the same architecture. The teacher networks are trained using different augmentation techniques (Mixup, Cutout, CutMix,
and AugMix) and four calibrated teacher models are produced. The KL-divergence loss is calculated between the logits of the
teacher and the student. The Cross-entropy (CE) loss is calculated between student logits and ground truth labels. The final loss
is the sum of all four KL-divergence losses and CE loss balanced by the factor 𝛼 .

weight decay of 5 × 10−4. The models are trained for a total of 120
epochs, the learning rate is multiplied by 0.1 at 50, 75, 100 epoch. In
case of cutout, only 1 cut (𝑛ℎ𝑜𝑙𝑒𝑠 = 1) is made of size 8x8, in case
of mixup 𝛼 = 0.3 is used and for CutMix 𝛽𝑐𝑚 = 1 is used. If we
increase the 𝑛ℎ𝑜𝑙𝑒𝑠 or hole size for cutout it will further degrade
the performance as more loss of information will occur.

Sequential approach: In this approach, a sequence of augmenta-
tions is applied consecutively to a single image. The process begins
with the application of mixup using a parameter value of 𝛼 = 0.3.
Subsequently, cutout is employed on the resultant images, involv-
ing the creation of a single hole with dimensions 8x8. Finally, the
images undergo CutMix using a parameter value of 𝛽 = 1. This
sequential combination will result in least loss of information. The
composite loss term utilized in this method is the cumulative sum of
all individual losses as defined in equation 13. Surprisingly, the out-
comes indicate that rather than providing beneficial regularization
effects, this approach has a detrimental impact on the model’s per-
formance (refer Table 1 and 2). The results shows that the sequential
application of augmentations suffers from loss of information in
images because of which the model is not able to generalise well
and using more than one augmentation may not be as effective.
The evaluation on the corrupted dataset (CIFAR10-C) shows that
combining the augmentation techniques hurts the generalizability
of the model.

L𝑡𝑜𝑡𝑎𝑙 = 1/3 × [𝐿𝐶𝐸 (𝑓 (𝑥𝑜𝑢𝑡 ), 𝑦𝐴) + L𝑚 (𝑥𝑜𝑢𝑡 , 𝑦𝐴, 𝑦𝐵)
+𝐿𝑐𝑚 (𝑥𝑜𝑢𝑡 , 𝑦𝐴, 𝑦𝐶 )]

(13)

where, 𝑥𝑜𝑢𝑡 is the final image generated by combining all the aug-
mentations, 𝑓 (𝑥𝑜𝑢𝑡 ) is the model’s classification on the image 𝑥𝑜𝑢𝑡 ,
𝑦𝐴 is the actual target, 𝑦𝐵 is the label corresponding to the image

Table 1: Results on the CIFAR-10 dataset. It is observed that
Sequential approach degrades the performance of the model.

Model RN32x4 WRN40-2
Augmentation Acc↑ ECE↓ Acc↑ ECE↓
none 94.26 0.0342 95.18 0.0306
mixup 95.23 0.0328 94.73 0.0429
cutout 95.54 0.0223 94.56 0.0208
CutMix 95.82 0.0248 94.8 0.0291
Sequential 92.5 0.3097 91.28 0.2687

Table 2: Results on the CIFAR10-C dataset. Avg.Acc and Avg.
ECE are calculated over the 19 corruptions.

Model RN32x4 WRN40-2
Aug Avg.Acc↑ Avg.ECE↓ Avg.Acc↑ Avg.ECE↓
none 78.35 0.1505 76.44 0.1559
mixup 79.88 0.0832 78.02 0.0760
cutout 76.34 0.1454 75.05 0.1341
CutMix 77.80 0.0887 75.15 0.0921
Sequential 72.98 0.1949 72.97 0.1676

used to create mixup augmentation and 𝑦𝐶 is the label correspond-
ing to the image used to create CutMix image.

4.2 Ensemble Distillation
To encapsulate the knowledge from various augmentation tech-
niques, it’s best to distill the model from an ensemble of teachers,



ICVGIP ’23, December 15–17, 2023, Rupnagar, India

each trained on a different augmentation technique. We evalu-
ate our ensemble approach on CIFAR-10 and CIFAR-100 image
classification datasets. In our experiments, we have taken ResNet-
32x4 and WideResNet-40-2 as the teachers and WideResNet-40-1,
WideResNet-16-2, ResNet-8x4 as the students. All the teacher net-
works are trained on data augmented versions of the considered
datasets with batch-size of 128. For all the experiments, SGD opti-
mizer with weight decay = 5 × 10−4 and momentum = 0.9 is taken.

All the distillation (student) networks are trained with a initial
learning rate of 0.05 (except for ShuffleNet where learning rate =
0.01), the batch size of 64, 𝛼 = 0.8 and temperature 𝜏 = 50. For
CIFAR-10, all the networks are trained for 240 epochs and learning
rate is multiplied by 0.1 at 100, 150, 180, 210 epochs. For CIFAR-
100, the number of epochs are 500 with initial learning rate 0.05,
multiplied by 0.1 at 150, 180, 210 epoch. During distillation, stan-
dard augmentation is applied to the input images which includes
random crop, horizontal flip, random rotation, and normalization.
It is crucial to emphasize that the experimental configura-
tion utilized for the pre-training of the teacher and the sub-
sequent distillation of the student differs from the experi-
mental approach employed to analyze various augmentation
techniques.

We consider baselines as i.) student trained without distillation,
ii.) student trained using vanilla knowledge distillation, iii.) student
distilled using teachers that are pre-trained using mixup, CutMix,
cutout and AugMix. For detailed training of the teachers, refer to
Table 3 and 4.We have considered ECE (Expected Calibration Error),
OE (Overconfidence Error) [17], and accuracy as metrics to evaluate
the performance of the model (Refer Appendix A).

Table 3: CIFAR-10: Teacher Models.

Eval Metrics No Aug CutMix Mixup AugMix Cutout
ResNet-32x4

Accuracy 95.77 96.76 96.2 95.9 96.4
ECE 0.0265 0.0165 0.0393 0.02 0.0183
OE 0.0224 0.0058 0.0048 0.0156 0.0144

WideResNet-40-2
Accuracy 95.22 95.99 95.33 95.3 95.59
ECE 0.0299 0.0288 0.0496 0.0185 0.0202
OE 0.026 0.0062 0.0033 0.0135 0.0164

Table 4: CIFAR-100: Teacher Models.

Eval Metrics No Augm CutMix Mixup AugMix Cutout
ResNet-32x4

Accuracy 77.14 80.49 79.71 77.82 79.13
ECE 0.0864 0.0277 0.0285 0.0648 0.0755
OE 0.0697 0.0150 0.0024 0.0481 0.0580

WideResNet-40-2
Accuracy 75.15 78.14 76.48 75.98 76.92
ECE 0.1149 0.0331 0.0562 0.0588 0.0819
OE 0.0924 0.0179 0.0013 0.0410 0.0625

4.3 CIFAR-10
CIFAR-10 dataset consists of 60, 000 RGB images of size 32×32 in 10
different classes. We have reported the ECE and OE corresponding
to the epoch having the best accuracy on the test dataset for all the
configurations. Table 5 shows the result for CIFAR-10 dataset. We
observe that our approach outperforms the baselines both in terms
of ECE and accuracy for the ResNet-32x4/ResNet-8x4 combination.
Also, the OE is reduced in our approach as compared to the student.
However, the student distilled from a teacher trained on mixup
augmented data has the best OE. This is due to the fact that mixup
augmentation mainly focuses on minimizing the overconfidence of
the model. For the WRN-40-2/WRN-16-2 and WRN-40-2/WRN-40-
1, the accuracy of our approach is close to KD+cutout baseline with
an improvement over the ECE and OE. Our weighted approach has
a better ECE and OE as compared to our ensemble approach.

4.4 CIFAR-100
CIFAR-100 dataset is more challenging dataset as compared to
CIFAR-10 dataset having 100 classes with 600 RGB images per
class of dimension 32 × 32. The results are reported in Table 6. We
observe that our approach surpasses all the baselines for ResNet-
32x4/ResNet-8x4. The reliability plots in Figure 3 illustrate the
calibration of the baselines along with our approach. Theoretically,
a well-calibrated model has most of the density lying on the 𝑦 = 𝑥

line, overconfidence is a situation where the density lies below the
𝑦 = 𝑥 line, and underconfidence in themodel is shownwhen density
lies above the 𝑦 = 𝑥 line. The reliability plots corresponding to our
approach have most of the density along 𝑦 = 𝑥 line that defines a
well-calibrated model whereas all other techniques are either over-
confident or underconfident. We see a major improvement in the
accuracy along with better calibration for our ensemble approach.
The OE of our weighted approach is close to the KD+mixup baseline
with an improved ECE and accuracy. For WRN-40-2/WRN-16-2,
we see a similar trend where the student model distilled using our
ensemble approach outperforms the baselines in terms of accuracy
and ECE. In case of WRN-40-2/WRN-40-1 configuration, our en-
semble approach has the best accuracy among the baselines with a
comparable ECE.

5 ABLATION STUDY
To delve deeper into the effect of ensemble on calibration, we en-
sembled calibrated models using various weight combinations in
evaluation mode. The results are reported in Table 7.

The values 1,1,1,1,1 in the Table 7 shows the weightage given to
the respective augmentation techniques while adding the softmax
scores. Let 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5 be the softmax scores from the 5 differ-
ent models, then final softmax score used during the evaluation is
defined as :

𝑤1𝑝1 +𝑤2𝑝2 +𝑤3𝑝3 +𝑤4𝑝4 +𝑤5𝑝5
𝑤1 +𝑤2 +𝑤3 +𝑤4 +𝑤5

(14)

This resultant softmax value is used to calculate accuracy, ECE and
OE.

We explored the accuracy-ECE correlation in combining pre-
trained calibrated models, finding that while aggregation improves
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Table 5: Experimental results for CIFAR-10 dataset.

Teacher ResNet-32x4 WideResNet-40-2 WideResNet-40-2
Student ResNet-8x4 WideResNet-16-2 WideResNet-40-1

Approach Acc ↑ ECE ↓ OE ↓ Acc ↑ ECE ↓ OE ↓ Acc ↑ ECE ↓ OE ↓
Student 92.47 0.0323 0.0258 93.39 0.029 0.0239 93.66 0.0325 0.0268
Vanilla KD 93.34 0.0299 0.0244 94.25 0.0399 0.0345 94.2 0.045 0.0415
KD + Mixup 92.81 0.0377 0.0002 93.6 0.0303 0.0018 93.94 0.0309 0.01
KD + Cutout 93.08 0.0332 0.0266 94.71 0.03 0.0262 94.46 0.0383 0.0337
KD + CutMix 93.05 0.017 0.0044 94.16 0.0239 0.0193 93.7 0.0278 0.0226
KD + AugMix 93.35 0.023 0.0167 94.08 0.0343 0.0292 93.88 0.0349 0.0298
Ours (Ensemble) 93.65 0.0238 0.0164 94.61 0.0249 0.0198 94.48 0.0339 0.0294
Ours (Weighted) 94.09 0.0174 0.0093 94.52 0.0219 0.0138 94.09 0.0326 0.0266

Table 6: Experimental results for CIFAR-100 dataset.

Teacher ResNet-32x4 WideResNet-40-2 WideResNet-40-2
Student ResNet-8x4 WideResNet-16-2 WideResNet-40-1

Approach Acc ↑ ECE ↓ OE ↓ Acc ↑ ECE ↓ OE ↓ Acc ↑ ECE ↓ OE ↓
Student 71.64 0.0772 0.056 72.48 0.087 0.0638 70.74 0.0834 0.0609
Vanilla KD 72.42 0.0659 0.0486 74.07 0.087 0.0672 73.24 0.1043 0.0826
KD + Mixup 71.91 0.084 0.0055 74.34 0.0554 0.0057 72.33 0.0338 0.0052
KD + Cutout 72.32 0.0665 0.0482 74.16 0.0638 0.047 73.53 0.0783 0.0573
KD + CutMix 71.51 0.068 0.0109 74.62 0.0541 0.014 71.12 0.0341 0.0049
KD + AugMix 72.97 0.0523 0.0346 74.28 0.0394 0.0246 73.11 0.0462 0.0301
Ours (Ensemble) 73.82 0.0497 0.0247 75.24 0.0351 0.0183 74.34 0.0355 0.0198
Ours (Weighted) 74.21 0.0648 0.0079 74.99 0.0623 0.0007 73.22 0.0637 0.0004

Table 7: Trade-off between ECE and Accuracy with different assigned weights for pre-trained models (WideResNet-40-2).

Assigned Weights Acc ECE OE
No Aug Mixup CutMix Cutout AugMix

1 1 1 1 1 81.75 0.0632 9.4 × 10−5
3 1 1 3 1 80.71 0.0361 0.0015
2 1 1 6 1 79.8 0.0281 0.0048

accuracy, it reduces ECE. To address this, optimal model combi-
nations with specific weights are essential for ECE reduction (Ta-
ble 7). Simple combination doesn’t guarantee calibration; instead,
weighted softmax averaging proves more effective. Notably, the
weights lack a discernible pattern, precluding generalization.

We also perform experiments with different techniques to train
the ensemble of all models with KD, which includes softmax aver-
aging (taking average of softmax scores produced by the teachers
and then evaluating loss with the student softmax scores), loss av-
eraging (taking average of KL loss between student and different
teachers), and taking weights (by default 1) while adding the loss.
The results in Table 8 highlight that "Add loss" yields better accu-
racy and "Weighted add loss(ECE/OE)" yeilds better ECE and OE.
The reasoning behind improvement of ECE and OE is as follows

Usually, DNNs are overconfident in nature and hence their ECE
is also on a higher side. Now, applying Data Augmentation on such
models controls their ECE and may decrease the OE also which

Table 8: Experiments on different KD ensemble Techniques
on CIFAR-100 with WideResNet-40-2 as teacher model, Shuf-
fleNet V1 as student model(Refer Appendix B).

Technique Best Acc ECE OE

Avg softmax 75.55 0.0707 0.0522
Avg loss 75.71 0.0752 0.0563
Add loss 77.28 0.061 0.046
Weighted Add loss (ECE/OE) 76.97 0.0379 0.0224
Vanilla KD 75.41 0.12 0.0992

means a model with better calibration but underconfident. If we
distill a student from four models with controlled ECE, then ECE
will have less effect on the ratio of ECE and OE but a model with
a higher OE value will get less weightage and a model with low
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(a) KD Vanilla (b) KD + Mixup (c) KD + Cutout

(d) KD + CutMix (e) KD + AugMix (f) KD Ensemble

Figure 3: This illustrates the reliability plots between accuracy and confidence of different augmentation techniques and KD
ensemble using ResNet-32x4 as teacher model and ResNet-8x4 as student model on CIFAR-100 dataset.

OE value will get higher weightage because of the inverse relation.
Therefore, the ratio of ECE and OE helps in distillation as the model
learns more from a model with low OE instead of a model with
high OE.

6 DISCUSSION
Our experimental findings shows the intricate interplay between
augmentation techniques and the performance of deep learning
models. Notably, advanced augmentation methods such as cutout,
mixup, CutMix, and AugMix have consistently shown their capacity
to yield well-calibrated and reliable models. However, our investiga-
tion into the fusion of these augmentation techniques has yielded
unexpected outcomes. Surprisingly, the anticipated regularization
benefits conferred by these augmentations appear to be outweighed
by a counteracting factor: the loss of vital information (see Figure
1). This loss of information manifests as a degradation in model
performance. Despite the individual strengths of these augmenta-
tion methods, their combined application seems to compromise the
model’s ability to retain crucial discriminative features, resulting
in a noteworthy decline in performance. This intriguing finding
underscores the delicate balance between regularization and fea-
ture preservation when utilizing multiple augmentation strategies
simultaneously. Moreover, when evaluated on corrupted dataset,
the results are not satisfactory. In light of these challenges, our
study introduces the concept of knowledge distillation as a means

to effectively harness the potential of augmentation techniques.
Our experiments demonstrate that knowledge distillation, wherein
a student model learns from an ensemble of well-calibrated teacher
models, can be a powerful mechanism to combine the dark knowl-
edge embedded in diverse augmentation strategies. By distilling this
knowledge, the student model achieves enhanced generalizability
as shown by the reliability plots (Fig 3).

7 CONCLUSION AND FUTUREWORK
In this paper, we introduce an approach for distilling the dark knowl-
edge from an ensemble of teachers trained using various augmented
data. Our experiments on CIFAR-10 and CIFAR-100 demonstrate
that the student trained using our approach outperforms the stu-
dent trained from scratch in terms of accuracy and calibration. We
concluded that our approach outperforms the vanilla KD, and all
other KD + individual data augmentation techniques in terms of
ECE and Accuracy. It lowers down the ECE and increases the ac-
curacy as a result we get a more accurate and calibrated student
model. We also introduced a weighted ensemble version of our
approach by taking the ratio of ECE and OE. We argue that this
weighing scheme might be explored in the future by also taking
the accuracy of various teachers into account.
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A EVALUATION METRICS
For the evaluation purpose, we consider ECE (Expected Calibration
Error), OE (Overconfidence Error) [17], and Accuracy to evaluate
the model’s performance on the test dataset. Let 𝑋𝑛 be the set of
samples whose prediction scores (the winning softmax score) fall
into bin 𝑛. The accuracy and confidence of𝑋𝑛 are calculated as: Our
test sample is first divided into 𝑛 number of bins. Then, based on
each sample’s probability, we place it into one of the bins. Finally, we
calculate the accuracy of the bin as the number of correct samples
contained in the bin, and the confidence of the bins displays the
average probability of the samples present in the bin.

acc(𝑋𝑛) =
1
|𝑋𝑛 |

∑︁
𝑖∈𝑋𝑛

1(𝑦𝑖 = 𝑦𝑖 ) (15)

where 𝑦𝑖 is the predicted label and 𝑦𝑖 is the actual label

conf(𝑋𝑛) =
1
|𝑋𝑛 |

∑︁
𝑖∈𝑋𝑛

𝑝𝑖 (16)

where 𝑝𝑖 is the prediction score of sample 𝑖 .
The Expected Calibration Error (ECE) is calculated as:

ECE =

𝑛∑︁
𝑖=1

|𝑋𝑖 |
𝑁

��acc(𝑋𝑖 ) − conf(𝑋𝑖 )�� (17)

We also calculate an additional calibration metric – the Over-
confidence Error (OE) – as follows

OE =

𝑛∑︁
𝑖=1

|𝑋𝑖 |
𝑁

��conf(𝑋𝑖 ) xmax(conf(𝑋𝑖 ) − acc(𝑋𝑖 ), 0)
�� (18)

where, 𝑛 is the total number of bins and N is total length of the
test dataset.
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B STUDENT ANALYSIS
In this section, we observe the impact of various advance augmen-
tation techniques like cutout, mixup, cutmix, augmix, if applied
directly on the student model. The results also demonstrate that
the regularization effect cause by these augmentation techniques is
dependent on the model’s architecture. The results are poor when
compared with our knowledge distillation based approach.

Table 9: It shows the effect of the data augmentation tech-
niques when applied directly on the student model. We have
kept all the hyper-parameters same as KD while training the
model. The result corresponds to ShuffleNet V1 model.

Technique Accuracy ECE OE

No augmentation 71.45 0.0890 0.0646
Mixup 71.25 0.0454 0.0016
CutMix 72 0.0302 0.0092
Cutout 67.32 0.13 0.10
AugMix 68.47 0.07 0.047

We use batch size as 128 along with an initial learning rate of 0.01
to train the Shufflenet V1 student model and obtained the result
shown in Table 9. The model was trained for 500 epochs and the
learning rate is multiplied by 0.1 at 150, 180, 210 epochs. For all the
experiments shown in Table 9, SGD optimizer with weight decay =
5 × 10−4 and momentum = 0.9 is taken.


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Calibration of the Teachers
	3.2 Ensembling the teachers

	4 Experiments and Results
	4.1 Effect of multiple augmentations
	4.2 Ensemble Distillation
	4.3 CIFAR-10
	4.4 CIFAR-100

	5 Ablation Study
	6 Discussion
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Evaluation Metrics
	B Student Analysis

