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Abstract

Only parts of unlabeled data are selected to train mod-
els for most semi-supervised learning methods, whose confi-
dence scores are usually higher than the pre-defined thresh-
old (i.e., the confidence margin). We argue that the recog-
nition performance should be further improved by making
full use of all unlabeled data. In this paper, we learn an
Adaptive Confidence Margin (Ada-CM) to fully leverage all
unlabeled data for semi-supervised deep facial expression
recognition. All unlabeled samples are partitioned into two
subsets by comparing their confidence scores with the adap-
tively learned confidence margin at each training epoch:
(1) subset I including samples whose confidence scores are
no lower than the margin; (2) subset II including samples
whose confidence scores are lower than the margin. For
samples in subset I, we constrain their predictions to match
pseudo labels. Meanwhile, samples in subset II participate
in the feature-level contrastive objective to learn effective
facial expression features. We extensively evaluate Ada-
CM on four challenging datasets, showing that our method
achieves state-of-the-art performance, especially surpass-
ing fully-supervised baselines in a semi-supervised man-
ner. Ablation study further proves the effectiveness of our
method. The code will be publicly available.

1. Introduction

Facial expression recognition (FER) aims to make com-
puters understand visual emotion. Recently, the advance-
ment of deep FER is largely promoted by large-scale la-
beled datasets, e.g., RAF-DB [15] and AffectNet [22].
However, the collection of large-scale labels is quite ex-
pensive and difficult. Besides, existing labels often fail to
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Figure 1. Confidence scores by 30 volunteers on ten faces
annotated with seven classes, including surprise, fear, disgust,
happiness, sadness, anger and neutral. The upper left corner of
each face is tagged with its confidence score. All faces are divided
into three groups based on the confidence score. The results pro-
vide insights that the confidence scores may be inconsistent among
different classes and even the confidence gap between intra-class
expressions may be large, e.g., faces annotated with Sadness.

satisfy actual fine-grained needs and the re-labeling data re-
quires human experts. Therefore, it is urgent to develop
a powerful method for training models on a large amount
of data without corresponding labels, i.e., semi-supervised
deep facial expression recognition (SS-DFER).

Most recent semi-supervised learning (SSL) algorithms
achieve competitive performance by predicting artificial la-
bels of unlabeled data. For example, pseudo-labeling meth-
ods [12, 14, 24, 34] utilize the model predictions as artifi-
cial labels to retrain CNN models. Typically, FixMatch
[28] explores weakly-augmented and strongly-augmented
data pairs and selects only unlabeled samples with high-
confidence predictions, whose confidence scores are above
the pre-defined fixed threshold (e.g., 0.95).

Despite excellent performance on common classification
tasks, the threshold-based pseudo-labeling strategy is still
challenging for SS-DFER mainly due to two reasons: (1)



The fixed threshold for all categories. Facial expressions
from different categories are classified with varying degrees
of difficulty. To better understand this, we randomly pick
several images from RAF-DB [15] and conduct a user study.
As shown in Figure 1, for the face annotated with Happi-
ness, the confidence score is much higher than other facial
expressions. Especially, the confidence gap between the
most and least possibles is up to 28%. Therefore, the fixed
threshold is unfair to different facial expressions. In other
words, the fixed threshold (e.g., 0.95) may lead to select-
ing too many expressions with high confidence scores (e.g.,
happiness) and too few expressions with low or lower con-
fidence scores (e.g., disgust). Moreover, the fixed setting
is not adaptive enough at each training epoch. (2) Ineffi-
cient data utilization. There is a large gap between the con-
fidence scores of different intra-class samples. For example,
the confidence gap between faces annotated with Sadness is
as large as 25% (see Figure 1). This issue may cause that
some intra-class samples with low confidence scores can-
not be selected for training models, e.g., the Sadness with
the confidence score of 0.71. This inspires us to consider
that how samples with low confidence scores contribute to
feature learning. Hence, to fully leverage unlabeled data
with the adaptive threshold is crucial for SS-DFER.

To this end, we propose a semi-supervised DFER algo-
rithm with an Adaptive Confidence Margin (Ada-CM) to
enjoy its adaptivity in terms of the learning on all unlabeled
data. Specifically, the proposed Ada-CM firstly runs over
all given labeled data and adaptively updates the confidence
margin based on the learning difficulty of different facial ex-
pressions. Importantly, the confidence margin is gradually
improved over training epochs. Then, it predicts confidence
scores of weakly-augmented unlabeled data, which are
compared with the learned confidence margin to partition
all unlabeled samples into two subsets: subset I including
samples with high confidence scores (i.e., whose confidence
scores are not lower than the margin) and subset II including
samples with low confidence scores (i.e., whose confidence
scores are lower than the margin). For samples in subset I,
Ada-CM leverages strongly-augmented unlabeled samples
and pseudo labels from their weakly-augmented versions to
calculate the cross-entropy loss. Moreover, for subset II, we
conduct a feature-level contrastive objective to learn effec-
tive features by applying the InfoNCE loss [4]. Overall, our
main contributions can be summarized as follows:

• We propose a novel end-to-end semi-supervised DFER
method by adaptively learning the confidence margin.
To the best of our knowledge, this is the first solution to
explore the dynamic confidence margin in SS-DFER.

• An adaptive confidence margin is designed to dynam-
ically learn on all unlabeled data for the model’s train-
ing. More importantly, samples with low confidence

scores are leveraged to enhance the feature-level simi-
larity.

• Extensive experiments on four challenging datasets
show the effectiveness of our proposed Ada-CM.
Especially, our method achieves superior perfor-
mance, surpassing fully-supervised baselines in a
semi-supervised manner.

2. Related Work
2.1. Facial Expression Recognition

Numerous FER methods [15, 20, 27, 35] have been pro-
posed. There are two major lines of research on FER, i.e.,
handcraft features and deep learning-based DFER methods.

Traditionally, early attempts [11,20,23] focus on the tex-
ture information on in-the-lab FER datasets, e.g., CK+ [19]
and Oulu-CASIA [41]. Motivated by large-scale uncon-
strained FER datasets [1, 15, 22], DFER algorithms design
effective CNN networks or loss functions to achieve supe-
rior performance. Right from the beginning, Li et al. [15]
proposed a locality preserving loss to learn more discrim-
inative facial expression features. Inspired by the atten-
tion mechanism, Wang et al. [31] proposed region-based
attention network to capture important facial regions. Li et
al. [18] explored partially-occluded facial expression recog-
nition. Moreover, several works [27, 30, 38] considered the
inconsistent annotation problem in DFER. Besides, Xue
et al. [35] first explored relation-aware representations for
Transformers-based DFER.

The above methods perform FER in a fully-supervised
manner. Differently, Florea et al. [7] proposed an extension
of MixMatch [3], namely Margin-Mix, and leveraged un-
labeled samples to solve the dense area problem. Indeed,
Margin-Mix determined artificial labels of unlabeled sam-
ples by the embeddings for class centers, not by the con-
fidence margin. Moreover, the center updating is costly
and time-consuming. To the best of our knowledge, no
threshold-based pseudo-labeling method has been proposed
for the SS-DFER task. In our work, an adaptive confidence
margin is designed to produce high-quality pseudo labels of
unlabeled samples with high confidence scores.

2.2. Semi-Supervised Learning

In recent years, semi-supervised learning methods have
been successfully applied to some challenging problems
[28,32,39]. Existing works on SSL deploy consistency reg-
ularization [26, 33], entropy minimization [8, 14] and tradi-
tional regularization [3] to leverage unlabeled data.

Among them, pseudo-labeling is a pioneer SSL method
to obtain hard labels from model predictions. Especially,
the threshold-based methods [25, 28] select unlabeled sam-
ples with high-confidence predictions. FixMatch [28]
and UDA [33] obtained pseudo labels based on the fixed
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Figure 2. Illustration of Ada-CM. In each forward pass, weakly-augmented (WA) labeled samples are fed into the model to learn the
adaptive confidence margin. Specifically, when the model’s prediction is equal to the ground truth, the corresponding confidence scores
are put into the confidence margin and then the average is used as the learned margin. Next, two WA unlabeled samples are fed separately
into the model, resulting in probability distributions pa and pb. Then, Ada-CM partitions all unlabeled data into two subsets based on the
relationship between the confidence score (i.e., the maximum value in the average probability distribution p̃c) and the confidence margin
Tt

c. Finally, samples in subset I with pseudo labels and the feature similarity on samples in subset II are explored by entropy minimization
and contrastive objective, respectively. For clarity, we present the same model with three colors to distinguish different inputs.

threshold and leveraged weak and strong augmentations to
achieve the consistency regularization. In addition, several
works have investigated on the dynamic threshold [34, 39].
For example, Xu et al. [34] proposed a generic method
to dynamically select samples with high-confidence predic-
tions. In our work, it is the first attempt to learn an adap-
tive confidence margin for SS-DFER. Besides, all unlabeled
samples are learned, which is also the first attempt for SSL.

3. Method
3.1. Problem Formulation

Generally, for a C-class fully-supervised DFER task,
there is a set of instance-label pairs as C = (X ,Y), where
X = {xi}Ni=1 and Y = {yi ∈ {0, 1}C}Ni=1 are the set of
training data and the corresponding one-hot labels, and N
denotes the number of labeled training data. The conven-
tional loss function is the cross-entropy loss on the labeled
training data:

LsCE = − 1

N

N∑
i=1

C∑
c=1

yci log(pc(xi, θ)), (1)

where pc(xi, θ) denotes the prediction probability of data
xi for class c with the model parameter θ. However, for the

problem of semi-supervised DFER, labels are not guaran-
teed to be fully available. In general, the original training
samples are partitioned into two sets, including a labeled set
and an unlabeled set. Let

S = {(xi,yi), i = 1, ..., Ns} (2)

be the labeled training set. Ns is the number of labeled
training data. Besides the labeled set S, the unlabeled train-
ing set shares the same categories, denoted by

U = {xui , i = 1, ..., Nu}, (3)

where Nu is the number of unlabeled training data.
Given the above data, existing pseudo-labeling meth-

ods [14, 28, 33] aim to generate the pseudo label ỹi for an
unlabeled sample xui . Then, the model is optimized on the
labeled set S and the unlabeled set U with pseudo labels by
the cross-entropy loss. For example, FixMatch [28] adopts
a fixed threshold for all categories and selects samples with
high-confidence predictions whose confidence scores are
above the threshold. Crucially, for the consistency regular-
ization [3] in SSL, FixMatch conducts two separate weakly-
augmented (WA) and strongly-augmented (SA) operations
and estimates pseudo labels based on the WA data.1

1It is a form of consistency regularization in which the model should
output the same prediction for the WA and SA data.



More importantly, the quality of pseudo labels depends
on the threshold, which can determine the level of confi-
dence scores. However, existing methods can only make
sure that samples with high confidence scores are used for
the model’s training. In addition, many expressions (e.g.,
happiness) usually have higher confidence scores than other
expressions, which is unfair to other categories. In this
work, we focus on the confidence margin-based pipeline
and leverage all unlabeled data regardless of the degree of
confidence scores.

3.2. Our proposed Ada-CM

In this section, we first present the overall framework in
Sec. 3.2.1. In Sec. 3.2.2, we propose an adaptive confidence
margin, which contains different thresholds for expression
categories. Furthermore, we introduce the learning on all
unlabeled data in Sec. 3.2.3. Finally, we display the whole
training objective in Sec. 3.2.4.

3.2.1 The Overall Framework

To fully leverage unlabeled data, we propose a semi-
supervised DFER method (see Figure 2). Unlike the fixed
threshold for all categories, we propose an adaptive confi-
dence margin (Ada-CM), which consists of different thresh-
olds for each expression category. Then, our proposed Ada-
CM partitions all unlabeled data into two subsets by com-
paring the confidence scores2 with the margin. Once the
confidence score of unlabeled data (i.e., the maximum value
in the average probability distribution p̃c) is higher than the
corresponding threshold in the margin, the prediction on
the SA version will match the pseudo label from the above
WA versions via the cross-entropy loss. Otherwise, the con-
trastive objective is used to enhance the similarity between
two WA features. Therefore, our Ada-CM mainly contains
two components, including learning an adaptive confidence
margin and adaptively learning on unlabeled data. We will
elaborate on key technologies in turn.

3.2.2 Adaptive Confidence Margin

Recent SSL progresses [14,28,33] select samples with high
confidence scores to update models based on a pre-defined
threshold for all categories. However, since the confidence
score varies by category, it is unfair to different facial ex-
pressions. Motivated by this, we aim to evaluate the con-
fidence margin based on given labeled data and build an
adaptive confidence margin. Note that our method requires
no extra labeled data to determine the margin.

2For labeled and unlabeled data, the confidence score can be viewed as
the probability value corresponding to the ground truth and the maximum
value in a probability distribution, respectively.

For the labeled set S = {(xi,yi), i = 1, ..., Ns}, we
would like to explore the confidence margin for different fa-
cial expressions. A classical idea is to calculate the predic-
tions of all labeled samples and obtain different thresholds
by averaging the corresponding confidence scores. How-
ever, this practice shows a fatal problem for SS-DFER. In
particular, several studies have shown that noisy labels exist
in DFER datasets [27,30], which indicates that certain con-
fidence scores of samples are not desirable. Therefore, we
propose the adaptive confidence margin based on the cor-
rect confidence scores.

Specifically, we first calculate predictions of labeled
samples and determine predicted labels. Compared to the
ground truth {yi ∈ {0, 1}C , i = 1, 2, ..., Ns}, we pick
out the correctly-predicted samples ST = {(xi, ŷi, si), i =
1, ..., Nst}, where si is the confidence score of the i-th la-
beled data, ŷi ∈ {1, 2, ..., C} denotes the i-th label and Nst
is the number of data in ST . We then construct the adap-
tive confidence margin T = {(T1, ...,TC)|Tc ∈ R, c =
1, ..., C} by

Tc =
1

N c
st

Nst∑
i=1

1(ŷi = c) · si, (4)

where N c
st reflects the number of samples annotated with

the c-th class in ST . It is known that with the increasing of
epoch, the discriminative ability of DFER model is stronger.
Therefore, we consider that the confidence margin is also
adaptively improved with the training epoch. Mathemati-
cally, the current confidence margin at epoch t is given by

Tt
c =

BTc

1 + γ−t
, (5)

where 0 < B < 1 and γ > 1 are two constants. In practice,
we set B = 0.97 to control too large margin. Moreover, we
use γ = e as the default setting. The ablation study about
B and γ will be shown in Sec. 4.2.

3.2.3 Adaptively Learning on Unlabeled Data

The proposed adaptive confidence margin is an important
criterion to determine the level of confidence scores. To
leverage all unlabeled samples efficiently, we design an
adaptive learning strategy to explore all unlabeled data for
updating model parameters.

To this end, we propose to adaptively learn on all un-
labeled data based on the above adaptive confidence mar-
gin. Specifically, we first generate two WA versions xai =
T a(xui ) and xbi = T b(xui ) and use the model to extract fa-
cial expression features and probability distributions. Based
on two probability distributions pa and pb, we then com-
pute the average probability distribution:

p̃c =
1

2
(pa(xai , θ) + pb(xbi , θ)), (6)



where p̃c denotes the probability distribution of data xui
about class c. Now, the adaptive learning strategy compares
two values, i.e., max(p̃c) and Tt

argmax
c

p̃c
, to dynamically

partition all unlabeled data into the subset I including sam-
ples with high confidence scores and the subset II including
samples with low confidence scores.

For samples in subset I, we retain the average as the
pseudo label unaltered at the current epoch, i.e., ỹi =
argmax

c
p̃c, where ỹi denotes the one-hot label for conve-

nience. To achieve the consistency regularization, we adopt
the strongly-augmented operations and make the prediction
of SA version match the pseudo label obtained from two
WA versions. Therefore, given a high-confidence sample
xui , the unsupervised loss Lu is defined as the cross-entropy
loss between the SA version xsi = T s(xui ) and ỹi:

Lu = − 1

Nh

Nh∑
i=1

C∑
c=1

ỹci log(pc(x
s
i , θ)), (7)

where Nh denotes the number of data in subset I.
For samples in subset II, since the low-confidence pre-

dictions are not believable, the cross-entropy loss cannot be
used to guide the model’s learning. Inspired by contrastive
learning [4, 16, 36], we consider the relationship between
two WA versions of the same unlabeled data to improve the
discriminative power of expression features. Specifically,
the feature-level similarity is first measured by

s(eai , e
b
i ) =

(eai )(e
b
i )
>

||eai ||||ebi ||
, (8)

where eai and ebi are two weak-augmented expression fea-
tures. Based on the obtained similarity measure, the con-
trastive objective for the feature eai of a sample xui can be
defined as follows:

Lc = − 1

Nl

Nl∑
i=1

log

 es(e
a
i ,e

b
i )/τ∑

j

es(e
a
i ,e

a
j )/τ +

∑
k

es(e
a
i ,e

b
k)/τ

 ,

(9)
where i, k ∈ I = {1, 2, 3, ..., Nl}, j ∈ I\{i}, Nl is the
number of data in subset II and τ is a temperature param-
eter to control the softness [10]. Notably, this process can
further increase the discriminative power of expression fea-
tures and introduce no additional trainable parameters.

3.2.4 Overall Objective Function

The proposed SS-DFER method with the adaptive confi-
dence margin can be optimized in an end-to-end process.
The whole network minimizes the following loss function:

Ltotal = λ1LsCE + λ2Lu + λ3Lc, (10)

Algorithm 1 Ada-CM’s main learning algorithm.
Input: Model parameters θ, labeled samples and their labels S =
{(xi,yi), i = 1, ..., Ns}, unlabeled samples U = {xu

i , i =
1, ..., Nu}, number of epoch tmax and learning rate η.

Output: Updated model parameters θ.
1: // Learning the adaptive confidence margin.
2: Initialization: T0 ∈ {f}C .
3: for i = 1, 2, 3, ..., Ns do
4: Obtain the correctly-predicted set ST .
5: Update Tc by Eq. (4).
6: end for
7: Obtain the current confidence margin Tt

c by Eq. (5).
8: // Training models with labeled and unlabeled samples.
9: for t = 1, 2, 3, ..., tmax do

10: Compute Ls
CE using labeled samples by Eq. (1).

11: Predict pa, pb and the average p̃c by Eq. (6).
12: if max(p̃c) ≥ Tt

argmax
c

p̃c
then

13: Compute Lu using subset I by Eq. (7).
14: Update θ ← θ − η∇Lu.
15: else
16: Compute Lc using subset II by Eqs. (8) and (9).
17: Update θ ← θ − η∇Lc.
18: end if
19: Update θ ← θ − η∇Ls

CE .
20: end for

whereLsCE andLu denote the cross-entropy loss on labeled
samples and unlabeled samples in subset I, respectively. Lc
denotes the contrastive objective on samples in subset II. λ1,
λ2 and λ3 are hyper-parameters to balance each term’s in-
tensity. The whole process of our proposed method is sum-
marized in Algorithm 1.

3.3. Discussion

Here, we discuss the relations between the proposed
Ada-CM, FixMatch [28], Dash [34] and FlexMatch [39],
which share similar philosophy but with different roles.

Relation to FixMatch [28]. FixMatch focuses on the pre-
defined fixed threshold so its modeling capacity is limited at
the early training stage [34, 39]. Ada-CM aims at the adap-
tive confidence margin, which is friendly for the early train-
ing. In addition, FixMatch selects unlabeled samples with
high-confidence predictions through the same threshold for
all categories, while Ada-CM can adaptively leverage all
unlabeled data based on the learning difficulty of different
facial expressions.

Relation to Dash [34]. Dash devotes to selecting the
unlabeled samples whose loss values are smaller than the
dynamic threshold. However, Ada-CM adopts the confi-
dence score as the compared variable, which intuitively re-
flects the predictions of unlabeled samples. Furthermore,
our adaptive confidence margin is built on different-class
labeled samples, while Dash applies the entire labeled set
to obtain a unique threshold value.



Relation to FlexMatch [39]. FlexMatch first considers
the learning difficulties of each class and selects more unla-
beled samples with high-confidence predictions at the early
stage. While in Ada-CM, our method can explore all un-
labeled data at any learning stage, which significantly im-
proves the efficiency of data utilization.

4. Experiments
In this section, extensive experiments are conducted to

verify the effectiveness of our proposed method. We first
briefly introduce the experiment setup (Sec. 4.1). Then, we
perform the ablation study (Sec. 4.2) to show the impor-
tance of each component in Ada-CM. Finally, we compare
our method with state-of-the-art methods (Secs. 4.3 to 4.5).

4.1. Experiment Setup

Datasets. We evaluate Ada-CM on four commonly used
datasets: RAF-DB, SFEW, AffectNet and CK+. RAF-DB
[15] includes nearly 30,000 facial images with two different
subsets by 40 annotators. In our experiments, we choose the
single-label subset with six basic expressions (i.e., surprise,
fear, disgust, happy, sad and anger) and the neutral face,
which is divided into the training set and testing set with
the size of 12,271 and 3,068, respectively. SFEW [6] is
a static facial expression dataset selected from movies, in-
cluding 958 images for training, 436 images for validation
and 372 images for testing. The images in SFEW are an-
notated with six basic expressions and the neutral face as in
RAF-DB. For the reason that there are no public labels in
the testing set, we compare performance on the validation
set. AffectNet [22] is currently the largest real-world facial
expression dataset, consisting of about 420,000 manually-
annotated images with eight expression labels. For a fair
comparison, we utilize 280,000 training images and 4,000
validation images (500 images per class). The Extended
Cohn-Kanade (CK+) [19] includes 593 video sequences
from 123 subjects. We select the first and last frame of each
sequence as the neutral face and targeted expression, includ-
ing 636 images with seven expression labels.

Performance Metrics. For evaluating the model per-
formance, we utilize the overall test accuracy as the per-
formance metric for all algorithms. Besides, we follow the
standard SSL evaluation protocol and perform experiments
five times using different random seeds to obtain the mean
accuracy and their standard deviations.

Implementation Details. In the following experiments,
we use MTCNN [40] to detect and resize facial expressions
with the size 224 × 224. Our proposed method is imple-
mented with the PyTorch toolbox on two NVIDIA Tesla
V100 GPUs. For the backbone CNN, we use the ResNet-
18 [9] pre-trained on MS-Celeb-1M face recognition dataset
by default. We also conduct experiments with WideResNet-
28-2 [37] used in MarginMix [7] for a fair comparison. We

Table 1. Ablation study of the fixed threshold and different compo-
nents in Ada-CM on RAF-DB and SFEW (in %, mean± standard
deviation). Baseline denotes that the model is only trained byLs

CE

with limited labeled data. This also applies to the following tables.
Note that Lu denotes different thresholds for obtaining data with
high confidence scores, e.g., fixed (rows 2 to 4), dynamic (row 5)
and our adaptive confidence margin (rows 6 and 8).

Method Lu Lc RAF-DB SFEW
100 labels 400 labels

Baseline - - 52.43±2.24 43.85±2.83

FT = 0.5 X - 57.49±1.77 47.85±1.89

FT = 0.8 X - 58.94±2.05 48.58±1.32

FT = 0.95 X - 60.67±2.25 50.37±0.45

FlexMatch [39] X - 61.23±2.27 50.99±1.45

Ada-CM
X - 61.50±2.10 51.04±0.58

- X 54.27±2.79 45.99±0.35

X X 62.36±1.10 52.43±0.67

employ a DFER-related weak augmentation strategy, in-
cluding RandomCrop, RandomHorizontalFlip and Normal-
ize. Moreover, the RandAugment [5] is used as the strong
augmentation scheme following by [28]. The training data
in RAF-DB is added in SFEW as additional unlabeled data.

For a fair comparison, we use the Adam optimizer [13]
with the initial learning rate of 5× 10−4 for all experiments.
The total number of training epochs is set to 20. The mini-
batch size of labeled data is 16 except for AffectNet. These
setups are the same for all algorithms for fair comparisons.
The initial threshold set is empirically set to T0 = {0.8}C .
In the Eq. (10), the hyper-parameters λ1, λ2 and λ3 are set
as 0.5, 1 and 0.1, respectively.

4.2. Ablation Study

In this section, we analyze the contribution of each com-
ponent in our method. For convenience, we use ‘FT’ to
refer to FixMatch [28] with different fixed thresholds in the
following experiments.

Effectiveness of each component in Ada-CM. To eval-
uate the importance of the proposed adaptive confidence
margin, we carry out the ablation study to investigate the
Lu with samples with high confidence scores and Lc with
samples with low confidence scores on RAF-DB with 100
labels and SFEW with 400 labels. In addition, the relation
in Section 3.3 can also be verified.

As shown in Table 1, several observations can be sum-
marized as follows. Firstly, compared with the baseline,
other methods (rows 2 to 8) leverage unlabeled samples
and significantly improve the baseline performance on two
evaluation schemes. In all cases, our final Ada-CM (row
8) achieves the best performance improvement. Moreover,
different fixed thresholds affect the quality of pseudo labels,
which is consistent with the effect in FixMatch [28].

Secondly, the effect of the contrastive objective (row 7)



Table 2. Performance comparison with the state-of-the-art SSL methods on RAF-DB, SFEW and AffectNet using ResNet-18 (in %, mean
± standard deviation). Fully supervised denotes that all labeled training data is used to train the DFER model. This also applies to the
following tables. The fully-supervised baseline results are obtained by DLP-CNN [15] on RAF-DB and SFEW, RAN [31] on AffectNet.

Method
RAF-DB SFEW AffectNet

100 labels 400 labels 2000 labels 4000 labels 100 labels 400 labels 2000 labels 10000 labels
Baseline 52.43±2.24 67.75±0.95 78.91±0.43 81.90±0.48 33.76±1.84 43.85±2.83 47.52±0.75 53.18±0.68

Pseudo-Labeling [14] 54.96±4.24 69.99±1.81 79.18±0.27 82.88±0.49 34.27±1.67 45.27±1.32 48.78±0.67 53.82±1.29

MixMatch [3] 54.57±4.16 73.14±1.40 79.63±0.91 83.57±0.49 34.13±2.58 44.91±1.87 49.63±0.49 53.49±0.47

UDA [33] 58.15±1.54 72.39±1.64 81.16±0.54 83.56±0.82 39.22±2.30 48.90±1.56 50.42±0.45 56.49±0.27

ReMixMatch [2] 58.83±2.34 73.34±1.82 79.66±0.66 83.51±0.18 35.69±2.73 48.39±0.71 50.38±0.63 55.81±0.34

FixMatch [28] 60.67±2.25 73.36±1.59 81.27±0.27 83.31±0.33 38.90±1.90 50.37±0.45 50.79±0.37 56.50±0.43

Ada-CM 62.36±1.10 74.44±1.53 82.05±0.22 84.42±0.49 41.88±2.12 52.43±0.67 51.22±0.29 57.42±0.43

Fully Supervised 84.13 51.05 52.97
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Figure 3. Plots of ablation study on Ada-CM. (a) Varying the con-
trol parameter B. (b) Measuring the effect of γ. The performance
with default setting is marked in the red.

exceeds the baseline but is not satisfactory. This might be
explained by the reason that the contrastive objective fo-
cuses on the feature-level similarity between different views
of the same data, while having limited ability to distinguish
inter-class samples. However, the operation can ensure that
all unlabeled samples are leveraged to update models and
achieve synergy with Lu to improve performance.

In addition, for the effect of thresholds, we compare
three fixed thresholds, FlexMatch (row 5) and our adaptive
confidence margin (row 6). From the results, our adaptive
confidence margin is shown to achieve larger performance
improvement. These results validate two contributions of
our method: 1) Compared with the fixed threshold-based
methods, our method is highly effective in pseudo-labeling
unlabeled facial expressions. 2) Our Ada-CM and Flex-
Match [39] both on samples with high confidence scores
achieve similar performance. However, the contribution
of our method is that the Ada-CM can leverage all unla-
beled samples, compared with selecting only parts of sam-
ples in FlexMatch. Indeed, combining the adaptive confi-
dence margin and contrastive objective, our method (row 8)
achieves the best results, which demonstrates that with the
help of all unlabeled data, entropy minimization and con-
trastive learning can jointly guide models to extract more
discriminative features.

Evaluation of B. Since the parameter B is used to con-
trol the peak of confidence margin at each epoch, we con-

Table 3. Performance comparison with the state-of-the-art SS-
DFER methods on RAF-DB using WideResNet-28-2 (in %, mean
± standard deviation).

Method
Labeled samples

400 1000 4000
Baseline 26.75 35.25 55.66

MeanTeacher [29] 28.23 36.53 60.36
MixMatch [3] 42.25 60.37 65.24
MarginMix [7] 45.75 66.47 70.68

Ada-CM 59.03±0.73 68.38±0.44 75.98±0.41

duct experiments to explore different B in Eq. (5). Figure 3
(a) reflects the model performance with different B. We
find that the default setting B = 0.97 achieves the best re-
sult. When B is too small, it is difficult for our method to
ensure the quality of pseudo labels. The reason is that the
amount of data with wrong pseudo labels increases.

Influence of different γ. γ provides the ability to grad-
ually modify the current confidence margin. Figure 3 (b)
shows the effects of different γ ∈ {1.5, 2, e, 3}. We can ob-
tain that our method is not sensitive to γ in a certain range
but obtains the top performance when γ is set to e.

4.3. Comparison with State-of-the-Art Methods

To verify the effectiveness of our Ada-CM, we provide
experimental results on RAF-DB, SFEW and AffectNet
datasets to compare with state-of-the-art methods in two as-
pects, including comparison with the SS-DFER method [7]
on RAF-DB and comparison with SSL methods. Table 2
compares our method with SSL methods using ResNet-18
as the backbone network. From this table, it clearly shows
that our proposed Ada-CM achieves the best performance
and surpasses the state-of-the-art FixMatch [28] with a large
margin. This indicates that our method can better leverage
unlabeled data to further improve SSL performance. Com-
pared with the fully-supervised results [15, 31], our method
can still beat the baselines with large gains, i.e., 0.29% on
RAF-DB, 1.38% on SFEW and 4.45% on AffectNet for the
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Figure 4. 2D t-SNE visualization [21] of facial expression features obtained by different methods, including (a) Baseline, (b) FixMatch,
(c) our Ada-CM (w/o the contrastive objective) and (d) the whole Ada-CM. All models are trained on RAF-DB with 4,000 labels. The
features are extracted from the CK+ dataset.

Table 4. Cross-dataset evaluation on in-the-lab CK+ using
WideResNet (WRN)-28-2 [37] and ResNet-18 [9] (in %, mean ±
standard deviation). All models are trained on RAF-DB and tested
on CK+ dataset.

Method
Labeled samples

Backbone
100 4000

Baseline 44.29±3.04 70.97±2.21

WRN-28-2
MixMatch [3] 50.42±8.36 71.76±1.48

FixMatch [28] 52.52±9.69 76.98±2.15

Ada-CM 56.13±6.85 79.34±1.14

Baseline 59.02±3.63 80.63±0.62

ResNet-18
MixMatch [3] 59.94±5.46 83.87±1.02

FixMatch [28] 73.62±1.78 84.18±0.99

Ada-CM 76.92±3.57 85.32±0.98

Fully Supervised
81.07 [18]
81.72 [17]

case of 1/3, 1/2 and 1/28 labeled data ratio, respectively.
These results verify the effectiveness of our method and the
ability to deal with the real-world limited labeled case.

Besides, the proposed Ada-CM can always outperform
MarginMix [7] in each case. To the best of our knowledge,
MarginMix could be the first attempt to solve the SS-DFER
problem based on MixMatch [3]. As shown in Table 3, our
Ada-CM significantly surpasses it by 13.27%, 1.91% and
5.3% with 400, 1,000 and 4,000 labeled samples, respec-
tively. The remarkable results demonstrate the effectiveness
of our proposed Ada-CM in dealing with SS-DFER. More
results could be found in the supplementary material.

4.4. SSL for Cross-Dataset Evaluation

To further verify the generalization ability of our method,
we conduct a cross-dataset evaluation scheme (RAF-DB to
CK+ dataset), which is widely used in the cross-dataset
DFER. Table 4 shows the comparison with state-of-the-
art methods using WideResNet-28-2 and ResNet-18 as the
backbone. Obviously, our method achieves better perfor-
mance than existing methods in all cases. Compared with
the fully-supervised results [17], the Ada-CM with 4,000
labeled samples using ResNet-18 obtains larger gains by

3.6%. It suggests that our method focuses on a large amount
of unlabeled data without the influence of original labels,
which is conducive to generalization. Furthermore, our
method can achieve superior performance with 1/3 labeled
data and fewer model parameters. To be specific, the back-
bone used in [17] is ResNet-50 with channel level attention,
while we use the more lightweight ResNet-18.

4.5. Visualization

To further evaluate the effectiveness of the important
adaptive confidence margin in our method, we use t-SNE
[21] to visualize the facial expression feature distribution
extracted by the baseline, FixMatch, our proposed Ada-CM
(w/o the contrastive objective) and the whole Ada-CM on
the 2D space, respectively.

As shown in Figure 4, we can observe that the expres-
sion features obtained by the baseline and FixMatch are not
enough discriminative for some facial expressions, e.g., the
sadness in the red dotted line. In contrast, our Ada-CM
(w/o the contrastive objective) can achieve a clear bound-
ary between sadness and other categories. Especially, after
combining the contrastive objective, the intra-class similar-
ity and inter-class differences are more distinct.

5. Conclusion

In this paper, we propose a novel Adaptive Confidence
Margin (Ada-CM) for semi-supervised deep facial expres-
sion recognition, which adaptively leverages all unlabeled
samples (i.e., samples in subset I with high confidence
scores and samples in subset II with low confidence scores)
to train models. The proposed Ada-CM dramatically im-
proves the performance from two aspects. On one hand,
unlabeled samples whose confidence scores exceed the
learned confidence margin are directly pseudo-labeled to
match the predictions of strongly-augmented versions. On
the other hand, the contrastive objective is applied to learn
facial expression features among samples in subset II. Ex-
periments on four popular datasets show the superiority of
our method to perform the SS-DFER task.
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